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Abstract  

Effectively controlling carbon soot emission from Gasoline Direct Injection (GDI) engines to achieve 

legislative emission limits is a challenge for both the vehicle manufacturers and researchers. 

Transmission electron microscopy is a powerful tool for obtaining morphological and nanostructural 

parameters of carbon soot in Particulate Matter (PM) emissions. These parameters play a significant 

role in PM emissions control as are affecting filtration efficiency and soot oxidation characteristics.  

In this paper, a comprehensive analysis of the interlayer spacing, fringe length and fringe tortuosity 

(curvature) of primary soot particles from GDI engine has been performed. GDI primary particles 

showed a core-shell structure, similar to diesel soot, with an inner core diameter between 6 and 16 

nm and the outer graphene layer between 6 and 13 nm. The soot nanostructure is not significantly 

modified by changing the fuel injection timing or by introducing EGR and hydrogen in the 

combustion process. These results are opposed to those obtained from soot emitted in diesel engines 

where soot nanostructure is affected with changes in engine operating conditions. Furthermore, the 

three way catalytic converter does not influence soot nanostructure or the soot oxidation 

characteristics.  

Keywords: GDI, PM, TEM, EGR, REGR, TWC, nanostructure, fringe length, tortuosity, interlayer 

spacing. 
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1. INTRODUCTION 

By 2020, the European Union has imposed a CO2 target of 95 g/km for passenger cars [1]. Gasoline 

Direct Injection (GDI) engines technology has the potential of substantially improving overall 

vehicle fuel economy and thus, reducing CO2 [2]. However, GDI engines increase the level of 

particulate matter (PM) emissions in both mass and number compared to previous gasoline 

technologies. PM in diesel engines is considered carcinogenic to humans [3] and it is linked with 

cardiopulmonary inflammation [4] and respiratory problems [5]. Legislations, such as the Euro 6c 

(September 2017), limits the number of particles per kilometre, therefore, the use of Gasoline 

Particulate Filters (GPFs) may be required [6]. In order to avoid an increase of fuel consumption due 

to the increased backpressure of loaded GPFs, the regeneration events must be accurately controlled 

[7]. Therefore, the understanding of soot structure, morphology and oxidation characteristics is 

important in developing control strategies. As diesel engines have been the main source of PM, 

strong efforts have been made to characterise PM properties using transmission electron microscopy 

(TEM) [8-13].  

Soot nanostructure is related to particle formation history in the combustion chamber [14] and its 

dependent of the initial fuel [15]. Also, soot surface chemistry, which it is linked to soot’s 

environmental and health impact, is dependent on its nanostructure [16, 17]. Furthermore, soot 

reactivity, defined as the ease to oxidise mature soot [9], depends on its physicochemical properties. 

The morphology, nanostructure, chemical functional groups and ash content has been reported to 

impact the soot oxidation characteristics [8, 9, 15, 16, 18, 19], although there is no clear agreement 

about the contribution of each property [18]. In diesel engines, it is thought that soot properties can 

be altered, in order to produce a more reactive soot resulting in less demanding regeneration events in 

diesel particulate filters [8, 9]. The same idea should apply to GPFs. However, for GDI engines, soot 

nanostructure knowledge is still scarce.  

Most of the literature describes qualitatively the nanostructural properties of PM emitted by GDI 

engines, but, not many studies report findings on parameters such as interlayer spacing, crystallite 

length or curvature (tortuosity) of primary carbon particles. For instance, Uy et al. [20] studied the 

nanostructure of soot-in-oil and soot scrapped from the exhaust pipe under different driving 

conditions, It was reported that the thickness of the shell structure lay from 5 to 8 nm. Plane defects 

were found in the particles (not smooth edges). Sludge-like particles were observed, the amorphous 

appearance of those particles is attributed to decomposition under the TEM beam [20]. Comparing 

diesel and GDI soot, three main differences were found: i) GDI soot is composed by higher quantities 
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of Ca and Zn (from oil additive and wear) than in diesel samples, ii) GDI soot-in-oil is less structured 

and more “sludge-like” in appearance, and iii) polyaromatic hydrocarbons (PAHs) adsorbed in GDI 

soot differ in quantity and structure compared to diesel. Wang-Hansen et al. [21] concluded that the 

nanostructure of soot was similar to diesel, with an inner part showing concentric layers and 

turbostratic structure. Although the dissimilar oxidative behaviour of gasoline soot is attributed to the 

variations in crystallite layer plane dimensions, no nanostructural parameters were quantified. Seong 

et al. [22] analysed soot nanostructure from a GDI engine operating at range of loads and fuel 

injection timings at stoichiometric air to fuel ratio. It was reported that the soot nanostructure was 

less-ordered than diesel soot or carbon black, although at high loads GDI soot had a graphitic 

structure. The authors argued that the quantity of hydrocarbons (HCs) during PM formation was 

limited and therefore, the graphitisation process was reduced. In follow-up research work from the 

same authors [23], the GDI PM nanostructure was analysed using high resolution TEM (HRTEM) 

and Raman at three engine conditions including cold start. A similar concentric pattern and carbon 

nanostructure was reported for all the conditions analysed, thus no significant differences were found 

between HRTEM and Raman analysis. GDI soot presented well-defined concentric fringes even at 

engine cold start. The Raman spectra was similar for all the engine conditions studied, showing that 

GDI soot nanostructure is less dependent on the engine condition than diesel soot due to the more 

homogeneous conditions characteristic of the gasoline combustion. La Rocca et al. [24] collected 

samples after 30 hours running at different engine conditions. Three different layers in the 

nanostructure were distinguished: (i) an inner core (25nm thick), (ii) a middle onion-like structure (8-

12nm thick) and (iii) an outer more amorphous layer (5nm thick). The presence of this external 

amorphous layer was thought to increase the edge sites and therefore, the GDI soot reactivity. 

Gaddam et al. [19] carried out an in-depth physical and chemical analysis of gasoline PM using 

TEM, X-ray photoelectron spectroscopy, and Fourier Transform Infrared – Attenuated Total 

reflectance in a single cylinder GDI engine. Longer fringe lengths and reduced tortuosity in the soot 

nanostructure were reported under lean in fuel conditions. . The authors state that in the areas of the 

combustion chamber where the equivalence ratio was lower from the critical for soot formation, soot 

growth and C5 species addition was avoided, leading to reduced tortuosity. Miyashita et al. [25] 

observed that the interlayer spacing was increased with fuel availability during the formation process. 

The authors concluded that these values are characteristic of upstream in-flame diesel soot formed at 

relatively low temperatures (~1600K). Liati et al. [26] analysed the nanostructure of GDI soot 

produced during the New European Driving Cycle and World harmonised Light vehicles Test Cycle 

at normal and low temperatures. For all the driving cycles analysed, the primary particle 

nanostructure showed an outer rig formed by graphene lamellae and the presence of amorphous 
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material. Similarly to previous references, the inner part of the particle is amorphous. In general, it 

has been reported in the literature that GDI soot presents less ordered structure than diesel [20, 22, 

23] and therefore is more reactive [26]. Irregular patterns [22], inter connected fringes [23] and 

turbostatic structure, similar to diesel soot [20, 21, 24], are characteristics of GDI soot.  

The effect of exhaust gas recirculation (EGR) has been widely analysed for diesel engines, although 

discrepancies can be found in the literature regarding its effect on PM nanostructure [8, 27]. 

However, for GDI engine, the influence of EGR on nanostructure has not been documented yet. In 

this research, GDI soot nanostructure parameters (interlayer spacing, fringe length and fringe 

tortuosity) have been obtained following the methods used in the diesel literature [10-12, 16]. For 

first time, the effect of high EGR percentages on GDI soot nanostructure has been assessed and 

compared to reformate gas exhaust recirculation (REGR) conditions. REGR is a technique that 

utilises the heat from the exhaust, water and carbon dioxide to produce a rich-in-hydrogen gas on 

board, which can then be recirculated back to the engine for combustion. It is expected that the high 

temperatures (600-700°C) seen in the fuel reforming reactor and the catalyst presence could modify 

the soot nanostructure or even eliminate soot fed back to the engine. Furthermore, the TWC influence 

on nanostructure has also been studied here for baseline conditions (noEGR).  

2. EXPERIMENTAL SETUP AND METHODOLOGY 

2.1.Experimental setup 

The engine used for this study is a 2L, 4-cylinder, air-guided GDI. A steady-state condition 

corresponding to a medium-load point of the NEDC was selected: 2100 rpm engine speed and 4.7 bar 

indicated mean effective pressure (IMEP). The details of the engine specification can be found in 

Table 1. Standard EN228 gasoline with 5% (v/v) ethanol content provided by Shell was used for this 

research (Table 2).  

Table 1. Engine specifications. 

Compression Ratio 10:1 

Bore x Stroke 87.5 x 83.1 mm 

Turbocharger Borg Warner K03 

Rated Power 149 kW At 6000 rpm 

Rated Torque 300 Nm At 1750-4500 rpm 

Engine Management Bosch Me17 
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Table 2. Gasoline properties. 

Analysis (Test method) Unit Result 

Density at 15ºC (DIN EN ISO 

12185) 
kg/m

3 743.9 

Distillation (DIN 

EN ISO 3405) 

IBP  ºC 34.6 
20% v/v  ºC 55.8 
50% v/v  ºC 94.0 
FBP  ºC 186.3 

C  m/m % 84.16 

H  m/m % 13.48 

O  m/m % 2.36 

Paraffins  % vol 43.9 

Olefins  % vol 11.7 

Naphthenes  % vol 7.8 

Aromatics  % vol 26.9 

Oxygenates  % vol 7.7 

Sulfur  ppm 6 

Lower Heating Value (DIN 

51603-1) 
MJ/kg 42.22 

MON (DIN EN ISO 5163) 85.3 85.3 

RON (DIN EN ISO 5164) 96.5 96.5 

 

For nanostructural analysis 3.05 mm, TAAB Formvar coated copper grids were loaded directly from 

the exhaust pipe. The sampling line was heated to avoid water/HC condensation but no dilution was 

used. A 200 kV FEI Talos™ F200X scanning/ transmission electron microscope (S/TEM) was used in 

this investigation. 

2.2.Test procedure and methodology 

2.2.1. Test procedure 

The nature of the engine out PM was modified by using two different fuel injection timing settings i) 

small soot nuclei and volatile organic compounds (303 CAD bTDC, ECU settings) and ii) highly 

sooty particles (335 CAD bTDC, advanced injection setting). In previous work [28], it was reported 

that advanced fuel injection settings produced ten times higher PM concentration than normal ECU 

settings. The thermogravimetric analysis (TGA) showed a 98% solid soot with 2% content in volatile 

material under early injection timing [28]. 

The analysis was carried out at the maximum percentage of EGR rates, 19% and 24%, that the engine 

could tolerate, while maintaining the coefficient of variation (COV) below 5% for injection timings 

of 303 CAD bTDC and 335 CAD bTDC, respectively. In order to compare the REGR with EGR, the 

same dilution rates were utilised. The maximum position of the in-cylinder pressure was maintained 

in a ±3 CAD narrow window for all the engine conditions. These combustion settings are 

summarised in Table 3 where the percentage of EGR/REGR, spark timing per condition and the 
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maximum peak pressure position compared to the baseline are reported. 200 cycles were considered 

for obtaining these values. Stoichiometric lambda was maintained for all the engine conditions tested. 

Table 3. Engine settings for noEGR, EGR and REGR at both injection timings: 303 and 335 CAD bTDC. 

Injection timing Dilution 
Spark timing 

(CAD bTDC) 

COV of 

IMEP (%) 
IMEP 

Position 

Pmax       

(CAD) 

303 CAD 

bTDC 

noEGR + 24 (ECU) 2.03 4.7 16 

EGR (19%) 
+ 32.25 

(+ 8.25*) 
4.35 4.71 16 

REGR (19%) 
+ 27.75 

(+ 3.75*) 
3.33 4.62 16 

335 CAD 

bTDC 

noEGR + 24 (ECU) 1.2 4.71 12 

EGR (24%) 
+ 41.25 

(+ 17.25*) 
5.22 4.69 12 

REGR (24%) 
+ 23.25 

(- 0.75*) 
2.97 4.63 12 

(*)
 + advance, - retard, spark timing with respect to ECU settings. 

The commercial TWC used in this work meets the Euro 6 legislation. The on-board reformer 

designed by Johnson Matthey consists of five metallic plates coated with Pt – Rh based catalyst. For 

the reforming process, part of the exhaust gas flow before the TWC is diverted to the catalytic input 

of the reformer. In this stream, gasoline is injected for the reforming reactions. The rest of the 

exhaust stream is treated by the TWC and then used for the second inlet of the reformer to heat up the 

reforming catalyst. Heat exchange, but not mass exchange, is produced in the reformer between both 

exhaust gas streams, increasing the temperature of the catalysed exhaust + gasoline stream and 

therefore, promoting endothermic reforming reactions between the gasoline and hot exhaust gas [29]. 

The reforming process products are mainly hydrogen and CO that were recirculated back to the 

engine intake. This process is known as REGR. 5% hydrogen was produced in the reforming process 

together with some hydrocarbon species such as methane, propane and toluene. Further information 

about the reforming process and species can be found in references [30, 31]. 

2.2.2. Particle nanostructure methodology 

The nanostructural properties analysed in this work are: interlayer spacing (d002), graphene lamellae 

width (La) and tortuosity (τ). These parameters have already been used in the diesel literature due to 

its relationship with soot oxidation behaviour [10-12, 16], although the importance of each parameter 

is still not well understood  [32]. These are analysed under baseline conditions, EGR and REGR at 

303 CAD bTDC and 335 CAD bTDC fuel injection timings. The influence of the TWC on soot 

nanostructure was also assessed at baseline conditions for both fuel injection timings. 
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The interlayer spacing is a measurement of the degree of graphitisation [33] and it has been 

calculated following Equation 1. For each condition, at least 40 graphene lamellae stacks (Lc) were 

measured in four micrographs randomly located in different grid sections [8, 34]. Only graphene 

lamellae in the outskirt of the particles were considered [8].  

𝑑002 =
𝐿𝑐

𝜅 − 1
 

[1] 

Where Lc is the fringe or stacking height and κ the number of layers measured. 

The fringe length or crystallite basal plane diameter is a measure of the physical extent of the atomic 

carbon layer [11, 16]. It has been reported that smaller values of La are related with higher soot 

reactivity [11]. 

The tortuosity or wavy structure describes the curvature of the fringes and it is linked with the 

number of odd numbered 5- and 7- membered carbon rings and the presence of lattice defects [8, 16, 

35]. High tortuosity indicates a lower development of stacked layers [11, 36] and an increase in the 

sp
2
/sp

3
 hybridization [14] where sp

2
 is related to the graphitic carbon and sp

3
 to the organic carbon 

[19]. It is reported that tortuosity increases the separation between adjacent layers by limiting the 

development of the crystalline stack indicating the degree of disorder [13, 37]. In addition tortuosity 

is related to the availability of active sites [38]. Fringe tortuosity is obtained as the ratio of the fringe 

length divided by straight-line distance between the end points of the fringe [14]. 

An image processing methodology based on references [12, 16, 37] has been implemented in 

MATLAB® in order to process the particle micrographs, although in the literature other approaches 

have also been used [39]. The region of interest was selected manually, then the top-hat filtering was 

applied to correct uneven illumination [40] followed by a negative image transformation, histogram 

equalisation to improve the image contrast, binarisation (the threshold is calculated using Otsu’s 

method), morphological operations (dilatation, opening, thickening and h-break) and skeletonisation. 

Disk elements of size 3 were used for the morphological operations. Also, a MATLAB® in-house 

code was developed for the calculation of the fringe length and the tortuosity. Fringes shorter than 

0.47 nm (20 pixels according to the image scale used) were not considered for the analysis as they are 

thought to be unwanted features resisting the image cleaning process. This value is between the limits 

reported in the literature: 0.4 in [12, 41] and 0.5 in [16]. Figure 1 shows some examples of crystallites 

considered for analysis in the outer part of the primary particle (white ellipses in the Figure) formed 

by nearly flat graphene layers with certain periodicity. The outer ring of the primary particles where 

clear graphene stacks were observed was considered for analysis. 
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Figure 1. Example of graphene layers.  

To assure the robustness of the obtained results, a one-sample non-parametric Kolmogorov Smirnov 

test in IBM statistical package for social sciences (SPSS) was performed. According to [16, 42] the 

interlayer spacing, crystallite length and tortuosity follow a log-normal distribution.  

Although different techniques can be applied to characterise PM nanostructure, such as Raman or X-

ray diffraction (XRD), TEM offers a direct measurement of the aforementioned parameters without 

intermediate processes [16] and is the only way to obtain soot tortuosity [12]. For instance, in [8], it 

is stated that the d002 obtained using TEM micrographs differs from the interlayer spacing obtained 

with Raman or XRD, however XRD provides an average value while TEM provides local values. La 

values obtained using TEM and XRD are compared in [11], although TEM measurements resulted in 

lower estimations, good agreement in the trends between both methods was found. In [12] it was 

concluded that HRTEM can be used as a standalone technique as the result obtained with Raman, 

XRD and HRTEM were in agreement. Despite the discrepancies in the values, all the techniques 

resulted in the same trends [8, 11]. 

2.2.3. Thermogravimetric analysis (TGA) methodology 

A Perkin Elmer TGA model Pyris was employed to study soot oxidation characteristics. Whatman 

GF/F Glass microfiber 47 mm diameter filters were pre-heated at 600ºC during 6 hours to limit any 

influence of filter material losses during the desorption of volatile material during the nitrogen phase 

of the program. After this thermal pre-treatment, the filters were placed into a filter holder in the 

exhaust and loaded for one hour. In order to avoid any loss of PM during the sampling process, 

instead of scratching the filters, a sharp cylindrical hollow pipe was used to cut the filters at the same 

diameter as the TGA pan. The TGA program is divided in two phases depending on the atmosphere 

used: i) a nitrogen phase to remove the volatile organic fraction and ii)an air stage using a heating 

ramp of 3 °C/min. Further details of the methodology can be found in [28, 43]. 
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3. RESULTS AND DISCUSSION 

3.1. Nanostructure general characteristics 

For all the conditions analysed, the micrographs show an onion-like or core-shell structure, 

characteristic of diesel engine particles. The inner core presents a disordered structure. In reference 

[16], it is suggested that this inner part of the primary particle is composed of several individual cores 

covered by carbon layers. The presence of several cores in a single particle suggests, according to the 

diesel literature,  a rapid soot formation and coalescence of the particles during the formation process 

[26]. The outer shell is formed, to a large extent, by more or less parallel graphene lamellae, although 

some amorphous parts can be observed, with clear fringes although not formed by a large number of 

stacks and not well ordered, as previously reported in the GDI literature [19]. Furthermore, an 

amorphous outer ring of around 5 nm thickness has been reported for GDI particles collected from 

the engine oil [24]. In this investigation, the inner core diameter ranged between 6 and 16 nm and the 

outer graphene layer between 6 and 13 nm. However, the presence of this amorphous outer ring has 

not been observed. An example of the soot structure is shown in Figure 2. 

 

Figure 2. GDI particle nanostructure schematic. 

Representative examples of particle micrographs obtained in TEM and corresponding to the analysis 

of particles from the engine operation with noEGR, EGR and REGR at both injection timings are 

given in Figure 3Error! Reference source not found..  
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Figure 3. Example of TEM micrograph for ECU settings (303 CAD bTDC) a) baseline b)EGR c) REGR, and advanced 

injection timing (335 cAD bTDC) d) baseline e) EGR f) REGR. The borders of the particles have been marked for clarity 
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3.2. EGR/REGR influence on soot nanostructure parameters 

The interlayer spacing results are presented in Figure 4, the average value together with the standard 

deviation is shown. The fringe length distributions are reported in Figure 5, tortuosity distribution in 

Figure 6 and a summary of all the values obtained for both fuel injection timings under noEGR, EGR 

and REGR conditions is presented in Table 3.  

A slight tendency to increase d002 was observed for advanced injection timing (0.4110 nm) compared 

to ECU settings (0.3981 nm), Figure 4. However, the change in the fuel injection timing did not have 

any impact on the soot fringe length and tortuosity. The interlayer spacing results are in agreement 

with the trends found in the work carried out by Miyashita et al. [25]. They concluded that the 

influence of the fuel injection timing on the interlayer spacing was not significant as the soot 

formation process remained the same and GDI soot is produced at relatively low temperatures 

without experiencing oxidation. This is consistent with [44], is the authors  hypothesised that soot is 

formed near the walls at the end of the combustion where the temperature is 1350K, the lower limit 

for soot formation. Therefore, during the exhaust stroke the temperature is too low for soot oxidation 

[44] and not high enough to affect the soot nanostructure. Also in [44], it was found that the critical 

fuel/air equivalence ratio for soot formation in gasoline is between 1.3-1.4. In [19], it was reported 

that soot nanostructure reflects changes between rich in fuel and stoichiometric/lean conditions. No 

differences on soot nanostructure between lean and stoichiometric conditions were observed, 

suggesting that fuel-air mixture in stoichiometric conditions was close to homogeneous and 

increasing the air content did not affect the formation of fuel-rich areas. High load, rich conditions 

and late injection produced higher rich in fuel areas into which the soot formation critical equivalence 

ratio was exceeded leading to particles with higher tortuosity. Moreover the formation of C5 species 

in this rich region could increase the curvature of the layers.   

The different engine configuration used between researchers (i.e. injector position, wall-guided, spray 

guided) and the fuel properties, can have an impact on PM formation and oxidation processes. In the 

GDI literature, the majority of the authors reporting nanostructure use side-mounted injectors [19, 24, 

27].  Drake et al. [45] stated that comparison between engine configurations could be misleading, as 

the soot formation process in the combustion chamber will primarily depend upon the injection 

system and mixture formation strategy. In this current work, it is thought that advanced and baseline 

injection timings generate rich-areas by wall-impingement into which the soot formation process is 

not significantly different generating soot with similar nanostructure. Therefore, it seems that the rich 
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regions formed at advanced and stoichiometric conditions might be similar leading to these minor 

differences in soot nanostructure. 

a) 

 

b) 

 

Figure 4. Interlayer spacing results for a) 303 CAD bTDC (ECU settings) and 335 CAD bTDC (advanced injection 

timing). 

a) 

 

e) 

 

b) 

 

f) 

 

c) 

 

g) 
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Figure 5. Fringe distribution for 303 CAD bTDC: a) baseline b) EGR c) REGR and 335 CAD bTDC: d) baseline e) EGR 

f) REGR 

a) 

 

e) 

 

b) 

 

f) 

 

c) 

 

g) 

 

Figure 6. Tortuosity distribution for 303 CAD bTDC: a) baseline b) EGR c) REGR and 335 CAD bTDC: d) baseline e) 

EGR f) REGR 

Table 4. Summary of nanostructural parameters a) 303 CAD bTDC and b) 335 CAD bTDC 

a) Baseline EGR REGR 

d002 0.398 0.408 0.409 

La 0.845 0.869 0.804 

τ 1.281 1.275 1.292 
 

b) Baseline EGR REGR 

d002 0.411 0.413 0.421 

La 0.840 0.874 0.807 

τ 1.279 1.298 1.278 
 

 

EGR slightly increases d002 and the fringe length, although no significant trends in tortuosity have 

been found. Thus, the effect of EGR can be considered negligible. In [27] has been found that low 

percentages of EGR, 2.5%, can notably reduce the presence of the gas phase PAH, however, 

increasing EGR did not offer any further PAH reduction. On the other hand, no significant changes in 
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particulate-phase PAHs were observed. Five or more fused rings were predominantly adsorbed on 

soot cores [27]. Similar results are reported in the diesel literature, the lower combustion temperature 

from the use of EGR reduces the concentration of H radical and lowers the formation of PAHs and 

soot surface growth via the hydrogen abstraction acetylene addition mechanism [9]. In diesel engines, 

EGR has been reported to reduce the ordered arrangement of graphene lamellae, increasing d002 and 

reducing La [8]. The increase in  d002, was speculated to weaken the binding energy of the planes, 

leading to the increased likelihood of oxygen attack [8]. On the other hand, shorter fringes are 

associated to higher edge site carbon atoms than in the basal plane position and increasing reactivity 

[8]In [41], the use of EGR led to increased La and reduced tortuosity, parameters that were linked 

reduced soot reactivity. This behaviour was attributed to the production of soot with higher elemental 

carbon content under EGR conditions, a result of the longer combustion duration and reduced oxygen 

availability. These contradictory findings, suggest that the combination of dilution, thermal and 

chemical effects of EGR can affect soot nanostructure and oxidation differently depending on the 

engine condition and the setup arrangement. In GDI, this knowledge is still scarce.  

For the GDI engine operation with REGR, the graphene lamellae interlayer spacing increases with 

respect to baseline and EGR engine operation and the crystalline length is reduced while tortuosity is 

not showing a clear trend. Hydrogen addition has been reported to reduce the size of the primary 

particles in an ethylene opposed jet counter diffusion flame [46]. It was concluded that hydrogen 

addition led to i) the formation of fullerenic nanostructure (curved carbon lamella), ii) increased rate 

of acetylene (a well-known precursor) oxidation through OH radical, which slows down benzene 

formation and therefore the development of large particles, iii) reduce soot surface growth through 

deactivation of soot surface site and iv) increase the formation rate of 5-membered ring PAH which 

curves the fringes. The effect of hydrogen on inhibiting/promoting the formation of gaseous 

unsaturated soot precursor species and single ring aromatics depends on the particular operating 

conditions and the relative proportions of the active species O, OH and H in the flame [47, 48]. For 

instance, the experimental and modelled results found for the specific case of methane laminar 

premixed flames [47] conclude that hydrogen could enhance the overall formation of unsaturated 

species and single-ring aromatic precursors of PAHs and soot. However, further research should be 

done to extrapolate those results to the case of turbocharged GDI engines where the reactants and 

turbulence levels are very different. In terms of PM concentration, hydrogen has been reported to 

significantly reduce the level of PM emitted [28, 49-51], its high diffusion coefficient enhances the 

air-fuel mixture, while the liquid fuel replacement as well as its high flame speed improve the 
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combustion process [48, 52]. Furthermore, the smaller quenching distance reduces the organic PM on 

account of the lower HCs available [50, 51].  

According to the results obtained in this research work, Figure 4, Figure 5 and Figure 6, it seems that 

the injection timing (advanced or normal), EGR and REGR operation does not influence significantly 

soot nanostructure, although EGR and REGR globally modify the final emission of PM by promoting 

or reducing the formation of rich-in-fuel regions. It can be assumed that once the rich area is 

generated, the soot nanostructure will be similar and only by changing dramatically the formation 

process (i.e. stratified combustion mode) will have an impact in the final nanostructure. Generally, 

particle reactivity is influenced by several parameters including particle nanostructure, primary 

particle size, surface chemistry and chemical composition (i.e. carbonaceous, volatile material and 

ash). However, no changes in soot oxidation characteristics with EGR or REGR were observed in 

previous work [28], although small variations in the primary particle diameter were observed: 

baseline conditions (27 nm), EGR (23 nm) and REGR (25 nm) [53]. After  thermogravimetric 

analysis (TGA), it was reported that the soot activation energy and the maximum mass loss rate were 

the same for baseline, EGR and REGR engine conditions, trends that are supporting the lack of 

changes in the soot nanostructure [28]. This is in agreement with the literature, as it has already been 

reported that GDI soot nanostructure is unaffected by the engine load and speed conditions, a finding 

that is reverse to diesel soot. This is attributed to the different combustion characteristics, as gasoline 

engines provide more consistent in-cylinder fuel-air mixture and flame temperatures.  

3.3. Effect of TWC 

It can be hypothesised that the relatively high temperatures in the TWC (between 650 -700°C) during 

typical engine operation with the presence of a catalyst could affect some of the PM physical 

properties. The interlayer spacing (Figure 7), fringe length (Figure 8) and tortuosity, (Figure 9) have 

been analysed pre and post the catalytic converter at both fuel injection timings. Table 5 reports the 

mean values of each parameter. The majority of the graphene lamellae is smaller than 1.2 nm peaking 

at 0.84 and present low tortuosity. These results are in agreement with previous GDI literature [26]. 

A negligible reduction after the TWC in the interlayer spacing and fringe length of the primary 

particles has been observed for both injection timings. At 335 CAD bTDC injection timing, the 

tortuosity falls from 1.278 to 1.25, while at 303 CAD bTDC there are no changes. However, in 

previous work [28], a 40% reduction in particle size distribution concentration at the TWC under 

advanced injection timing was measured, while at 303 CAD bTDC, almost no effect in the 

distribution was observed. The nature and quantity of the PM can be the reason for these findings. 

For advanced injection, PM concentration is ten times larger and composed mainly of soot, as 
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reported in the TGA analysis in [29]. Therefore, it is suggested that the soot is not oxidised but 

deposited in the three way catalyst by diffusion. Brownian diffusion has been reported to be the main 

mechanism involved for the deposition of small particles (<300 nm) [54, 55] as it is also pointed out 

in the GDI literature[23].  At 303 CAD bTDC, a high fraction of PM is composed of organic fraction, 

being heavy PAHs adsorbed onto the PM, which cannot be oxidised in the TWC. This is in 

agreement to the findings reported in [56], where it is claimed that the elemental carbon is unchanged 

in the TWC as well as the heavy PAHs adsorbed onto the PM.  

 

Figure 7. Effect of TWC on interlayer spacing 

a) 

 

c) 

 

b) 

 

d) 

 

Figure 8. Length distribution for 303 CAD bTDC: a) bTWC b) aTWC and 335 CAD bTDC: c) bTWC d) aTWC 
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a) 

 

c) 

 

b) 

 

d) 

 

 

Figure 9. Tortuosity distribution for 303 CAD bTDC: a) bTWC b) aTWC and 335 CAD bTDC: c) bTWC d) aTWC 

Table 5. Effect of TWC on nanostructure. Mean values.a )303 CAD bTDC and b) 335 CAD bTDC 

a) bTWC aTWC 

d002 0.398 0.397 

La 0.845 0.822 

τ 1.281 1.293 
 

b) bTWC aTWC 

d002 0.411 0.409 

La 0.840 0.820 

τ 1.279 1.250 
 

 

The effect of the TWC on soot oxidation is presented in Figure 10. Although the maximum mass loss 

rate temperature after the TWC seems slightly shifted to lower temperatures, this is a mass artefact 

rather than an oxidative effect of the TWC. Until 480 °C, both curves have the same shape meaning 

that the activation energy and therefore, the reactivity are similar for both samples. Similar 

conclusions were found in a previous work for EGR and REGR soot oxidation behaviour [28]. It is 

hypothesised that the short residence time in the TWC is not enough to affect PM, although a reduced 

percentage can be deposited in the catalyst walls leading to the reduction observed by the SMPS 

aTWC in [28], therefore not affecting the soot nanostructure. However in [23], a strong influence of 

TWC on soot oxidation characteristics is found. This is attributed to the increased ash content after 

the catalytic converter and the higher organic content of the samples rather to any change in the 

nanostructural soot characteristics. It has been reported that the catalytic effect of ash depends on its 
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origin (e.g. lube oil metallic additives, engine wear and catalytic converters detachments) and 

formation conditions (combustion-derived ash precursors, unburned ash precursors and oxidation-

derived ash in the filters). The high fraction of combustion-derived ash precursors downstream  the 

TWC accelerates soot oxidation due to its metallic oxide nature and nano-level contact with soot 

particles [23]. 

 

Figure 10. Effect of TWC on soot oxidative behaviour. 

4. CONCLUSIONS 

Soot from modern GDI engines have been characterised in this study. The effects of fuel injection 

timing and technologies such as EGR, REGR (i.e. hydrogen) and TWC on soot nanostructure 

features (interlayer spacing, fringe length and tortuosity) and soot oxidation have been analysed. 

Primary particles presented similar structure to diesel soot: i) an outer ring of ordered graphene layers 

between 6-13 nm thick and ii) an amorphous core of 6-16 nm diameter. While the PM nature (i.e. 

soot or organic) and concentration levels are influenced significantly by the changes of the fuel 

injection timing, EGR and REGR (including quantity and quality) the primary particle nanostructure 

is not affected.  The interlayer spacing was between 0.398 and 0.411 nm, while the majority of the 

graphene lamellae fringe length was below 1.2 nm with an average of 0.82 nm. Little curvature has 

been observed for all the conditions analysed. The lack of effect in soot nanostructure attributed to 

homogeneous gasoline combustion process where the soot formation process is produced late in the 

combustion event at relatively low temperatures where no soot oxidation is promoted. This trend is 

opposite to the case of diesel combustion, in which injection settings and EGR produced a noticeable 

effect on soot nanostructure. In addition, the TWC did not lead to changes in the soot nanostructural 

features. rom the analysis presented here no differences in soot oxidation parameters have been 

observed in this research under EGR, REGR or TWC. This new finding adds to the knowledge that 

under stoichiometric gasoline combustion the primary particles nanostructure cannot be influenced.. 
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Further research is needed to identify potential parameters that could modify the soot nanostructure 

and facilitate the soot oxidation process for the optimisation of the regeneration of the Gasoline 

Particulate Filter. 
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DEFINITIONS, ACRONYMS, ABBREVIATIONS 

d002 Interlayer Spacing 

La Crystallite width  

Lc Crystallite height 

κ Number of layers per stack 

τ Tortuosity 

aTWC After Three Way Catalyst 

bTDC Before Top Dead Centre 

bTWC Before Three Way Catalyst 

CAD Crank angle degree 

ECU Electronic Computer Unit 

EGR Exhaust Gas Recirculation 

GDI Gasoline Direct Injection 

GPFs Gasoline Particulate Filters 

HRTEM High Resolution Transmission Electron Microscope 

IMEP Indicated Mean Effective Pressure 

NEDC New European Driving Cycle 

PAHs Polyaromatic Hydrocarbons 

PM Particulate Matter 

REGR Reformed Exhaust Gas Recirculation 

SMPS Scanning mobility particle sizer 

TEM Transmission Electron Microscope 

TGA Thermogravimetric analysis 

TWC Three Way Catalyst 

XRD X-Ray Diffraction 
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