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Abstract 

Background 

Transcranial alternating current stimulation (tACS) is widely used to entrain or modulate 

brain oscillations in order to investigate causal relationships between oscillations and 

cognition.  

Objective 

In a series of experiments we here addressed the question of whether event-related, 

transient tACS in the beta frequency range can be used to entrain beta oscillations in two 

different domains: episodic memory formation and motor cortex excitability. 

Methods 

In experiments 1 and 2, 72 healthy human participants engaged in an incidental encoding 

task of verbal and non-verbal material while receiving tACS to the left and right inferior 

frontal gyrus (IFG) at 6.8Hz, 10.7Hz, 18.5Hz, 30Hz, 48Hz and sham stimulation for 2s during 

stimulus presentation. 

In experiment 3, tACS was administered for 10s to M1 at the individual motor beta 

frequency of eight subjects. We investigated the relationship between the size of TMS 

induced MEPs and tACS phase. 

Results 

Beta tACS did not affect memory performance compared to sham stimulation in 

experiments 1 and 2. Likewise, in experiment 3, MEP size was not modulated by the tACS 

phase. 
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Conclusions 

Our findings suggest that event-related, transient tACS in the beta frequency range cannot 

be used to modulate the formation of episodic memories or motor cortex excitability. These 

null-results question the effectiveness of event-related tACS to entrain beta oscillations and 

modulate cognition. 

 

Keywords 

beta oscillations; episodic memory; motor cortex excitability; transcranial alternating 

current stimulation (tACS); 
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Introduction 

Brain oscillations represent regular fluctuations in the local field potential and play a crucial 

role in establishing synchronous firing patterns [1]. Especially oscillations in the beta 

frequency range (~13-30Hz) have been linked to a variety of cognitive and sensorimotor 

processes [2–6]. Beta power decreases, for example, have been shown to predict successful 

memory encoding [7,8]. Such desynchronized activity occurs in highly task relevant regions 

[9], and is negatively correlated with blood oxygenation level dependent (BOLD) activity 

[10]. It has further been demonstrated that power and phase of beta oscillations over the 

motor cortex influences the amplitude of transcranial magnetic stimulation (TMS) evoked 

potentials (MEPs) [11,12]. 

Despite the numerous associations between these processes and beta oscillations, the 

causal relationship between them remains unclear. Transcranial alternating current 

stimulation (tACS), an increasingly popular non-invasive human brain stimulation technique 

[13], has been suggested to provide this causal link between brain oscillatory activity and 

cognitive processes. Recent findings suggest that tACS entrains brain oscillations in a 

frequency specific way [14,15]. This modulation of underlying oscillatory activity can affect 

behaviour [16–19], interacts with underlying oscillatory activity [20–24], and elicits 

frequency specific neuronal spiking [25]. 

tACS could be a very beneficial and powerful method for cognitive research, if it was also 

able to modulate brain oscillations in a time-critical way [26,27]. During cognitive tasks brain 

oscillations show a very dynamic behaviour and are modulated in the range of seconds. 

However, most studies having demonstrated effects of tACS on behaviour applied tACS 

throughout cognitive tasks in a sustained way, resulting in stimulation durations of up to 
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20min [15–18,20,21,28]. This makes it difficult to directly link oscillatory activity associated 

with specific cognitive dynamics with the results of these tACS studies. In order to 

demonstrate that tACS is indeed a useful tool for modulating dynamic cognitive processes, 

tACS should be administered within a short period of time at certain phases of a cognitive 

task in event-related, randomized designs.  

In the present study we sought to investigate the effectiveness of event-related beta tACS. 

In a series of experiments we explored whether tACS in the beta frequency range is 

effective in modulating two different processes: the formation of episodic memories and 

motor cortex excitability.  

Beta power decreases and episodic memory formation 

Successful memory formation for verbal material has been associated with power decreases 

in the beta frequency range [8]. This beta desynchronization can be localized to the left 

inferior frontal gyrus (IFG) [10], a region which has been linked to successful semantic 

memory encoding in numerous studies [29]. Using rhythmic transcranial magnetic 

stimulation (rTMS), Hanslmayr et al [30] demonstrated a causal link between beta 

desynchronization in the left IFG and memory encoding. By artificially synchronizing the left 

IFG via rTMS in the beta frequency range, memory formation for words was impaired at 

beta but not at other frequencies. These findings provide a first causal link between beta 

power decreases and episodic memory. However, due to safety considerations [31] rTMS 

stimulation could not be applied at higher frequencies, and hence their effects could not be 

investigated. Therefore, experiments 1 and 2 aimed to replicate and extend these findings 

and further examine whether tACS may be a useful addition to TMS. In these two 

experiments, the differential and specific effects of beta tACS to the left IFG on the encoding 
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of verbal material and the effects of beta tACS to the right IFG on the encoding of non-

verbal material were investigated. Several studies report material-specific lateralization 

during episodic memory encoding with left frontal involvement during the encoding of 

verbal material and right frontal activation for non-verbal material [29,32,33]. Therefore 

beta (18.5Hz) tACS should only affect memory performance for words when administered to 

the left IFG (as has been shown by Hanslmayr et al. [30]) while right IFG stimulation should 

result in decreased memory performance for non-verbal material only. 

Beta phase and motor cortex excitability 

Several simultaneous tACS-TMS studies investigated the causal relationship between beta 

power and corticospinal excitability [23,34], with recent studies investigating whether the 

phase of 20Hz tACS can modulate MEP amplitude [35–37]. However, in these studies tACS 

was applied for prolonged periods of time. Raco et al. [35] for instance applied 20Hz tACS 

for 200s and found a phase-dependent modulation for the last three MEPs only. In 

experiment 3 we aim to investigate whether 10s of tACS tuned to the individual motor beta 

frequency can lead to a modulation of the amplitude of TMS evoked MEPs by the phase of 

the ongoing tACS. 

Aims of the studies 

Being able to modify beta oscillations within a short period of time in an event-related, 

randomized manner is crucial for quantifying the effectiveness of beta tACS and ultimately 

its usefulness for modulating dynamic cognitive processes. Therefore, different stimulation 

parameters were used to reveal the ideal stimulation set-up for transient tACS. The effects 

of different electrode sizes on episodic memory formation were investigated in experiments 
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1 and 2. In order to keep the current density and possible skin sensations comparable, the 

stimulation intensity was reduced from 1mA (experiment 1) to 0.8mA (experiment 2). 

Additionally, the specific effects of beta tACS were investigated using four control 

frequencies as well as sham stimulation. As episodic memory performance is a rather 

indirect read out for the effectiveness of brain stimulation, we investigated the effect of 

beta tACS on MEP size in experiment 3. This, more direct way of quantifying the 

effectiveness of brain stimulation [38–42], allowed us to explore whether traditional 

montages with one electrode being placed directly at the target area are more effective 

than montages with both stimulation electrodes surrounding the target area. Although the 

same electrode size used in experiment 2 was chosen for experiment 3, lower stimulation 

intensities were used in order to reduce possible side effects, e.g phosphenes that have 

been reported repeatedly by participants of experiment 2. Finally, the stimulation duration 

in experiment 3 was increased to 10s compared to experiments 1 and 2, allowing us to 

investigate whether slightly longer but still relatively short stimulation has effects on motor 

cortex excitability. Furthermore, in experiment 3, we aimed to optimize tACS parameters by 

stimulating at the participants' individual beta frequency rather than using a standard 

frequency (e.g. 20Hz).  

 

 

Experiments 1 and 2 

Material and Methods 

Participants 
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Participants were screened for contraindications against transcranial alternating current 

stimulation prior to the experiment [43]. 

36 subjects participated in experiment 1 (24 female; mean age: 20.03 +/- 2.38 years) and 36 

in experiment 2 (24 female, mean age: 20.97 +/- 2.22 years). 

All participants were right handed, had normal or corrected-to-normal vision and reported 

no history of neurological disease or brain injury. Informed consent was acquired from each 

subject prior to the experiment. All were naive to the hypotheses of the study and were 

fully debriefed at the end of the experiment. The study was approved by the ethics 

committee of the University of Birmingham. 

Stimulus Material 

Word stimuli consisted of 270 nouns derived from the MRC Psycholinguistic Database, 

Version 2.00 [44] and were presented in black. These were divided into 18 lists of 15 words 

and were matched for word frequency, word length, number of letters, number of syllables, 

concreteness, and imaginability. Face stimuli consisted of 270 faces drawn from several face 

databases. The faces were emotionally neutral and were presented in black and white on a 

black background. These were divided into 18 lists of 15 stimuli and were matched for 

gender, hair colour, and approximate age. Stimuli were presented in a randomized order, 

and counterbalanced across subjects. 360 stimuli (180 words, 180 faces) were presented 

during encoding and retrieval, serving as old items in the retrieval period, 180 stimuli (90 

words, 90 faces) were presented during retrieval only, serving as new items (figure 1). 

Experimental Setup and Procedure 
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Participants were seated approximately 80cm from a 19 inch LCD monitor (resolution: 1280 

X 1024 pixels, 60Hz frame rate). Stimuli were presented on a grey background on the centre 

of the screen using the Psychophysics Toolbox extension for Matlab [45].  

Before the start of the main experiment participants were familiarized with tACS and 

desensitized to the stimulation intensity in order to avoid adverse reactions. 

Encoding 

During encoding, participants had to perform a pleasantness rating of a presented stimulus 

on a 4-point rating scale (very pleasant – very unpleasant). Answers were given manually by 

pressing one of four buttons on a computer keyboard using the middle and index finger of 

both hands; whether the left or right hand corresponded to the pleasant or unpleasant 

category was counterbalanced across subjects (figure 1A). During the 2s stimulus 

presentation, tACS was administered to the left and right IFG at different frequencies. In 

order to replicate and extend the findings from Hanslmayr et al. [30], tACS was applied at 

18.5Hz. Furthermore, the two control frequencies used in Hanslmayr et al. [30] (6.8Hz, 

10.7Hz) plus two higher frequencies (30Hz, 48Hz) as well as sham stimulation were chosen 

as controls, resulting in 15 trials per condition. The sequence of the stimulation conditions 

was counterbalanced across subjects and pseudo randomized so that the same frequency 

and the same stimulation site did not occur in more than four consecutive trials. 

Retrieval  

Following the encoding section, two distractor tasks were used to ensure that the 

participants did not rehearse the study material. First, the participants were required to 

count aloud backwards in steps of seven from a 3-digit number for 1min, after which time 
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they were asked to rate the intensity of the stimulation induced sensations and phosphenes 

for every stimulation condition separately (see supplementary figure 4). These tasks were 

followed by the recognition phase. Here, the 360 items presented during encoding, along 

with 180 new items were presented in a randomized sequence. Subjects were asked to rate 

how confident they were that an item was old or new on a 4-point rating scale ranging from 

very sure old to very sure new (figure 1B). Answers were given manually by pressing one of 

four buttons on a computer keyboard using the middle and index finger of both hands; 

whether the left or right hand corresponded to old or new items was counterbalanced 

across subjects. 

Transcranial Alternating Current Stimulation 

In order to investigate the effects of electrode size while keeping the current density 

underneath the electrodes, and possible skin sensations, comparable, experiments 1 and 2 

only differed with respect to electrode size and stimulation intensity. In experiment 1, the 

stimulation was applied via four donut-shaped rubber electrodes with a diameter of 5cm 

(14 cm2, NeuroConn, Ilmenau, Germany) at an intensity of 1mA (2mA peak to peak) [46,47]. 

The unconventional donut shape was chosen to allow measuring the tACS artefact directly 

from the centre of the stimulation electrodes in future EEG follow-up studies. In experiment 

2, the stimulation was applied using round rubber electrodes with a diameter of 3.7cm 

(10.75 cm2, NeuroConn, Ilmenau, Germany) at an intensity of 0.8mA (1.6mA peak to peak). 

The resulting estimated current density in the skin underneath the electrodes was in both 

experiments of approximately 0.07mA/cm2. Transcranial alternating current stimulation 

was delivered via a 4 channel DC Stimulator MC (NeuroConn, www.neuroconn.de). In both 

experiments, the stimulation electrodes were placed at EEG electrode positions FP1, C5, 
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FP2, C6 (figure 2). These positions were selected using a neuro-targeting software (Soterix 

Medical Inc, New York, USA) which uses a finite-element model of a template adult brain to 

model the current distribution in the brain. Stimulation sites were chosen to result in the 

highest target field intensity in the left inferior frontal gyrus (figure 2A). In order to keep the 

sensations equal between stimulation conditions, the placement for the right IFG 

stimulation was derived by mirroring the montage for the left IFG stimulation onto the right 

hemisphere (figure 2B). Impedances were kept below 5kOhm using Ten20 conductive paste 

(Weaver and Company, Aurora/Colorado). In both experiments, tACS was applied at 6.8Hz, 

10.7Hz, 18.5Hz, 30Hz, and 48Hz for 2s at stimulus onset during encoding (see figure1). 

Additionally, sham stimulation was applied. During sham stimulation, the current was 

ramped up and down at the beginning and at the end of the 2s stimulation period for 

around 300ms in all of the five stimulation frequencies. 

Data analysis 

Correctly identified old stimuli (hits) were classified using a receiver operating characteristic 

(ROC) procedure. In order to control for individual response biases, every subject’s neutral 

response criterion was determined indicating which buttons a participant used for an old 

response and thus providing a bias free measure of memory strength [8]. This was being 

accomplished by plotting the diagonal between a Hit rate of 1 and False Alarm rate of 1 in 

addition to each subject's ROC curve. If the false alarm rate of a given button was lower 

than the crossing point of the diagonal and the ROC curve, old items associated with this 

button were classed as hits. Likewise if the false alarm rate of a response was higher than 

the crossing point, old items associated with this response were classed as misses. 



12 
  

The effects of tACS on memory performance were investigated for verbal and non-verbal 

material separately using ANOVAs with the within-subjects factors Stimulation Site, 

Stimulation Frequency, and with the between-subjects factor Experiment. Additionally, 

Bayesian analyses were conducted in order to further investigate the amount of evidence 

for the null and alternative hypotheses [48,49]. The resulting Bayes factors (BF01) indicate 

how likely it is that the present data can be observed under the null hypothesis (there is no 

difference between the conditions) as compared to the alternative hypothesis (there is a 

difference between the conditions) (see supplementary material). 

Results 

A 3-way ANOVA revealed no interaction between the stimulation frequency, stimulation 

site, and experiment for verbal material, F(5,350)=0.987, p=0.426. Hence, data of both 

experiments were merged into one dataset (figure 3A). No interaction between stimulation 

frequency and stimulation site could be observed, F(5,350) = 1.7, p=0.134. We specifically 

expected a difference between left 18.5Hz stimulation and left sham stimulation [30]. 

However, the t-test indicated no significant difference between these two conditions; 

t(71)=0.204, p=0.839. 

 

A 3-way ANOVA for non-verbal material revealed no interaction between stimulation 

frequency, stimulation site, and experiment F(5,350)=0.992, p=0.423. Therefore, data of 

both experiments were also combined (figure 3B). No interaction between stimulation 

frequency and stimulation site could be found, F(5,350)= 1.11; p=0.355. There was no 
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difference between right 18.5Hz stimulation and right sham stimulation; t(71)=-1.377, 

p=0.173. 

Memory performance for both experiments separately is depicted in supplementary figures 

1 and 2. D’ values and ROC curves for sham stimulation are shown in supplementary table 1 

and supplementary figure 3. 

Bayesian statistics 

In contrast to Hanslmayr et al. [30], we did not find an effect of left beta stimulation on 

memory performance for verbal material. Likewise, we did not find effects of right beta 

tACS on memory performance for non-verbal material. However, traditional null-hypothesis 

testing cannot provide us with evidence for the absence of an effect. Therefore Bayesian 

analyses were conducted (JASP Team (2016). JASP (Version 0.8.0.0)[Computer software]) 

[48].  

We specifically expected left 18.5Hz tACS to decrease memory performance for words while 

right 18.5Hz stimulation should have resulted in decreased memory performance for faces. 

To quantify evidence for equivalence between conditions, we computed a one-sided JSZ 

Bayes Factor comparing left 18.5Hz and sham stimulation with default prior scales (r=.707) 

for verbal material. This comparison revealed substantial evidence for the Null, BF01 = 8.982, 

demonstrating that the data were 8.982 times more likely under the null than under the 

alternative hypothesis. For non-verbal material, the one-sided JSZ Bayes Factor comparing 

right 18.5Hz and sham stimulation with default prior scales (r=.707) revealed anecdotal 

evidence for the Null, BF01 = 1.719, demonstrating that the data were 1.719 times more 

likely under the null than under the alternative hypothesis. 
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In showing evidence that left beta tACS did not have an effect on memory performance for 

words, our results conflict with the earlier demonstration by Hanslmayr et al. [30] of a 

significant difference in memory performance for verbal material between left beta rTMS 

and sham stimulation. To provide a more direct test as to whether our findings have failed 

to replicate this study, we also computed a Replication Bayes factor [49] that was calibrated 

to quantify whether the present results are more congruent with no difference or with a 

difference comparable to that observed by Hanslmayr et al. [30]. This comparison also 

revealed strong evidence in favour of the Null, BF01 = 11.89, suggesting that the present 

experiment has failed to replicate that earlier finding. 

 

 

Experiment 3 

Material and Methods  

Participants 

Eight participants completed the experiment (all male; mean age: 29.375 +- 4.93 years). 

Participants were screened for contraindications against tACS and TMS prior to the 

experiment [31,43]. All participants were right handed, had normal or corrected to-normal 

vision and reported no history of neurological disease or brain injury. Informed consent was 

acquired from each subject prior to the experiment. The study was approved by the ethics 

committee of the University of Birmingham. 

Experimental Setup and Procedure 
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Due to safety considerations, the experiment was split into two sessions consisting of the 

same experimental procedure. The break between the sessions was controlled so that both 

sessions took place at two consecutive days at the same time of the day. 

Determination of each participant’s motor beta 

Before the start of each session, the participants’ individual motor beta frequency was 

determined using a finger tapping task. After a rest period of 2min, participants were asked 

to tap with the fingers of their right hand prompted by corresponding numbers on the 

screen for 2min. During this task, EEG was recorded using Ag-AgCl scalp electrodes 

(NeuroConn, Ilmenau, Germany) at 1000Hz sampling rate over C3, C4, Pz and Cz, referenced 

to the right mastoid. The EEG recordings were off-line re-referenced against Pz. The data 

from the tapping and rest condition were subjected to a multitaper frequency 

transformation using Hanning tapers and then subtracted from each other. As beta power 

decreases more over contralateral electrodes during the execution of movement as 

compared to rest [6], the individual motor beta frequency was determined as the frequency 

in the beta range (13Hz-30Hz) that showed the strongest power decrease in C3 compared to 

C4. 

Transcranial Magnetic Simulation 

Transcranial magnetic stimulation (TMS) was delivered with a Magstim Rapid stimulator via 

a 70mm double coil (magstim; www.magstim.com) to the left motor cortex at 110% motor 

threshold (identified without active tACS, but over the tACS electrode). The stimulation site 

(M1) was defined as the position on the scalp that elicited the strongest MEP response: The 

coil was angled 45° from the midline axis of the participant's head with the handle pointing 
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backwards. MEPs were recorded from different points at the scalp in order to obtain the 

position that elicited the strongest response. Motor thresholds were estimated using a 

modified binary search [50] with amplitude changes of 100 μA peak-to-peak or more being 

considered an MEP. In every session 420 TMS pulses were delivered randomly every 2.5s – 

4.5s (at an average inter stimulus interval of 3.5s) [12] throughout the experiment. The TMS 

pulses were triggered using an in-house Matlab script triggering the TMS via a USB Data 

Acquisition Device (Measurement Computing). 

Transcranial Alternating Current Stimulation 

TACS was delivered via a 4 channel DC Stimulator MC (NeuroConn, www.neuroconn.de). 

The stimulation was applied using round rubber electrodes with a diameter of 3.7cm (10.75 

cm2, NeuroConn, Ilmenau, Germany) at an intensity of 0.7mA (1.4mA peak to peak), 

resulting in an estimated current density in the skin underneath the electrodes of 0.065 

mA/cm2. Two electrode montages were used in order to investigate the efficiency of 

montages with one electrode directly over the target area [23,34] as compared to montages 

with the target area in between the stimulation electrodes (as used in the previous tACS 

memory experiments presented above). Three tACS electrodes were used, which were 

placed at M1 and EEG electrode positions Pz and Fp1, resulting in two electrode montages. 

For montage 1 current was being passed between M1 and Pz [23,32], whereas for montage 

2, current was being passed between Fp1 and Pz. This setup allowed us to use the same 

reference electrode, Pz, in both stimulation conditions. In this way a randomized stimulation 

protocol could be used with only 3 stimulation electrodes. The montage was chosen 

randomly on a trial-by-trial basis with the restriction of the same montage not occurring in 
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more than four consecutive trials. Impedances were kept below 5kOhm using Ten20 

conductive paste (Weaver and Company, Aurora/Colorado).  

tACS-TMS Procedure 

During the experiment, participants were seated comfortably in front of a computer screen. 

No task was involved. Subjects were instructed to keep their hands as relaxed as possible, 

while looking at a fixation cross in the centre of the screen. Single pulse TMS was delivered 

throughout the experiment over the tACS electrode placed at M1 (figure 4), while 

participants received tACS at their individual motor beta frequency. tACS was applied for 

10s, followed by a 10s period without stimulation. The electrode montage with which the 

stimulation was delivered (i.e. FP1-Pz or M1-Pz), was pseudorandomised so that the same 

montage was never repeated more than twice. Motor evoked potentials were measured 

from the first dorsal interosseous (FDI) muscle of the right hand using Ag-AgCl EEG 

electrodes (BrainAmp MR plus, Brainvision). Every 17-18 trials, participants were given a 

slight break and the TMS coil was cooled down, resulting in four tACS-TMS blocks per 

session. The tACS artefact was recorded from one Ag-AgCl EEG electrode placed at Cz, 

referenced to the right mastoid. 

Data Analysis 

Data were analysed using FieldTrip [51], the CircStat toolbox [52], and in-house MATLAB 

scripts. As the tACS stimulator was mains operated while the amplifier used to record the 

MEPs was battery operated, the different power supplies (different current draws) between 

these two systems resulted in high levels of noise in the MEP data.  Hence, the peak-to-peak 

amplitudes of the motor evoked potentials were not easily accessible (see supplementary 
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figure 5). Therefore, MEP data (-0.15s to 0.15s around the TMS pulse) were subjected to a 

time-frequency composition (20-1000Hz, steps of 5Hz) using Morlet wavelets (width 7) and 

baseline corrected (baseline window: -0.15s to -0.05s). MEP amplitude was defined as the 

peak of the mean signal change between 20Hz and 50Hz, 0-50ms following the TMS pulse, 

which revealed clear MEPs (see supplementary figure 6 and 7). In order to adjust for noise 

introduced by the breaks and possible changes in position of the TMS coil, MEP amplitudes 

in every block were z-transformed, ensuring that data from every block were comparable. 

To extract phase angles of tACS, EEG data recorded from electrode Cz were Hilbert 

transformed. Due to the TMS artefact distorting the phase estimates (see supplementary 

figure 9), phase angles were extracted 5ms prior to the TMS pulse. In order to test for phase 

entrainment effects, MEP amplitudes of every single trial were correlated with the tACS 

phase 5ms prior to the TMS pulse. These circular to linear correlations between the 

normalised MEP amplitudes and tACS phase were calculated as implemented in the circular 

statistics toolbox [52]. Additionally, the data were binned into four different tACS phase bins 

centred around 0° (peak), 90° (falling flank), 180° (trough), 270° (rising flank) (see 

supplementary figure 11) [35], and normalised MEP amplitudes at those tACS phase bins 

were subjected to a repeated measures ANOVA.  

Results 

Normalised single trial MEP amplitude by tACS phase collapsed across both montages is 

shown in figure 5B. Circular to linear correlations revealed no correlation between MEP 

amplitude and tACS phase; overall: cl = 0.0249, p=0.4021; Montage 1: cl = 0.0167, p=0.8141 

(supplementary figure 12A); Montage 2: cl = 0.0442, p=0.2394 (supplementary figure 12B). 
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A 3-way ANOVA with the factors Session, Montage and Phase bin showed no main effect of 

the tACS phase (figure 6); F(3,21)=0.223, p=0.880. No interaction between the phase bins 

and tACS montage could be found either, F(3,21)=0.730, p=0.546, however, there was a 

trend towards a main effect for tACS montage with higher MEP amplitudes at M2 (FP1-Pz) 

than M1 (M1-Pz); F(1,7)=5.338, p=0.054 (see supplementary material). Averaging over the 4 

phase bins for montage 1 and 2 separately reveals that overall, there was no significant 

difference in MEP size between tACS trials in either of the montages and no-tACS trials 

(figure 5A); Montage 1 (M1-Pz): t(7)=-0.949, p=0.374; Montage 2 (FP1-Pz): t(7)=1.121, 

p=0.299 . 

Individual motor beta frequencies and resting motor thresholds are depicted in 

supplementary table 2. The results of the analysis on MEP amplitude prior to z-

transformation are shown in the supplementary material. 

Bayesian statistics 

We expected MEP amplitude to be modulated by the tACS phase. A JZS Bayes factor ANOVA 

[53] with default prior scales revealed strong evidence for the null compared to the main 

effects model Phase bin, BF01 = 20.246.  

 

Discussion 

Experiments 1 and 2 

In experiments 1 and 2, we aimed to examine whether event-related, randomized tACS can 

be used to modulate beta oscillations during episodic memory formation. We specifically 
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expected 18.5Hz tACS to decrease memory performance only for words when administered 

to the left IFG while right 18.5Hz stimulation should have resulted in decreased memory 

performance for non-verbal material only. Although similar protocols using TMS were able 

to show that left beta stimulation impairs encoding of verbal material [30], the present 

study failed to show such an effect. Beta tACS did not modulate the formation of episodic 

memories when applied in a temporally sensitive, event-related, randomized manner. This 

could be partially due to the lower number of trials per condition in these experiments 

compared to the rTMS study. However, a considerably higher number of participants was 

tested in order to account for this. Additionally, Bayesian analyses also reveal evidence for 

the null effect. Therefore, these results indicate that, at this point, tACS in the beta 

frequency is not a suitable alternative to TMS. As tACS affects neurons in a more subtle 

fashion than TMS [42], tACS might not be strong enough to interfere with underlying 

oscillatory activity in such a short period of time [54]. 

 

Experiment 3 

The aim of experiment 3 was to examine if it is possible to modulate corticospinal 

excitability via entrainment of beta oscillations in the primary motor cortex using tACS. By 

applying tACS to M1 at the individual motor beta frequency, we investigated the 

relationship between TMS induced MEPs and tACS phase. As in the first two experiments 

and as previous studies indicate [35], we did not find a clear entrainment effect; the MEP 

size was not modulated by the tACS phase. We believe that this is due to the rather short 

tACS stimulation period (10s) we used. Studies that reported phase effects of beta tACS on 

MEP size used longer stimulation periods [35–37], whereas MEP size was not modulated 
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when applying 30s of slow oscillatory tDCS [55]. Although other studies investigating motor 

cortex excitability using tDCS had sample sizes similar to this study [55–57], we cannot rule 

out that a higher number of participants could have been beneficial for finding a phase 

effect of beta tACS on MEP amplitude. Future studies should therefore consider testing 

more subjects in order to receive stable results. 

 

Conclusion 

During cognitive tasks brain oscillations, particularly those in the beta frequency range (13-

30Hz), show a highly dynamic behaviour. For instance beta oscillations decrease in power 

within a couple of milliseconds during memory processing or movement execution followed 

by a subsequent increase in amplitude. Such dynamic processes can be studied under 

constant stimulation (e.g. throughout a cognitive task) in order to reveal state-dependent 

effects. But to answer causal questions about these specific time sensitive oscillatory 

processes, our findings would need to show that tACS at beta is capable of modulating 

oscillatory behaviour in a similar time range. In the series of experiments reported here 

however, we found that event-related, randomized, transient tACS in the beta frequency 

range does not modulate the formation of episodic memories or motor cortex excitability.  

This failure to find an effect of beta tACS on cognition or cortical excitability—and the 

finding that such statistically positive effects are unlikely—reveals that the effectiveness of 

tACS is a complex issue. On the one hand, tACS applied over minutes appears to be effective 

in modulating behaviour and brain oscillations [15–18,20–22,35]. And indeed, if tACS is used 

to synchronize and desynchronize distant brain regions, shorter stimulation durations (1s-



22 
  

1.8s) in other frequencies seem to be successful [26]. On the other hand, the present 

findings indicate that tACS applied in the range of seconds in order to modulate brain 

oscillations in one brain area is not effective [54,58]. Before being able to utilize beta tACS 

to draw conclusions about the causal relationship between oscillatory brain activity and 

cognitive processes, several issues regarding the use of beta tACS protocols need to be 

addressed, such as current distribution in the brain, optimal electrode placement, 

recommended stimulation intensities, recommended stimulation durations etc. Though a 

growing body of modelling studies addresses these issues [46,59–62], the respective models 

have to be validated extensively by experimental data, before it will be possible to apply 

tACS more effectively in cognitive research [63]. Event-related beta tACS could then be a 

useful and promising method. Yet as long as these problems remain unsolved, tACS may 

remain ineffective in unravelling the causal relationship between transient beta oscillatory 

activity and cognitive function. 
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Figure Legends 

Figure 1. The experimental design for experiments 1 and 2 is shown. 360 stimuli (180 words, 

180 faces) were presented during the encoding block (A). Participants had to rate the 

pleasantness of a stimulus on a 4-point rating scale (very pleasant – very unpleasant). During 

the 2s stimulus presentation, tACS was administered to the left and right IFG at 6.8Hz, 

10.7Hz, 18.5Hz, 30Hz, 48Hz, as well as sham stimulation. The material was counterbalanced 

across subjects so that every stimulus was paired with every stimulation condition equally 

often throughout the experiment. During the retrieval block (B) the 360 stimuli presented 

during encoding as well as 180 new items (90 words, 90 faces) were shown. Subjects were 

asked to rate their confidence of an item being old or new on a 4-point rating scale (very 

sure old - very sure new). 

Figure 2. Stimulation electrode configurations for the left inferior frontal gyrus (A) and right 

inferior frontal gyrus (B). Optimal electrode placement for the left IFG (BA 9) was mirrored 

onto the right hemisphere. Current field intensity is shown using a finite-element model, 

provided by Soterix Medical Inc. The field intensities are shown for a stimulation of 2mA, 

whereas in the present experiments stimulation intensities of 1mA and 0.8mA were used. 

Figure 3. Memory performance for words (A) and faces (B) split by stimulation condition 

and stimulation site (data of experiments 1 and 2 combined). Bayesian t-tests indicate no 

difference in memory performance between left beta stimulation and left sham stimulation 

for words (A) and between right beta stimulation and right sham stimulation for faces (B). 

Error bars show standard errors of the mean. 
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Figure 4. tACS-TMS procedure for experiment 3 is shown. Two different tACS montages 

were used: M1-Pz and FP1-Pz (A). TMS pulses (depicted in green) were delivered throughout 

the trial every 2.5s-4.5s to the left motor cortex over the tACS electrode placed at M1. tACS 

was applied at the individual motor beta frequency (depicted in orange) for 10s followed by 

a 10s period without tACS (B). MEPs were measured from the first dorsal interosseous (FDI) 

muscle of the right hand (C). Each session consisted of 70 trials. 

Figure 5. (A) Normalised mean MEP amplitude split by tACS condition. Error bars show 

standard errors of the mean. (B) Single trial MEP size by tACS phase. 

Figure 6. Mean normalised MEP amplitude split by 4 different tACS phase bins: 180° 

(trough), 270° (rising flank), 0° (peak), 90° (falling flank). (A) tACS Montage 1: M1-Pz. (B) 

tACS Montage 2: FP1-Pz. Error bars show standard errors of the mean. 
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