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Iteration and Labelled Iteration

Bram Geron1 and Paul Blain Levy 2

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK

Abstract

We analyse the conventional sum-based representation of iteration from the perspective of programmers,
and show that the syntax they suggest is fundamentally not a good representation of Java-style iteration
with for, while, break, and continue. We present an alternative syntax, which we call “labelled iteration”,
where loops are identified using labels.
The languages are analysed: we give denotational and operational semantics, adequacy proofs for both
languages, and a translation function from sum-based iteration to labelled iteration.

Keywords: iteration, loops, lexical binding, operational semantics, denotational semantics, higher-order
language, lambda calculus, de Bruijn indices

1 Introduction

1.1 Overview

Iteration is an important programming language feature.

● In imperative languages, it is best known in for and while loops. The meaning
of such a loop is to iterate code until some condition is met, or if the condition
is never met, the loop diverges. Such loops are often supplemented by break and
continue.

● It has also been studied in the lambda calculus setting [13,19,21].

● In the categorical setting, iteration corresponds to complete Elgot monads [9].
They descend from iterative, iteration, and Elgot theories, and their algebras and
monads [7,1,2,3,23], which study variants of the sum-based iteration −†. This field
is related to Kleene monads [10,17,18].
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Iteration can be implemented using recursion, but it is simpler: semantics of recur-
sion require a least fixpoint, where iteration has a simple set-based semantics. Also
from the programmer’s perspective, iteration and recursion are different: a program
using a for or while loop can sometimes be clearer than the same program using
recursion.

1.2 The sum-based representation of iteration

We study two representations of iteration. First, the classical sum-based construct−† that turns a computation Γ,A ⊢ M ∶ A +B into a computation Γ,A ⊢ M † ∶ B.
Categorically, this representation of iteration corresponds to complete Elgot monads
[9]. To understand the correspondence better, we introduce a term constructor iter
for −†. (Details are in Section 2.)

Γ ⊢v V ∶ A Γ, x∶A ⊢c M ∶ A +B

Γ ⊢c iter V, x. M ∶ B
Imperative programs with for and while can now be encoded using iter. As an
example, the program on the left corresponds to the term on the right:

imperative λ-calculus-like

x ∶= V ;

while (p(x)) {
x ∶= f(x);

}
return g(x);

iter V,x.

if p(x)
then return inl f(x)
else return inr g(x)

This works as follows. The iter construct introduces a new identifier x, which starts
at V . The body is evaluated. If the body evaluates to inr W , then the loop is
finished and its result is W . If the body evaluates to inl V ′, then we set x to V ′,
and keep on evaluating the body until it evaluates to some inr W .

1.3 The “De Bruijn index” awkwardness with the sum-based representation

Programmers using imperative languages regularly use nested loops, as well their
associated break and continue statements, which may be labelled. Such state-
ments are not essential for programming, and code using break or continue can
be rewritten so it does not use either statement, but this usually comes at a price
in readability. There is usually a labelled and an unlabelled form of break and
continue.

On the left side of Figure 1, we show an program in a Java-like language with
nested labelled loops, and labelled continue statements. The colours can be ig-
nored for now. The program computes the formula ∑ 0≤i≤8

∧a[i][0]≠5
∏ 0≤j≤8
∧a[i][j] even

a[i][j],
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int sum = 0;

outer ∶ for (int i = 0; i ≤ 8; i++){

if (a[i][0] == 5)
continue outer;

int prod = 1;

inner ∶ for (int j = 0; j ≤ 8; j++){

if (¬isEven(a[i][j]))
continue inner;

if (a[i][j] == 0)
// product will be 0.

continue outer;

prod = prod ∗ a[i][j];
}
sum = sum + prod ;

}
int result = sum;

iter ⟨0,0⟩, �1. let ⟨sum, i⟩ = �1 in

if i ≥ 9 then

return inr sum

else if a[i][0] == 5 then

return inl ⟨sum, i + 1⟩
else iter ⟨1,0⟩, �2. let ⟨prod , j⟩ = �2 in

if j ≥ 9 then

return inr inl ⟨sum + prod , i + 1⟩
else if ¬isEven a[i][j] then

return inl ⟨prod , j + 1⟩
else if a[i][j] == 0 then

return inr inl ⟨sum, i + 1⟩
else

return inl ⟨prod ∗ a[i][j], j + 1⟩

Figure 1. Two programs programs that compute the same formula. The left hand program is written
in Java; the right hand program uses fine-grain call-by-value with sum-based iteration. Related fragments
have the same colour. Both programs compute ∑ 0≤i≤8

∧a[i][0]≠5
∏ 0≤j≤8
∧a[i][j] even

a[i][j] .

although the specific formula is not important for the example. Recall from Java
that “continue inner” aborts the current iteration of the inner loop, and continues
with a fresh iteration of the inner while loop. Statement “continue outer” does the
analogous thing but for the outer loop. It will abort the inner loop implicitly.

On the right side, we have a similar program to compute the same formula, but
using sum-based iteration.

We use colour to indicate fragments that are intuitively related, because control
flows to the same place after those fragments:

● After continue inner and the two occurrences of return inl ⟨⋯, j + 1⟩, control flows
to the beginning of the inner loop. We have drawn a solid purple box around
those fragments. The assignment to prod on the left also precedes the beginning
of the inner loop, and we have coloured it purple.
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● After both occurrences of continue outer, control flows to the beginning of the
outer for loop. Similarly, after return inl ⟨sum, i+1⟩ and after the two occurrences
of return inr inl ⟨⋯⟩, control flows to the beginning of the outer iter. We have
drawn a thick dashed red box around those fragments. The assignment to sum

on the left also precedes the beginning of the outer loop, and we have coloured it
red.

Note that in the left (Java) program, both statements in red boxes are written the
same: “continue outer”.

Both programs work, but the syntax of the right hand program has two awkward-
nesses for programmers:

(i) Continuing to the outer loop (red) is written return inl ⟨⋯⟩ in one case, and
return inr inl ⟨⋯⟩ in the other cases. The same “control fragment” is written
differently depending on where it occurs. This makes moving code into and out
of the inner loop error-prone.

(ii) return inl ⟨⋯⟩ is used to resume both the inner and the outer iteration. To find
out where control resumes, a reader of the program must carefully look up the
innermost enclosing iteration. In contrast, in the Java program there can be
no mistake about where control resumes after continue outer.

This awkwardness is exacerbated when there are three or more nested loops
with the same structure: on the right hand side,

● return inl (⋯) would continue the innermost enclosing iteration

● return inr inl (⋯) would continue the second-innermost enclosing iteration

● return inr inr inl (⋯) would continue the third-innermost enclosing iteration,
which would always be the outer iteration.

We call this the “De Bruijn index awkwardness”, because De Bruijn’s indices [6] for
identifiers in λ calculus also work by counting intermediate binders, and they have
similar disadvantages for programmers. Indeed, De Bruijn [6] claims his notation
to be good for a number of things, but does not claim that it is “easy to write and
easy to read for the human reader”. For a brief introduction to De Bruijn indices,
we refer to [14]; the same issue has also been studied from a different angle in [4,22].

1.4 The solution: Labelled iteration

We solve the De Bruijn index awkwardness with a second iteration construct, which
we call labelled iteration and which we will also spell iter. It binds a name x ∶A with
a dual purpose:

● It holds a value of type A.

● It serves as a label for restarting the loop, upon which a new value of type A must
be supplied.
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int sum = 0;

outer ∶ for (int i = 0; i ≤ 8; i++){

if (a[i][0] == 5)
continue outer;

int prod = 1;

inner ∶ for (int j = 0; j ≤ 8; j++){

if (¬isEven(a[i][j]))
continue inner;

if (a[i][j] == 0)
// product will be 0.

continue outer;

prod = prod ∗ a[i][j];
}
sum = sum + prod ;

}
int result = sum;

iter ⟨0,0⟩, �1. let ⟨sum, i⟩ = �1 in

if i ≥ 9 then

return sum

else if a[i][0] == 5 then

raise�1 ⟨sum, i + 1⟩
else iter ⟨1,0⟩, �2. let ⟨prod , j⟩ = �2 in

if j ≥ 9 then

raise�1 ⟨sum + prod , i + 1⟩
else if ¬isEven a[i][j] then

raise�2 ⟨prod , j + 1⟩
else if a[i][j] == 0 then

raise�1 ⟨sum, i + 1⟩
else

raise�2 ⟨prod ∗ a[i][j], j + 1⟩

Figure 2. Two programs programs that compute the same formula. The left hand program is written in
Java; the right hand program uses fine-grain call-by-value with labelled iteration. Related fragments have
the same colour. Both programs compute ∑ 0≤i≤8

∧a[i][0]≠5
∏ 0≤j≤8
∧a[i][j] even

a[i][j] .

In Figure 2, we have put the same Java program side-by-side side with an imple-
mentation using labelled iteration.

Like sum-based iteration, labelled iteration has a set-based semantics, but the type
system is more involved. We explain labelled iteration in more detail in Section 3.
We chose the spelling raise because there is a similarity with raising an exception;
see also the discussion in Section 4.

1.5 Contributions

We define both languages: we give a type system, denotational semantics, big-step
operational semantics, and an adequacy theorem for both languages. We explain the
De Bruijn index awkwardness with the first language, and give a realistic example.
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We show that the first construct can be macro-expressed in terms of the second
construct.

For both types of iteration, we study only loops with continue: we omit break
because we believe it is a straightforward extension.

We define the language with sum-based iteration in Section 2, and the language with
labelled iteration in Section 3.

2 Sum-based iteration

We define both our constructs in terms of fine-grain call-by-value or FGCBV [20],
which is a variant of call-by-value lambda calculus that has a syntactic separation
between values and computations, and in which the evaluation order is made explicit.

We explain FGCBV and sum-based iteration here. The syntax and type system of
FGCBV is given in Figure 3. We give a simple set-based semantics with divergence:

�1� = {⋆}
�nat� = N

�A +B� = �A� + �B�

�A ×B� = �A� × �B�

�A→ B� = �A� → (�B� + {�})

�Γ� =∏(x∶A)∈Γ
�A�

�Γ ⊢v V ∶ A� ∈ �Γ� → �A�

�Γ ⊢c M ∶ A� ∈ �Γ� → (�A� + {�})

The semantics of plain FGCBV and FGCBV with sum-based iteration are the same,
except of course that the latter has an extra construct. We give big-step operational
semantics for both languages in Figure 5. The adequacy statements are simple:

Proposition 2.1 (adequacy)

(i) For each closed term M of plain FGCBV without iteration, there is a unique
V such that M ⇓ return V , and �M�∅ = inl �V �∅.

(ii) For each closed term M of FGCBV with sum-based iteration, either

● there is a unique V such that M ⇓ return V , and �M�∅ = inl �V �∅, or

● M does not reduce to a terminal, and �M�∅ = inr �.

3 Labelled iteration with pure function types

3.1 Introduction

To fix the De Bruijn index awkwardness indicated in Section 1.3, we now give a
language that has an effectful “labelled iteration” construct instead. The judgements
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values V,W ∶∶= x ∣ ⟨⟩ ∣ 0 ∣ succ V ∣ inl V ∣ inr V ∣ ⟨V,W ⟩ ∣ λx. M
computations M,N ∶∶= return V ∣ let V be x. M ∣M to x. N

∣ V W ∣ case V of {0. M ; succ x. N}
∣ case V of {inl x. M ; inr y. N} ∣ case V of ⟨x, y⟩. M

types A,B,C ∶∶= 1 ∣ nat ∣ A +B ∣ A ×B ∣ A→ B

(x ∶ A) ∈ Γ
Γ ⊢v x ∶ A Γ ⊢v ⟨⟩ ∶ 1 Γ ⊢v 0 ∶ nat

Γ ⊢v V ∶ nat
Γ ⊢v succ V ∶ nat

Γ ⊢v V ∶ A
Γ ⊢v inl V ∶ A +B

Γ ⊢v V ∶ B
Γ ⊢v inr V ∶ A +B

Γ ⊢v V ∶ A Γ ⊢v W ∶ B
Γ ⊢v ⟨V,W ⟩ ∶ A ×B

Γ ⊢v V ∶ A
Γ ⊢c return V ∶ A

Γ ⊢v V ∶ A Γ, x ∶ A ⊢c M ∶ B
Γ ⊢c let V be x. M ∶ B

Γ ⊢c M ∶ A Γ, x ∶ A ⊢c N ∶ B
Γ ⊢c M to x. N ∶ B

Γ, x ∶ A ⊢c M ∶ B
Γ ⊢v λx. M ∶ A→ B

Γ ⊢v V ∶ A→ B Γ ⊢v W ∶ A
Γ ⊢c V W ∶ B

Γ ⊢v V ∶ nat Γ ⊢c M ∶ C Γ, x ∶ nat ⊢c N ∶ C
Γ ⊢c case V of {0. M ; succ x. N} ∶ C

Γ ⊢v V ∶ A +B Γ, x ∶ A ⊢c M ∶ C Γ, y ∶ B ⊢c N ∶ C
Γ ⊢c case V of {inl x. M ; inr y. N} ∶ C

Γ ⊢v V ∶ A ×B Γ, x ∶ A,y ∶ B ⊢c M ∶ C
Γ ⊢c case V of ⟨x, y⟩. M ∶ C

Addition for sum-based iteration

Γ ⊢v V ∶ A Γ, x ∶ A ⊢c M ∶ A +B

Γ ⊢c iter V, x. M ∶ B
Figure 3. Above: syntax of plain fine-grain call-by-value. Sum-based iteration adds only one term construct
and no values or types; the type derivation of this term is given below.

in this language are

Δ;Γ ⊢c M ∶ A for computations
Γ ⊢v V ∶ A for values

We give the typing rules in Figure 6. Γ is a context of identifiers bound to values,
as usual. Δ exists only for computations; it is a context of typed labels. Denotations
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Fine-grain call-by-value

�x�ρ = ρ(x)
�⟨⟩�ρ = ⟨⟩
�0�ρ = 0

�succ V �ρ = 1 + �V �ρ

�inl V �ρ = inl �V �ρ

�inr V �ρ = inr �V �ρ

�⟨V,W ⟩�ρ = ⟨�V �ρ, �W �ρ⟩
�λx. M�ρ = λ(a∈�A�).�M�(ρ,x↦a)

�return V �ρ = inl �V �ρ

�let V be x. M�ρ = �M�(ρ,x↦�V �ρ)

�M to x. N�ρ =
⎧⎪⎪⎨⎪⎪⎩
�N�(ρ,x↦v) if �M�ρ = inl v

inr � if �M�ρ = inr �
�V W �ρ = �V �ρ �W �ρ

�case V of {0. M ; succ x. N}�ρ =
⎧⎪⎪⎨⎪⎪⎩
�M�ρ if �V �ρ = 0

�N�(ρ,x↦n) if �V �ρ = 1 + n

�case V of {inl x. M ; inr y. N}�ρ =
⎧⎪⎪⎨⎪⎪⎩
�M�(ρ,x↦a) if �V �ρ = inl a

�N�(ρ,y↦b) if �V �ρ = inr b

�case V of {⟨x, y⟩. M}�ρ = �M�(ρ,x↦a,y↦b) if �V �ρ = ⟨a, b⟩
Addition for sum-based iteration

�iter V,x. M�ρ =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

inl w if ∃v0..k s.t. v0 = �V �ρ

∧∀i ∶ �M�(ρ,x↦vi) = inl inl vi+1

∧�M�(ρ,x↦vk) = inl inr w

inr � if no such v0..k exists

Figure 4. Denotational semantics of values and terms in fine-grain call-by-value, and semantics of the
sum-based iteration construct.

of judgements are

�Δ;Γ ⊢c A� = (∏
(x∶B)∈Γ

�B�) → (∑
(y∶C)∈Δ

�C� + �A� + {�})
�Γ ⊢v A� = (∏

(x∶B)∈Γ

�B�) → �A� .

Γ is used to form values.

(x∶A) ∈ Γ
Γ ⊢v x ∶ A

Δ is used to form computations, much like raising an exception. However, conven-
tionally, exception names come from a global set. Our “exception names”, which we
call labels, will be bound in the same way that identifiers are bound by λ.

Furthermore, when a label is raised, it must be parametrised by a value of the
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Fine-grain call-by-value
T ∶∶= return V

return V ⇓ return V

M[V /x] ⇓ T

let V be x. M ⇓ T

M ⇓ return V N[V /x] ⇓ T

M to x. N ⇓ T

M[W /x] ⇓ T

(λx. M)W ⇓ T

M[V /x,W /y] ⇓ T

case ⟨V,W ⟩ of {⟨x, y⟩. M} ⇓ T

M0 ⇓ T

case 0 of {0. M0; succ x. Msucc} ⇓ T

Msucc[V /x] ⇓ T

case (succ V ) of {0. M0; succ x. Msucc} ⇓ T

Minl[V /x] ⇓ T

case (inl V ) of {inl x. Minl; inr x. Minr} ⇓ T

Minr[V /x] ⇓ T

case (inr V ) of {inl x. Minl; inr x. Minr} ⇓ T

Addition for sum-based iteration
T ∶∶= return V

∃k ≥ 0 ∃(V1,⋯, Vk) ∀i ∈ {1..k} ∶M[Vi−1/x] ⇓ return inl Vi M[Vk/x] ⇓ return inr Z

iter V0, x. M ⇓ return Z

Figure 5. Big-step operational semantics of plain fine-grain call-by-value and of sum-based iteration. In our
operational semantics, closed terms reduce to “terminal” terms of the same type, or they do not reduce at
all. We use metavariable T for terminals. For FGCBV and its extension with sum-based iteration, terminal
terms are always of the form return V . Introducing a separate notion of terminals might seem odd for now,
but in Figure 8 we extend the rules for FGCBV and add another form of terminal. So T above may come
to stand for something other than return V further in the paper.

corresponding type. The typing rule is as follows:

Γ ⊢v V ∶ A (x∶A) ∈Δ
Δ;Γ ⊢c raisex V ∶ B

We thus have these judgements.

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c raisex ⟨3, true⟩ ∶ string
(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c raisex ⟨y, z⟩ ∶ 0
(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c return y ∶ nat

But we cannot raise identifiers:

(x ∶ nat × bool) ; (y∶nat, z∶bool) /⊢c raisey 3
And we can also not use labels for their value:

(x ∶ nat × bool) ; (y∶nat, z∶bool) /⊢c return x ∶ nat × bool

Indeed, the typing rule of return (see Figure 6 on the next page) shows that x is not
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Values and types are the same as in fine-grain call-by-value in Figure 3 on page

computations M,N ∶∶= ⋯ ∣ iter V,x. M ∣ raisex V

(x∶A) ∈ Γ
Γ ⊢v x ∶ A

Γ ⊢v V ∶ A Δ; Γ, x∶A ⊢c M ∶ B
Δ;Γ ⊢c let V be x. M ∶ B

Γ ⊢v V ∶ A
Δ;Γ ⊢c return V ∶ A

Δ;Γ ⊢c M ∶ A Δ; Γ, x∶A ⊢c N ∶ B
Δ;Γ ⊢c M to x. N ∶ B

⋅ ; Γ, x∶A ⊢c M ∶ B
Γ ⊢v λx. M ∶ A→ B

Γ ⊢v V ∶ A→ B Γ ⊢v W ∶ A
Δ;Γ ⊢c V W ∶ B

Γ ⊢v ⟨⟩ ∶ 1
Γ ⊢v V ∶ A

Γ ⊢v inl V ∶ A +B

Γ ⊢v V ∶ B
Γ ⊢v inr V ∶ A +B

Γ ⊢v V ∶ nat Δ;Γ ⊢c M ∶ C Δ; Γ, x∶A ⊢c N ∶ C
Δ;Γ ⊢c case V of {0. M ; succ x. N} ∶ C

Γ ⊢v V ∶ A +B Δ; Γ, x∶A ⊢c M ∶ C Δ; Γ, y∶B ⊢c N ∶ C
Δ;Γ ⊢c case V of {inl x. M ; inr y. N} ∶ C
Γ ⊢v V ∶ A ×B Δ; Γ, x∶A,y∶B ⊢c M ∶ C

Δ;Γ ⊢c case V of ⟨x, y⟩. M ∶ C
Γ ⊢v V ∶ A Δ, x∶A; Γ, x∶A ⊢c M ∶ B

Δ;Γ ⊢c iter V,x. M ∶ B
Γ ⊢v V ∶ A (x∶A) ∈Δ

Δ;Γ ⊢c raisex V ∶ B
Figure 6. Syntax of labelled iteration.

available in the context of the argument to return:

y∶nat, z∶bool ⊢v V ∶ nat × bool

(x ∶ nat × bool) ; (y∶nat, z∶bool) ⊢c return V ∶ nat × bool

Our use of a syntactically separate kind of names bears resemblance to the use of
function names by Kennedy [16] for control.

.1 33
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Labelled iteration

We now wish to use labels to generalise the iter V,x. M from last section. Remember
that previously when M reduces to

− return inl V ′, then the loop should be re-tried with value V ′,

− return inr W, then the result of the loop is W.

Our new notation will also be iter V,x. M . However, here x is both an identifier and
a label:

Γ ⊢v V ∶ A Δ, x∶A; Γ, x∶A ⊢c M ∶ B
Δ;Γ ⊢c iter V,x. M ∶ B

Now similarly when writing iter V,x. M , when M reduces to

− raisex V ′, then the loop should be re-tried with value V ′,

− raisey W, (y ≠ x) then the loop should be aborted
and loop y should be re-tried with value W,

− returnW, then the result of the loop is W.

We wish to repeat that the same name x can appear in both Δ and Γ. We pose
no general syntactic restriction on (x∶A) ∈ Δ and (x∶B) ∈ Γ to have the same type.
However, to be able to form iter V,x. M , we must have x in both Δ and Γ of the
same type.

We also wish to note at this point that we define the semantics of our language on
the binding diagrams [8], that is, on the abstract syntax modulo α-equivalence.

Labelled iteration and λ

Now that contexts for computations are different from contexts for values, the con-
ventional fine-grain call-by-value judgements have to be tweaked to work in this
setting. The typing rule for return in Figure 6 is simple: when we move upwards
from a computation to a value judgement we just forget about Δ.

Γ ⊢v V ∶ A
Δ;Γ ⊢c return V ∶ A

But reversely, for λ, we have a choice: what should Δ be? We take what seems to
be the only reasonable choice: to reset Δ to the empty context, ⋅ .

⋅ ; Γ, x∶A ⊢c M ∶ B
Γ ⊢v λx. M ∶ A→ B

Java agrees with this choice: it is a syntax error to write a labelled continue or break
with a label outside of the current method [11]. From a programmer’s perspective,
this means that all functions are pure.
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3.2 Denotational semantics

Recall that the semantics of term and value judgements is as follows.

�Δ;Γ ⊢c A� = (∏
(x∶B)∈Γ

�B�) → (∑
(y∶C)∈Δ

�C� + �A� + {�})
�Γ ⊢v A� = (∏

(x∶B)∈Γ

�B�) → �A�

The denotation of types is as follows.

�1� = {⋆}
�nat� = N

�A +B� = �A� + �B�

�A ×B� = �A� × �B�

�A→ B� = �A� → (�B� + {�})
We give the semantics of terms and values in Figure 7. We use the following notation
for elements of the ternary sum (∑(x∶B)∈Δ�B� + �A� + {�}):
(i) return a (for a ∈ �A�) (compare to the term notation: return V ),

(ii) raisex b (for b ∈ �B�) (compare to the term notation: raisex V ),

(iii) �.

Definition 3.1 [weakening] We say that Δ′; Γ′ is stronger than Δ;Γ when Δ′ ⊆ Δ

and Γ′ ⊆ Γ. Alternatively, we say that Δ;Γ is weaker than Δ′; Γ′.

A term in a context is also a term in a weaker context, with the same derivation. A
value in a context is also a value in a weaker context, with the same derivation.

Definition 3.2 [closedness]

(i) When ⋅ ⊢v V ∶ A, then we say that V is closed.

(ii) When Δ; ⋅ ⊢c M ∶ A, then we say that M is closed.

Definition 3.3 A substitution (between two-zone contexts) σ ∶ Δ′; Γ′ → Δ;Γ con-
sists of two parts,

● for every label (x ∶ A) ∈Δ′, a label σlab(x) of type A in Δ, and

● for every identifier (x ∶ A) ∈ Γ′, a value σid(x) (Γ ⊢v σid(x) ∶ A).
Remark 3.4 From a two-zone substitution σ ∶Δ′; Γ′ →Δ;Γ we can trivially obtain
a one-zone substitution Γ′ → Γ. By abuse of notation, we also write σ for this
obtained substitution on one-zone contexts. Similarly, from a one-zone substitution
σ ∶ Γ′ → Γ, we obtain trivially a two-zone substitution ⋅ ; Γ′ → ⋅ ; Γ, for which we also
write σ.
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�x�ρ = ρ(x)
�⟨⟩�ρ = ⟨⟩
�0�ρ = 0

�succ V �ρ = 1 + �V �ρ

�inl V �ρ = inl �V �ρ

�inr V �ρ = inr �V �ρ

�⟨V,W ⟩�ρ = ⟨�V �ρ, �W �ρ⟩
�λx. M�ρ = λ(a∈�A�).�M�(ρ,x↦a)

�return V �ρ = return �V �ρ

�raisex V �ρ = raisex �V �ρ

�let V be x. M�ρ = �M�(ρ,x↦�V �ρ)

�M to x. N�ρ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�N�(ρ,x↦v) if �M�ρ = return v

raisey w if �M�ρ = raisey w

� if �M�ρ = �
�V W �ρ = �V �ρ �W �ρ

�case V of {0. M ; succ x. N}�ρ =
⎧⎪⎪⎨⎪⎪⎩
�M�ρ if �V �ρ = 0

�N�(ρ,x↦n) if �V �ρ = 1 + n

�case V of {inl x. M ; inr y. N}�ρ =
⎧⎪⎪⎨⎪⎪⎩
�M�(ρ,x↦a) if �V �ρ = inl a

�N�(ρ,y↦b) if �V �ρ = inr b

�case V of {⟨x, y⟩. M}�ρ = �M�(ρ,x↦a,y↦b) if �V �ρ = ⟨a, b⟩

�iter V,x. M�ρ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

return w if ∃v0..k s.t. v0 = �V �ρ

∧∀i ∶ �M�(ρ,x↦vi) = raisex vi+1

∧�M�(ρ,x↦vk) = return w

raisey w if ∃v0..k s.t. v0 = �V �ρ

∧∀i ∶ �M�(ρ,x↦vi) = raisex vi+1

∧�M�(ρ,x↦vk) = raisey w

� if no other case matches

Figure 7. Denotational semantics of terms and values of the language with labelled iteration. See also
Section 3.2.

We can use a substitution σ ∶ Δ′; Γ′ → Δ;Γ as follows on terms. Given a term
Δ′; Γ′ ⊢c M ∶ A, we obtain the term Δ;Γ ⊢c Mσ ∶ A by

● for any x ∈Δ, replacing all occurrences of raisex V (where x is free)
by raiseσlab(x) (V σ), where V σ is given similarly by induction. And

● for any x ∈ Γ, replacing all value occurrences of identifiers by σid(x).
For one-zone contexts Γ we have the usual notion of substitution σ ∶ Γ′ → Γ that
assigns a value (over Γ) to each identifier of Γ′. And given Γ′ ⊢v V ∶ A, we obtain
similarly Γ ⊢v V σ ∶ A.

Two-zone contexts and their substitutions form a category, and one-zone contexts
and their substitutions form another category. That is, substitutions can be com-
posed associatively and composition has an identity.

Lemma 3.5 (substitution lemma)
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T ∶∶= return V ∣ raisex V
M ⇓ raisex V

M to x. N ⇓ raisex V

∃k ≥ 0 ∃(V1,⋯, Vk) ∀i ∈ {1..k} ∶M[Vi−1/x] ⇓ raisex Vi M[Vk/x] ⇓ return Z

iter V0, x. M ⇓ return Z

∃k ≥ 0 ∃(V1,⋯, Vk) ∀i ∈ {1..k} ∶M[Vi−1/x] ⇓ raisex Vi M[Vk/x] ⇓ raisey Z

iter V0, x. M ⇓ raisey Z
(x ≠ y)

Figure 8. Big-step operational semantics for labelled iteration. This figure extends Figure 5. Namely, we
add rules, and we add a new form of terminal: raisex V .

(i) Let one-zone substitution σ ∶ Γ′ → Γ be given. If Γ′ ⊢v V ∶ A, then
�V σ�ρ = �V �(x↦�σ(x)�ρ)x∈Γ′

.

(ii) Let two-zone substitution σ ∶Δ′; Γ′ →Δ;Γ be given.
If Δ′; Γ′ ⊢c M ∶ A, then �Mσ�ρ = f(�M�(x↦�σid(x)�ρ)x∈Γ′

) ,
where f maps raisex v to raiseσlab(x) v.

3.3 Operational semantics

We define a big-step “reduction” relation M ⇓ T between closed terms Δ; ⋅ ⊢c M ∶ A
and (closed) terminals Δ; ⋅ ⊢c T ∶ A of the same type, such that for every such M

either

(i) M ⇓ T = return V , or

(ii) M ⇓ T = raisex V , x ∈ domΔ, or

(iii) M does not reduce.

Derivation rules are given in Figure 8, and the reduction relation is defined as their
least fixed point.

Theorem 3.6 (adequacy)

(i) If M ⇓ return V , then �M�∅ = return �V �∅.

(ii) If M ⇓ raisex V , then �M�∅ = raisex �V �∅.

(iii) If M does not reduce, then �M�∅ = �.
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3.4 Translation from sum-based iteration

Let Γ ⊢c M ∶ A or Γ ⊢v V ∶ A be a term or value in the language with sum-based
iteration. We define a translation translate(M), translate(V ) from sum-based iter-
ation, such that ⋅ ; Γ ⊢c translate(M) ∶ A or Γ ⊢v translate(V ) ∶ A, respectively, in
the language with labelled iteration. The translation macro-expands sum-based iter
as follows. The other constructs are left unchanged.

translate(iter V,x. M) = iter V,x. (translate(M) to result .
case result of {inl y. raisex y; inr x′. return x′})

where translate(M) is implicitly weakened by adding x to Δ.

Theorem 3.7 (translation preserves semantics)

(i) Let Γ ⊢c M ∶ A a term of the language with sum-based iteration, and ρ ∈ �Γ�.
Then �M�ρ = �translate(M)�ρ.

(ii) Let Γ ⊢v V ∶ A a value of the language with sum-based iteration, and ρ ∈ �Γ�.
Then �V �ρ = �translate(V )�ρ.

Corollary 3.8 If M ⇓ T in the language with sum-based iteration, then there is T ′

such that translate(M) ⇓ T ′ in the language with labelled iteration, and �T �∅ = �T ′�∅.
And if M does not reduce to a terminal, then translate(M) does not reduce to a
terminal.

4 Discussion and related work

In our presentation of labelled iteration, we have chosen to only consider pure func-
tions. It is an important future task to extend the present system so as to allow for
functions that raise an iteration.

We have noticed the De Bruijn index awkwardness in settings other than itera-
tion. For instance, it is customary in functional languages such as Haskell to use
monad transformers [12] to embed imperative programs with multiple side-effects,
but they suffer from a similar De Bruijn index awkwardness: the ith monad trans-
former is addressed by writing “ lifti effect”. This issue and proposed solutions have
been studied in the literature [15,24,5], but addressing effects using labels seems yet
unexplored. Imperative languages address mutable cells using identifiers, and it is
possible that addressing effects with labels might benefit the readability of similar
functional programs as well.

Many programming languages have not just unlabelled and labelled continue, after
which we have modelled our combination of iter and raise, but also unlabelled and
labelled break. It should be straightforward to introduce a construct that binds
a label like iter, but when the label is raised with parameter a, the result of that
construct is a, so that raise of that label resembles break. Such a construct, together
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with the raise we used in this paper, resembles an intra-procedural form of exception
handling. If we wrap an iter inside this new construct and use one label for breaking
and one for continuing, we can “break” and “continue” from this combination of
constructs, to deepen the resemblence with Java-style loops.

5 Conclusion

In the present article we summarize the essence of the sum-based representation of
iteration, and evaluate it from a programming perspective. Although it might work
well for a semantics standpoint, it is inadequate for programmers to program in. We
propose an alternative representation of iteration that is suitable for programmers,
but still has relatively clean semantics.
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A Appendix: proofs

We first prove adequacy of fine-grain call-by-value without iteration. The adequacy
of FGCBV + sum-based iteration and the adequacy of the language with labelled
iteration are then minor modifications. All our adequacy proofs are in the style of
Tait [25].

We use the following substitution lemma for both plain FGCBV and FGCBV with
sum-based iteration.

Lemma A.1 Assume a substitution σ ∶ Γ′ → Γ and an environment ρ ∈ �Γ�.

(i) Let Γ′ ⊢v V ∶ A be a value. Then �V �(x↦�σx�ρ)x∈Γ′
= �V σ�ρ.

(ii) Let Γ′ ⊢c M ∶ A be a term. Then �M�(x↦�σx�ρ)x∈Γ′
= �Mσ�ρ.
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The proofs of both substitution lemmas, Lemma A.1 and Lemma 3.5, are routine
and we omit them.

A.1 Adequacy of FGCBV without iteration

We prove adequacy with the help of the following type-indexed predicate on closed
values and terms.

Definition A.2 By mutual induction on the type of V and M , respectively.

when ⊢v V ∶ 1 ∶ P (V ) ≡ true

when ⊢v V ∶ nat ∶ P (V ) ≡ true

when ⊢v V ∶ A +B ∶ P (inl V ) ≡ P (V )
P (inr V ) ≡ P (V )

when ⊢v V ∶ A ×B ∶ P (⟨V,W ⟩) = P (V ) ∧ P (W )
when ⊢v V ∶ A→ B ∶ P (λx. M) ≡ ∀(⊢v W ∶ A) ∶ P (W ) ⇒ P (M[W/x])
when ⊢c M ∶ A ∶ P (M) ≡ ∃(⊢v V ∶ A) ∶ (P (V ) ∧ M ⇓ return V ∧ �M�∅=inl �V �∅)

Observe that P (M) implies adequacy of M .

Proposition A.3

(i) If Γ ⊢v V ∶ A, and if for all (x∶B) ∈ Γ we have a closed ⊢v σx ∶ B satisfying P (σx),
then P (V σ).

(ii) If Γ ⊢c M ∶ A, and if for all (x∶B) ∈ Γ we have a closed ⊢v σx ∶ B satisfying
P (σx), then P (Mσ).

Proof

By induction on the value or term. Here are some interesting and less interesting
cases.

V = x) Then V σ = σx, which was assumed to satisfy P .

M = return V ) Trivially by induction.

V = λy. M) We have to show that if ⊢v W ∶ A satisfies P , then M[σ,W /y] satisfies
P . By induction.

M = let V be x. N) We are allowed to assume P (V σ), so the induction hypothe-
sis gives us P (N[σ, (V σ)/x]). We know that Mσ and N[σ, (V σ)/x] reduce to
the same terminal. We know �Mσ�∅ = �Nσ�x↦�V σ�∅ , which we know is equal
to �N[σ, (V σ)/x]�∅ by the substitution lemma. Now P (N[σ, (V σ)/x]) implies
P (Mσ).

M = V W ) Similarly.
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M =M ′ to x. N) From the induction, we get V such that P (V ) and M ′σ ⇓ return V

and �M ′σ�∅ = inl �V �∅. From the derivation rule and the induction, we get V ′

such that P (V ′) and N[σ,V /x] ⇓ return V ′, and �N[σ,V /x]�∅ = inl �V ′�∅.

By the substitution lemma, �Nσ[V /x]�∅ = �Nσ�x↦�V �∅ , and because we know
�M ′σ�∅ = inl �V �∅, we know that by definition

�(M ′σ) to x. (Nσ)�∅ = �Nσ�x↦�V �∅ .

This completes the proof for this case.

M = case V of ⋯) Depending on the type of V , but for every type trivially by case
analysis on V σ.

◻
Corollary A.4 All closed values and terms satisfy P .

Adequacy directly follows from this.

Observe that the only cases in which we essentially looked at the normal form of
Mσ are return V and M to x. N . Specifically, we did not use the normal form of
Mσ in the let case. This means that we can reuse most of the proof for FGCBV
with sum-based iteration.

A.2 Adequacy of FGCBV + sum-based iteration

Similar structure. We redefine P (M):
P (⊢c M ∶ A) = ∃(⊢v V ∶ A) ∶ ((P (V ) ∧ M ⇓ return V ∧ �M�∅ = inl �V �∅))

∨ (M⇓̸ ∧ �M�∅ = inr �))
We have the same proposition as Proposition A.3 in this case:

● The case M = return V is still trivial.

● For M = M ′ to x. N , we have to consider the alternative case that M ′σ⇓̸ and
�M ′σ�∅ = inr �. This case is trivial.

● For iter, observe that every sequence V1,⋯, Vk in the operational semantics corre-
sponds uniquely to a sequence

v0 = �V σ�∅, v1 = �V1�∅, v2 = �V2�∅,⋯, vk = �Vk�∅

for the denotational semantics, and the proof in that case is analogous to the proof
for let.

To prove that non-existence of a valid sequence V1,⋯, Vk for the operational se-
mantics implies the non-existence of a valid sequence v0,⋯, vk, we instead prove
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the contrapositive. Indeed, we have our initial V σ already, and by induction on
a valid sequence v0,⋯, vk together with the induction hypothesis, we obtain step
by step our sequence V1,⋯, Vk. So now we also know that iter V,x.M ⇓̸ implies
�iter V,x.M�∅ = inr �.

A.3 Adequacy of the language with labelled iteration

Similar structure.

We redefine P (M) again. Recall that M closed means that Δ; ⋅ ⊢c M ∶ A.

P (M) ≡( (∃(⊢v V ∶ A) ∶ (P (V ) ∧ M ⇓ return V ∧ �M�∅ = return �V �∅))
∨ (∃((x∶B) ∈Δ) ∶ ∃(⊢v V ∶ B) ∶ (P (V ) ∧ M ⇓ raisex V ∧ �M�∅ = raisex �V �∅))
∨ (M⇓̸ ∧ �M�∅ = �))

We have a proposition analogous to Proposition A.3.

Proposition A.5

(i) If Γ ⊢v V ∶ A, and if for all (x∶B) ∈ Γ we have a closed ⊢v σx ∶ B satisfying P (σx),
then P (V σ).

(ii) If Δ;Γ ⊢c M ∶ A, and if we have a substitution σ ∶ Δ′; Γ′ → Δ; ⋅ such that
P (σid(x)) on all identifiers, then P (Mσ).

● The additional case for sequencing is trivial.

● The case P (raisex V ) is trivial.

● The additional case for iteration is analogous.
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