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Abstract. A carbon-free and binder-free catalyst layer composed of a Ag-Cu nanoalloy on Ni foam was 

used as the air cathode in a zinc-air battery for the first time. The Ag-Cu catalyst was prepared using 

pulsed laser deposition. The structures of the catalysts were found to consist of crystalline Ag-Cu 

nanoalloy particles with an average size of 2.58 nm embedded in amorphous Cu films. As observed in 

the X-ray photoelectron spectra, the Ag 3d core levels shifted to higher binding energies, whereas the 

Cu 2p core levels shifted to lower binding energies, indicating alloying of the silver and copper. 

Rotating disk electrode measurements indicated that the oxygen reduction reaction (ORR) proceeded 

through a four-electron pathway on the Ag50Cu50 and Ag90Cu10
 nanoalloy catalysts in alkaline solution. 

Moreover, the catalytic activity of Ag50Cu50 in the ORR is more efficient than that of Ag90Cu10. By 

performing charge and discharge cycling measurements, the Ag50Cu50 catalyst layer was confirmed to 

have a maximum power density of approximately 86.3 mW cm-2 and an acceptable cell-voltage at 0.863 

V for current densities up to 100 mA cm-2 in primary zinc-air batteries. In addition, a round-trip 

efficiency of approximately 50 % at a current density of 20 mA cm-2 was also obtained in the test. 

Keywords. nanoalloy; pulsed laser deposition; oxygen reduction reaction; primary zinc-air battery; 

rechargeable zinc-air battery 

 

Introduction 

 Metal-air batteries based on oxygen reduction and evolution reactions in alkaline media, such as 

Zn-air1, Mg-air2 and Li-air batteries3, are of considerable interest because of their numerous advantages. 

Compared to state-of-the-art Li-ion batteries, metal-air batteries always possess high theoretical specific 

energies, good safety records, and low costs, and these batteries do not pollute. Similar to fuel cells, the 

air cathodes in metal-air batteries include a gas diffusion layer and can obtain oxygen from the 

surrounding environment rather than requiring storage in the device. However, a critical technological 

challenge for the commercialization of these types of metal-air batteries is the development of 

high-performance and cost-effective air electrodes, which require low over-potentials to drive the 
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oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). 4-6 

Air electrodes are generally composed of a gas diffusion layer, a collector and a catalyst layer that 

includes carbon, such as Ag/C, Pd-TiO2/C, or Pt/C.7-10 This approach has an inherent disadvantage 

because carbon is readily corroded at the highly oxidative electrochemical potentials encountered 

during the oxidation of water, which will reduce the amount of catalytic material on the air cathode. The 

ORR catalyst is another key factor that influences the overall performance of metal-air batteries. The 

ORR on air cathodes is a complicated reaction with slow kinetics in either acidic or alkaline solutions. 

In general, Pt and Pt-based alloys are the most efficient catalysts for the ORR. However, their 

prohibitive cost restricts their application in various electrochemical technologies. Therefore, it is 

highly desirable to explore novel catalysts, such as Co-based catalysts,11-13 Fe-based catalysts,14-15 

Mn-based catalysts,9, 16-17 and Ag-based catalysts, 7, 18-21 to replace the expensive Pt-based catalysts in 

the development of air cathodes.  

For ORR catalysis in alkaline electrolytes, the reduction of O2 can proceed through one of two 

pathways. The first pathway is the direct reduction of O2 to OH− ions, which is known as the 

four-electron pathway (1), and the second pathway is the reduction of O2 to HO2
− ions, which is known 

as the two-electron pathway (2): 7 

O2+2H2O+4e−→4OH−                             (1) 

O2+H2O+2e−→HO2
−+OH−                          (2) 

The kinetics and mechanisms of O2 reduction are highly dependent on the selected catalyst. Due to 

its similar ORR mechanism to Pt catalysts (four - electron pathway), Ag is a competitive ORR catalyst 

and has a reasonably high catalytic activity for the reduction of O2 in alkaline electrolytes. However, the 

energy for the adsorption of O2 on pure Ag particles is small, leading to relatively low catalytic activity. 

Therefore, doping or alloying Ag catalysts has been proposed to overcome this problem. 22 

Ag-Cu alloys are considered to be efficient air cathode catalysts for metal-air batteries.23-24 Our 
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previous work using first-principles calculations indicates that the energies for the adsorption of O2 on 

Ag and Cu are 0.6 eV and 1.76 eV, respectively, whereas the absorption energy for the Ag-Cu alloy is 

between these values, indicating that the alloy possesses more efficient ORR activity than that of pure 

Ag catalysts. 22 However, to the best of our knowledge, no experimental studies on Ag-Cu catalysts in 

metal-air batteries have been reported. 

In this work, Ag-Cu nanoalloys were directly deposited on nickel foams using pulsed lased 

deposition (PLD). The thin film was used as the catalyst layer of the air cathode for a single zinc-air 

battery and was found to exhibit good bifunctional catalytic performance. The effect of the Ag/Cu 

atomic ratio on the average electron transfer numbers in the ORR was systematically investigated. For 

the first time, this carbon-free and binder-free bimetallic catalyst layer was found to possess both ORR 

and OER catalytic activity in rechargeable zinc-air batteries. 

 

Experimental 

Preparation and characterization. Ag-Cu nanoalloys were directly deposited on nickel foam using 

PLD. Several target Ag-Cu alloys with Ag/Cu atomic ratios of 90:10, 50:50, 75:25 and 25:75 were used. 

The substrates were prepared using high-purity (99.97%) nickel foam, followed by soaking in acetone 

for 3 h and 10% H2SO4 for 15 min, washing in distilled water for 10 min and drying under vacuum for 2 

h. The targets were irradiated using a nanosecond Q-switched Nd:YAG laser (EKSPLA, Lithuania) with 

a wavelength of 266 nm, pulse duration of 3-6 ns, beam diameter of 1 mm and energy density of 200 

mJ/pulse. To remove the oxides from the target, the laser frequency was set at 1 Hz and the 

substrate-to-target distance was set to 5 cm at the beginning of the process. During the deposition 

process, the laser frequency was set to 10 Hz to deposit the Ag-Cu nanoalloy on the nickel foam with 

36000 laser pulses, and the target and substrate were both rotated at 5 rpm. For all samples, the catalyst 

loading was 0.113 mg cm-2 Ag50Cu50 alloy catalyst, which was calculated from the film thickness of 
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120 nm. The gas diffusion layer was prepared using a mixture of 0.5 g of acetylene black, 2.5 ml of 

PTFE (65%) and 15 ml of absolute ethanol. This mixture was stirred for approximately 3 h, 

ultrasonically separated for approximately 15 min and heated in a water bath for approximately 10 min 

at 80°C. Finally, the air diffusion layer was fitted on the back of the catalyst layer and pressed into 

0.5-mm-thick layers under a pressure of 10 MPa. 

The structural and electronic properties of the synthesized catalysts were determined using an FEI 

Tecnai F30 transmission electron microscope (200 kV), a JEOL JSM-6700F field-emission scanning 

electron microscope, and an ESCALAB 250 X-ray photoelectron spectrometer (XPS) with a 

monochromic Al Kα X-ray source (E=1486.6 eV).  

Electrochemical measurements.  

All electrochemical measurements were performed using a CHI660C electrochemical workstation in a 

classic three-electrode cell with a saturated calomel electrode (SCE) as the reference electrode, a Pt 

counter electrode and a working electrode fabricated using the Ag-Cu catalysts. The electrocatalytic 

activities of the catalysts were investigated at room temperature using linear sweep voltammetry (LSV) 

and rotating disk electrode (RDE) polarization curves obtained in a 0.1 M KOH aqueous solution. The 

experiments were performed over the potential range of 0 to -0.8 V at a scan rate of 10 mV s−1. The 

rotation rates were controlled at 400, 800, 1600, 2400 and 3200 rpm. 

For the batteries, the working area of the air electrode was 0.785 cm2, and the anode was a zinc plate. 

For the primary batteries, the alkaline electrolyte was a 6.0 M KOH aqueous solution, whereas the 

alkaline electrolyte was a 6.0 M KOH + 0.1 M Zn(CH3COO)2 aqueous solution for the rechargeable 

batteries. The performances of the zinc-air batteries were measured using a TC 5.X battery testing 

system (Neware Company, Shenzhen), and the gas evolution was measured using gas chromatography 

(GC7980) with thermal conductivity detection (TCD). 
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Results and discussion 

 Figure 1 and Figure S1 present microscopy images of the Ag50Cu50 catalyst used in this work. The 

diameter distribution of the Ag-Cu nanoparticles is from 1 to 5 nm, and the average diameter is 

approximately 2.58 nm. Bright-field transmission electron microscopy investigation reveals the 

presence of Ag-Cu crystallites in the substrate, with lattice planes ranging from 0.220 to 0.231 nm 

indexed to (111) face-centered cubic planes (Ag rich). The selected area electron diffraction (SAED) 

pattern shows five diffuse halos, thus providing further evidence that the Ag-Cu nanoparticles are 

polycrystalline, as shown in Figure 1(b). Furthermore, as shown in Figure S1(c), the quantitative EDS 

line scanning analysis indicates that the average atomic ratio of the Ag-Cu NPs is approximately 80:20 

(Ag to Cu) and reveals the Ag atoms are enriched in the surface alloy shell. 

The high-resolution TEM images and corresponding elemental mapping, as shown in Figures 1(c, 

d), indicate that the nanoparticles are enriched with Ag atoms, whereas the film is enriched with Cu 

atoms. Thus, the nanocatalyst layer is composed of Ag-enriched nanoparticles and an amorphous 

Cu-enriched film. According to a previous study, these Cu-doped Ag nanoparticles are predicted to 

exhibit higher catalytic performance than pure Ag nanoparticles because the doping of Cu in Ag 

nanoparticles may move the d-band center toward the Fermi level, thereby improving the O2 adsorption 

energy and reducing the dissociation energy of O2 on the surfaces of the nanoparticles.23 This question 

is studied later in this article. The Ag-based electrocatalysts in the amorphous films may be created 

from the vapor phase under far-from-equilibrium conditions using PLD. Previous work demonstrated 

that face-centered cubic Ag-Cu solid solutions or completely amorphous Ag-Cu metal glasses, such as 

corrosion-resistant non-equilibrium alloys or metastable phases, were formed by rapid quenching from 

the liquid or vapor phase. 25 
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Figure 1. (a) HRTEM images of the Ag50Cu50 prepared by PLD. b) Selected area diffraction patterns 
for initial Ag-Cu NPs. (c) Bright field TEM image of Ag-Cu alloy nanoparticle with corresponding Ag, 

Cu and Ni K-α EDS signals. (d) EDS of the Ag50Cu50 film on nickel grid. (e) HRTEM images of the 
Ag-Cu after 200 cycles. f) Selected area diffraction patterns after 200 cycles.  

 

To investigate the effects of charging and discharging on the Ag-Cu catalysts, the patterns after 200 

0 2 4 6 8 10

CuNiAgCuAg

 

 

C
o

u
n

ts
(a

.u
.)

Energy (keV)

(d)

(c) 

(e) (f) 

(a) (b) 

Page 7 of 26

ACS Paragon Plus Environment

ACS Applied Materials & Interfaces

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



cycles were measured using TEM, as shown in Figure 1(e, f) and Figure S1(b). The high-resolution 

TEM image in Figure 1(e) shows that the Ag-Cu nanocrystals have lattice fringe spacings that range 

from 0.227 to 0.238 nm, which are indexed as the (111) planes of the face-centered cubic structure. 

Compared to the initial samples (Figure 1(a)), these nanoparticles are larger than the initial particles, 

indicating that the nanoparticles underwent a growth process. Figure 1(f) presents the SAED pattern of 

the Ag-Cu catalysts after 200 cycles, which shows more diffraction rings than that of the initial Ag-Cu 

nanoparticles. For this sample, seven diffuse halos are observed and can be identified as the Ag(111), 

Ag(200), Ag(220), Ag(311), Cu(111), Cu(200) and Cu(220) planes. Compared to Figure 1(b), these Cu 

planes suggest that Cu-rich crystalline grains are generated during the charging and discharging 

processes. Compared to Figure 1(b), these Cu planes suggest that Cu-rich crystalline grains are 

generated during the charging and discharging processes. These results indicate AgCu crystalline grins 

are separated and formed AgCu(Ag-rich) crystalline grains and AgCu(Cu-rich) crystalline grains during 

operation.  

 To analyze the specific surface composition of the Ag-Cu catalysts, X-ray photoelectron 

spectroscopy was employed to acquire information about the interaction of Ag with Cu. Figure 2(a) 

presents the full XPS spectra of the Ag50Cu50 catalysts on the nickel foam, which was cleaned using Ar 

ions or not cleaned. The peak values of oxygen and carbon, at 530.86 eV and 285.05 eV, both decreased 

after treatment. Moreover, both of the binding energies were lower than their zero-valent (O0 or C0) 

values, indicating that O2 and C were chemisorbed on the surface.  
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Figure 2. XPS spectra of Ag50Cu50 catalysts supported on Ni foam: (a) full spectra of Ag and Cu 

element. (b) Ag 3d regions. (c) Cu 2p regions. 

  

Figures 2(b, c) present detail scans of Ag 3d and Cu 2p in the Ag50Cu50, and pure Ag and Cu 

catalysts on nickel foam. The Ag 3d core level from the pure Ag has two peaks at 368 and 374 eV, 

which are attributed to metallic silver (Ag0). A significant positive shift (ca. 0.27 eV and 0.37 eV) of the 

binding energy for Ag 3d relative to the Ag50Cu50 (ca. 368.27 eV and 374.37 eV) is identified, which is 

attributed to the contact between Ag and Cu. Moreover, the zero-valent O state (O0) after ion cleaning 

indicated that this shift is not affected by Cu or Ag oxides, such as AgO or Ag2O. Similar positive 

chemical shifts for Ag 3d orbitals have been observed in Ag-based intermetallic compounds, such as 

Ag4Sn/C (368.65 and 374.65 eV) and Ag3Mg (368.30 and 374.30 eV), and for Ag-based solid solutions, 

such as Ag75Au (Ag 3d5/2 at 368.30 eV). 26-28 However, the Ag 3d binding energy shifts are negative in 
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the Ag-Pd and Ag-Pt systems, which is in agreement with the electronegativity argument20, 29. Previous 

discussions suggested that charge redistribution does not occur in the Ag-Cu system according to this 

rule. Thus, based on our experimental observations, the Ag and Cu are well alloyed in the nanoparticles, 

which are embedded in the amorphous film. Both alloyed 30 and core-shell 31 Ag-Cu nanoparticles have 

been synthesized using PLD.  

The high-resolution spectra of the Cu levels from pure Cu and Ag50Cu50 are shown in Figure 2(c). 

The Cu 2p binding energies from pure Cu are 953 and 933 eV, which are the same as the values 

reported in the literature 32. A significant negative shift (ca. 0.53 and 0.33 eV) of the binding energy for 

Cu 2p relative to 952.47 and 932.67 eV is identified in the Ag50Cu50 catalyst, and there is no CuO 

coverage on the surface. Thus, the shifts in the Ag 3d and Cu 2p binding energies in the Ag50Cu50 

catalysts are due to the electronic interactions between the Ag and Cu atomic orbitals. One pathway is 

some degree of charge donation from Ag to Cu, leading to higher Ag 3d and lower Cu 2p binding 

energies relative to those of pure Ag and Cu, respectively, similar to the Ag 3d5/2 and Cu 2p3/2 of the 

clean Ag-Cu eutectic alloy (ca. 368.5 eV and 932.3 eV). 33 The other pathway is electronic interactions 

between the surface atoms and the core atoms, where the electrons transfer from the surface atom site to 

the core atom site, as reported based on our previous calculations. 34 

The high-resolution spectra of Cu and Ag show that Ag and Cu atoms exist in the metallic form. 

For the bimetallic catalyst, there are no metal atoms in the oxidized state, and no Ni binding energy 

peaks are observed in the XPS curves, indicating that the Ag and Cu atoms are well distributed and 

completely cover the nickel foam. The Ag and Cu atoms form an alloy on the surface of the Ag50Cu50 

catalyst, and the electron redistribution plays a key role in the alloying tendencies of heterogeneous 

Ag-Cu systems. As shown in Figure 1, the laser-deposited catalysts possess a large Cu-Ag d-spacing. 

Additionally, the electronic interactions between the core atoms and the shared atoms at the interface 

contribute to the nanoalloying between the Ag and Cu atoms. 
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Figure 3. (a) LSV curves of pure Ag, Cu, and Ag50Cu50 nanoalloys at scan rate of 10mV/s. The 
electrolyte is N2 or O2 saturated 0.1 M KOH solution.(b) LSV curves of Ag90Cu50, Ag50Cu50 and 
Ag25Cu75 nanoalloys at scan rate of 10mV/s. (c, d) RDE polarization curves of Ag90Cu50 and Ag50Cu50 

nanoalloys at different rotating rates. (e) RDE polarization curves of Ag, Ag90Cu50, Ag75Cu25, Ag50Cu50 
and Ag25Cu75 nanoalloys at 1600 rpm. (f, g) Koutecky-Levich plots collected from corresponding RDE 
polarization curves. (h) Linear sweep voltammogram (LSV) displaying oxygen evolution activities of 

Nickel foam, Ag25Cu75 Ag50Cu50, Ag75Cu25，Ag90Cu10 and pure Ag electrodes. 
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The LSV curves of pure Ag and the bimetallic Ag-Cu catalysts were recorded in 0.1 M KOH 

solutions saturated with N2 or O2. Figures 3(a, b) present the LSV curves of the pure Ag, Ag90Cu10, 

Ag50Cu50, Ag25Cu75 and pure Cu catalysts. Cathodic reduction current peaks are clearly observed in the 

O2-saturated solutions but not in the N2-saturated solutions. Among the cathodic reduction current peaks, 

the maximum current is 5.9 mA cm-2, and the current peaks of the Ag, Ag90Cu10 and Ag50Cu50 catalysts 

increase with increasing Cu content to approximately 3.8, 5.6 and 5.9 mA cm-2, respectively. These 

results suggest that appropriate Cu doping is beneficial to the catalytic activities of the Ag-based alloys. 

Comparing the curves of the bimetallic Ag-Cu catalysts, the LSV trends of Ag90Cu10 and Ag50Cu50 are 

similar to that of pure Ag. However, for the Ag25Cu75 catalyst, the cathodic reduction current peak 

decreases to 3.1 mA cm-2, and the cathodic reduction current peak almost disappears.  

To investigate the effects of the pure Ag, Ag90Cu10, Ag50Cu50 and Ag25Cu75 catalysts on the ORR 

kinetics at different rotation rates, a set of RDE measurements were performed. As shown in Figure 3(c, 

d), Figure 3(e), Figure S2 and Figure S3, all of the current densities increase with the rotation rate. 

Figure 3(e) presents the curves of the Ag90Cu10, Ag75Cu25 and Ag50Cu50 catalysts, which exhibit a 

higher limiting current density and more positive onset potential than the Ag catalyst. Furthermore, the 

ORR activities of the Ag90Cu10, Ag75Cu25 and Ag50Cu50 catalysts are enhanced by doping Cu atoms into 

Ag. 

Figures 3(f, g) Figures S3(c) present the Koutecky-Levich plots, which are obtained from the 

limiting current density and calculated using the equation below. The number (n) of electrons 

transferred in the ORR process can be obtained from the slope of the Koutecky-Levich plot.7, 35-36  

j-1=jk
-1+ (0.62nFCD2/3v-1/6ω1/2)-1                       (3) 

Where j is the measured electrode current density, jk is the kinetic current density, and ω is the electrode 

rotation rate. The value of D is 1.9×10−5 cm2/s, C0 is 1.2×10−3 mol/L, ν is 1.1×10−2 cm2/s, and F is 
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96485 C/mol. From the Koutecky-Levich plots, at a potential of 0.8 V, the electron transfer numbers (n) 

of the pure Ag, Ag90Cu10, Ag75Cu25, Ag50Cu50 and Ag25Cu75 catalysts are 3.4, 4, 4, 3.9 and 3.1, 

respectively. The OER activities of the nickel foam, Ag25Cu75 Ag50Cu50, Ag75Cu25，Ag90Cu10 electrodes 

are shown in Fig. 3(h). As shown, the Ag-Cu alloy exhibits higher OER current density than nickel 

foam at 1V (SCE), and displays lower onset potential than nickel foam, suggesting that the OER is 

enhanced by Ag-Cu alloy.Compared to the OER performance of pure Ag, the Ag-Cu alloy also have a 

better OER performance, indicating the OER activity of Ag is also enhanced by alloying with Cu. 

Previous work has reported that the ORR of pure Ag is primarily via the four-electron pathway and 

that the ORR of carbon is via the two-electron pathway in alkaline solutions. 37 The number of electrons 

transferred in the Ag-Mo-22 catalyst is 3.3, and the Ag-Mo-22 catalyst proceeds via a combination of 

the two- and four-electron pathways. 38 It is suggested that pure Ag and bimetallic Ag-Cu catalysts may 

exhibit similar characteristics. The pure Ag catalyst with an n of 3.4 may have both four-electron and 

two-electron pathways, and the four-electron pathway plays a more important role. After doping, the 

ORRs of the Ag90Cu10 and Ag50Cu50 catalysts follow the four-electron pathway, but with increasing Cu 

content, the ORRs of the Ag50Cu50 and Ag25Cu75 catalysts begin to proceed via a combined pathway 

with both two and four electron contributions. The obvious decreases in the catalytic activity of the 

Ag25Cu75 catalyst indicate that the excess Cu atoms changed the nature of the nanoparticles. When the 

Cu atoms predominate, the nanoparticles have properties that are similar to those of pure Cu. These 

results may explain the LSV tendency of the Ag25Cu75 catalyst to behave similarly to the Cu catalyst. 

The enhanced ORR activities of the Ag-Cu nanoalloy catalysts can be understood in terms of strain 

and electronic effects. For the strain (or geometric) effect, the initial Ag-Cu nanoparticles have a (111) 

d-spacing that ranges from 0.220 to 0.231 nm, and the d-spacing is smaller than that of pure Ag, 

indicating that the Ag-rich nanoparticles are under compressive strain. After use, the range of the (111) 

d-spacing (ca. 0.227 to 0.238 nm) of the Ag-rich nanoparticles is slightly increased, suggesting that the 
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strain effect is released during the charging and discharging processes. Therefore, strain effects 

enhances the ORR activity of the Ag-Cu nanoalloy catalysts.  

To look into the electronic (or ligand) effects, density functional theory calculations are performed 

on pure Ag13, Ag12Cu (Cu-core) and Ag12Cu (Cu-shell) clusters. The details of model and calculation 

methods are shown in support information. As shown in Figure 4, the mulliken charge of silver atoms is 

changed by doping Cu atoms into the core or alloying them onto the surface of the Ag12Cu cluster. 

Moreover, as shown in Figure 5, the d-band center is closer to the Fermi energy level in the Ag12Cu 

cluster than in the pure Ag13 cluster. Table 1 lists the performance of O2 on different adsorption sites, 

and it is found that the O2 adsorption energy increases from -0.86 eV in pure Ag13 cluster to -1.36 eV in 

the Ag12Cu cluster (Cu-shell). Therefore, it can be inferred that alloying Cu in Ag-Cu nanoparticles 

thermodynamically benefits the O2 adsorption via electronic effects.  

To further determine this hypothesis, the XPS is considered to measure the vanlence band spectrum 

(VBS) of Ag and Ag50Cu50 alloy. As shown in Figure 5b, the d-band center of Ag50Cu50 is closer to the 

Fermi energy level than pure Ag. Obviously, as shown in Figure 3, the Ag50Cu50 catalysts exhibited a 

more positive on-set potential and half-wave potential (E1/2) than pure Ag catalysts. Therefore, it is 

clear that the ORR catalytic activity is related to the d-band center, and the ORR process could be 

improved by alloying Ag and Cu on the surfaces of the Ag50Cu50 nanocatalysts. So it is can be 

concluded that the electronic (or ligand) effects play a major role for the improvement of the ORR 

catalytic activity in the Ag50Cu50 catalysts. 
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Figure 4. Mulliken atomic charge of the Ag13, Ag12Cu (Cu-core) and Ag12Cu (Cu-shell) structures  
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Figure 5. (a) D-projected density of states for the Ag13, Ag12Cu (Cu-core) and Ag12Cu (Cu-shell) 
structures. (b) Valence band spectrum (VBS) of Ag and Ag50Cu50 alloy. 

 
Table 1. The adsorption energy (Ead), the electron transfer amount, and the bond length of O–O (dO–O) 
for each O2 molecular adsorption site on the Ag13, Ag12Cu (Cu-core) and Ag12Cu(Cu-shell) clusters. 

 

 Site Ead(eV) Mulliken charge of O2 do-o (Å) 

Ag b -0.52 -0.441 1.32966 
 h-t -0.86 -0.562 1.37230 

 t-b-t -0.61 -0.563 1.37209 
AgCu b -0.58 -0.438 1.32600 

(Cu-core) h-t -0.67 -0.629 1.40134 
 t-b-t -0.67 -0.634 1.40355 

AgCu b -0.85 -0.662 1.41904 

(Cu-shell) h-t -1.36 -0.661 1.40491 
 t-b-t -0.88 -0.592 1.41690 

 

For primary zinc-air batteries, the air cathode was fabricated using Ag90Cu10 and Ag50Cu50 catalyst 

layers. As shown in Figure 6(a), the cell voltage decreased as the current density increased and showed 
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a strong dependence on the resistance of the battery. For the Ag90Cu10 catalysts, the open-circuit voltage 

of a single cell was approximately 1.44 V, the maximum power density was 82.1 mW cm-2, and the 

battery had a 1 V voltage discharge of 50 mA cm-2. For Ag50Cu50, the open-circuit voltage of the single 

cell was approximately 1.42 V and the maximum power density was 86.3 mW cm-2. Moreover, this 

battery had a 1 V voltage discharge of 60 mA cm-2, which is higher than that of Ag/C7, N-doped CNTs39 

and silver-molybdate catalysts38. As shown in Figure 6(b), the energy density is 896.40 mWh/g, which 

is 67.91% of the theoretical specific energy density (1350 mWh g-1).40 
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Figure 6. (a) The discharge polarization and power density curves for Ag90Cu50 and Ag50Cu50 catalyst 
layer for the primary zinc-air battery. (b) Specific charge capacity and specific energy density of the 

zinc-air battery at discharging current 20mA cm-2. (c) Voltage time curves of primary zinc-air battery at 
20 mA cm-2. The electrolyte is 6 M KOH solution. 

 

Figure 6(c) presents the change in the cell voltage at 20 mA cm-2. The zinc-air battery fabricated 
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using the Ag90Cu10 catalyst had a higher initial discharge voltage (ca. 1.15 V) than that fabricated using 

the Ag50Cu50 catalyst (ca. 1.0 V). After 30 h of discharging, the discharge voltage of the Ag90Cu10 

catalysts gradually decreased to 1.11 V, approximately 20% compared with the initial potential. 

Moreover, the discharge voltage of the Ag50Cu50 catalyst gradually increased to 1.18 V, approximately 

16% compared with the initial potential. The Ag50Cu50 catalyst has higher discharge voltage stability 

and is more stable than the Ag90Cu10 catalysts for use in zinc-air batteries.  
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Figure 7. (a) The charge-discharge polarization curves of the rechargeable zinc-air battery. (b) The first- 
ten and last-ten cycles of the rechargeable zinc-air battery during 252 charge-discharge cycles with 

period of 1800s.(c) The discharge curves of the rechargeable zinc-air battery in O2, air and N2 at 20 mA 
cm-2. (d) The discharge-charge curves of the rechargeable zinc-air battery at the 1st, 10th, 50th and 

100th cycle. The current density is 20 mA cm-2 and the electrolyte is 6 M KOH added with 0.1M 
Zn(CH3COO)2 solution. 
 

We also measured the charging performance and durability of the Ag-Cu-catalyzed air cathode. 
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Figure 7(a) shows the charge-discharge polarization curves of the rechargeable zinc-air battery, which 

presents a relatively low polarization even at 100 mA cm-2. Due to activation polarization, a jump is 

observed at the beginning of the polarization curves. After this process, the charge polarization curves 

show that the cell voltage increases linearly with the current density and has a maximum power density 

of 45.1 mW cm-2 at 100 mA cm-2. Figure 7(b) shows the first ten and last ten cycles of the rechargeable 

zinc-air battery; the full cycles are shown in Figure S4. The voltage plateaus are flat and stable after 

charge-discharge at a current density of 20 mA cm-2 with 900 s per step for more than 200 cycles, and 

the discharge polarization increases by less than 0.01 V. The round-trip efficiency determined from 

Figure 7(b) ranges from 49.0 to 50.29 % for the rechargeable zinc-air battery. For the discharging 

process of the rechargeable zinc-air batteries, a set of atmospheres (O2, air and N2) were studied, as 

shown in Figure 7(c). The behavior of the cathodic reaction in the atmospheres with different oxygen 

contents suggests that a higher oxygen concentration results in a higher discharging current. When the 

inlet gas is converted to pure nitrogen gas, the discharge current sharply decreases to a negligible value. 

During this process, no gas other than O2 can be detected by gas chromatography (GC) during the 

discharging process. To obtain the ratio of oxygen in (oxygen consumed during battery discharge) to 

oxygen out (oxygen released during battery charging) at 20 mA cm-2, we also measured the O2 signals 

while charging and discharging an airtight battery (Figure S5). The O2 peaks at the inlet/outlet of the 

battery are shown in Figure S6. During the discharging process, the oxygen peak areas are 105878, 

105193 and 106531 µVs at the inlet, and the corresponding oxygen peak areas at the outlet are 102184, 

101124 and 103716 µVs, respectively. Therefore, the average oxygen consumption peak area (A) is 

3526 µVs. This value is the total oxygen consumption during discharging and includes all of the oxygen 

consumption processes from the beginning of the process. For the charging process, we employed pure 

N2 as the standard gas, as shown in Figure S7. The released oxygen peak areas are 4068 and 3397 µVs 

at the outlet, and the average oxygen release peak area (As) is 3732 µVs. Thus, we can obtain the ratio 
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of oxygen in/out (C) from the ratio of the consumed oxygen peak area to the released oxygen peak area 

(A/As), which is 0.945. After 1 h of discharging, the oxygen peak areas are 105477 and 104983 µVs at 

the inlet, and the corresponding oxygen peak areas at the outlet are 101584 and 101625 µVs. Thus, the 

average oxygen consumption peak area (A) is 3625.5 µVs, and the ratio of oxygen in to oxygen out is 

0.973. 

Figure 7(d) shows the discharge-charge curves of the rechargeable battery at the 1st, 10th, 50th 

and 100th cycles. After the charge-discharge cycles, the cell voltage is decreased. The rate of decrease 

slows after the 10th cycle and is less than 0.006 V after the 100th cycle. This result suggests that the 

Ag-Cu nanoalloy catalyst layer experiences no significant degradation or corrosion during the 

discharge-charge process and that the Ag-Cu catalysts have a good balance between activity and 

durability for the zinc-air battery. Compared with the standard C/MnO2 catalyst and other cathode 

catalysts for rechargeable zinc-air batteries, which are listed in Table S5, the Ag-Cu alloy catalyst layer 

shows a high current density (20 mA cm-2) at the operating voltage of 1.08 V and a low polarization 

potential (0.01 V) after 200 cycles. 
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Conclusion 

Novel bimetallic Ag-Cu nanoalloys with various Ag/Cu molar ratios were successfully synthesized 

using the PLD method and used as carbon-free electrocatalysts for zinc-air batteries for the first time. 

The nanocatalysts consist of crystalline Ag-Cu nanoalloy particles with an average size of 2.58 nm that 

are embedded in an amorphous Cu matrix. The Ag 3d and the Cu 2p peaks shift to higher and low 

binding energies in the Ag50Cu50 alloy, and the ORRs of the Ag50Cu50 and Ag90Cu10 alloys both 

occurred via the four-electron pathway. The resulting primary zinc-air batteries manufactured with 

Ag50Cu50 and Ag90Cu10 air cathodes showed that the cells have maximum power densities of 86.3 and 

82.1 mW cm-2 at voltages of 0.863 and 0.821 V, respectively. In rechargeable zinc-air batteries, the 

Ag50Cu50-catalyzed air cathode required a low polarization potential to drive both the ORR and OER at 

20 mA cm-2 and experienced no significant degradation after 200 cycles.  
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Supporting information.  

Additional characterization data and figures. ORR polarization curves of Ag/Ni and AgCu3/Ni. The full 

cycle curves of the rechargeable zinc-air battery at 20 mA cm-2 for 200 cycles in 6M KOH + 0.1M 

Zn(CH3COO)2 solution. Parameters of Koutecky-Levich plots collected from the RDE curves for pure 

Ag, Ag75Cu25, Ag25Cu75. Details of model and computational methods. This material is available free of 

charge via the Internet at http://pubs.acs.org. 
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