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Abstract: Fault diagnosis of gearbox is very important for the security and reliability 

of the equipment. In actual working conditions, multiple faults usually occur in a 

gearbox. However, the multi-fault diagnosis in gearboxes is a challengeable problem 

because the signal measured from the gearbox with multiple faults is complex and 

non-stationary. Particularly, the weaker fault feature signal is generally submerged by 

the stronger one and background noise. In order to avoid missed diagnosis and 

misdiagnosis of multi-faults in a gearbox, a novel method called resonance-based 

signal sparse decomposition (RSSD) with comb filter (CF), namely the RSSD-CF 

method, is proposed in this paper. The RSSD-CF method is based on the RSSD 

method which can nonlinearly decompose the vibrational signal of the gearbox with 

multiple faults into the high resonance component and the low resonance component. 

To obtain good separation results, the stepwise optimization strategy is applied to the 

adaptive selection of the optimal decomposition parameters in the RSSD method. In 

RSSD-CF method, the collected signal is firstly separated into the high and the low 

resonance components through using the RSSD method with the optimal 

decomposition parameters. And then, both of the high and the low resonance 

components are demodulated with the Hilbert transform and the fault information can 

be found in Hilbert envelop spectra. Finally, CF is constructed to extract the weaker 

fault feature signal from resonance components and exclude the interference 

components. The effectiveness of the RSSD-CF method is evaluated by using two 

experimental cases in this paper. The results confirm the advantage of the proposed 

method over the traditional RSSD method and the wavelet decomposition for 

multi-fault diagnosis in gearboxes. 
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1. Introduction 

Gearboxes are the main component in various industrial applications. The 

gearbox failure accounts for 80% in the breakdown of the transmission machinery and 

the malfunctions of the gearbox are mostly caused by the gear and the bearing faults 

[1]. Thus, it is of great important to detect the early faults of the gear and the bearing. 

In actual working conditions, several faults may exist in the gearbox simultaneously. 

The multi-fault diagnosis of gearboxes is an intractable problem because the weaker 

fault feature signal is usually buried in the stronger one and background noise.  

Recently, many methods have been proposed for the gearbox multi-fault 

diagnosis, such as the wavelet de-noising and the empirical mode decomposition 

(EMD) [2], the blind source separation [3], the dual-tree complex wavelet transform 

[4], the ensemble empirical mode decomposition (EEMD) and the multiwavelet 

packet [5]. Those methods are based on different centre frequencies and centre 

frequency bands to decompose the analysis signal. However, the fault feature signals 

which are caused by multiple faults may have similar centre frequency and 

overlapping centre frequency bands in the frequency-domain. Thus, the above 

methods may not be applicable to the multi-fault diagnosis of gearboxes. The RSSD 

method [6] can be used to separate a signal according to different oscillatory 

behaviors. In literatures [7-10], RSSD was successfully introduced to the fault 

diagnosis of gearboxes. However, the weaker fault feature signal may still be 

submerged in resonance components which are obtained by using the RSSD method 

in the actual working condition.  

The comb filter (CF) is usually applied to the extraction of a periodic signal 

which is submerged by noise, provided the teeth of the comb coincide with the 

harmonics of the periodic signal [11-13]. When the fault exists in the gear or the 

bearing, the periodic impact signal, namely the fault feature signal, will be produced 

[14]. Thus, the comb filter is a good tool to extract the fault feature signal. Usually, 

the fundamental frequency of the comb filter is selected as the fault feature frequency. 

However, it is difficult to use the comb filter if the fault feature frequency cannot be 

known in advance. Also, filtering the measured signal blindly is a time-consuming 

process. What’s more, the filtering results will be interfered by noises easily.   

In this paper, the decomposition parameters in the RSSD method are firstly 

optimized by using the stepwise optimization strategy. Thus, the vibration signal of 

the gearbox can be separated into the high and the low resonance components. Then, 



  

 

both the high and the low resonance components are demodulated with the Hilbert 

transform. Through setting thresholds for peaks in the envelope demodulation spectra, 

the suspicious frequency can be found. Next, the suspicious frequency is used as the 

fundamental frequency to construct the comb filter and then the obtained resonance 

components are filtered. Finally, the weak fault feature signal can be extract and the 

interferences can also be identified according those filtered signals. The analysis 

results of experiments indicate that the RSSD-CF method can be used to extract weak 

fault feature signals effectively and make the weak fault feature more prominent.  

This paper is organized as follows: In section 2, the RSSD method is introduced. 

In section 3, the method of the construction of comb filters is introduced. The gearbox 

multi-fault diagnosis based on the RSSD-CF method is introduced in section 4. In 

section 5, the experimental verification of the proposed method is introduced. The 

conclusion of this study is given in the last section. 

 

2. Resonance-Based signal sparse decomposition 

The RSSD method is actually a sparse representation jointly using the high and 

the low Q -factor Tunable- Q  Wavelet Transforms (TQWT) [6]. To decompose the 

analysis signal, the morphological component analysis (MCA) is applied in the RSSD 

method [15].  

The quality factor Q  denotes the resonance property of a signal  

 ofQ
BW

  (1) 

where of  is the center frequency and BW  is the bandwidth. The Tunable- Q  

Wavelet Transform (TQWT) [16] depends on the two-channel bandpass filter banks 

and adopts the discrete Fourier transform. The center frequency and the corresponding 

bandwidth of bandpass filter banks is determined by the number of decomposition 

levels L . As L  increases, the center frequency of filter banks cf   
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becomes narrower. Therefore, TQWT is actually one kind of wavelet transform of 

constant Q  with a certain degree of redundancy. In Equation (2) and (3), α and β are 



  

 

the low pass scaling parameter and the high pass scaling parameter respectively, 

which should satisfy Eq.(4) 
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Suppose that the observed signal x  can be represented as 

 
1 2x x x n      (5) 

where 1x  and 2x  are components with different oscillation behavior, and n  is the 

noise. The Tunable- Q  Wavelet Transforms with different Q -factor are used to 

decompose the observed signal x . The sparse representation process is actually the 

minimization problem as follow 
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where 1Φ  and 2Φ  represent the inverse TQWT with the high and the low Q-factors 

respectively. 1w  and 2w  represent the transform coefficients of signals 1x  and 2x  

under the framework of 1Φ  and 2Φ . 1J  and 2J  are the number of filter banks of 

high Q-factor and low Q-factor TQWT, respectively. The regularization parameter 

vectors 1, j  and 2, j  are selected by Eq.(7) [17] 
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where ψ1,j and ψ2,j represent wavelets corresponding to wavelet coefficient w1,j and w2,j, 

respectively. θ has an effect on the energy distribution between the high and the low 

resonance components. To ensure the balance of the energy distribution of the high 

and the low resonance components, θ is set to 0.5 in the paper. After 1w  and 2w  are 

obtained, the estimated high and low resonance components are shown as follows 

 * *

1 1 1 2 2 2
ˆ ˆ,     x w x w Φ Φ  (8) 

 For multi-fault diagnosis, when the gear or the bearing has faults in the gearbox, 

fault feature signals can be found in the low resonance component by using the RSSD 

method [10]. When both the gear and the bearing have faults, the fault feature signals 

of the gear and the bearing can be separated into the high and the low resonance 

components respectively by using the RSSD method. The main reason is that the fault 

feature signal of the gear has better frequency aggregation than that of the bearing 

[18]. Thus, the RSSD method is a good tool to detect the multiple faults in gearboxes. 



  

 

However, it is important to adaptively select the parameters of RSSD according 

to the feature of the analysis signal because those parameters have a great impact on 

the decomposition results. For RSSD, six parameters need to be determined, namely 

the high and the low quality factors 1Q  and 2Q , the high and the low redundancies 

1r  and 2r , the high and the low decomposition levels 
1J  and 

2J . In this study, both 

1r  and 2r  are set to be 5 by considering the redundancy and complex calculations. 

To assure that all the information of analysis signal is included in the subsignals, the 

maximum number of decomposition levels maxJ  is employed in this paper. maxJ  is 

defined as [16] 
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where    represents the rounding operation. 

Therefore, how to adaptively select quality factors is the key problem in the 

RSSD method. In this paper, the stepwise optimization strategy is firstly applied to 

optimizing 1Q  and 2Q . This strategy which is widely used to solve the 

multi-variable optimal problem can turn a multi-variable problem into several 

sub-problems through dividing variables into several groups [19-21]. Actually, two 

steps are adopted to obtain the optimal quality factors in the optimization process. The 

first step is that the high quality factor is optimized and the low quality factor is set as 

1. Then, the low quality factor is optimized and the high quality factor is fixed as the 

obtained optimal value in the first step. Finally, the optimal high factor and the 

optimal low quality factor can be obtained through using the above two steps.  

    The following objective function F [18] is taken as the evaluation index in this 

strategy  

 1 1 2 2( ) ( )F SI x Kur x       (10) 

where F  is the composite index. 1( )SI x  is the smoothness index of the high 

resonance component, which is calculated by Eq.(11). 2( )Kur x  is the kurtosis of the 

low resonance component, which is calculated based on Eq.(12). 1  and 2  are the 

weight coefficients of smoothness index and the kurtosis, respectively.   
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The values 1  and 2  are selected according to the impact characteristic of 

analysis signals, i.e. Eq.(13). If the impact characteristic of signals is obvious, the 

value of 1  should be increased appropriately. Otherwise, if the oscillatory behavior 

of signals is obvious, then the values of 2  should be increased appropriately.  
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Therefore, the adaptive selection process of decomposition parameters of RSSD 

can be turn into the maximization process as follow, according to equations (6) and 

(10). 
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To show the effectiveness of the RSSD method with optimized decomposition 

parameters, a simulation signal as shown in Fig. 1 (a) is considered. The simulation 

signal is composed of the noises, the fault feature signals of the gear and the bearing. 

The gear fault feature signal has the high resonance behavior, whereas the bearing 

fault feature signal has the low resonance behavior [18]. The Hilbert envelope 

spectrum of Fig.1 (a) is shown in Fig.1 (b), which is obtained by the Fourier transform 

of the envelop signal ( )B t   

 
2 2( ) (t) H [ ( )]B t x x t    (15) 

where ( )x t  is the analysis signal, H[ ( )]x t  represents the Hilbert transform of the 

analysis signal.    

The simulated rotating and outer bearing fault frequencies of the simulation 

signal shown in Fig. 1 (a) are 40rf Hz  and 95of Hz , respectively. Obvious 

peaks can be found at rf  and 2 rf  in Fig.1 (b), which indicates the existence of the 

gear fault. However, there is no obvious peak at the bearing fault feature frequency 



  

 

of  in Fig.1 (b) because the bearing fault is too weak. Thus, the bearing fault 

information is submerged. 
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Fig. 1 The time domain waveform and the Hilbert envelope spectrum of the simulated signal 

 

The decomposition parameters of the RSSD method are adaptively selected by 

using the stepwise optimization strategy, and the obtained optimal decomposition 

parameters are 1Q =8.24 and 2Q =1. The high and the low resonance component can 

be obtained through using the RSSD method with the obtained optimal parameter, 

which are shown in Fig.2 (a) and 2 (c) respectively. Fig. 2 (b) and 2 (d) are the Hilbert 

envelope spectra of resonance components. It can be seen from Fig. 2 (d) that obvious 

peaks exist at of  and its harmonics which suggest the existence of the bearing fault. 

The analysis results of the simulation example indicate that the stepwise optimization 

strategy can be successfully applied to the parameter selection of the RSSD method. 

However, the collected signal is complex in actual working condition. The weaker 

fault information may still not be found in the resonance components. In this paper, 

the comb filtering method is introduced to extract the weaker fault feature signal. 
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Fig. 2 RSSD of the simulated signal and the Hilbert envelope spectra of resonance components. (a) 

& (c) The high resonance component and the low resonance component; (b) & (d) The Hilbert 

envelope spectra of (a) and (c) 

 
 

 



  

 

3 Comb filter 

In the above section, the RSSD method is applied to making the weaker fault 

more prominent. In the practical operating condition, the interference components 

may still exist in the resonance components, which easily results in missed diagnosis 

and misdiagnosis. In order to exclude the interference components and extract the 

weaker fault feature signal, the comb filter is constructed based on the Fourier kernel 

function in this paper. The Fourier kernel function is defined as  

 0sin
s( )

k t
t

t
   (16) 

The Fourier transform of ( )s t  is 
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Therefore, the Fourier kernel function is a band-pass filter with the amplitude 

value of 1. According to the property of the Fourier transform, the function 

s( )exp( 2 )ct j f t  represents an ideal comb filter whose bandwidth and fundamental 

frequency are 02k  and cf , respectively. As the filtering results are insensitive to the 

bandwidth parameter 02k , the bandwidth of comb filter is set to 30Hz. Thus, the 

comb filter in this paper is defined as 
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The fault feature signal in the gearbox is actually the periodic impact signal. If the 

fault feature frequency is selected as the fundamental frequency of the comb filter, the 

fault feature signal can be extracted by filtering the resonance components. And then, 

the fault in the gearbox can be detected. However, if the fundamental frequency of the 

comb filter is not the fault feature frequency in the gearbox, the filtered signal will not 

be a periodic impact signal. In this paper, the fundamental frequency of CF is selected 

as the suspicious fault feature frequency. Supposed that the spectrum peak value at j  

Hz in the Hilbert envelop spectrum is jP  ( 0
2

sfj   , sf  is the sampling 

frequency), the threshold jT  for the spectrum peak jP  is established as follow to 

found the suspicious fault feature frequency 
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where   is set to1.8 according to our experimental experiences. If jP  is greater 

than 
jT , the frequency j Hz will be consider as the suspicious frequency. The comb 

filter is successfully applied to the multi-fault diagnosis in the gearbox and its 

effectiveness is proved by the below experimental cases. 

 

4 Resonance-Based Signal Sparse Decomposition with Comb Filter for Gearbox 

Multi-Fault Diagnosis 

To avoid missed diagnosis and misdiagnosis in the gearbox, the RSSD-CF 

method is proposed in this paper. The RSSD method is firstly used to decompose the 

vibrational signal of the gearbox into the high resonance component and the low 

resonance component. Then, the Hilbert transform demodulation method is applied to 

the analysis of the obtained resonance components. Through setting thresholds in the 

envelope demodulation spectra, the suspicious frequency can be found. Next, the 

suspicious frequency is selected as the fundamental frequency to construct the comb 

filter which is applied to filtering the obtained resonance components. Finally, the 

weaker fault feature component can be extracted and the interference components can 

also be identified according to those filtered signals. The schematic diagram of the 

gearbox multi-fault diagnosis based on the RSSD-CF method is shown in figure 3.   
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Fig. 3 Schematic diagram of the proposed method 

 

5 Experimental validations 

To verify the validity of the proposed method, this section presents two 

application cases of the multi-fault diagnosis of gearboxes. The case 1 includes the 

outer race fault and the inner race fault in two different bearings. The case 2 includes 

the outer race fault in the bearing and the gear tooth crack in the gear. The fault 

simulator is shown in Fig. 4. 
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Fig. 4 Test platform. (a) The gearbox fault simulation bench; (b) The bearing with the inner race fault; 

(c) The bearing with outer race fault; (d) The gear with the teeth crack 

 

The deep groove ball bearing was used in the experiment. The experimental 

bearing parameters are shown in Table 1. To simulate the inner race fault of the 

bearing, a slot with the width of 0.15mm and depth of 1.5 mm was made at the inner 

race as shown in Fig.4 (b). To simulate the outer race fault of the bearing, a slot with 

the width of 0.15mm and depth of 3mm was made at the outer race as shown in Fig. 4 

(c). The spur gear was used in the experiment. In order to simulate the gear with the 

tooth crack, a slot with the width of 0.15mm and depth of 1 mm was made at the gear 

tooth root as shown in Fig. 4 (d). The acceleration sensor was installed on the pedestal 

of bearing 1.  

 

Table 1  

Parameters of the experimental bearing 

Type Outer race diameter Ball diameter Number of balls Contact angle 

SKF6307-2RS 80mm 13.5mm 8 0
o
 

 

5.1 Case1: The outer race fault in bearing 1 and the inner race fault in bearing 2  

In this case, there are an outer race fault and an inner race fault in bearing 1 and 

bearing 2 respectively. The shaft rotating speed is fixed at 1500rpm (i.e. rf =25Hz). 

The sampling frequency was 8192Hz and the number of sampling points is 8192. 



  

 

Hence, the fault feature frequency of bearing’s outer race is of = 76.5Hz and the fault 

feature frequency of bearing’s inner race is if =123.5Hz. The time domain waveform 

and the envelop spectrum of the vibration signal of case 1 are shown in Fig. 5 (a) and 

Fig. 5 (b), respectively. The obvious peak values appear only at the rotating frequency 

rf , the fault feature frequency of outer race of  and its harmonics in Fig. 5 (b). 

Through observing the envelop spectrum, the outer race fault can be detected, but the 

inner race fault could not be identified because the peaks at if  and its harmonics are 

not obvious.   
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Fig. 5 The time domain waveform and the Hilbert envelope spectrum of the vibration signal of 

case 1  
 

The collected signal as shown in Fig. 5 (a) is subject to the RSSD method. The 

value of the optimal decomposition parameters 1Q , 2Q  are 18.71 and 1.0. The 

analysis results are shown in Fig. 6. Fig. 6 (b) and Fig. 6 (d) are the Hilbert envelope 

spectra of decomposed components shown in Fig. 6 (a) and Fig. 6 (c), respectively. 

The outer race fault can be detected because there are obvious peaks at 0f  and it’s 

harmonics in Fig 6(b). In Fig. 6 (d), there are obvious peaks at rf  and it’s harmonics,  

0f  and it’s harmonics. Besides, obvious peaks can be seen at the fault characteristic 

frequency of inner race if  and 101Hz as well. As rf  is the rotating frequency and  

0f  is the fault feature frequency of the outer race fault, the frequencies of rf  and  

0f  in Fig 6(d) are not suspicious frequencies and should not be selected as the 

fundamental frequency of CF. However, the bearing inner race fault could not be 

absolutely identified because there are no obvious peaks at the harmonics of if  in 

Fig. 6(d). Also, the interpretation of the obvious peak at 101Hz is unclear. Thus, the 

fault characteristic frequency of inner race if  and 101Hz in Fig 6(d) are suspicious 

frequencies and the obtained low resonance component should be further processed 

by comb filtering.  
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Fig. 6 RSSD of the vibration signal of case 1 and the Hilbert envelope spectra of resonance 

components. (a) & (c) The high resonance component and the low resonance component; (b) & (d) 

The Hilbert envelope spectra of (a) and (c) 
 

The low resonance component shown in Fig. 6 (c) is subject to comb filtering. 

The fundamental frequency of comb filter is the fault feature frequency of inner 

race if . The filtered signal and its Hilbert envelope spectrum are shown in Fig. 7 (a) 

and Fig. 7 (b) respectively. It can be seen from Fig. 7 (b) that peaks are obvious at the 

harmonics frequencies of if . The time domain waveforms of the collected signal, the 

low resonance component and the filtered signal in the time interval of 0-0.05s are 

shown in Fig. 8 (a), (b) and (c), respectively. It can be seen from Fig. 8 that 

periodicity impulses with the impulse period iT ( 1i iT f ) are obvious in the filtered 

signal. Thus, the RSSD-CF method can be used to detect the inner race fault in the 

bearing in this case. Also, when the inner race fault occurs in the bearing, peaks are 

obvious not only at the harmonics frequencies of if  in the envelop spectrum, but 

also at the harmonics frequencies of the rotating frequency rf . Thus, the existent of 

the obvious peak at rf  in Fig. 6 (b) and (d) is caused by the bearing inner race fault.  
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Fig. 7 The filtered result when the fundamental frequency of the comb filter is if . (a) The filtered 

signal; (b) The Hilbert envelope spectrum of the filtered signal 
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Fig. 8 The time domain waveform of case 1 in 0-0.05s. (a) The vibration signal; (b) The low 

resonance component; (c) The filtered signal 

 

In addition, there is an obvious peak at 101Hz in the low resonance component 

shown in Fig. 6 (d). In order to avoid missed diagnosis, the comb filter is constructed 

with the fundamental frequency cf =101Hz and then the low resonance component is 

subject to filtering by using this comb filter. The filtered signal is shown in Fig. 9 (a) 

and its Hilbert envelope spectrum is shown in Fig. 9 (b). It can be seen from Fig. 9 (b) 

that the peak values are not obvious at the harmonic frequencies of 101Hz. This 

indicates that there are no periodicity impulses with the impulse frequency 101Hz and 

thus the frequency 101Hz is just the interference frequency. 
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Fig. 9 The filtered result when the fundamental frequency of the comb filter is 101Hz. (a) The 

filtered signal; (b) The Hilbert envelope spectrum of the filtered signal 

 

Fig. 10 shows the decomposition results at level 5 of the vibrational signal shown 

in Fig. 5 (a) using db10 wavelet [22]. The obtained sub-signals and their 

corresponding envelop spectra are shown in Fig. 10 (a) and Fig. 10 (b), respectively. 

However, there is no obvious peak at if  in Fig. 10 (b), which indicates that the 

wavelet decomposition method cannot extract the weaker fault feature signal in this 

case. 
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Fig. 10 The wavelet decomposition of the vibration signal of case 1 using db10. (a) The sub-signals and 

(b) The Hilbert envelope spectra of the sub-signals 

 

5.2 Case2: The outer race fault in bearing 1 and the gear tooth crack in gear 1  

In this case, a bearing with outer race fault and a gear with tooth crack are used. 

The sampling frequency sf  was 8192 Hz and the number of sampling points is 8192. 

The shaft rotating speed is fixed at 600rpm (i.e. rf =10Hz). The fault feature 

frequency of outer race of  was 30.6 Hz. The time domain waveform of the collected 

vibration signal is shown in Fig. 11 (a) and the envelope spectrum of the signal is 

given in Fig. 11 (b). The obvious peak values appear only at of  and its harmonics in 

Fig. 11 (b). Thus, the traditional demodulation analysis can not detect the gear fault 

though the bearing fault is easily identified. 
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Fig. 11 The time domain waveform and the Hilbert envelope spectrum of the vibration signal of 

case 2  

 

The collected signal as shown in Fig. 11 (a) is subject to the RSSD method. The 

value of the optimal decomposition parameters 1Q , 2Q  are 41.03 and 9.04, 

respectively. The analysis results are shown in Fig. 12. Fig. 12 (b) and Fig. 12 (d) are 

the Hilbert envelope spectra of resonance components shown in Fig. 12 (a) and Fig. 

12 (c), respectively. In Fig. 12 (b), there are obvious peaks at of  and its harmonics. 

Thus, the bearing outer race fault can be detected. It also can be seen from Fig. 12 (b) 

that obvious peaks exist at rf  and 132 Hz. However, the gear fault could not be 

identified because the obvious peaks at the harmonics of  rf  do not exist in Fig. 12 

(b). Also, other kinds of faults, like inner race faults in bearings, will generate obvious 

peak values exist at rf  and its harmonics as well. What’s more, the interpretation of 

the obvious peak at 132Hz is unclear. Thus, the comb filtering is used to further 

process the high resonance component in the case. 
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Fig. 12 RSSD of the vibration signal of case 2 and the Hilbert envelope spectra of resonance 

components. (a) & (c) The high resonance component and the low resonance component; (b) & (d) The 

Hilbert envelope spectra of (a) and (c) 

 

The high resonance component shown in Fig. 12 (a) is subject to comb filtering. 

The fundamental frequency of comb filter cf  is the rotating frequency rf . The 



  

 

filtered signal is shown in Fig. 13 (a) and its Hilbert envelope spectrum is shown in 

Fig. 13 (b). The periodicity impulses with the impulse period rT  ( 1r rT f ) are 

obvious in the filtered signal as shown in Fig. 13 (a). In Fig. 13 (b), obvious peaks can 

be found at rf  and its harmonics. The low resonance component shown in Fig. 12 (c) 

is filtered by the comb filter with the fundamental frequency cf =132Hz. The filtered 

signal and its Hilbert envelope spectrum are shown in Fig. 14. There is no obvious 

peak at the harmonics of 132Hz in Fig. 14 (b). Thus, 132Hz is not caused by the 

periodic impact signal, that is, faults in the gearbox. According to the results of these 

two filtering processes, it can be known that the gear fault exists in the gearbox and 

the frequency 132Hz is the interference frequency.  
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Fig. 13 The filtered result when the fundamental frequency of the comb filter is rf . (a) The filtered 

signal; (b) The Hilbert envelope spectrum of the filtered signal 
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Fig. 14 The filtered result when the fundamental frequency of the comb filter is 132Hz.(a) The 

filtered signal; (b) The Hilbert envelope spectrum of the filtered signal 

 

The vibrational signal shown in Fig. 11 (a) is decomposed by using db10 wavelet
 

[22] and the decomposition results are shown in Fig 15. The sub-signals and their 

Hilbert envelop spectra are shown in Fig 15 (a) and Fig 15 (b), respectively. There is 

no obvious peak at the rotating frequency rf  in Fig 15 (b). Thus, the wavelet 



  

 

decomposition method cannot make the weaker fault feature more prominent in this 

case. 
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Fig. 15 The wavelet decomposition of the vibration signal of case 2 using db10. (a) The 

sub-signals; (b) The Hilbert envelope spectra of the sub-signals 

 

6. Conclusion 

To detect multiple faults in gearboxes, a novel method called resonance-based 

signal sparse decomposition with comb filter (RSSD-CF) is proposed in this paper. 

The comb filter is a good tool to extract the fault feature signal from the collected 

vibrational signal. However, the priori knowledge should be known before 

constructing the comb filter. In this work, the RSSD method is introduced to 

decompose the vibrational signal and thus the fundamental frequency of the comb 

filter can be obtained. Further, the stepwise optimization strategy is firstly applied to 

the parameter optimization of the RSSD method. The decomposition effect of RSSD 

can be obviously improved by the stepwise optimization strategy. The following 

conclusions are obtained by combining the analysis results of simulation and 

experimental signals. 

（1）The RSSD-CF method is compared with the traditional Hilbert envelope 

spectrum method and the wavelet decomposition in this work. The results show that 



  

 

the RSSD-CF method outperforms the traditional Hilbert envelope spectrum method 

and the wavelet decomposition for the multi-fault diagnosis in gearboxes. 

(2) Comb filter is a good tool to extract the fault feature signal, especially the 

periodic impact signal. Meanwhile, comb filter can efficiently exclude the 

interference component and make the weaker fault feature more prominent. 

(3) The decomposition parameters of RSSD can be adaptively selected by using 

the stepwise optimization strategy and then the separating results of RSSD can be 

greatly improved. Also, comparing with the genetic algorithm [18], the strategy has 

higher efficiency. For example, in case 1 and case 2, the RSSD-CF method costs 

1092s and 1123s respectively, but the method in [18] costs 4251s and 4637s. 
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Highlights 

 

(1) Using the stepwise optimization strategy to adaptively select parameters of the 

RSSD method. 

(2) Extracting the weak fault feature and excluding the suspicious frequency by using 

the comb filter firstly.  

(3)  ARSSD-CF method is firstly proposed for multi-faults diagnosis of gearbox 

 
 

 


