UNIVERSITYOF
 BIRMINGHAM

Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC

ALICE Collaboration

DOI:
10.1103/PhysRevLett.118.162302

License:

Creative Commons: Attribution (CC BY)

Document Version

Publisher's PDF, also known as Version of record
Citation for published version (Harvard):
ALICE Collaboration 2017, 'Flow Dominance and Factorization of Transverse Momentum Correlations in Pb-Pb Collisions at the LHC', Physical Review Letters, vol. 118, no. 16, 162302.
https://doi.org/10.1103/PhysRevLett.118.162302

Link to publication on Research at Birmingham portal

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

> -Users may freely distribute the URL that is used to identify this publication.
> -Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
> -User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)
> -Users may not further distribute the material nor use it for the purposes of commercial gain.
> Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.
> When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.
If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Flow Dominance and Factorization of Transverse Momentum Correlations in $\mathbf{P b}-\mathbf{P b}$ Collisions at the $\mathbf{L H C}$

J. Adam et al. ${ }^{*}$
(ALICE Collaboration)
(Received 22 February 2017; published 21 April 2017)

Abstract

We present the first measurement of the two-particle transverse momentum differential correlation function, $P_{2} \equiv\left\langle\Delta p_{T} \Delta p_{T}\right\rangle /\left\langle p_{T}\right\rangle^{2}$, in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$. Results for P_{2} are reported as a function of the relative pseudorapidity $(\Delta \eta)$ and azimuthal angle $(\Delta \varphi)$ between two particles for different collision centralities. The $\Delta \phi$ dependence is found to be largely independent of $\Delta \eta$ for $|\Delta \eta| \geq 0.9$. In the 5% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions, the two-particle transverse momentum correlation function exhibits a clear double-hump structure around $\Delta \varphi=\pi$ (i.e., on the away side), which is not observed in number correlations in the same centrality range, and thus provides an indication of the dominance of triangular flow in this collision centrality. Fourier decompositions of P_{2}, studied as a function of the collision centrality, show that correlations at $|\Delta \eta| \geq 0.9$ can be well reproduced by a flow ansatz based on the notion that measured transverse momentum correlations are strictly determined by the collective motion of the system.

DOI: 10.1103/PhysRevLett.118.162302

Measurements of particle production and their correlations in heavy-ion collisions at the Relativistic Heavy Ion Collider (RHIC) and the Large Hadron Collider (LHC) have provided very compelling evidence that the produced matter is characterized by extremely high temperatures and energy densities consistent with a deconfined, but strongly interacting quark-gluon plasma (sQGP). Evidence for the production of the sQGP is provided by observations of a large suppression of particle production at momenta $p_{T} \gtrsim$ $3 \mathrm{GeV} / c$ relative to that observed in $p p$ collisions and a strong suppression of away-side particles observed in twoparticle number correlations, as well as by anisotropic flow studies (anisotropies in particle azimuthal distributions relative to the reaction plane defined by the beam axis and a line connecting the centers of colliding nuclei) [1-11]. The comparison of measured flow coefficients, v_{n}, with predictions from hydrodynamical models indicates that the sQGP has a vanishingly small shear viscosity over entropy density ratio [12]. Furthermore, the observation of an approximate number of constituent quark scaling of flow coefficients in the $2<p_{T}<4 \mathrm{GeV} / c$ range, suggested as a signature of a deconfined medium [13], was reported by RHIC and LHC experiments $[14,15]$. These results imply that the two-particle number correlations observed in the region of low $p_{T}(<2 \mathrm{GeV} / c)$, corresponding to the bulk of particle production, are largely determined by

[^0]anisotropic flow. Such flow dominance is manifested, in particular, by an approximate factorization of the measured flow coefficients, $V_{n \Delta}\left(\eta_{1}, p_{T, 1}, \eta_{2}, p_{T, 2}\right)=\langle\cos (n \Delta \varphi)\rangle=$ $\left\langle v_{n}\left(\eta_{1}, p_{T, 1}\right) v_{n}\left(\eta_{2}, p_{T, 2}\right)\right\rangle$, observed for pairs of particles at relative pseudorapidity $\Delta \eta>0.8$, in different transverse momentum bins up to $p_{T} \approx 3-5 \mathrm{GeV} / c$ [16].

Two-particle transverse momentum correlations [17-21] provide additional insights into the dynamics of multiparticle production and can be used to further examine the flow dominance of two-particle correlation functions. One expects, in particular, that in the presence of anisotropic flow the differential transverse momentum correlator $\left\langle\Delta p_{T} \Delta p_{T}\right\rangle$ should feature azimuthal Fourier decomposition coefficients calculable with a simple formula, hereafter called the flow ansatz, in terms of the regular and p_{T} weighted flow coefficients [17]. Such a simple relation, discussed in more detail below, is not expected for particle production arising from processes not related to the common symmetry plane, known as nonflow, such as jets or resonance decays. An agreement between the Fourier coefficients of the $\left\langle\Delta p_{T} \Delta p_{T}\right\rangle$ correlator and those calculated with the flow ansatz should thus provide additional evidence of the dominance of collective flow effects.

In this Letter, we present the first measurements of the differential transverse momentum correlations in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ in terms of the dimensionless correlator P_{2} defined as

$$
\begin{align*}
P_{2} & =\frac{\left\langle\Delta p_{T} \Delta p_{T}\right\rangle(\Delta \eta, \Delta \varphi)}{\left\langle p_{T}\right\rangle^{2}} \\
& =\frac{1}{\left\langle p_{T}\right\rangle^{2}} \frac{\int_{p_{T, \text { min }}}^{p_{T, \text { ma }}} \rho_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right) \Delta p_{T, 1} \Delta p_{T, 2} d p_{T, 1} d p_{T, 2}}{\int_{p_{T, \text { min }}}^{p_{T}} \rho_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right) d p_{T, 1} d p_{T, 2}} \tag{1}
\end{align*}
$$

where $\quad \Delta p_{T, i}=p_{T, i}-\left\langle p_{T}\right\rangle$, with $\left\langle p_{T}\right\rangle=\int \rho_{1} p_{T} d p_{T} /$ $\int \rho_{1} d p_{T}$, the inclusive average transverse momentum of particles observed in the $p_{T, \text { min }} \leq p_{T} \leq p_{T, \text { max }}$ range. The quantities ρ_{1} and ρ_{2} represent single- and two-particle densities, respectively. For particle correlations induced strictly by anisotropic emission relative to the reaction plane, the Fourier coefficients of $P_{2}, v_{n}\left[P_{2}\right]$, should be determined by regular and the p_{T} weighted flow coefficients defined according to the following flow ansatz [17]:

$$
\begin{equation*}
v_{n}\left[P_{2}\right] \cong v_{n}^{p_{T}} /\left\langle p_{T}\right\rangle-v_{n}, \tag{2}
\end{equation*}
$$

where v_{n} and $v_{n}^{p_{T}}=\int \rho_{1} v_{n}\left(p_{T}\right) p_{T} d p_{T} / \int \rho_{1} d p_{T}$ are the regular and p_{T} weighted coefficients, respectively [17,22]. Thus, we shall compare the Fourier coefficients of the P_{2} correlator to values expected from this ansatz based on coefficients v_{n} and $v_{n}^{p_{T}}$ measured with traditional flow methods, e.g., the scalar product method [22].

This study is based on an analysis of a 14×10^{6} events subset of a sample of minimum bias trigger events recorded with the ALICE detector during the LHC run 1 in 2010. Detailed descriptions of the ALICE detector, its subsystems, and their respective performance have been reported in Refs. [23-26]. For this study, the inner tracking system and the time projection chamber (TPC) were used to reconstruct charged-particle tracks, while the V0 detector and the silicon pixel detector formed the basis of the online minimum bias trigger used to acquire the data, as described in Refs. [5,6].
The ALICE solenoidal magnet was operated with a field of 0.5 T with both positive and negative polarities. Events included in this analysis were required to have a single reconstructed primary vertex within 10 cm of the nominal interaction point along the beam axis, hereafter taken to be the z axis. The fraction of pileup events in the analysis sample is found to be negligible after applying dedicated pileup removal criteria [26].

Correlation functions reported in this Letter are based on charged-particle tracks measured in the pseudorapidity range $|\eta|<1.0$ and with full azimuthal coverage $0 \leq \varphi<2 \pi$. The analysis was limited to particles produced with $0.2<p_{T}<2.0 \mathrm{GeV} / c$ corresponding largely to particles emerging from the bulk of the matter. Only tracks with a minimum of 70 reconstructed space points in the TPC, out of a maximum of 159 , were included in the analysis. Contributions from photon conversions into $e^{+} e^{-}$ pairs were suppressed based on an electron rejection criterion relying on the truncated average of the specific ionization energy loss $\langle d E / d x\rangle$ measured in the TPC. Tracks with $\langle d E / d x\rangle$ lying within $3 \sigma_{d E / d x}$ of the BetheBloch parametrization of the $d E / d x$ expectation value for electrons and at least $3 \sigma_{d E / d x}$ away from the relevant parameterizations for π, K, and p were removed. In addition, the suppression of the contamination from secondary particles originating from weak decays and from the
interaction of particles with the detector material was accomplished by imposing upper limits of 3.2 and 2.4 cm (rms $\sim 0.36 \mathrm{~cm}$) for the distance of closest approach (DCA) of a track to the reconstructed vertex in the longitudinal $\left(\mathrm{DCA}_{z}\right)$ and radial $\left(\mathrm{DCA}_{x y}\right)$ directions, respectively. These criteria lead to a reconstruction efficiency of about 80% for primary particles and contamination from secondaries of about 5% at $p_{T}=1 \mathrm{GeV} / c$ [27]. No filters were used to suppress like-sign (LS) particle correlations resulting from Hanbury Brown-Twiss effects, which produce a strong and narrow peak centered at $\Delta \eta, \Delta \varphi=0$ in LS correlation functions. Corrections for single track losses were carried out using the weight technique described in Ref. [28] with weights calculated separately for positively and negatively charged tracks, positive and negative solenoidal magnetic fields, and with 40 vertex position bins in the fiducial range $|z| \leq 10 \mathrm{~cm}$. Pair inefficiencies associated with track merging or crossing (e.g., two tracks being partly or entirely reconstructed as a single track) within the TPC were corrected for based on track charge and momentum ordering techniques [29]. The P_{2} correlators were measured separately for charge pair combinations ,+++- , and -- and were combined with equal weights to produce the charge-independent correlation functions reported in this Letter.

Systematic uncertainties were investigated by repeating the analysis for different operational and analysis conditions including two solenoidal magnetic field polarities and different event and track selection criteria, as well as different track reconstruction methods. Track selection criteria, most particularly the maximum value of the distance of closest approach to the primary vertex, dominate systematic effects. The systematic uncertainties assigned to the measurements of v_{n} coefficients are the quadratic sums of individual contributions and range from 4% in the central $0 \%-10 \%$ collisions to 14% in the peripheral $70 \%-80 \%$ collisions.

Figure 1(a) presents the correlator P_{2} measured as a function of $\Delta \eta$ and $\Delta \varphi$ in the 5% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions. The central range around $\Delta \eta \sim 0$ and $\Delta \varphi \sim$ $0(\mathrm{rad})$ is left undercorrected by the weight correction procedure mainly due to track merging effects. It is thus not considered in this analysis. [The central range around $\Delta \eta \sim 0$ and $\Delta \varphi \sim 0(\mathrm{rad})$ is considered, however, in a related ALICE analysis carried out with a mixed event technique [30]]. The correlator P_{2} features a prominent near-side ridge centered at $\Delta \varphi=0$, extending across the full pseudorapidity range of the measurement. It also features two distinct away-side humps at $|\Delta \varphi-\pi| \approx 60^{\circ}$ separated by a weak dip centered at $\Delta \varphi=\pi$ and also extending across the full pseudorapidity range of the acceptance. Such an away-side correlation feature, which indicates the presence of a strong third harmonic, was previously reported in ultracentral ($0 \%-2 \%$) $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC $[16,31,32]$ as well as in central Au-Au

FIG. 1. (a) $P_{2}(\Delta \eta, \Delta \varphi)$ in the 5% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions. The region $|\Delta \eta|<0.15$ and $|\Delta \varphi|<0.13$ rad, where the weight technique used in this analysis does not provide a reliable efficiency correction, is excluded. (b) $P_{2}(\Delta \varphi)$ for $|\Delta \eta| \geq 0.9$. Systematic errors are shown as gray boxes. Note the statistically significant dip at $\Delta \varphi \sim \pi$.
collisions at the RHIC but for the latter case only after the subtraction of a correlated component whose shape was exclusively attributed to elliptic flow [33-35].

To further study the azimuthal angle dependence of transverse momentum correlations, projections of the measured P_{2} correlation function are fitted with an unconstrained sixth-order Fourier decomposition in $\Delta \varphi$ according to $F(\Delta \varphi)=b_{0}+2 \sum_{n=1}^{6} b_{n} \cos (n \Delta \varphi)$, as illustrated in Fig. 1(b). We verified that higher-order contributions, with $n>6$, do not significantly improve the fits for $|\Delta \eta| \geq 0.9$. Coefficients b_{5} and b_{6} feature large relative errors and are thus not reported in this Letter. The double
hump at $|\Delta \varphi-\pi| \approx 60^{\circ}$ implies the presence of a strong third harmonic, v_{3}, in the Fourier decompositions of the correlation functions. The large v_{3} likely originates from fluctuations in the initial density profile of colliding nuclei [36].

The flow coefficients obtained from two-particle transverse momentum correlations, $v_{n}\left[P_{2}\right]$, calculated according to $v_{n}=\sqrt{b_{n} /\left(b_{0}+1\right)}$, are plotted in Fig. 2 as a function of centrality for central ($0 \%-5 \%$) up to peripheral collisions $(70 \%-80 \%)$. The $v_{n}\left[P_{2}\right]$ coefficients exhibit a collision centrality dependence qualitatively similar to that of regular flow coefficients obtained from standard flow measurement

FIG. 2. $\quad v_{n}$ coefficients, where $n=2,3,4$ in the range (a) $0.2 \leq|\Delta \eta| \leq 0.9$ and (c) $0.9 \leq|\Delta \eta| \leq 1.9$ obtained from the P_{2} correlation function. The coefficients are compared with the expectations from the flow ansatz calculated in their respective $\Delta \eta$ ranges in $\mathrm{Pb}-\mathrm{Pb}$ collisions. Statistical errors are shown as vertical solid lines, whereas systematic errors are displayed as colored bands. Ratios of the v_{n} coefficients and their corresponding flow ansatz values are shown in (b) and (d). The errors on the ratios are only statistical.
methods [22]. In addition, they feature a hierarchy such that $v_{2}>v_{3}>v_{4}$ at all centralities except in the 5% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions, where the third is slightly larger than the second harmonic, thereby explaining the presence of the away-side double hump seen in Fig. 1. This is at variance with the dependence of the regular flow coefficients which, even in the centrality range $0 \%-5 \%$, exhibit the basic hierarchy $v_{2}>v_{3}>v_{4}$. The observed higher value of $v_{3}\left[P_{2}\right]$ relative to $v_{2}\left[P_{2}\right]$ implies that v_{3} should rise faster with increasing p_{T} than v_{2}, in agreement with explicit measurements of the flow coefficient dependence on p_{T} [37].

We next consider the possible role of nonflow correlations on the correlator P_{2} by comparing, in Fig. 2, the $v_{n}\left[P_{2}\right]$ coefficients obtained in the ranges $0.2 \leq|\Delta \eta| \leq 0.9$ and $0.9 \leq|\Delta \eta| \leq 1.9$ with values predicted by the flow ansatz, introduced above. In the range $0.9 \leq|\Delta \eta| \leq 1.9$ [see Fig. 2(c)], one observes that the coefficients $v_{n}\left[P_{2}\right]$ are in very good agreement, at all measured collision
centralities, with expectations from the flow ansatz. This agreement provides additional evidence that two-particle correlations in this relative pseudorapidity range are predominantly determined by the collective nature of particle emission at low p_{T}, which motivates the factorization hypothesis used to derive Eq. (2). It also suggests that away-side jets, that might be associated with the near-side peak, are significantly suppressed and contribute minimally to the away-side correlated yield in that η range. In contrast, in the range $0.2 \leq|\Delta \eta| \leq 0.9$ [see Fig. 2(a)], the $v_{n}\left[P_{2}\right]$ coefficients exhibit a stronger and monotonic centrality evolution. In particular, the $v_{n}\left[P_{2}\right]$ deviate significantly from the flow ansatz for collision centralities larger than 40%, where one expects the largest nonflow contributions associated with the presence of the correlation function near-side peak.

Using the same measurement technique, we further compare features of the P_{2} correlation function to that of the number correlation function R_{2}, defined as

$$
\begin{equation*}
R_{2}+1=\int_{p_{T, \text { min }}}^{p_{T, \text { max }}} \rho_{2}\left(\vec{p}_{1}, \vec{p}_{2}\right) d p_{T, 1} d p_{T, 2} / \int_{p_{T, \text { min }}}^{p_{T, \text { max }}} \rho_{1}\left(\vec{p}_{1}\right) \rho_{1}\left(\vec{p}_{2}\right) d p_{T, 1} d p_{T, 2} \tag{3}
\end{equation*}
$$

Figure 3 presents the $\Delta \eta$ dependence of $v_{n}, n=2,3$, and 4 , coefficients obtained from these correlation functions for the 5% most central collisions. In this centrality interval, one finds that the hierarchies $v_{3}\left[P_{2}\right]>v_{2}\left[P_{2}\right]$ and $v_{2}\left[R_{2}\right]>$ $v_{3}\left[R_{2}\right]$ indeed hold for all measured $\Delta \eta$. The dominance of $v_{3}\left[P_{2}\right]$ across all $\Delta \eta$ is likely a consequence of the third harmonic's (triangular flow) stronger dependence on p_{T}
relative to that of the second harmonic (elliptic flow). The v_{2}, v_{3}, and v_{4} dependencies on $\Delta \eta$ reveal additional interesting features. In the case of the R_{2} correlation, the coefficients v_{2} and v_{3} monotonically decrease over the entire $\Delta \eta$ range, whereas coefficients extracted from P_{2} exhibit a more pronounced decrease for $|\Delta \eta| \leq 0.9$. From $|\Delta \eta| \sim 1.0$ to ~ 2.0, the relative decrease of v_{2} is about 5%

FIG. 3. $\quad v_{n}$ coefficients, $n=2,3,4$, obtained from (a) P_{2} and (b) R_{2} correlators, as a function of $|\Delta \eta|$ in the 5% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions. Statistical errors are shown as vertical solid lines, whereas systematic uncertainties are displayed as shaded bands. (c),(d) Ratios of the $v_{n}, n=2,3,4$, by the corresponding values of v_{n} measured at $\Delta \eta=0.3$.
for both correlators and somewhat smaller for v_{3}. These contrasting dependencies reflect the different shapes of the near-side peaks of the two correlation functions. The narrower shape of the near-side peak of the P_{2} distribution suggests that the near-side peak of R_{2} might involve two components, one of which is characterized by a vanishing $\left\langle\Delta p_{T} \Delta p_{T}\right\rangle$ for pairs with $|\Delta \eta| \leq 0.9$. While the origin of this behavior is not fully understood, it offers the benefit of enabling the determination of flow coefficients with smaller nonflow effects using a narrower $\Delta \eta$ gap.

In summary, we presented the first measurements of the two-particle transverse momentum differential correlation function P_{2} from $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$. In the 5% most central $\mathrm{Pb}-\mathrm{Pb}$ collisions, P_{2} has a shape qualitatively different to that observed in measurements of the number density correlations, with a relatively narrow near-side peak near $|\Delta \eta|,|\Delta \varphi|<0.5$, and a longitudinally broad and double-hump structure on the away side. The double-hump structure in the 5% most central P_{2} correlation indicates that this observable is more sensitive to the presence of a triangular flow component than the number correlations R_{2} and consequently provides an indication that triangular flow features a stronger dependence on p_{T} than elliptic flow does. Comparison of the Fourier decompositions of the R_{2} and P_{2} correlators, calculated as a function of $|\Delta \eta|$, suggests that the v_{2}, v_{3}, and v_{4} coefficients extracted from P_{2} reach approximately constant values beyond $|\Delta \eta| \sim 0.9$, while coefficients v_{2} and v_{3} obtained from R_{2} decrease monotonically for increasing $|\Delta \eta|$. The observed agreement between the flow coefficients measured from P_{2} correlations, at $|\Delta \eta|>0.9$, and the values predicted from the flow ansatz provide new and independent support to the notion that the observed longrange correlations are largely due to the initial collision geometry. These results may be used to further constrain particle production models. This agreement to the flow ansatz also provides further evidence for flow coefficient factorization in heavy-ion collisions.

The ALICE Collaboration thanks all its engineers and technicians for their invaluable contributions to the construction of the experiment and the CERN accelerator teams for the outstanding performance of the LHC complex. The ALICE Collaboration gratefully acknowledges the resources and support provided by all Grid centers and the Worldwide LHC Computing Grid (WLCG) Collaboration. The ALICE Collaboration acknowledges the following funding agencies for their support in building and running the ALICE detector: A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation (ANSL), State Committee of Science and World Federation of Scientists (WFS), Armenia; Austrian Academy of Sciences and Nationalstiftung für Forschung, Technologie und Entwicklung, Austria; Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), Universidade Federal do Rio Grande do Sul
(UFRGS), Financiadora de Estudos e Projetos (Finep) and Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), Brazil; Ministry of Science and Technology of China (MSTC), National Natural Science Foundation of China (NSFC), and Ministry of Education of China (MOEC), China; Ministry of Science, Education and Sport and Croatian Science Foundation, Croatia; Ministry of Education, Youth and Sports of the Czech Republic, Czech Republic; The Danish Council for Independent Research-Natural Sciences, the Carlsberg Foundation and Danish National Research Foundation (DNRF), Denmark; Helsinki Institute of Physics (HIP), Finland; Commissariat à l'Energie Atomique (CEA) and Institut National de Physique Nucléaire et de Physique des Particules (IN2P3) and Centre National de la Recherche Scientifique (CNRS), France; Bundesministerium für Bildung, Wissenschaft, Forschung und Technologie (BMBF) and GSI Helmholtzzentrum für Schwerionenforschung GmbH, Germany; Ministry of Education, Research and Religious Affairs, Greece; National Research, Development and Innovation Office, Hungary; Department of Atomic Energy Government of India (DAE) and Council of Scientific and Industrial Research (CSIR), New Delhi, India; Indonesian Institute of Science, Indonesia; Centro Fermi-Museo Storico della Fisica e Centro Studi e Ricerche Enrico Fermi and Istituto Nazionale di Fisica Nucleare (INFN), Italy; Institute for Innovative Science and Technology, Nagasaki Institute of Applied Science (IIST), Japan Society for the Promotion of Science (JSPS) KAKENHI and Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan; Consejo Nacional de Ciencia (CONACYT) y Tecnología, through Fondo de Cooperación Internacional en Ciencia y Tecnología (FONCICYT) and Dirección General de Asuntos del Personal Academico (DGAPA), Mexico; Nationaal instituut voor subatomaire fysica (Nikhef), Netherlands; The Research Council of Norway, Norway; Commission on Science and Technology for Sustainable Development in the South (COMSATS), Pakistan; Pontificia Universidad Católica del Perú, Peru; Ministry of Science and Higher Education and National Science Centre, Poland; Korea Institute of Science and Technology Information and National Research Foundation of Korea (NRF), Republic of Korea; Ministry of Education and Scientific Research, Institute of Atomic Physics and Romanian National Agency for Science, Technology and Innovation, Romania; Joint Institute for Nuclear Research (JINR), Ministry of Education and Science of the Russian Federation and National Research Centre Kurchatov Institute, Russia; Ministry of Education, Science, Research and Sport of the Slovak Republic, Slovakia; National Research Foundation of South Africa, South Africa; Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Cubaenergía, Cuba,

Ministerio de Ciencia e Innovacion and Centro de Investigaciones Energéticas, Medioambientales y Tecnológicas (CIEMAT), Spain; Swedish Research Council (VR) and Knut and Alice Wallenberg Foundation (KAW), Sweden; European Organization for Nuclear Research, Switzerland; National Science and Technology Development Agency (NSDTA), Suranaree University of Technology (SUT) and Office of the Higher Education Commission under NRU project of Thailand, Thailand; Turkish Atomic Energy Agency (TAEK), Turkey; National Academy of Sciences of Ukraine, Ukraine; Science and Technology Facilities Council (STFC), United Kingdom; National Science Foundation of the United States of America (NSF) and United States Department of Energy, Office of Nuclear Physics (DOE NP), United States of America.
[1] S. Oh, A. Morsch, C. Loizides, and T. Schuster, Correction methods for finite-acceptance effects in two-particle correlation analyses, Eur. Phys. J. Plus 131, 278 (2016).
[2] K. Adcox et al. (PHENIX Collaboration), Formation of dense partonic matter in relativistic nucleus-nucleus collisions at RHIC: Experimental evaluation by the PHENIX Collaboration, Nucl. Phys. A757, 184 (2005).
[3] I. Arsene et al. (BRAHMS Collaboration), Quark gluon plasma and color glass condensate at RHIC? The perspective from the BRAHMS experiment, Nucl. Phys. A757, 1 (2005).
[4] B. B. Back et al. (PHOBOS Collaboration), The PHOBOS perspective on discoveries at RHIC, Nucl. Phys. A757, 28 (2005).
[5] K. Aamodt et al. (ALICE Collaboration), Charged-Particle Multiplicity Density at Midrapidity in Central $\mathrm{Pb}-\mathrm{Pb}$ Collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, Phys. Rev. Lett. 105, 252301 (2010).
[6] J. Adam et al. (ALICE Collaboration), Centrality Dependence of the Charged-Particle Multiplicity Density at Midrapidity in $\mathrm{Pb}-\mathrm{Pb}$ Collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$, Phys. Rev. Lett. 116, 222302 (2016).
[7] K. Krajczar (CMS Collaboration), Charged hadron multiplicity and transverse energy densities in Pb Pb collisions from CMS, J. Phys. G 38, 124041 (2011).
[8] K. Aamodt et al. (ALICE Collaboration), Elliptic Flow of Charged Particles in $\mathrm{Pb}-\mathrm{Pb}$ Collisions at 2.76 TeV , Phys. Rev. Lett. 105, 252302 (2010).
[9] B. Abelev et al. (ALICE Collaboration), Centrality dependence of charged particle production at large transverse momentum in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{\mathrm{NN}}}=2.76 \mathrm{TeV}$, Phys. Lett. B 720, 52 (2013).
[10] S. Chatrchyan et al. (CMS Collaboration), Dependence on pseudorapidity and centrality of charged hadron production in PbPb collisions at a nucleon-nucleon centre-of-mass energy of 2.76 TeV , J. High Energy Phys. 08 (2011) 141.
[11] G. Aad et al. (ATLAS Collaboration), Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead

Collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$ with the ATLAS Detector at the LHC, Phys. Rev. Lett. 105, 252303 (2010).
[12] U. Heinz and R. Snellings, Collective flow and viscosity in relativistic heavy-ion collisions, Annu. Rev. Nucl. Part. Sci. 63, 123 (2013).
[13] D. Molnár and S. A. Voloshin, Elliptic Flow at Large Transverse Momenta from Quark Coalescence, Phys. Rev. Lett. 91, 092301 (2003).
[14] B. I. Abelev et al. (STAR Collaboration), Mass, quarknumber, and $\sqrt{s_{N N}}$ dependence of the second and fourth flow harmonics in ultrarelativistic nucleus-nucleus collisions, Phys. Rev. C 75, 054906 (2007).
[15] B. B. Abelev et al. (ALICE Collaboration), Elliptic flow of identified hadrons in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, J. High Energy Phys. 06 (2015) 190.
[16] K. Aamodt et al. (ALICE Collaboration), Harmonic decomposition of two-particle angular correlations in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, Phys. Lett. B 708, 249 (2012).
[17] M. Sharma and C. A. Pruneau, Methods for the study of transverse momentum differential correlations, Phys. Rev. C 79, 024905 (2009).
[18] S. A. Voloshin, V. Koch, and H. G. Ritter, Event-by-event fluctuations in collective quantities, Phys. Rev. C 60, 024901 (1999).
[19] S. S. Adler et al. (PHENIX Collaboration), Systematic studies of the centrality and $s_{N N}^{1 / 2}$ dependence of the $d E(T) / d \eta$ and $d N(c h) / d \eta$ in heavy ion collisions at midrapidity, Phys. Rev. C 71, 034908 (2005); Erratum, Phys. Rev. C 71, 049901(E) (2005).
[20] D. Adamova et al. (CERES Collaboration), Scale-dependence of transverse momentum correlations in $\mathrm{Pb}-\mathrm{Au}$ collisions at 158A-GeV/c, Nucl. Phys. A811, 179 (2008).
[21] B. B. Abelev et al. (ALICE Collaboration), Event-by-event mean p_{T} fluctuations in pp and $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC, Eur. Phys. J. C 74, 3077 (2014).
[22] S. A. Voloshin, A. M. Poskanzer, and R. Snellings, Collective phenomena in non-central nuclear collisions, arXiv:0809.2949.
[23] F. Carminati, P. Foka, P. Giubellino, A. Morsch, G Paic, J.-P Revol, K. Safarík, Y. Schutz, and U. A. Wiedemann et al. (ALICE Collaboration), ALICE: Physics performance report, volume I, J. Phys. G 30, 1517 (2004).
[24] P. Cortese et al. (ALICE Collaboration), ALICE: Physics performance report, volume II, J. Phys. G 32, 1295 (2006).
[25] K. Aamodt et al. (ALICE Collaboration), The ALICE experiment at the CERN LHC, J. Instrum. 3, S08002 (2008).
[26] B. B. Abelev et al. (ALICE Collaboration), Performance of the ALICE experiment at the CERN LHC, Int. J. Mod. Phys. A 29, 1430044 (2014).
[27] B. B. Abelev et al. (ALICE Collaboration), Multiplicity dependence of the average transverse momentum in pp , $\mathrm{p}-\mathrm{Pb}$, and $\mathrm{Pb}-\mathrm{Pb}$ collisions at the LHC, Phys. Lett. B 727, 371 (2013).
[28] S. Ravan, P. Pujahari, S. Prasad, and C. A. Pruneau, Correcting correlation function measurements, Phys. Rev. C 89, 024906 (2014).
[29] H. Agakishiev et al. (STAR Collaboration), Evolution of the differential transverse momentum correlation function with
centrality in $\mathrm{Au}+\mathrm{Au}$ collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, Phys. Lett. B 704, 467 (2011).
[30] J. Adam et al. (ALICE Collaboration), Evolution of the longitudinal and azimuthal structure of the near-side jet peak in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, arXiv:1609.06667.
[31] J. Adam et al. (ALICE Collaboration), Pseudorapidity dependence of the anisotropic flow of charged particles in $\mathrm{Pb}-\mathrm{Pb}$ collisions at $\sqrt{s_{N N}}=2.76 \mathrm{TeV}$, Phys. Lett. B 762, 376 (2016).
[32] S. Mohapatra, Measurement of the azimuthal anisotropy for charged particle production in $\mathrm{Pb}+\mathrm{Pb}$ collisions at $\mathrm{vsNN}=2.76 \mathrm{TeV}$ and in $\mathrm{pp}+\mathrm{Pb}$ collisions at $\mathrm{vsNN}=$ 5.02 TeV with the ATLAS detector at the LHC, Ph.D. thesis, SUNY, Stony Brook, 2013.
[33] M. M. Aggarwal et al. (STAR Collaboration), Azimuthal dihadron correlations in $d+\mathrm{Au}$ and $\mathrm{Au}+\mathrm{Au}$ collisions at
$\sqrt{s_{N N}}=200 \mathrm{GeV}$ from STAR, Phys. Rev. C 82, 024912 (2010).
[34] B. I. Abelev et al. (STAR Collaboration), Long range rapidity correlations and jet production in high energy nuclear collisions, Phys. Rev. C 80, 064912 (2009).
[35] B. Alver et al. (PHOBOS Collaboration), High Transverse Momentum Triggered Correlations over a Large Pseudorapidity Acceptance in $\mathrm{Au}+\mathrm{Au}$ Collisions at $\sqrt{s_{N N}}=200 \mathrm{GeV}$, Phys. Rev. Lett. 104, 062301 (2010).
[36] B. Alver and G. Roland, Collision geometry fluctuations and triangular flow in heavy-ion collisions, Phys. Rev. C 81, 054905 (2010); Erratum, Phys. Rev. C 82, 039903(E) (2010).
[37] J. Adam et al. (ALICE Collaboration), Anisotropic Flow of Charged Particles in $\mathrm{Pb}-\mathrm{Pb}$ Collisions at $\sqrt{s_{N N}}=5.02 \mathrm{TeV}$, Phys. Rev. Lett. 116, 132302 (2016).
J. Adam, ${ }^{38}$ D. Adamová, ${ }^{87}$ M. M. Aggarwal, ${ }^{91}$ G. Aglieri Rinella, ${ }^{34}$ M. Agnello,,${ }^{30,113}$ N. Agrawal, ${ }^{47}$ Z. Ahammed, ${ }^{137}$ S. Ahmad, ${ }^{17}$ S. U. Ahn, ${ }^{70}$ S. Aiola, ${ }^{141}$ A. Akindinov, ${ }^{54}$ S. N. Alam, ${ }^{137}$ D. S. D. Albuquerque, ${ }^{124}$ D. Aleksandrov, ${ }^{83}$ B. Alessandro, ${ }^{113}$ D. Alexandre, ${ }^{104}$ R. Alfaro Molina, ${ }^{64}$ A. Alici, ${ }^{12,107}$ A. Alkin, ${ }^{3}$ J. Alme, ${ }^{21,36}$ T. Alt, ${ }^{41}$ S. Altinpinar, ${ }^{21}$ I. Altsybeev, ${ }^{136}$ C. Alves Garcia Prado, ${ }^{123}$ M. An, ${ }^{7}$ C. Andrei, ${ }^{81}$ H. A. Andrews, ${ }^{104}$ A. Andronic, ${ }^{100}$ V. Anguelov, ${ }^{96}$ C. Anson, ${ }^{90}$ T. Antičić, ${ }^{101}$ F. Antinori, ${ }^{110}$ P. Antonioli, ${ }^{107}$ R. Anwar, ${ }^{126}$ L. Aphecetche, ${ }^{116}$ H. Appelshäuser, ${ }^{60}$ S. Arcelli, ${ }^{26}$ R. Arnaldi, ${ }^{113}$ O. W. Arnold, ${ }^{97,35}$ I. C. Arsene, ${ }^{20}$ M. Arslandok, ${ }^{60}$ B. Audurier, ${ }^{116}$ A. Augustinus, ${ }^{34}$ R. Averbeck, ${ }^{100}$ M. D. Azmi, ${ }^{17}$ A. Badalà, ${ }^{109}$ Y. W. Baek, ${ }^{69}$ S. Bagnasco, ${ }^{113}$ R. Bailhache, ${ }^{60}$ R. Bala, ${ }^{93}$ A. Baldisseri, ${ }^{66}$ R. C. Baral, ${ }^{57}$ A. M. Barbano,,25 R. Barbera, ${ }^{27}$ F. Barile, ${ }^{32}$ L. Barioglio, ${ }^{25}$ G. G. Barnaföldi, ${ }^{140}$ L. S. Barnby,${ }^{104,34}$ V. Barret, ${ }^{72}$ P. Bartalini, ${ }^{7}$ K. Barth, ${ }^{34}$ J. Bartke, ${ }^{120, \dagger}$ E. Bartsch, ${ }^{60}$ M. Basile, ${ }^{26}$ N. Bastid, ${ }^{72}$ S. Basu, ${ }^{137}$ B. Bathen, ${ }^{61}$ G. Batigne, ${ }^{116}$ A. Batista Camejo, ${ }^{72}$ B. Batyunya, ${ }^{68}$ P. C. Batzing, ${ }^{20}$ I. G. Bearden, ${ }^{84}$ H. Beck, ${ }^{96}$ C. Bedda, ${ }^{30}$ N. K. Behera, ${ }^{50}$ I. Belikov, ${ }^{65}$ F. Bellini, ${ }^{26}$ H. Bello Martinez, ${ }^{2}$ R. Bellwied, ${ }^{126}$ L. G. E. Beltran, ${ }^{122}$ V. Belyaev, ${ }^{77}$ G. Bencedi, ${ }^{140}$ S. Beole, ${ }^{25}$ A. Bercuci, ${ }^{81}$ Y. Berdnikov, ${ }^{89}$ D. Berenyi, ${ }^{140}$ R. A. Bertens, ${ }^{53,129}$ D. Berzano, ${ }^{34}$ L. Betev, ${ }^{34}$ A. Bhasin, ${ }^{93}$ I. R. Bhat, ${ }^{93}$ A. K. Bhati, ${ }^{91}$ B. Bhattacharjee, ${ }^{43}$ J. Bhom,,${ }^{120}$ L. Bianchi, ${ }^{126}$ N. Bianchi, ${ }^{74}$ C. Bianchin, ${ }^{139}$ J. Bielčík, ${ }^{38}$ J. Bielčíková, ${ }^{87}$ A. Bilandzic, ${ }^{35,97}$ G. Biro, ${ }^{140}$ R. Biswas, ${ }^{4}$ S. Biswas, ${ }^{4}$ J. T. Blair, ${ }^{121}$ D. Blau, ${ }^{83}$ C. Blume, ${ }^{60}$ F. Bock, ${ }^{76,96}$ A. Bogdanov, ${ }^{77}$ L. Boldizsár, ${ }^{140}$ M. Bombara, ${ }^{39}$ M. Bonora, ${ }^{34}$ J. Book, ${ }^{60}$ H. Borel, ${ }^{66}$ A. Borissov, ${ }^{99}$ M. Borri, ${ }^{128}$ E. Botta, ${ }^{25}$ C. Bourjau, ${ }^{84}$ P. Braun-Munzinger, ${ }^{100}$ M. Bregant, ${ }^{123}$ T. A. Broker, ${ }^{60}$ T. A. Browning, ${ }^{98}$ M. Broz, ${ }^{38}$ E. J. Brucken, ${ }^{45}$ E. Bruna, ${ }^{113}$ G. E. Bruno, ${ }^{32}$ D. Budnikov, ${ }^{102}$ H. Buesching, ${ }^{60}$ S. Bufalino, ${ }^{30,25}$ P. Buhler, ${ }^{115}$ S. A. I. Buitron, ${ }^{62}$ P. Buncic, ${ }^{34}$ O. Busch, ${ }^{132}$ Z. Buthelezi, ${ }^{67}$ J. B. Butt, ${ }^{15}$ J. T. Buxton, ${ }^{18}$ J. Cabala, ${ }^{118}$ D. Caffarri, ${ }^{34}$ H. Caines, ${ }^{141}$ A. Caliva, ${ }^{53}$ E. Calvo Villar, ${ }^{105}$ P. Camerini, ${ }^{24}$ A. A. Capon, ${ }^{115}$ F. Carena, ${ }^{34}$ W. Carena, ${ }^{34}$ F. Carnesecchi, ${ }^{26,12}$ J. Castillo Castellanos, ${ }^{66}$ A. J. Castro, ${ }^{129}$ E. A. R. Casula, ${ }^{23,108}$ C. Ceballos Sanchez, ${ }^{9}$ P. Cerello, ${ }^{113}$ J. Cerkala, ${ }^{118}$ B. Chang, ${ }^{127}$ S. Chapeland, ${ }^{34}$ M. Chartier, ${ }^{128}$ J. L. Charvet, ${ }^{66}$ S. Chattopadhyay, ${ }^{137}$ S. Chattopadhyay, ${ }^{103}$ A. Chauvin, ${ }^{97,35}$ M. Cherney, ${ }^{90}$ C. Cheshkov, ${ }^{134}$ B. Cheynis, ${ }^{134}$ V. Chibante Barroso, ${ }^{34}$ D. D. Chinellato, ${ }^{124}$ S. Cho, ${ }^{50}$ P. Chochula, ${ }^{34}$ K. Choi, ${ }^{99}$ M. Chojnacki, ${ }^{84}$ S. Choudhury, ${ }^{137}$ P. Christakoglou, ${ }^{85}$ C. H. Christensen, ${ }^{84}$ P. Christiansen, ${ }^{33}$ T. Chujo, ${ }^{132}$ S. U. Chung, ${ }^{99}$ C. Cicalo, ${ }^{108}$ L. Cifarelli, ${ }^{12,26}$ F. Cindolo, ${ }^{107}$ J. Cleymans, ${ }^{92}$ F. Colamaria, ${ }^{32}$ D. Colella, ${ }^{55,34}$ A. Collu, ${ }^{76}$ M. Colocci, ${ }^{26}$ G. Conesa Balbastre, ${ }^{73}$ Z. Conesa del Valle, ${ }^{51}$ M. E. Connors, ${ }^{141, \#}$ J. G. Contreras, ${ }^{38}$ T. M. Cormier, ${ }^{88}$ Y. Corrales Morales, ${ }^{113}$ I. Cortés Maldonado, ${ }^{2}$ P. Cortese,,31 M. R. Cosentino, ${ }^{123,125}$ F. Costa, ${ }^{34}$ J. Crkovská, ${ }^{51}$ P. Crochet, ${ }^{72}$ R. Cruz Albino, ${ }^{11}$ E. Cuautle, ${ }^{62}$ L. Cunqueiro, ${ }^{61}$ T. Dahms, ${ }^{35,97}$ A. Dainese, ${ }^{110}$ M. C. Danisch, ${ }^{96}$ A. Danu, ${ }^{58}$ D. Das, ${ }^{103}$ I. Das, ${ }^{103}$ S. Das, ${ }^{4}$ A. Dash, ${ }^{82}$ S. Dash, ${ }^{47}$ S. De, ${ }^{48,123}$ A. De Caro, ${ }^{29}$ G. de Cataldo, ${ }^{106}$ C. de Conti, ${ }^{123}$ J. de Cuveland, ${ }^{41}$ A. De Falco, ${ }^{23}$ D. De Gruttola, ${ }^{12,29}$ N. De Marco, ${ }^{113}$ S. De Pasquale, ${ }^{29}$ R. D. De Souza, ${ }^{124}$ H. F. Degenhardt, ${ }^{123}$ A. Deisting, ${ }^{100,96}$ A. Deloff, ${ }^{80}$ C. Deplano, ${ }^{85}$ P. Dhankher, ${ }^{47}$ D. Di Bari, ${ }^{32}$ A. Di Mauro, ${ }^{34}$ P. Di Nezza, ${ }^{74}$ B. Di Ruzza, ${ }^{110}$ M. A. Diaz Corchero, ${ }^{10}$ T. Dietel, ${ }^{92}$ P. Dillenseger, ${ }^{60}$ R. Divià, ${ }^{34}$ Ø. Djuvsland, ${ }^{21}$ A. Dobrin, ${ }^{58,34}$ D. Domenicis Gimenez, ${ }^{123}$ B. Dönigus, ${ }^{60}$ O. Dordic, ${ }^{20}$ T. Drozhzhova, ${ }^{60}$ A. K. Dubey, ${ }^{137}$ A. Dubla, ${ }^{100}$ L. Ducroux, ${ }^{134}$ A. K. Duggal, ${ }^{91}$ P. Dupieux, ${ }^{72}$ R. J. Ehlers, ${ }^{141}$ D. Elia, ${ }^{106}$ E. Endress, ${ }^{105}$ H. Engel, ${ }^{59}$ E. Epple, ${ }^{141}$ B. Erazmus, ${ }^{116}$ F. Erhardt, ${ }^{133}$ B. Espagnon, ${ }^{51}$ S. Esumi, ${ }^{132}$ G. Eulisse, ${ }^{34}$ J. Eum, ${ }^{99}$ D. Evans, ${ }^{104}$ S. Evdokimov, ${ }^{114}$
L. Fabbietti, ${ }^{35,97}$ D. Fabris, ${ }^{110}$ J. Faivre, ${ }^{73}$ A. Fantoni, ${ }^{74}$ M. Fasel,,${ }^{88,76}$ L. Feldkamp, ${ }^{61}$ A. Feliciello, ${ }^{113}$ G. Feofilov, ${ }^{136}$ J. Ferencei, ${ }^{87}$ A. Fernández Téllez, ${ }^{2}$ E. G. Ferreiro, ${ }^{16}$ A. Ferretti, ${ }^{25}$ A. Festanti, ${ }^{28}$ V. J. G. Feuillard, ${ }^{72,66}$ J. Figiel, ${ }^{120}$ M. A. S. Figueredo, ${ }^{123}$ S. Filchagin, ${ }^{102}$ D. Finogeev, ${ }^{52}$ F. M. Fionda, ${ }^{23}$ E. M. Fiore, ${ }^{32}$ M. Floris, ${ }^{34}$ S. Foertsch, ${ }^{67}$ P. Foka, ${ }^{100}$ S. Fokin, ${ }^{83}$ E. Fragiacomo, ${ }^{112}$ A. Francescon, ${ }^{34}$ A. Francisco, ${ }^{116}$ U. Frankenfeld, ${ }^{100}$ G. G. Fronze, ${ }^{25}$ U. Fuchs, ${ }^{34}$ C. Furget, ${ }^{73}$ A. Furs,,52 M. Fusco Girard, ${ }^{29}$ J. J. Gaardhøje, ${ }^{84}$ M. Gagliardi, ${ }^{25}$ A. M. Gago, ${ }^{105}$ K. Gajdosova, ${ }^{84}$ M. Gallio, ${ }^{25}$ C. D. Galvan, ${ }^{122}$ D. R. Gangadharan, ${ }^{76}$ P. Ganoti, ${ }^{79}$ C. Gao, ${ }^{7}$ C. Garabatos, ${ }^{100}$ E. Garcia-Solis, ${ }^{13}$ K. Garg, ${ }^{27}$ P. Garg, ${ }^{48}$ C. Gargiulo, ${ }^{34}$ P. Gasik,,35,97 E. F. Gauger, ${ }^{121}$ M. B. Gay Ducati, ${ }^{63}$ M. Germain, ${ }^{116}$ P. Ghosh, ${ }^{137}$ S. K. Ghosh, ${ }^{4}$ P. Gianotti, ${ }^{74}$ P. Giubellino, ${ }^{34,113}$ P. Giubilato, ${ }^{28}$ E. Gladysz-Dziadus, ${ }^{120}$ P. Glässel, ${ }^{96}$ D. M. Goméz Coral,,${ }^{64}$ A. Gomez Ramirez, ${ }^{59}$ A. S. Gonzalez, ${ }^{34}$ V. Gonzalez, ${ }^{10}$ P. González-Zamora, ${ }^{10}$ S. Gorbunov, ${ }^{41}$ L. Görlich, ${ }^{120}$ S. Gotovac, ${ }^{119}$ V. Grabski, ${ }^{64}$ L. K. Graczykowski, ${ }^{138}$ K. L. Graham, ${ }^{104}$ L. Greiner, ${ }^{76}$ A. Grelli, ${ }^{53}$ C. Grigoras, ${ }^{34}$ V. Grigoriev, ${ }^{77}$ A. Grigoryan, ${ }^{1}$ S. Grigoryan, ${ }^{68}$ N. Grion, ${ }^{112}$ J. M. Gronefeld, ${ }^{100}$ F. Grosa, ${ }^{30}$ J. F. Grosse-Oetringhaus, ${ }^{34}$ R. Grosso, ${ }^{100}$ L. Gruber, ${ }^{115}$ F. R. Grull, ${ }^{59}$ F. Guber, ${ }^{52}$ R. Guernane, ${ }^{34,73}$ B. Guerzoni, ${ }^{26}$ K. Gulbrandsen, ${ }^{84}$ T. Gunji, ${ }^{131}$ A. Gupta, ${ }^{93}$ R. Gupta, ${ }^{93}$ I. B. Guzman, ${ }^{2}$ R. Haake, ${ }^{34,61}$ C. Hadjidakis, ${ }^{51}$ H. Hamagaki, ${ }^{78,131}$ G. Hamar, ${ }^{140}$ J. C. Hamon, ${ }^{65}$ J. W. Harris, ${ }^{141}$ A. Harton, ${ }^{13}$ D. Hatzifotiadou, ${ }^{107}$ S. Hayashi, ${ }^{131}$ S. T. Heckel, ${ }^{60}$ E. Hellbär, ${ }^{60}$ H. Helstrup, ${ }^{36}$ A. Herghelegiu, ${ }^{81}$ G. Herrera Corral,,${ }^{11}$ F. Herrmann, ${ }^{61}$ B. A. Hess, ${ }^{95}$ K. F. Hetland, ${ }^{36}$ H. Hillemanns, ${ }^{34}$ B. Hippolyte, ${ }^{65}$ J. Hladky ${ }^{56}$ D. Horak,,${ }^{38}$ R. Hosokawa, ${ }^{132}$ P. Hristov, ${ }^{34}$ C. Hughes, ${ }^{129}$ T. J. Humanic, ${ }^{18}$ N. Hussain, ${ }^{43}$ T. Hussain, ${ }^{17}$ D. Hutter, ${ }^{41}$ D. S. Hwang, ${ }^{19}$ R. Ilkaev, ${ }^{102}$ M. Inaba, ${ }^{132}$ M. Ippolitov, ${ }^{83,77}$ M. Irfan, ${ }^{17}$ V. Isakov, ${ }^{52}$ M. S. Islam, ${ }^{48}$ M. Ivanov,,${ }^{34,100}$ V. Ivanov, ${ }^{89}$ V. Izucheev, ${ }^{114}$ B. Jacak, ${ }^{76}$ N. Jacazio, ${ }^{26}$ P. M. Jacobs, ${ }^{76}$ M. B. Jadhav, ${ }^{47}$ S. Jadlovska, ${ }^{118}$ J. Jadlovsky, ${ }^{118}$ C. Jahnke, ${ }^{35}$ M. J. Jakubowska, ${ }^{138}$ M. A. Janik, ${ }^{138}$ P. H. S. Y. Jayarathna, ${ }^{126}$ C. Jena, ${ }^{82}$ S. Jena, ${ }^{126}$ M. Jercic, ${ }^{133}$ R. T. Jimenez Bustamante, ${ }^{100}$ P. G. Jones, ${ }^{104}$ A. Jusko, ${ }^{104}$ P. Kalinak, ${ }^{55}$ A. Kalweit, ${ }^{34}$ J. H. Kang,${ }^{142}$ V. Kaplin, ${ }^{77}$ S. Kar, ${ }^{137}$ A. Karasu Uysal, ${ }^{71}$ O. Karavichev,,${ }^{52}$ T. Karavicheva, ${ }^{52}$ L. Karayan, ${ }^{100,96}$ E. Karpechev, ${ }^{52}$ U. Kebschull, ${ }^{59}$ R. Keidel, ${ }^{143}$ D. L. D. Keijdener, ${ }^{53}$ M. Keil, ${ }^{34}$ M. Mohisin Khan,,${ }^{17,8}$ P. Khan, ${ }^{103}$ S. A. Khan, ${ }^{137}$ A. Khanzadeev, ${ }^{89}$ Y. Kharlov, ${ }^{114}$ A. Khatun, ${ }^{17}$ A. Khuntia, ${ }^{48}$ M. M. Kielbowicz, ${ }^{120}$ B. Kileng, ${ }^{36}$ D. W. Kim, ${ }^{42}$ D. J. Kim, ${ }^{127}$ D. Kim, ${ }^{142}$ H. Kim,,${ }^{142}$ J. S. Kim, ${ }^{42}$ J. Kim, ${ }^{96}$ M. Kim, ${ }^{50}$ M. Kim, ${ }^{142}$ S. Kim, ${ }^{19}$ T. Kim,,${ }^{142}$ S. Kirsch,,${ }^{41}$ I. Kisel, ${ }^{41}$ S. Kiselev, ${ }^{54}$ A. Kisiel, ${ }^{138}$ G. Kiss, ${ }^{140}$ J. L. Klay, ${ }^{6}$ C. Klein, ${ }^{60}$ J. Klein, ${ }^{34}$ C. Klein-Bösing, ${ }^{61}$ S. Klewin, ${ }^{96}$ A. Kluge, ${ }^{34}$ M. L. Knichel, ${ }^{96}$ A. G. Knospe, ${ }^{126}$ C. Kobdaj, ${ }^{117}$ M. Kofarago, ${ }^{34}$ T. Kollegger, ${ }^{100}$ A. Kolojvari, ${ }^{136}$ V. Kondratiev, ${ }^{136}$ N. Kondratyeva, ${ }^{77}$ E. Kondratyuk, ${ }^{114}$ A. Konevskikh, ${ }^{52}$ M. Kopcik, ${ }^{118}$ M. Kour, ${ }^{93}$ C. Kouzinopoulos, ${ }^{34}$ O. Kovalenko, ${ }^{80}$ V. Kovalenko, ${ }^{136}$ M. Kowalski, ${ }^{120}$ G. Koyithatta Meethaleveedu, ${ }^{47}$ I. Králik, ${ }^{55}$ A. Kravčáková, ${ }^{39}$ M. Krivda, ${ }^{55,104}$ F. Krizek,,${ }^{87}$ E. Kryshen, ${ }^{89}$ M. Krzewicki, ${ }^{41}$ A. M. Kubera, ${ }^{18}$ V. Kučera, ${ }^{87}$ C. Kuhn, ${ }^{65}$ P. G. Kuijer, ${ }^{85}$ A. Kumar, ${ }^{93}$ J. Kumar, ${ }^{47}$ L. Kumar,,${ }^{91}$ S. Kumar, ${ }^{47}$ S. Kundu, ${ }^{82}$ P. Kurashvili, ${ }^{80}$ A. Kurepin, ${ }^{52}$ A. B. Kurepin, ${ }^{52}$ A. Kuryakin, ${ }^{102}$ S. Kushpil, ${ }^{87}$ M. J. Kweon, ${ }^{50}$ Y. Kwon, ${ }^{142}$ S. L. La Pointe, ${ }^{41}$ P. La Rocca, ${ }^{27}$ C. Lagana Fernandes, ${ }^{123}$ I. Lakomov,,${ }^{34}$ R. Langoy, ${ }^{40}$ K. Lapidus, ${ }^{141}$ C. Lara, ${ }^{59}$ A. Lardeux,,${ }^{66,20}$ A. Lattuca, ${ }^{25}$ E. Laudi, ${ }^{34}$ R. Lavicka, ${ }^{38}$ L. Lazaridis, ${ }^{34}$ R. Lea, ${ }^{24}$ L. Leardini, ${ }^{96}$ S. Lee, ${ }^{142}$ F. Lehas, ${ }^{85}$ S. Lehner, ${ }^{115}$ J. Lehrbach, ${ }^{41}$ R. C. Lemmon, ${ }^{86}$ V. Lenti, ${ }^{106}$ E. Leogrande, ${ }^{53}$ I. León Monzón,,${ }^{122}$ P. Lévai, ${ }^{140}$ S. Li, ${ }^{7}$ X. Li, ${ }^{14}$ J. Lien, ${ }^{40}$ R. Lietava, ${ }^{104}$ S. Lindal, ${ }^{20}$ V. Lindenstruth, ${ }^{41}$ C. Lippmann, ${ }^{100}$ M. A. Lisa, ${ }^{18}$ V. Litichevskyi, ${ }^{45}$ H. M. Ljunggren, ${ }^{33}$ W. J. Llope,,${ }^{139}$ D. F. Lodato, ${ }^{53}$ P. I. Loenne, ${ }^{21}$ V. Loginov, ${ }^{77}$ C. Loizides, ${ }^{76}$ P. Loncar, ${ }^{119}$ X. Lopez, ${ }^{72}$ E. López Torres, ${ }^{9}$ A. Lowe, ${ }^{140}$ P. Luettig, ${ }^{60}$ M. Lunardon, ${ }^{28}$ G. Luparello, ${ }^{24}$ M. Lupi, ${ }^{34}$ T. H. Lutz, ${ }^{141}$ A. Maevskaya, ${ }^{52}$ M. Mager, ${ }^{34}$ S. Mahajan, ${ }^{93}$ S. M. Mahmood, ${ }^{20}$ A. Maire, ${ }^{65}$ R. D. Majka, ${ }^{141}$ M. Malaev, ${ }^{89}$ I. Maldonado Cervantes, ${ }^{62}$ L. Malinina, ${ }^{68,9}$ D. Mal'Kevich, ${ }^{54}$ P. Malzacher, ${ }^{100}$ A. Mamonov, ${ }^{102}$ V. Manko, ${ }^{83}$ F. Manso, ${ }^{72}$ V. Manzari, ${ }^{106}$ Y. Mao, ${ }^{7}$ M. Marchisone, ${ }^{67,130}$ J. Mareš, ${ }^{56}$ G. V. Margagliotti, ${ }^{24}$ A. Margotti, ${ }^{107}$ J. Margutti, ${ }^{53}$ A. Marín, ${ }^{100}$ C. Markert, ${ }^{121}$ M. Marquard, ${ }^{60}$ N. A. Martin, ${ }^{100}$ P. Martinengo, ${ }^{34}$ J. A. L. Martinez, ${ }^{59}$ M. I. Martínez, ${ }^{2}$ G. Martínez García, ${ }^{116}$ M. Martinez Pedreira, ${ }^{34}$ A. Mas, ${ }^{123}$ S. Masciocchi, ${ }^{100}$ M. Masera, ${ }^{25}$ A. Masoni, ${ }^{108}$ A. Mastroserio, ${ }^{32}$ A. M. Mathis, ${ }^{97,35}$ A. Matyja, ${ }^{129,120}$ C. Mayer, ${ }^{120}$ J. Mazer, ${ }^{129}$ M. Mazzilli, ${ }^{32}$ M. A. Mazzoni, ${ }^{111}$ F. Meddi, ${ }^{22}$ Y. Melikyan, ${ }^{77}$ A. Menchaca-Rocha, ${ }^{64}$ E. Meninno, ${ }^{29}$ J. Mercado Pérez, ${ }^{96}$ M. Meres, ${ }^{37}$ S. Mhlanga, ${ }^{92}$ Y. Miake, ${ }^{132}$ M. M. Mieskolainen, ${ }^{45}$ D. Mihaylov, ${ }^{97}$ K. Mikhaylov, ${ }^{54,68}$ L. Milano, ${ }^{76}$ J. Milosevic, ${ }^{20}$ A. Mischke, ${ }^{53}$ A. N. Mishra, ${ }^{48}$ T. Mishra, ${ }^{57}$ D. Miśsowiec, ${ }^{100}$ J. Mitra, ${ }^{137}$ C. M. Mitu, ${ }^{58}$ N. Mohammadi, ${ }^{53}$ B. Mohanty, ${ }^{82}$ E. Montes, ${ }^{10}$ D. A. Moreira De Godoy, ${ }^{61}$ L. A. P. Moreno, ${ }^{2}$ S. Moretto, ${ }^{28}$ A. Morreale, ${ }^{116}$ A. Morsch, ${ }^{34}$ V. Muccifora, ${ }^{74}$ E. Mudnic, ${ }^{119}$ D. Mühlheim, ${ }^{61}$ S. Muhuri, ${ }^{137}$ M. Mukherjee, ${ }^{137}$ J. D. Mulligan, ${ }^{141}$ M. G. Munhoz, ${ }^{123}$ K. Münning, ${ }^{44}$ R. H. Munzer, ${ }^{35,60,97}$ H. Murakami, ${ }^{131}$ S. Murray, ${ }^{67}$ L. Musa, ${ }^{34}$ J. Musinsky, ${ }^{55}$ C. J. Myers, ${ }^{126}$ B. Naik, ${ }^{47}$ R. Nair, ${ }^{80}$ B. K. Nandi ${ }^{47}$ R. Nania,,${ }^{107}$ E. Nappi, ${ }^{106}$ M. U. Naru, ${ }^{15}$ H. Natal da Luz, ${ }^{123}$ C. Nattrass, ${ }^{129}$ S. R. Navarro, ${ }^{2}$ K. Nayak, ${ }^{82}$ R. Nayak, ${ }^{47}$ T. K. Nayak, ${ }^{137}$ S. Nazarenko, ${ }^{102}$ A. Nedosekin, ${ }^{54}$ R. A. Negrao De Oliveira, ${ }^{34}$ L. Nellen, ${ }^{62}$ S. V. Nesbo, ${ }^{36}$
F. Ng, ${ }^{126}$ M. Nicassio, ${ }^{100}$ M. Niculescu, ${ }^{58}$ J. Niedziela, ${ }^{34}$ B. S. Nielsen, ${ }^{84}$ S. Nikolaev, ${ }^{83}$ S. Nikulin, ${ }^{83}$ V. Nikulin, ${ }^{89}$ F. Noferini, ${ }^{107,12}$ P. Nomokonov, ${ }^{68}$ G. Nooren, ${ }^{53}$ J. C. C. Noris, ${ }^{2}$ J. Norman, ${ }^{128}$ A. Nyanin, ${ }^{83}$ J. Nystrand, ${ }^{21}$ H. Oeschler, ${ }^{96}$
S. Oh, ${ }^{141}$ A. Ohlson, ${ }^{96,34}$ T. Okubo, ${ }^{46}$ L. Olah, ${ }^{140}$ J. Oleniacz, ${ }^{138}$ A. C. Oliveira Da Silva, ${ }^{123}$ M. H. Oliver, ${ }^{141}$ J. Onderwaater, ${ }^{100}$ C. Oppedisano, ${ }^{113}$ R. Orava, ${ }^{45}$ M. Oravec, ${ }^{118}$ A. Ortiz Velasquez, ${ }^{62}$ A. Oskarsson, ${ }^{33}$ J. Otwinowski, ${ }^{120}$ K. Oyama, ${ }^{78}$ M. Ozdemir, ${ }^{60}$ Y. Pachmayer, ${ }^{96}$ V. Pacik, ${ }^{84}$ D. Pagano, ${ }^{135,25}$ P. Pagano, ${ }^{29}$ G. Paić, ${ }^{62}$ S. K. Pal, ${ }^{137}$ P. Palni, ${ }^{7}$ J. Pan,,139 A. K. Pandey, ${ }^{47}$ S. Panebianco, ${ }^{66}$ V. Papikyan, ${ }^{1}$ G. S. Pappalardo, ${ }^{109}$ P. Pareek, ${ }^{48}$ J. Park, ${ }^{50}$ W. J. Park, ${ }^{100}$ S. Parmar, ${ }^{91}$ A. Passfeld, ${ }^{61}$ V. Paticchio, ${ }^{106}$ R. N. Patra, ${ }^{137}$ B. Paul, ${ }^{113}$ H. Pei, ${ }^{7}$ T. Peitzmann, ${ }^{53}$ X. Peng, ${ }^{7}$ L. G. Pereira, ${ }^{63}$ H. Pereira Da Costa, ${ }^{66}$ D. Peresunko, ${ }^{83,77}$ E. Perez Lezama, ${ }^{60}$ V. Peskov, ${ }^{60}$ Y. Pestov, ${ }^{5}$ V. Petráček, ${ }^{38}$ V. Petrov, ${ }^{114}$ M. Petrovici, ${ }^{81}$ C. Petta, ${ }^{27}$ R. P. Pezzi, ${ }^{63}$ S. Piano, ${ }^{112}$ M. Pikna, ${ }^{37}$ P. Pillot, ${ }^{116}$ L. O. D. L. Pimentel, ${ }^{84}$ O. Pinazza, ${ }^{107,34}$ L. Pinsky, ${ }^{126}$ D. B. Piyarathna, ${ }^{126}$ M. Płoskoń ${ }^{76}$ M. Planinic, ${ }^{133}$ J. Pluta, ${ }^{138}$ S. Pochybova, ${ }^{140}$ P. L. M. Podesta-Lerma, ${ }^{122}$ M. G. Poghosyan, ${ }^{88}$ B. Polichtchouk, ${ }^{114}$ N. Poljak, ${ }^{133}$ W. Poonsawat, ${ }^{117}$ A. Pop, ${ }^{81}$ H. Poppenborg, ${ }^{61}$
S. Porteboeuf-Houssais, ${ }^{72}$ J. Porter, ${ }^{76}$ J. Pospisil,,${ }^{87}$ V. Pozdniakov, ${ }^{68}$ S. K. Prasad, ${ }^{4}$ R. Preghenella, ${ }^{34,107}$ F. Prino, ${ }^{113}$ C. A. Pruneau, ${ }^{139}$ I. Pshenichnov, ${ }^{52}$ M. Puccio, ${ }^{25}$ G. Puddu, ${ }^{23}$ P. Pujahari, ${ }^{139}$ V. Punin, ${ }^{102}$ J. Putschke, ${ }^{139}$ H. Qvigstad, ${ }^{20}$ A. Rachevski, ${ }^{112}$ S. Raha, ${ }^{4}$ S. Rajput, ${ }^{93}$ J. Rak, ${ }^{127}$ A. Rakotozafindrabe, ${ }^{66}$ L. Ramello, ${ }^{31}$ F. Rami, ${ }^{65}$ D. B. Rana, ${ }^{126}$ R. Raniwala, ${ }^{94}$ S. Raniwala, ${ }^{94}$ S. S. Räsänen, ${ }^{45}$ B. T. Rascanu, ${ }^{60}$ D. Rathee, ${ }^{91}$ V. Ratza, ${ }^{44}$ I. Ravasenga, ${ }^{30}$ K. F. Read, ${ }^{88,129}$ K. Redlich, ${ }^{80}$ A. Rehman, ${ }^{21}$ P. Reichelt, ${ }^{60}$ F. Reidt, ${ }^{34}$ X. Ren, ${ }^{7}$ R. Renfordt, ${ }^{60}$ A. R. Reolon, ${ }^{74}$ A. Reshetin, ${ }^{52}$ K. Reygers, ${ }^{96}$ V. Riabov, ${ }^{89}$ R. A. Ricci, ${ }^{75}$ T. Richert, ${ }^{53,33}$ M. Richter, ${ }^{20}$ P. Riedler, ${ }^{34}$ W. Riegler, ${ }^{34}$ F. Riggi, ${ }^{27}$ C. Ristea, ${ }^{58}$
M. Rodríguez Cahuantzi, ${ }^{2}$ K. Røed, ${ }^{20}$ E. Rogochaya, ${ }^{68}$ D. Rohr, ${ }^{41}$ D. Röhrich, ${ }^{21}$ F. Ronchetti, ${ }^{74,34}$ L. Ronflette, ${ }^{116}$ P. Rosnet, ${ }^{72}$ A. Rossi, ${ }^{28}$ F. Roukoutakis, ${ }^{79}$ A. Roy, ${ }^{48}$ C. Roy, ${ }^{65}$ P. Roy, ${ }^{103}$ A. J. Rubio Montero, ${ }^{10}$ R. Rui, ${ }^{24}$ R. Russo, ${ }^{25}$ E. Ryabinkin, ${ }^{83}$ Y. Ryabov, ${ }^{89}$ A. Rybicki, ${ }^{120}$ S. Saarinen, ${ }^{45}$ S. Sadhu, ${ }^{137}$ S. Sadovsky, ${ }^{114}$ K. Šafařík, ${ }^{34}$ B. Sahlmuller, ${ }^{60}$ B. Sahoo, ${ }^{47}$ P. Sahoo, ${ }^{48}$ R. Sahoo, ${ }^{48}$ S. Sahoo, ${ }^{57}$ P. K. Sahu, ${ }^{57}$ J. Saini, ${ }^{137}$ S. Sakai, ${ }^{74,132}$ M. A. Saleh, ${ }^{139}$ J. Salzwedel, ${ }^{18}$ S. Sambyal, ${ }^{93}$ V. Samsonov, ${ }^{77,89}$ A. Sandoval, ${ }^{64}$ D. Sarkar, ${ }^{137}$ N. Sarkar, ${ }^{137}$ P. Sarma, ${ }^{43}$ M. H. P. Sas, ${ }^{53}$ E. Scapparone, ${ }^{107}$ F. Scarlassara, ${ }^{28}$ R. P. Scharenberg, ${ }^{98}$ C. Schiaua, ${ }^{81}$ R. Schicker, ${ }^{96}$ C. Schmidt, ${ }^{100}$ H. R. Schmidt, ${ }^{95}$ M. O. Schmidt, ${ }^{96}$ M. Schmidt, ${ }^{95}$ J. Schukraft, ${ }^{34}$ Y. Schutz, ${ }^{116,34,65}$ K. Schwarz, ${ }^{100}$ K. Schweda, ${ }^{100}$ G. Scioli, ${ }^{26}$ E. Scomparin, ${ }^{113}$ R. Scott, ${ }^{129}$
M. Šefčík, ${ }^{39}$ J. E. Seger,,${ }^{90}$ Y. Sekiguchi, ${ }^{131}$ D. Sekihata, ${ }^{46}$ I. Selyuzhenkov, ${ }^{77,100}$ K. Senosi, ${ }^{67}$ S. Senyukov, ${ }^{3,65,34}$ E. Serradilla, ${ }^{64,10}$ P. Sett, ${ }^{47}$ A. Sevcenco, ${ }^{58}$ A. Shabanov, ${ }^{52}$ A. Shabetai, ${ }^{116}$ O. Shadura, ${ }^{3}$ R. Shahoyan, ${ }^{34}$ A. Shangaraev, ${ }^{114}$ A. Sharma, ${ }^{93}$ A. Sharma, ${ }^{91}$ M. Sharma, ${ }^{93}$ M. Sharma, ${ }^{93}$ N. Sharma, ${ }^{129,91}$ A. I. Sheikh, ${ }^{137}$ K. Shigaki, ${ }^{46}$ Q. Shou, ${ }^{7}$ K. Shtejer, ${ }^{25,9}$ Y. Sibiriak, ${ }^{83}$ S. Siddhanta, ${ }^{108}$ K. M. Sielewicz, ${ }^{34}$ T. Siemiarczuk, ${ }^{80}$ D. Silvermyr, ${ }^{33}$ C. Silvestre, ${ }^{73}$ G. Simatovic, ${ }^{133}$ G. Simonetti, ${ }^{34}$ R. Singaraju, ${ }^{137}$ R. Singh, ${ }^{82}$ V. Singhal, ${ }^{137}$ T. Sinha, ${ }^{103}$ B. Sitar, ${ }^{37}$ M. Sitta, ${ }^{31}$ T. B. Skaali, ${ }^{20}$ M. Slupecki, ${ }^{127}$ N. Smirnov, ${ }^{141}$ R. J. M. Snellings, ${ }^{53}$ T. W. Snellman, ${ }^{127}$ J. Song, ${ }^{99}$ M. Song, ${ }^{142}$ F. Soramel, ${ }^{28}$ S. Sorensen, ${ }^{129}$ F. Sozzi, ${ }^{100}$ E. Spiriti, ${ }^{74}$ I. Sputowska, ${ }^{120}$ B. K. Srivastava, ${ }^{98}$ J. Stachel, ${ }^{96}$ I. Stan, ${ }^{58}$ P. Stankus, ${ }^{88}$ E. Stenlund, ${ }^{33}$ J. H. Stiller, ${ }^{96}$ D. Stocco, ${ }^{116}$ P. Strmen, ${ }^{37}$ A. A. P. Suaide, ${ }^{123}$ T. Sugitate, ${ }^{46}$ C. Suire, ${ }^{51}$ M. Suleymanov, ${ }^{15}$ M. Suljic, ${ }^{24}$ R. Sultanov, ${ }^{54}$ M. Šumbera, ${ }^{87}$ S. Sumowidagdo, ${ }^{49}$ K. Suzuki, ${ }^{115}$ S. Swain, ${ }^{57}$ A. Szabo, ${ }^{37}$ I. Szarka, ${ }^{37}$ A. Szczepankiewicz, ${ }^{138}$ M. Szymanski, ${ }^{138}$ U. Tabassam, ${ }^{15}$ J. Takahashi, ${ }^{124}$ G. J. Tambave, ${ }^{21}$ N. Tanaka, ${ }^{132}$ M. Tarhini, ${ }^{51}$ M. Tariq, ${ }^{17}$ M. G. Tarzila, ${ }^{81}$ A. Tauro, ${ }^{34}$ G. Tejeda Muñoz, ${ }^{2}$ A. Telesca, ${ }^{34}$ K. Terasaki, ${ }^{131}$ C. Terrevoli, ${ }^{28}$ B. Teyssier, ${ }^{134}$ D. Thakur, ${ }^{48}$ D. Thomas, ${ }^{121}$ R. Tieulent, ${ }^{134}$ A. Tikhonov, ${ }^{52}$ A. R. Timmins, ${ }^{126}$ A. Toia, ${ }^{60}$ S. Tripathy, ${ }^{48}$ S. Trogolo, ${ }^{25}$ G. Trombetta, ${ }^{32}$ V. Trubnikov, ${ }^{3}$ W. H. Trzaska, ${ }^{127}$ B. A. Trzeciak, ${ }^{53}$ T. Tsuji, ${ }^{131}$ A. Tumkin, ${ }^{102}$ R. Turrisi, ${ }^{110}$ T. S. Tveter, ${ }^{20}$ K. Ullaland, ${ }^{21}$ E. N. Umaka, ${ }^{126}$ A. Uras, ${ }^{134}$ G. L. Usai, ${ }^{23}$ A. Utrobicic, ${ }^{133}$ M. Vala, ${ }^{118,55}$ J. Van Der Maarel, ${ }^{53}$ J. W. Van Hoorne, ${ }^{34}$ M. van Leeuwen, ${ }^{53}$ T. Vanat, ${ }^{87}$ P. Vande Vyvre, ${ }^{34}$ D. Varga, ${ }^{140}$ A. Vargas, ${ }^{2}$ M. Vargyas, ${ }^{127}$ R. Varma, ${ }^{47}$ M. Vasileiou, ${ }^{79}$ A. Vasiliev, ${ }^{83}$ A. Vauthier, ${ }^{73}$ O. Vázquez Doce, ${ }^{97,35}$ V. Vechernin, ${ }^{136}$ A. M. Veen, ${ }^{53}$ A. Velure, ${ }^{21}$ E. Vercellin, ${ }^{25}$ S. Vergara Limón, ${ }^{2}$
R. Vernet, ${ }^{8}$ R. Vértesi, ${ }^{140}$ L. Vickovic, ${ }^{119}$ S. Vigolo, ${ }^{53}$ J. Viinikainen, ${ }^{127}$ Z. Vilakazi, ${ }^{130}$ O. Villalobos Baillie, ${ }^{104}$ A. Villatoro Tello, ${ }^{2}$ A. Vinogradov, ${ }^{83}$ L. Vinogradov, ${ }^{136}$ T. Virgili, ${ }^{29}$ V. Vislavicius, ${ }^{33}$ A. Vodopyanov, ${ }^{68}$ M. A. Völkl, ${ }^{96}$ K. Voloshin, ${ }^{54}$ S. A. Voloshin, ${ }^{139}$ G. Volpe, ${ }^{32}$ B. von Haller, ${ }^{34}$ I. Vorobyev, ${ }^{97,35}$ D. Voscek, ${ }^{118}$ D. Vranic, ${ }^{34,100}$ J. Vrláková, ${ }^{39}$ B. Wagner,,21 J. Wagner, ${ }^{100}$ H. Wang, ${ }^{53}$ M. Wang, ${ }^{7}$ D. Watanabe, ${ }^{132}$ Y. Watanabe, ${ }^{131}$ M. Weber, ${ }^{115}$ S. G. Weber, ${ }^{100}$ D. F. Weiser, ${ }^{96}$ J. P. Wessels, ${ }^{61}$ U. Westerhoff, ${ }^{61}$ A. M. Whitehead, ${ }^{92}$ J. Wiechula, ${ }^{60}$ J. Wikne, ${ }^{20}$ G. Wilk, ${ }^{80}$ J. Wilkinson, ${ }^{96}$ G. A. Willems, ${ }^{61}$ M. C. S. Williams, ${ }^{107}$ B. Windelband, ${ }^{96}$ W. E. Witt, ${ }^{129}$ S. Yalcin, ${ }^{71}$ P. Yang, ${ }^{7}$ S. Yano, ${ }^{46}$ Z. Yin, ${ }^{7}$
H. Yokoyama, ${ }^{132,73}$ I.-K. Yoo, ${ }^{34,99}$ J. H. Yoon, ${ }^{50}$ V. Yurchenko, ${ }^{3}$ V. Zaccolo,,${ }^{84,113}$ A. Zaman, ${ }^{15}$ C. Zampolli, ${ }^{34}$ H. J. C. Zanoli, ${ }^{123}$ S. Zaporozhets, ${ }^{68}$ N. Zardoshti, ${ }^{104}$ A. Zarochentsev, ${ }^{136}$ P. Závada, ${ }^{56}$ N. Zaviyalov, ${ }^{102}$ H. Zbroszczyk, ${ }^{138}$ M. Zhalov, ${ }^{89}$ H. Zhang, ${ }^{7,21}$ X. Zhang, ${ }^{76,7}$ Y. Zhang, ${ }^{7}$ C. Zhang, ${ }^{53}$ Z. Zhang, ${ }^{7}$ C. Zhao, ${ }^{20}$ N. Zhigareva, ${ }^{54}$ D. Zhou, ${ }^{7}$ Y. Zhou, ${ }^{84}$

(ALICE Collaboration)

${ }^{1}$ A. I. Alikhanyan National Science Laboratory (Yerevan Physics Institute) Foundation, Yerevan, Armenia
${ }^{2}$ Benemérita Universidad Autónoma de Puebla, Puebla, Mexico
${ }^{3}$ Bogolyubov Institute for Theoretical Physics, Kiev, Ukraine
${ }^{4}$ Bose Institute, Department of Physics and Centre for Astroparticle Physics and Space Science (CAPSS), Kolkata, India ${ }^{5}$ Budker Institute for Nuclear Physics, Novosibirsk, Russia
${ }^{6}$ California Polytechnic State University, San Luis Obispo, California, USA
${ }^{7}$ Central China Normal University, Wuhan, China
${ }^{8}$ Centre de Calcul de l'IN2P3, Villeurbanne, Lyon, France
${ }^{9}$ Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear (CEADEN), Havana, Cuba
${ }^{10}$ Centro de Investigaciones Energéticas Medioambientales y Tecnológicas (CIEMAT), Madrid, Spain
${ }^{11}$ Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City and Mérida, Mexico
${ }^{12}$ Centro Fermi - Museo Storico della Fisica e Centro Studi e Ricerche "Enrico Fermi," Rome, Italy
${ }^{13}$ Chicago State University, Chicago, Illinois, USA
${ }^{14}$ China Institute of Atomic Energy, Beijing, China
${ }^{15}$ COMSATS Institute of Information Technology (CIIT), Islamabad, Pakistan
${ }^{16}$ Departamento de Física de Partículas and IGFAE, Universidad de Santiago de Compostela, Santiago de Compostela, Spain
${ }^{17}$ Department of Physics, Aligarh Muslim University, Aligarh, India
${ }^{18}$ Department of Physics, Ohio State University, Columbus, Ohio, USA
${ }^{19}$ Department of Physics, Sejong University, Seoul, South Korea
${ }^{20}$ Department of Physics, University of Oslo, Oslo, Norway
${ }^{21}$ Department of Physics and Technology, University of Bergen, Bergen, Norway
${ }^{22}$ Dipartimento di Fisica dell'Università 'La Sapienza' and Sezione INFN, Rome, Italy
${ }^{23}$ Dipartimento di Fisica dell'Università and Sezione INFN, Cagliari, Italy
${ }^{24}$ Dipartimento di Fisica dell'Università and Sezione INFN, Trieste, Italy
${ }^{25}$ Dipartimento di Fisica dell'Università and Sezione INFN, Turin, Italy
${ }^{26}$ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Bologna, Italy
${ }^{27}$ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Catania, Italy
${ }^{28}$ Dipartimento di Fisica e Astronomia dell'Università and Sezione INFN, Padova, Italy
${ }^{29}$ Dipartimento di Fisica "E. R. Caianiello" dell'Università and Gruppo Collegato INFN, Salerno, Italy
${ }^{30}$ Dipartimento DISAT del Politecnico and Sezione INFN, Turin, Italy
${ }^{31}$ Dipartimento di Scienze e Innovazione Tecnologica dell'Università del Piemonte Orientale and INFN Sezione di Torino, Alessandria, Italy
${ }^{32}$ Dipartimento Interateneo di Fisica "M. Merlin" and Sezione INFN, Bari, Italy
${ }^{33}$ Division of Experimental High Energy Physics, University of Lund, Lund, Sweden
${ }^{34}$ European Organization for Nuclear Research (CERN), Geneva, Switzerland
${ }^{35}$ Excellence Cluster Universe, Technische Universität München, Munich, Germany
${ }^{36}$ Faculty of Engineering, Bergen University College, Bergen, Norway
${ }^{37}$ Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava, Slovakia
${ }^{38}$ Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Prague, Czech Republic
${ }^{39}$ Faculty of Science, P. J. Šafárik University, Košice, Slovakia
${ }^{40}$ Faculty of Technology, Buskerud and Vestfold University College, Tonsberg, Norway
${ }^{41}$ Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
${ }^{42}$ Gangneung-Wonju National University, Gangneung, South Korea
${ }^{43}$ Gauhati University, Department of Physics, Guwahati, India
${ }^{44}$ Helmholtz-Institut für Strahlen- und Kernphysik, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
${ }^{45}$ Helsinki Institute of Physics (HIP), Helsinki, Finland
${ }^{46}$ Hiroshima University, Hiroshima, Japan
${ }^{47}$ Indian Institute of Technology Bombay (IIT), Mumbai, India
${ }^{48}$ Indian Institute of Technology Indore, Indore, India
${ }^{49}$ Indonesian Institute of Sciences, Jakarta, Indonesia
${ }^{50}$ Inha University, Incheon, South Korea
${ }^{51}$ Institut de Physique Nucléaire d'Orsay (IPNO), Université Paris-Sud, CNRS-IN2P3, Orsay, France
${ }^{52}$ Institute for Nuclear Research, Academy of Sciences, Moscow, Russia

${ }^{53}$ Institute for Subatomic Physics of Utrecht University, Utrecht, Netherlands
${ }^{54}$ Institute for Theoretical and Experimental Physics, Moscow, Russia
${ }^{55}$ Institute of Experimental Physics, Slovak Academy of Sciences, Košice, Slovakia
${ }^{56}$ Institute of Physics, Academy of Sciences of the Czech Republic, Prague, Czech Republic
${ }^{57}$ Institute of Physics, Bhubaneswar, India
${ }^{58}$ Institute of Space Science (ISS), Bucharest, Romania
${ }^{59}$ Institut für Informatik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
${ }^{60}$ Institut für Kernphysik, Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt, Germany
${ }^{61}$ Institut für Kernphysik, Westfälische Wilhelms-Universität Münster, Münster, Germany
${ }^{62}$ Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Mexico City, Mexico
${ }^{63}$ Instituto de Física, Universidade Federal do Rio Grande do Sul (UFRGS), Porto Alegre, Brazil
${ }^{64}$ Instituto de Física, Universidad Nacional Autónoma de México, Mexico City, Mexico
${ }^{65}$ Institut Pluridisciplinaire Hubert Curien (IPHC), Université de Strasbourg, CNRS-IN2P3, Strasbourg, France
${ }^{66}$ IRFU, CEA, Université Paris-Saclay, F-91191 Gif-sur-Yvette, France, Saclay, France
${ }^{67}$ iThemba LABS, National Research Foundation, Somerset West, South Africa
${ }^{68}$ Joint Institute for Nuclear Research (JINR), Dubna, Russia
${ }^{69}$ Konkuk University, Seoul, South Korea
${ }^{70}$ Korea Institute of Science and Technology Information, Daejeon, South Korea
${ }^{71}$ KTO Karatay University, Konya, Turkey
${ }^{72}$ Laboratoire de Physique Corpusculaire (LPC), Clermont Université, Université Blaise Pascal, CNRS-IN2P3, Clermont-Ferrand, France
${ }^{73}$ Laboratoire de Physique Subatomique et de Cosmologie, Université Grenoble-Alpes, CNRS-IN2P3, Grenoble, France
${ }^{74}$ Laboratori Nazionali di Frascati, INFN, Frascati, Italy
${ }^{75}$ Laboratori Nazionali di Legnaro, INFN, Legnaro, Italy
${ }^{76}$ Lawrence Berkeley National Laboratory, Berkeley, California, USA
${ }^{77}$ Moscow Engineering Physics Institute, Moscow, Russia
${ }^{78}$ Nagasaki Institute of Applied Science, Nagasaki, Japan
${ }^{79}$ National and Kapodistrian University of Athens, Physics Department, Athens, Greece, Athens, Greece
${ }^{80}$ National Centre for Nuclear Studies, Warsaw, Poland
${ }^{81}$ National Institute for Physics and Nuclear Engineering, Bucharest, Romania
${ }^{82}$ National Institute of Science Education and Research, Bhubaneswar, India
${ }^{83}$ National Research Centre Kurchatov Institute, Moscow, Russia
${ }^{84}$ Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark
${ }^{85}$ Nikhef, Nationaal instituut voor subatomaire fysica, Amsterdam, Netherlands
${ }^{86}$ Nuclear Physics Group, STFC Daresbury Laboratory, Daresbury, United Kingdom
${ }^{87}$ Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řezz u Prahy, Czech Republic
${ }^{88}$ Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
${ }^{89}$ Petersburg Nuclear Physics Institute, Gatchina, Russia
${ }^{90}$ Physics Department, Creighton University, Omaha, Nebraska, USA
${ }_{91}$ Physics Department, Panjab University, Chandigarh, India
${ }^{92}$ Physics Department, University of Cape Town, Cape Town, South Africa
${ }^{93}$ Physics Department, University of Jammu, Jammu, India
${ }^{94}$ Physics Department, University of Rajasthan, Jaipur, India
${ }^{95}$ Physikalisches Institut, Eberhard Karls Universität Tübingen, Tübingen, Germany
${ }^{96}$ Physikalisches Institut, Ruprecht-Karls-Universität Heidelberg, Heidelberg, Germany
${ }^{97}$ Physik Department, Technische Universität München, Munich, Germany
${ }^{98}$ Purdue University, West Lafayette, Indiana, USA
${ }^{99}$ Pusan National University, Pusan, South Korea
${ }^{100}$ Research Division and ExtreMe Matter Institute EMMI, GSI Helmholtzzentrum für Schwerionenforschung GmbH, Darmstadt, Germany
${ }^{101}$ Rudjer Bošković Institute, Zagreb, Croatia
${ }^{102}$ Russian Federal Nuclear Center (VNIIEF), Sarov, Russia
${ }^{103}$ Saha Institute of Nuclear Physics, Kolkata, India
${ }^{104}$ School of Physics and Astronomy, University of Birmingham, Birmingham, United Kingdom
${ }^{105}$ Sección Física, Departamento de Ciencias, Pontificia Universidad Católica del Perú, Lima, Peru
${ }^{107}$ Sezione INFN, Bari, Italy
${ }^{107}$ Sezione INFN, Bologna, Italy
${ }^{108}$ Sezione INFN, Cagliari, Italy
${ }^{109}$ Sezione INFN, Catania, Italy
${ }^{110}$ Sezione INFN, Padova, Italy

${ }^{111}$ Sezione INFN, Rome, Italy
${ }^{112}$ Sezione INFN, Trieste, Italy
${ }^{113}$ Sezione INFN, Turin, Italy
${ }^{114}$ SSC IHEP of NRC Kurchatov institute, Protvino, Russia
${ }^{115}$ Stefan Meyer Institut für Subatomare Physik (SMI), Vienna, Austria
${ }^{116}$ SUBATECH, Ecole des Mines de Nantes, Université de Nantes, CNRS-IN2P3, Nantes, France
${ }^{117}$ Suranaree University of Technology, Nakhon Ratchasima, Thailand
${ }^{118}$ Technical University of Košice, Košice, Slovakia
${ }^{119}$ Technical University of Split FESB, Split, Croatia
${ }^{120}$ The Henryk Niewodniczanski Institute of Nuclear Physics, Polish Academy of Sciences, Cracow, Poland
${ }^{121}$ The University of Texas at Austin, Physics Department, Austin, Texas, USA
${ }^{122}$ Universidad Autónoma de Sinaloa, Culiacán, Mexico
${ }^{123}$ Universidade de São Paulo (USP), São Paulo, Brazil
${ }^{124}$ Universidade Estadual de Campinas (UNICAMP), Campinas, Brazil
${ }^{125}$ Universidade Federal do ABC, Santo Andre, Brazil
${ }^{126}$ University of Houston, Houston, Texas, USA
${ }^{127}$ University of Jyväskylä, Jyväskylä, Finland
${ }^{128}$ University of Liverpool, Liverpool, United Kingdom
${ }^{129}$ University of Tennessee, Knoxville, Tennessee, USA
${ }^{130}$ University of the Witwatersrand, Johannesburg, South Africa
${ }^{131}$ University of Tokyo, Tokyo, Japan
${ }^{132}$ University of Tsukuba, Tsukuba, Japan
${ }^{133}$ University of Zagreb, Zagreb, Croatia
${ }^{134}$ Université de Lyon, Université Lyon 1, CNRS/IN2P3, IPN-Lyon, Villeurbanne, Lyon, France
${ }^{135}$ Università di Brescia, Brescia, Italy
${ }^{136}$ V. Fock Institute for Physics, St. Petersburg State University, St. Petersburg, Russia
${ }^{137}$ Variable Energy Cyclotron Centre, Kolkata, India
${ }^{138}$ Warsaw University of Technology, Warsaw, Poland
${ }^{139}$ Wayne State University, Detroit, Michigan, USA
${ }^{140}$ Wigner Research Centre for Physics, Hungarian Academy of Sciences, Budapest, Hungary
${ }^{141}$ Yale University, New Haven, Connecticut, USA
${ }^{142}$ Yonsei University, Seoul, South Korea
${ }^{143}$ Zentrum für Technologietransfer und Telekommunikation (ZTT), Fachhochschule Worms, Worms, Germany
${ }^{\text {* Also at Georgia State University, Atlanta, GA, USA. }}$
${ }^{\text {§ }}$ Also at Department of Applied Physics, Aligarh Muslim University, Aligarh, India.
${ }^{\text {T}}$ Also at M. V. Lomonosov Moscow State University, D. V. Skobeltsyn Institute of Nuclear, Physics, Moscow, Russia.

${ }^{\dagger}$ Deceased.

[^0]: *Full author list given at the end of the article.
 Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

