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This paper responds to the discussion [1] by Dr. K. Giannakos over our technical note [2]. In fact,
the authors welcome any comments to improve our research and practical experience related to railway
sleepers. In the discussion comment letter [1], Dr Giannakos discussed whether or not static testing of
railway prestressed concrete sleepers has any value in the engineering field. The discusser based his
comments on the need for dynamic testing for the determination of the bearing capacity of concrete
sleepers on the provisions from EN13230-2 and also inappropriately stated that ‘it is misleading to use
static not dynamic tests’.

Based on our extensive experience in both actual rail industry and academia (exemplified
evidences in Refs: [2–121]), it is very well known that railway concrete sleepers (or railroad ties)
are a structural and safety-critical component in track systems. Their main duties are to distribute
the load as well as to secure rail gauge during train passages. Although there exist two design
principles (permissible stress and limit states design concepts), their design takes into account both
static and dynamic loading conditions together with their associated static and dynamic structural
behaviours [122–124]. Despite the use of the prestressed concrete sleepers in railway networks
over 55 years, their design and behaviour are neither thoroughly understood nor well documented.
In particular, little information is available when the concrete sleepers are modified ad hoc and
in situ. Without appropriate structural design and engineering analysis, the structural safety and
engineering reliability of railway track systems can be impaired or mismanaged. A critical review of
existing standard design codes (e.g., European Standard EN13230-2, American Standard AREMA C4,
Australian Standard AS1095.14, or American Concrete Institute, ACI) reveals that there is a necessity
to investigate such the important aspects [1]. On this ground, it is important to note that it is the first
time that the effect of holes and web openings on the toughness and ductility of concrete sleepers is
addressed in a systematic way [2]. Static testing is the first step in studying the behaviour of sleepers
with holes and web openings, which was presented in [2] to inform the engineering community
about the initial results, and dynamic testing is the next step forward (to be published in due
course). The improved understanding will help railway and track engineers to determine structurally
appropriate retrofitting approaches for prestressed concrete sleepers with the holes and web openings
in practice.
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Based on the international railway practices, there are two main design principles that have
been commonly used to describe or predict the behaviour of railway sleepers (using any type of
materials) [4,5]. The traditional design method that has been used for over many decades is based on
the ‘permissible stress design principle’ while the new performance-based design method considers
‘limit states design concept’ [28,29]. The life span of concrete sleepers can also be varied. In Australasia,
North America, Asia and South Africa, the sleeper design life is about 50 years since the uncertainties
have been considered in design and maintenance (asset operations). In Europe, the sleepers must last
more than 70 years. In addition, each country has adopted different material testing methods that
resulted in different materials’ strength and behaviour used in the design processes. With these factors
in mind, a key performance criterion in the existing design principles (i.e., limit states design concept
and permissible stress design principle) still rely on the ultimate capacity from the combined static
stresses. In a structural design, ample ultimate strength and capacity of engineering structures and
components must always be ascertained [124–127]. It is important to note that the ultimate capacity
of the structural concrete members indicates many structural features with respect to dynamic and
service performance of the components [128–131].

In reality, railway track structures are often subjected to the dynamic loading conditions due to
wheel/rail interactions associated with the abnormalities in either a wheel or a rail [3]. The magnitude
of the dynamic impact loads per railseat can vary from 200 kN and can sometimes be more than
600 kN, whilst the design static wheel load per railseat for a 40-tone axle load could be only as much as
110 kN [120,121]. All static, quasi-static, and impact loads are very important in the design and analysis
of a railway track and its components. Generally, dynamic loading corresponds to the frequency range
from 0 to 2000 Hz due to modern design of track vehicles. The shape of impact loading varies
depending on various possible sources of such loading, e.g., wheel flats, out-of-round wheels, wheel
corrugation, short and long wavelength rail corrugation, dipped welds and joints, pitting, and shelling.
Wheel/rail irregularities induce high dynamic impact forces along the rails that may greatly exceed
the static wheel load. In general, the dynamic load characteristics are considered in the design and
analysis using ‘impact factor’ or ‘dynamic amplification factor’. All of the design methods embrace
the factor in the calculation of principal static stresses and their redistribution. This is the reason why
ultimate static response has come to play a key role and why static behaviour is essential to enable
structural failure mode prediction.

Figure 1 shows an actual statistical data of annual wheel loading obtained from railway networks
in Australia. This track force measurement offers a clear insight that the dynamic load cases used
in standard type tests (i.e., prescribed in EN13230-2) are not supposed to apply for understanding
the sleeper behaviour. In fact, the prescribed dynamic load cases are adopted for performance
benchmarking purpose. On this basis, the research presented in [2] is not misleading but, on the other
hand, offers unparalleled insight into sleeper behaviours under the specific conditions (with holes and
web openings). The insight into sleepers’ toughness and ductility will ensure that any concrete sleeper
can be structurally, safely retrofitted and modified for add-on fixture in practice.
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Figure 1. A real example of typical statistical data of annual wheel loading on tracks. These impact 
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sleepers, in a similar manner to structural concrete members. It considers both strength and 
serviceability. A simple pseudo-static (using factored load) approach can be used in the design 
procedures of concrete sleepers under routine traffics. The new limit states design concept has been 
developed from comprehensive studies of the loading conditions, the static behaviour, the dynamic 
response, and the impact resistance of the prestressed concrete sleepers. 

Figure 2 shows the flowchart for reliability-based structural design of railway concrete sleepers 
[89]. The errors and uncertainties involved in the estimation of the limit states design loads on the 
behaviour of a structure may be allowed for in strength design by using load factors to increase the 
nominal loads and using capacity factors to decrease the structural strength. The purpose of using 
any factor is to ensure that the probability of failure under the most adverse conditions of structural 
overload remains very small, which may be implicit or explicit in the rules written in a code. In 
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structural systems, especially for the failure mode identification at ultimate state. The toughness 
characteristic has correlation with dynamic strength and endurance of structural members. In the 
technical note [1], the emphasis was placed on experimental investigations into structural toughness, 
which is an important characteristic to predict failure under ultimate and damageability limit states 
[39,85,135]. As such, there is no shortage of value since the research in [2] paves the essential 
fundamental for further research into sleepers’ retrofit and modification. In addition, numerical 
study can use static test data for validation and enable virtual tests of the sleepers with holes and 
web openings under different limit states (i.e., dynamic and impact conditions due to accidental 
loading, fatigue life or endurance characteristics, etc.). 

Figure 1. A real example of typical statistical data of annual wheel loading on tracks. These impact
components are imposed on top of static 28-tonne axle load, which is the majority of load occurrence.
Note that the allowable serviceability load can be derived from the allowable dynamic impact factor of
2.5 (prescribed). In general, the railseat load is about 70%–80% of the dynamic wheel load [125,132,133].

The permissible stress design concept has fundamentally dominated in current Australian and
most international design standards for prestressed concrete sleepers where various limiting values or
reduction factors are imposed on material strengths and load effects. Alternatively, the limit states
design concept is a more logical entity for use as the design approach for prestressed concrete sleepers,
in a similar manner to structural concrete members. It considers both strength and serviceability.
A simple pseudo-static (using factored load) approach can be used in the design procedures of
concrete sleepers under routine traffics. The new limit states design concept has been developed from
comprehensive studies of the loading conditions, the static behaviour, the dynamic response, and the
impact resistance of the prestressed concrete sleepers.

Figure 2 shows the flowchart for reliability-based structural design of railway concrete
sleepers [89]. The errors and uncertainties involved in the estimation of the limit states design
loads on the behaviour of a structure may be allowed for in strength design by using load factors to
increase the nominal loads and using capacity factors to decrease the structural strength. The purpose
of using any factor is to ensure that the probability of failure under the most adverse conditions
of structural overload remains very small, which may be implicit or explicit in the rules written
in a code. In structural design practices, toughness of a member is an important factor in the
fail-safe design of structural systems, especially for the failure mode identification at ultimate state.
The toughness characteristic has correlation with dynamic strength and endurance of structural
members. In the technical note [1], the emphasis was placed on experimental investigations into
structural toughness, which is an important characteristic to predict failure under ultimate and
damageability limit states [39,85,135]. As such, there is no shortage of value since the research in [2]
paves the essential fundamental for further research into sleepers’ retrofit and modification. In addition,
numerical study can use static test data for validation and enable virtual tests of the sleepers with holes
and web openings under different limit states (i.e., dynamic and impact conditions due to accidental
loading, fatigue life or endurance characteristics, etc.).
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performance is often used in asset modelling and management. Static tests are normally served as a 
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considered for load rating [34,35]. 
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value. In contrast, the work provides a fundamental step towards better correlation between 

Figure 2. Flowchart for limit states design of railway concrete sleepers. The concept has been adopted
in Europe and Australia [39,85,134]. Capacity design check stage requires in-depth understanding of
structural failure, toughness and ductility of sleepers.

For dynamically compliant structures such as railway tracks, the fatigue life or endurance
characteristic would likely be another factor in the serviceability limit state [39,85] because low and high
cycle fatigue failure of railway sleepers may occur. Fatigue performance or ‘endurance’ of sleepers can
be correlated to energy toughness [125,129]. In most cases, a ratio of dynamic over static performance is
often used in asset modelling and management. Static tests are normally served as a datum or reference.
Without static testing, the dynamic accumulative results are meaningless [20,21,136]. Additionally, it is
noted from [136] that “According to the standard (EN13230), the dynamic testing is regarded as non-obligatory
optional testing that is conducted at the request of the end-user. The results obtained confirmed the reasons
why standards do not require dynamic testing: dynamic (impact) safety coefficients obtained in the testing,
compared to maximum allowable values, are greater than the relationship between the static safety coefficients
and maximum allowable static safety coefficients. It is clear that the effect involving increase of bearing capacity
of prestressed concrete sleepers occurs at dynamic cyclic load.” [136]. This finding is similar to a trend found
in the past [129]. However, based on our previous relevant research [2–121], this fatigue serviceability
limit state is critical for aging sleepers and should be considered for load rating [34,35].
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In summary, the standard type testing has been developed and adopted for performance
benchmarking. The technical note (under the discussion) neither misleads nor provides negligible
value. In contrast, the work provides a fundamental step towards better correlation between endurance
and toughness of sleepers with holes and web openings. It also improves the insight into structural
failure that helps railway track engineers determine appropriate ad hoc and in situ modification
methods for the structural and safety-critical components in railway track systems. The goal is to
improve public safety and reduce unplanned track maintenance (contributing towards extra costs,
time, energy and carbon footprint) due to premature failure of railway sleepers [137,138]. On this
ground, by inappropriately publishing his comment, the discusser harassed the authors by unfairly
accusing them of providing misleading research information.

Conflicts of Interest: No conflict of interest.
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