
 
 

University of Birmingham

The anatomy of phenotype ontologies
Gkoutos, Georgios V; Schofield, Paul N; Hoehndorf, Robert

DOI:
10.1093/bib/bbx035

License:
Creative Commons: Attribution (CC BY)

Document Version
Publisher's PDF, also known as Version of record

Citation for published version (Harvard):
Gkoutos, GV, Schofield, PN & Hoehndorf, R 2017, 'The anatomy of phenotype ontologies: principles, properties
and applications', Briefings in Bioinformatics. https://doi.org/10.1093/bib/bbx035

Link to publication on Research at Birmingham portal

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 10. Apr. 2024

https://doi.org/10.1093/bib/bbx035
https://doi.org/10.1093/bib/bbx035
https://birmingham.elsevierpure.com/en/publications/4233fee0-ecfc-4c25-887c-44d2aeba80a9


The anatomy of phenotype ontologies: principles,

properties and applications
Georgios V. Gkoutos, Paul N. Schofield and Robert Hoehndorf
Corresponding author. Robert Hoehndorf, Computer, Electrical and Mathematical Sciences and Engineering Division, King Abdullah University of Science
and Technology, 4700 King Abdullah University of Science and Technology, Thuwal 23955-6900, Kingdom of Saudi Arabia. Tel.: þ966-54-0523450; E-mail:
robert.hoehndorf@kaust.edu.sa

Abstract

The past decade has seen an explosion in the collection of genotype data in domains as diverse as medicine, ecology, live-
stock and plant breeding. Along with this comes the challenge of dealing with the related phenotype data, which is not only
large but also highly multidimensional. Computational analysis of phenotypes has therefore become critical for our ability
to understand the biological meaning of genomic data in the biological sciences. At the heart of computational phenotype
analysis are the phenotype ontologies. A large number of these ontologies have been developed across many domains, and
we are now at a point where the knowledge captured in the structure of these ontologies can be used for the integration
and analysis of large interrelated data sets. The Phenotype And Trait Ontology framework provides a method for formal
definitions of phenotypes and associated data sets and has proved to be key to our ability to develop methods for the inte-
gration and analysis of phenotype data. Here, we describe the development and products of the ontological approach to
phenotype capture, the formal content of phenotype ontologies and how their content can be used computationally.
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Introduction

The distinction between genotype and phenotype was first
made by the Danish botanist Wilhelm Johannsen in 1909 [1] and
disseminated in a later paper in English in 1911 [2]. Johannsen
defined ‘phenotype’ as any observable characteristic of an or-
ganism and, in modern terms, ‘genotype’ as the organism’s in-
herited blueprint, i.e. its genomic information. This definition
remains among the best characterizations of what we mean by
phenotype, and we understand, as did Johannsen, that an or-
ganism’s phenotype arises from the complex interactions be-
tween its genotype and its environment.

A major challenge of the past two decades has been the cap-
ture of phenotypic information in a way that is amenable to
computational analysis. The central problem with describing
phenotypes is that they are traditionally described in natural
language. Natural language is highly expressive and, given the
constraints of a specialist or professional tradition of terminolo-
gies and communication styles, extremely effective at capturing
and communicating information about phenotypes. However,
these traditional methods are subject to ambiguity, modified by
context, and the semantic meaning of concepts and terms de-
pends on the background knowledge of domain experts.
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These challenges make it difficult to use data captured in nat-
ural language, computationally [3].

In response to these needs, several disciplines, notably
medicine, have developed standardized terminologies over the
years to promote a common language of discourse [4]. Such ter-
minologies, while useful, are limited in their computational ap-
plicability and face interoperability issues when competing
terminologies, or atypical application of terms, result in loss of
meaning or translation. This problem has been addressed in re-
cent years through the adoption of structured and semantically
formalized ontologies that deal with the issues of both stand-
ardization and computability.

The development of bio-ontologies has closely followed the
technological developments such as sequencing technologies
and gene expression arrays in the biomedical sciences, which re-
sulted in the generation of massive amounts of highly complex
data and subsequent analytical challenges. A solution to the
problem of data annotation, integration and analysis was de-
veloped in the early 2000s with the creation of the Gene Ontology
(GO) to describe the attributes of gene products [5].

The GO was the first systematic application of formal onto-
logical principles [6, 7] to the biomedical sciences and facilitated
one of the first formal semantic approaches to biomedical data
integration. The application of ontologies to data integration
has the advantage of allowing capture of relationships between
concepts in a domain through formal axioms [7]. The ability of
ontologies to capture knowledge through their axioms further
permits the use of automated reasoners across them, a property
that has become increasingly important in the way ontologies
are currently being used [8].

Following the development of GO, there was an efflores-
cence of ontologies for the capture of phenotypic information,
i.e. ontologies of anatomy and of phenotypes mainly aimed at
systematically capturing phenotype information from humans
and model organisms. The urgent need to develop standards for
capturing phenotypic information was recognized as early as
2000 [9]. The human embryological anatomy ontology was de-
veloped in 2003 [10] and followed in the same year by the
Mammalian Phenotype Ontology (MPO) [11] and the mouse ana-
tomical dictionary [12], and a year later by the Mouse Pathology
Ontology (MPATH) [13].

Implementation of these ‘pre-composed’ ontologies, i.e. ontol-
ogies where each concept was represented by a single class and
its associated label, was largely in the model organism databases
such as the Mouse Genome Database [14]. In 2004, the need for a
more systematic effort for building phenotype ontologies was rec-
ognized [15], resulting in the development of the Phenotype And
Trait Ontology (PATO) and the entity–quality (EQ) formalism to de-
scribe phenotypes [16, 17]. While the phenotype ontologies pro-
vide standards for capturing phenotype information, the PATO
framework provides a systematic way to represent phenotypes
formally, develop new phenotype ontologies and integrate pheno-
type ontologies across domains, enabling their comparison as
well as, by extension, the comparison of phenotype data associ-
ated with them. The unifying PATO framework for describing
phenotypes computationally allowed the full potential of
ontology-based data integration and analysis to be applied to
phenotypes, including semantic similarity measures for determin-
ing the phenotypic relatedness of annotated entities [18], semantic
search across different ontologies [19] and enrichment over ontol-
ogies, for example, to identify biological processes affected by ex-
perimental perturbations or natural variation [20].

The systematic application of ontologies for data collection
is now becoming the norm for experimental organisms [21, 22],

the ecological and evolutionary fields, though more slowly for
humans [23]. Here, we review the principles underlying pheno-
type ontologies and how they give rise to different analytical
approaches. We first provide a brief introduction into ontologies
and Semantic Web technologies and review the landscape of
phenotype and disease ontologies. We then discuss phenotype
ontologies that make use of the PATO framework extensively,
focusing on the technical and formal details. Following this
technical discussion, we highlight applications of phenotype
ontologies in biological and biomedical data analysis and pro-
vide conclusions and an outlook for phenotype ontologies.

Ontologies and the Semantic Web

Most modern ontologies in biology and biomedicine use the
Web Ontology Language (OWL) [24] to express their content.
OWL is a formal language based on description logics [25], and
uses several profiles that correspond to different language sub-
sets [26]. OWL makes a basic distinction between classes and in-
stances. A class is an OWL entity that can be instantiated and
usually classes correspond to general kinds of entities.
Examples of classes are ‘Arm’ (a kind of material structure),
‘Drinking’ (a kind of process) or ‘Color’ (a kind of quality).
Instances, on the other hand, cannot have instances them-
selves and correspond to the things that are found within a do-
main of interest. Examples of instances are ‘my right arm’, the
‘drinking process mouse A was involved in at a particular peri-
od’ or the ‘color of my skin’.

Most ontologies contain no instances and specify the classes
within a domain of interest through the use of axioms [8]. An
axiom is a statement assumed to be true within a domain of
knowledge. Some of the simplest axioms assert that one class is
a subclass of another, conveying the information that all in-
stances of the former are also instances of the latter. More com-
plex axioms can be formed through the use of quantifiers and
relations (object properties and datatype properties in OWL)
that hold between instances.

Ontology axioms can be used together with automated rea-
soning to reveal implied, albeit not explicitly stated, knowledge.
For example, from the two axioms that A SubClassOf: B and B

SubClassOf: C, it can be inferred that A SubClassOf: C.
Reasoning over OWL ontologies can be highly complex and is, in
general, exponential in the size of the OWL knowledge base [24].
However, some fragments of OWL have been defined for which
inferences can be performed in polynomial time [26]. In biolo-
gical, biomedical and medical ontologies, the OWL 2 EL profile is
widely used, as it supports many of the axioms and operations
useful to express biological knowledge while maintaining poly-
nomial time complexity so that it can be used together with large
ontologies [27]. In particular, OWL 2 EL supports subclass axioms
(such as red SubClassOf: color), equivalent class axioms (such
as ’high blood pressure’ EquivalentTo: hypertension) and
disjointness axioms (such as red DisjointWith: blue), as well
as class constructors including existential restrictions and class
intersection (such as ’part of’ some liver and ’part of’ some

’cardiovascular system’). OWL 2 EL further allows the use of
transitive and reflexive properties, and supports combining mul-
tiple properties through properties chains. The specification of
OWL profiles provides a comprehensive reference [26].

Landscape of phenotype ontologies

Three major strategies for the capture of phenotype data domin-
ate the ontology landscape. Most widely used are ontologies
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containing pre-composed classes describing ‘abnormal’ pheno-
types aiming either to completely describe the abnormal phe-
nome of an organism or specific phenotypic domains such as
disease or behavior. Examples are the MPO [11], the Human
Phenotype Ontology (HPO) [28] or the Fission Yeast Phenotype
Ontology (FYPO) [29], all of which aim to capture aberrations
related to the entire phenome of an organism. This approach as-
sumes the presence of a reference organism or strain, and ‘abnor-
mal’ phenotypes denote a deviation from this norm. In contrast,
the trait ontologies such as the Wheat Trait Ontology (part of the
Crop Ontology) [30, 31] capture individual traits and their units of
measurement [32] when they represent continuous variables,
without including any ‘normal’ and ‘abnormal’ phenotypes
within the ontology. The third approach is to record an entity (or
entities) involved in a particular phenotypic manifestation and
the manner that it has been affected. This approach takes the en-
tity from a selection of ontologies (most often, ontologies of anat-
omy and physiology) and the quality from PATO [16]. An example
of this approach is the Zebrafish Information Network (ZFIN) [33,
34] that uses this ‘post-composed’ approach to phenotype de-
scriptions, using, among others, the GO [5] and the Zebrafish
Anatomy Ontology [35] to refer to the entities.

Table 1 presents a survey of pre-composed phenotype ontolo-
gies and trait ontologies for humans, several model organisms,
plants and microorganisms gathered from Bioportal [73], Aber-
OWL [74] and the Ontology Lookup Service [75]. The list provided
in Table 1 is not intended to be comprehensive and contains
ontologies, which are widely used across many projects and data-
bases as well as ontologies restricted to specific applications.

Ontologies for the medical sciences

The terminologies for collecting information on human dis-
eases have a long history, with the key terminologies being the

Unified Medical Language System (UMLS) [43], the Systematized
Nomenclature of Medicine-Clinical Terms (SNOMED CT) [51], the
International Classification of Diseases (ICD) codes [41] and the
UK Read codes [50]. While these terminologies are hierarchically
structured, they were not originally intended to be used as ontol-
ogies and followed the pattern of the Simple Knowledge
Organization System (SKOS) [76]. In recent years, however, they
have been rendered into formal ontological formats, which
can be used to support some operations commonly performed
on ontologies. The UMLS represents one of the most useful re-
sources for biomedical semantics, partly because of its size and
comprehensive coverage, but mainly because of the extensive
mapping to other ontologies, allowing the UMLS to bridge ter-
minological and structural gaps between different ontologies.
Many databases use UMLS along with other ontologies for coding
information about disease and phenotypes, such as DisGeNet
[37] or the Comparative Toxicogenomics Database [44].

More recently, the HPO [38] was introduced to specifically
characterize phenotypes in humans and represent human dis-
eases as a combination of phenotypes. Applied to patients, the
HPO enables highly granular, ‘deep’, phenotyping [77], which
has been shown to be highly successful in increasing the accur-
acy of diagnosis, facilitating patient population stratification
and identifying novel candidate genes for genetic disorders
[18, 78]. Consequently, the HPO is now applied by a large num-
ber of projects and consortia aimed at characterizing patients
and understanding molecular mechanisms underlying their
diseases, including the UK 100 000 Genomes project [79].
Furthermore, journals have started to require the submission of
HPO class-based phenotype descriptions with manuscripts that
characterize patients or diseases [80] so that information about
observed phenotypes can be reused more widely. HPO is also
used for indexing and annotating information in human gen-
etics databases, such as the Online Mendelian Inheritance in

Table 1. Landscape of phenotype ontologies

Domain Ontology # Classes Used by

Human and biomedical DO [36] 11 663 DisGeNet [37]
HPO [38] 15 381 HPO Database [39] and GWAS Central [40]
International Classification of Disease version 10,

Clinical Modification (ICD10CM) [41]
92 168 Various EHR systems

ICD9CM [42] 22 533 Various EHR systems
Medical Subject Headings Thesaurus [43] 261 990 Comparative Toxicogenomic Database [44]
UMLS [43] SIDER [45] and DisGeNet [37]
NCI Thesaurus [46] 118 941 NCI, NIH multiple projects
Ontology of Adverse Events [47] 5514
Orphanet Rare Disease Ontology [48] 13 105 Orphanet [49]
Read Codes Clinical Terminology version 3 [50] 140 065 UK General Practice
SNOMED-CT [51] 324 129 Various EHR systems

Animal model organism Dictyostelium Phenotype Ontology [52] 1058 DictyBase [52]
DPO [53] 506 FlyBase [54]
MPATH [13] 889 PathBase [55], RGD [56] and MGI [14]
MPO [22] 30 316 MGI [14], RGD [56]
Worm Phenotype Ontology (WBPhenotype) [57] 2435 WormBase [58]

Plants and fungi Ascomycete Phenotype Ontology 619 Saccharomyces Genome Database [59]
Flora Phenotype Ontology [60] 28 430 African Plants Database [61]
FYPO [29] 9870 PomBase [62]
TO [63] 1433 iPlant Collaborative Databases [64] and

Planteome [65]
Solanaceae PATO [30, 31] 397 Sol Genomics Network [66]
Thesaurus Of Plant traits [67] 950 TRY Database [68]

Cell Cell Microscopical Phenotype Ontology [69] 813 Cellular Phenotype Database [70]
Ontology for Microbial Phenotypes (OMP) [71] 1120 Microbialphenotypes _org [72]
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Man [81] and Orphanet [49] databases, GWAS Central [40] and
ClinVar [82] as well as clinical electronic health record (EHR)
systems.

A similar move toward more formalization and precision
can be observed in terminologies intended to capture diseases,
where the Disease Ontology (DO) [36, 83] aims to capture all
human diseases. DO provides mappings to traditional clinical
terminologies such as SNOMED CT or International
Classification of Diseases version 9, Clinical Modification
(ICD9CM), and some databases fully characterize diseases in DO
with phenotypes from ontologies such as HPO [84].

Medical terminologies have traditionally focused on classify-
ing the terminology used to characterize the state of a patient,
and they often contain terms that may both refer to a pheno-
type or a disease. While the distinctions between phenotypes
and diseases are not always obvious, there is now a strong ten-
dency in the biomedical ontology community to consider dis-
eases as a priori distinct from phenotypes [85–87]; a disease
would usually consist of multiple different phenotypes. There
are many challenging cases, such as hypotrichosis, which may
be considered a phenotype if occurring with other signs or
symptoms or as a disease in itself if isolated (e.g. as generalized
hypotrichosis).

The overlap between disease and phenotype ontologies
allows ontology mapping techniques to be applied to identify
overlapping or equivalent classes in different ontologies [48, 88,
89]. Inter-ontology mapping not only enables ontology inter-
operability, but also permits the integration of large clinical
data sets. The coding of drug side effects and indications to
UMLS, SNOMED CT, ICD9CM and the Medical Dictionary for
Regulatory Activities (MedDRA) adverse event terminology fur-
ther permit the integration of drug, pathway and disease data
from databases such as PharmGKB [90], Drugbank [91] and
SIDER [45] with other resources, and have been used to predict
both novel drug targets and indications [92–95]. In these
approaches, phenotype ontologies are used to combine data
sets both to increase sample size and connect phenotypes
observed under different circumstances, such as drug effects
and mutant model organism phenotypes.

Model organism phenotype ontologies

The model organism databases, such as the Mouse Genome
Informatics (MGI) database [14], provide ontology-coded geno-
type/phenotype information for natural and induced mutations,
and they were the first resources to use formal ontologies for
phenotype coding. In these databases, most phenotype infor-
mation is captured by literature curation or by direct coding
from large-scale high-throughput projects such as the
International Mouse Phenotype Consortium [96, 97] and indus-
try data sets from Lexicon and Deltagen.

Computational integration of phenotype data between spe-
cies has been made possible through a combination of lexical
matching of class labels, PATO-based standardization of pheno-
type ontologies and cross-species anatomy and physiology
ontologies such as Uberon [98] and GO [5]. Together with rea-
soning over multiple ontologies (as described in detail below),
this has allowed model organism phenotypes to directly con-
tribute to translational research, for example, predicting the
causative genes of rare human diseases [99], identification of
the contribution of component genes in contiguous gene syn-
dromes [100] and, more recently, prioritizing causative variants
from undiagnosed clinical exomes [101]. Here, integration of
phenotype ontologies is used to make phenotypes in different

species comparable, while measures of semantic similarity are
used to associate the perturbations (such as targeted mutation)
underlying the phenotypes and generate hypotheses about the
mechanisms leading to a phenotype when the underlying
causes are unknown.

Biodiversity and ecology

Systematic collection of phenotype data as part of the charac-
terization of natural environments has always been an integral
part of ecology and biodiversity studies. The increasing scale
and complexity of data collection, the establishment of genomic
observatories and new methods of large-scale analysis have
stimulated the development of tools for biodiversity informatics
[102, 103] among which the plant and fungi ontologies listed in
Table 1 represent the major ontological tools now in use.
Environment is a critical aspect of phenotype interpretation
and particularly relevant in a biodiversity and ecological context
where environments are not standardized, and the
Environment Ontology (ENVO) [104] provides a tool to capture a
broad range of environmental data [105]. There are also more
specialized ontologies, such as the Plant ENVO [63] for plant en-
vironmental conditions. Notably, in the plant sciences (includ-
ing biodiversity and ecology, but also spanning agriculture and
plant model organisms), large collaborative efforts, in particular
the Planteome project [65], the Crop ontology project [30, 31]
and the iPlant Collaborative [64], have undertaken to unify and
standardize the different vocabularies, ontologies and
databases.

Evolutionary biology

The collection of phenotypic characteristics for the study of
evolution using natural language has been established for a
considerable time [106]. More recently, phylogenetic system-
atics has formalized the collection of comparative data across
taxa; yet, much of the collected phenotypic information is in
publications inaccessible to computational analysis, and impos-
sible to integrate with the information in genetic and pheno-
typic databases. The difficulties in analyzing and integrating
such data have been successfully addressed using anatomy and
phenotype ontologies underpinned by the PATO framework
[107]. This approach has been successfully applied in many pro-
jects, most notably in the Phenoscape project [108, 109] where a
knowledge base constructed from ontology-based literature
mining has been used to predict the genes responsible for
phenotypic differences between related species, both extant
and extinct. The hypothesis underlying these studies is that
observed phenotypic differences between two species resulting
from evolutionary change in a single gene or pathway can be
compared with differences between a normal and mutant
model organism, and if the observed differences are similar, the
evolutionary change likely happened in the same gene or path-
way that has been altered in the mutant model organism.

Agricultural and livestock ontologies

Several ontologies have been created specifically in support of
domestic animal production, which cover specific phenotypic
traits of multiple food species. In the Animal Trait Ontology for
Livestock (ATOL) [110], for example, classes refer to traits and
not abnormal phenotypes and are closely related to industry-
standard measurement techniques facilitating the capture of
quantitative and discrete data using the EQ formalism. The
ATOL is designed to work with the environment ontology for
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livestock, providing a matched pair of resources that can cap-
ture all the parameters needed to interpret phenotypic findings.

Application ontologies containing phenotypic concepts

An application ontology is an ontology generally derived for a
specific use or application [111], often to model a broad range of
aspects of a specific domain, or sometimes to mirror the con-
tent of a database containing data on a specific domain. We do
not include application ontologies in Table 1 because of space
constraints and the large number of application ontologies con-
taining phenotypic classes. Many of the major application
ontologies follow the Open Biological and Biomedical
Ontologies (OBO) Foundry principles [112] and reuse classes
from phenotype ontologies using the Minimum Information to
Reference an External Ontology Term approach [113].
Prominent examples of these application ontologies include the
Experimental Factor Ontology [114], used across the European
Bioinformatics Institute (EBI) databases; the Ontology of General
Medical Science [87], intended to unify clinical ontologies used
in EHR systems; the Neuro Behavior Ontology [115], used in axi-
oms of several phenotype ontologies and for annotation by re-
sources such as the Rat Genome Database (RGD) [56]; and the
Infectious DO [116], used as a foundation to build several
disease-specific ontologies.

PATO-based phenotype ontologies

The PATO [16] was built as a framework to unify phenotype de-
scriptions in biology, render them interoperable and make them
amenable to automated reasoning and processing (see Figure 1
for an overview). The PATO framework [16] is not only an ontol-
ogy but also provides a uniform way to express phenotype
statements, the EQ method [117]. According to the EQ method, a
phenotype is described by referring to an ‘entity’, either an ana-
tomical structure or a biological process or function, and char-
acterizing this ‘entity’ with a ‘quality’ that captures the

properties or attributes of the entity. When using the EQ
method to describe phenotypes, the entity will usually refer to a
class from either an anatomical ontology or an ontology of proc-
esses and functions such as the GO [5], while the quality is
taken from the PATO. For example, to describe the trait ‘heart
morphology’ using the EQ method, the class ‘heart’ (from an
anatomy ontology) is used as entity and the class ‘morphology’
(from PATO) is used as quality. To describe ‘heart hypertrophy’,
the same class ‘heart’ is used as entity and the quality ‘hyper-
trophic’ from PATO. The class ‘hypertrophic’ in PATO is a sub-
class of ‘morphology’ and should result in ‘heart hypertrophic’
being a subclass of ‘heart morphology’.

A distinction can be made between ‘morphology’, which is an
attribute, and ‘hypertrophic’, which is a value of the attribute,
and PATO contains this distinction as well as others. The PATO
[16] has grown over time and evolved to incorporate distinctions
between attributes and their values, qualities and quantities,
normal and abnormal qualities, increased and decreased values
and unary and n -ary qualities. The rich information in PATO has
also led to a complexity that can make the ontology and EQ
framework challenging to use, and here we discuss all features of
PATO in detail and aim to make them more accessible.

The distinction between attributes and their values is made
in PATO through a combination of formal subclass axioms and
OBO ‘slims’ [122]. A slim of an ontology is a subset of the ontol-
ogy consisting of classes and axioms that are useful for a par-
ticular purpose, and they are expressed by an annotation
property. Examples of attributes in PATO include ‘morphology’,
‘color’ or ‘shape’, while examples of values include ‘hyper-
trophic’, ‘red’ or ‘round’. Attributes and values are distinguished
in PATO through the use of the ‘attribute’ and ‘value’ slims. In
the OBO format [123] of PATO, these are expressed as ‘slims’
[122], i.e. application-specific subsets of PATO; in the OWL for-
mat of PATO, the distinction is made through the use of annota-
tion properties attributed to the PATO class. Attributes can only
have certain values, depending on the value space underlying
an attribute [124]. For example, ‘hypertrophic’ can be a value of
‘morphology’ but not of ‘color’. In PATO, possible values of an
attribute are subclasses of the attribute class, i.e. PATO classes
expressing attributes have their potential values as subclasses.
Specifically, given a PATO class expressing a value (such as
‘hypertrophic’), the corresponding attribute is the most specific
superclass that falls in the attribute subset of PATO.

Among the classes expressing attributes in PATO [16], a
further distinction is made between scalar attributes and non-
scalar attributes. Scalar attributes have values that can be par-
tially ordered and have magnitudes, and include attributes such
as ‘speed’ or ‘size’. Non-scalar attributes (such as ‘color’ or
‘shape’) have values that are qualitative and do not give rise to a
natural ordering. Only scalar attributes can be increased or
decreased while it makes no sense to state that a non-scalar at-
tribute is increased or decreased. However, both scalar and non-
scalar attributes may have values that are opposites of each
other. For scalar values, PATO contains axioms that specify that
a certain value of an attribute is ‘increased in magnitude rela-
tive to’ or ‘decreased in magnitude relative to’ a reference value.
PATO further includes axioms that relate values of attributes to
their opposite values, using the ‘opposite of’ relation. For ex-
ample, the quality ‘rough’ (PATO:0000700) is declared as an ‘op-
posite’ of the quality ‘smooth’ (PATO:0000701). These axioms
can be used to identify phenotype statement that express op-
posite directionalities. The distinction between scalar and non-
scalar attributes is not always clear, as some attributes may be
considered to be both scalar and non-scalar, depending on

Figure 1. A schematic representation of the PATO framework. Quality classes from

PATO are combined with entity classes from multiple ontologies (such as GO or

Uberon) to provide formal definitions for species (and sometimes domain specific)

phenotype ontologies. Examples of such ontologies are depicted in the outer ring

and include the HPO [118], MPO [119], Cellular Phenotype Ontology (CPO) [120],

Drosophila phenotype ontology (DPO) [53], Plant Trait Ontology (TO) [117] FYPO

[121] and Wormbase Phenotype Ontology [57]. This provides an interoperability

layer between these ontologies and facilitates the integration of the data annotated

to them in the species-specific databases around the outside edge.
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context. Examples include color, which can either be scalar,
when expressed as wavelengths, or non-scalar, when expressed
using qualitative values such as ‘red’ or ‘yellow’. The scalar ver-
sus non-scalar distinction in PATO should therefore be con-
sidered a guideline, not an absolute truth.

Another subset of PATO [16] distinguishes between unary
and relational qualities. A unary quality is a quality of a single
entity, while relational qualities are qualities of multiple enti-
ties. Examples of relational qualities include ‘anterior to’
(PATO:0001632) or ‘sensitivity toward’ (PATO:0000085), which
are qualities of two entities. In PATO, unary qualities are distin-
guished from relational qualities through a slim (or an annota-
tion property in the OWL version of PATO) that tags some
attributes and values as relational if they are qualities of more
than one entity. Relational qualities in PATO are expressed as
qualities of one of their bearers and are related using the ‘to-
ward’ relation to their second (and third, fourth, etc.) argu-
ments. For example, the ‘sensitivity toward oxygen’ of a
microorganism would be expressed as a quality ‘sensitivity to-
ward’, which is the quality of the microorganism and is directed
‘toward’ some oxygen (toward some oxygen).

Direct and comparative phenotype descriptions

Phenotype ontologies can be broadly distinguished in two main
classes based on whether they express ‘direct’ phenotype obser-
vations or ‘comparative’ observations. We consider direct
phenotypes to be raw observations of a single organism, with-
out a reference to another organism for comparison. Direct
phenotypes are often collected in a biodiversity and evolution-
ary context, and they may form the basis of GWAS or PheWAS
studies [40, 125]. For example, character matrices will represent
phenotypes of individual organisms or species, without com-
paring them a priori to other entities. Similarly, in a biodiversity
context, such as floras or monographs focusing on the organ-
isms within a region, or characterizing a family of related organ-
isms, phenotype descriptions are those of individual organisms
or species, without including a comparison [60].

On the other hand, comparative phenotype statements char-
acterize the outcomes of an experiment, or the observed differ-
ences from an explicit or implicit reference state. For example,
comparative phenotype statements in a model organism con-
text are statements denoting phenotypic differences resulting

from mutagenesis experiments. In the comparative case, a ‘con-
trol’ is defined, usually a wild-type of an organism, and a ‘case’
studied, often a mutant or an organism that has undergone a
specific procedure such as drug treatment or other environmen-
tal effect. The comparative case is illustrated in the top of
Figure 2.

Direct and comparative phenotype statements are clearly
distinct: while a direct phenotype statement conveys informa-
tion about exactly one organism, a comparative phenotype
statement conveys information about at least two different or-
ganisms, case and control. Two direct phenotype statements
can give rise to a comparative phenotype statement if the direct
phenotype statements are ‘comparable’. Two phenotype state-
ments are comparable if and only if they involve the same kind
of entity and ‘comparable qualities’. PATO qualities are compar-
able if and only if they are values of the same attribute. The at-
tributes to which a PATO quality belongs can be identified in
PATO by identifying the most specific superclass of a quality
that is tagged as belonging to the ‘attribute’ subset. Given two
comparable direct phenotype statements P1 (about organism
O1) and P2 (about organism O2), with A being the attribute
underlying P1 and P2 and E the entity, and selecting O1 as refer-
ence, the comparative statement assigned to O2 (relative to O1)
is abnormal/divergent E A (such as ‘abnormal flower color’ for
entity ‘flower’ and Attribute ‘color’). For example, when compar-
ing flower red and flower yellow, and using either the first or
second as reference, the comparative phenotype is abnormal/

divergent flower color because the entity (flower) is identical
in both statements and the qualities are comparable (in virtue
of both being values of ‘color’) yet different. If P1 and P2 are
based on ‘scalar qualities for which values can be compared
quantitatively, more detailed comparative phenotype state-
ments can be inferred involving ‘increased’ or decreased’ val-
ues. Figure 2 illustrates the relation between direct and
comparative statements.

Identification of comparative phenotypes can be extended
from the simple case of two comparable phenotype statements
to the case in which sets of phenotypes are observed and a set
of comparative phenotypes is generated from these observa-
tions. Given two sets of phenotype statements S1 and S2,
the first step is to identify the set of pairs of phenotype state-
ments ðx; yÞ such that x 2 S1 and y 2 S2 and x and y are compar-
able. Assuming S1 is selected as control and S2 as case, then, for

Figure 2. Direct and comparative phenotype statements, and conversions between them. The upper part of the figure shows how phenotype statements are made in

case/control experiments, in which the comparative phenotype statement expressed the difference of an observation to an explicitly or implicitly specified control. In

the bottom figure, direct observations are made to two organisms, Organism 1 and Organism 2, and the comparative phenotype statements are derived by designating

one of the two organisms as control and computing the differences between the other organism and the control.
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each pair of phenotype statements ðx; yÞ, a comparative pheno-
type can be generated following the procedure above to gener-
ate a set of comparative statements. These sets can also directly
be recorded in a database, and model organism databases such
as MGI and ZFIN, but also human phenotype databases such as
the HPO database, record phenotypes in this form.

When collecting phenotype information from mouse popu-
lations of the same genotype, the International Mouse
Phenotyping Consortium (IMPC) uses statistical analyses to de-
termine significant phenodeviance from the inbred background
strain and then codes to the abnormal phenotype class, such
that the categorical annotation is to the strain and not to the in-
dividual. Each assay is assigned to a set of classes in the MPO
that might be called, and this is done automatically in most
cases. The PATO on its own does not contain mechanisms to re-
cord additional provenance information and evidence about
how a phenotype statement was derived. However, the PATO
framework [16] originally incorporated an assay ontology,
which could have been used to formally characterize the assays
and statistical methods that were used to derive a phenotype
statement, such as the complex set of assays and statistical
methods used by the IMPC [126]. While a dedicated and compre-
hensive assay ontology has not yet been established, the
Ontology of Biomedical Investigations [127] and Evidence Code
Ontology [128] can be used for this purpose.

Interoperability with anatomy and physiology
ontologies

The organization of classes in phenotype ontologies usually fol-
lows the structure of anatomy and physiology of the organism
for which phenotypes are recorded. Many phenotype ontologies
were built manually by domain experts, and these ontologies
follow the structure of anatomy or physiology ontologies impli-
citly. However, some phenotype ontologies also make explicit
use of the knowledge in anatomy or physiology ontologies, and
automatically generate a taxonomic structure through auto-
mated reasoning.

Phenotype ontologies use the structure of anatomy and
physiology ontologies in several ways:

Taxonomic relations: If C is a subclass of D in an anatomy or
physiology ontology, then ‘C phenotype’ is a subclass of ‘D
phenotype’ in the corresponding phenotype ontology. For ex-
ample, ‘T-cell apoptosis’ is a subclass of ‘apoptosis’ in GO, and
‘abnormal T-cell apoptosis’ is a subclass of ‘abnormal apoptosis’
in the MPO.

Anatomical and physiological parthood: If C is a subclass of
‘part of some D’ in an anatomy of physiology ontology, then ‘C
phenotype’ is a subclass of ‘D phenotype’ in the corresponding
phenotype ontology. For example, ‘left ventricle’ is a subclass of
‘part of some heart’ in the Foundational Model of Anatomy
(FMA), and ‘abnormal left ventricle’ is a subclass of ‘abnormal
heart’ in the HPO.

Anatomical function: If C is a subclass of ‘function of some
D’, then ‘C phenotype’ is a subclass of ‘D phenotype’. Axioms
using the ‘function of’ relation are rarely included in current
ontologies such as GO, and this rule can also be used in reverse
to infer from phenotype ontologies the functions of anatomical
entities [129]: if ‘C phenotype’ has manually been asserted to be
a subclass of ‘D phenotype’, and C is a class of functions and D a
class of material entities, then C should be a subclass of ‘func-
tion of some D’. For example, ‘Arrhythmia’ (HP:0011675), based
on the entity ‘heart contraction’ (GO:0060047) in the HPO, is as-
serted to be a subclass of ‘abnormality of cardiovascular system

physiology’ (HP:0011025), based on the anatomical entity ‘car-
diovascular system’, thereby implying that one of the functions
of the cardiovascular system is ‘heart contraction’. Similarly, in
the MPO, ‘impaired hearing’ (MP:0006325, based on the entity
‘sensory perception of sound’) is a subclass of ‘abnormal ear
physiology’ (MP:0003878, based on the entity ‘ear’), implying
that one of the functions of the ‘ear’ is ‘sensory perception of
sound’.

These general rules can be used to automatically generate a
PATO-based backbone taxonomic structure of a phenotype ontol-
ogy. For example, such an automated approach has been applied
in generating prototypes of the Flora Phenotype Ontology [60] or
the Cellular Phenotype Ontology [120]. Additionally, for manually
generated phenotype ontologies, formal PATO-based ontology
definitions can be created for some or all classes and the back-
ground knowledge in anatomy and physiology ontologies can be
used to improve the ontology quality.

When these universal rules for structuring PATO-based
classes of phenotypes are combined with ontologies representing
entities that cross multiple species, they also allow the integra-
tion of phenotypes between different species. In particular, when
these structuring rules are applied in phenotype ontologies for
different species, and the entity class is either selected from an
ontology such as Uberon [98] or the GO [5], both of which cover
multiple species, or can be mapped to such an ontology, pheno-
types can be integrated, and compared, across different species.
Such an approach was firstly applied systematically in the
PhenomeNET system [130] and later gave rise to approaches
such as PhenoDigm [78] and the Monarch Initiative [19].

PATO-based axiom patterns

Using reasoning over phenotype ontologies necessitates that
axioms clearly specify the intended meaning of a class and fol-
low a pattern that is amenable to the desired inferences. The
core part of a phenotype description is the ‘entity’ and the ‘qual-
ity’ on which a phenotype description is based [16]. There are
two main ways in which a phenotype class in an ontology can
be specified, using either the ‘quality’ as the primary mode of
classification and the ‘entity’ as a modifier [117], or using the
‘entity’ as primary mode of distinction and the ‘quality’ as
modifier [131].

To define phenotype class, given an entity E and a quality Q,
the basic axiom pattern is P EquivalentTo: ’has part’ some

(Q and ’inheres in’ some E). This pattern can be extended to
capture more complex phenotypes (i.e. those involving add-
itional modifiers) by further restricting the entity E or the qual-
ity Q classes. This pattern is applied in some phenotype
ontologies such as the HPO and MPO; yet, it does not on its own
generate the backbone taxonomic structure used in phenotype
ontologies (which primarily follows anatomy and physiology).
To generate the backbone taxonomic structure based on part-
hood relations in anatomy or physiology ontologies, a relation
‘inheres in part of’ is introduced and used to define phenotype
classes for which inheritance over parthood is desirable (such
as ‘abnormality of head’ and ‘abnormality of face’).
Additionally, for the ‘inheres in part of’ relation, it is asserted
that an ‘inheres in’ relation followed by a ‘part of’ relation
implies the presence of an ‘inheres in part of’ relation: ’inheres
in’ o ’part of’ SubPropertyOf: ’inheres in part of’ (where
‘o’ is the operator to concatenate two object properties in
Manchester OWL syntax [132]). With these axioms in place, use
of the ‘part of’ relation in anatomy or physiology ontologies can
generate new inferred taxonomic relations in phenotype
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ontologies. For example, the axioms constraining the classes
‘Abnormality of head’ (HP:0000234) and ‘Abnormality of face’
(HP:0000271) in the HP are as follows:

’Abnormality of the face’ EquivalentTo: ’has part’ some

(quality and ’inheres in part of’ some face)

and

’Abnormality of the head’ EquivalentTo: ’has part’ some

(quality and ’inheres in part of’ some head)

Together with the axiom in the anatomy ontology Uberon
(from which the classes ‘head’ and ‘face’ are reused) face
SubClassOf: ‘part of’ some head, it is possible to infer that
‘Abnormality of face’ is a subclass of ‘Abnormality of head’.

An alternative approach is to use the ‘entity’ as primary
mode of distinguishing phenotypes and qualities as modifiers
[131]. The basic axiom pattern in this approach is to define a
phenotype class P based on entity E and quality Q as P

EquivalentTo: has-part some (E and has-quality some Q).
This pattern results in phenotype classes affecting the same en-
tity to be grouped together, e.g. all ‘Heart’ phenotypes will be-
come sibling classes. To generate a backbone taxonomic
structure using the background knowledge in anatomy and
physiology ontologies about parthood relations, the axiom pat-
tern has to be modified to replace E with ’part of’ some E: P

EquivalentTo: ’has part’ some (’part of’ some E) and ’has

quality’ some Q.

Both axiom patterns can be refined by further constraining
either the entity or quality within them. Constraints on the en-
tity could be to specify its physical location or development
stage, such as in ‘blood located in the left ventricle’ used to de-
fine ‘stroke volume’. Qualities can also be further constrained.
For example, such constraints are used in relational qualities
such as ‘decreased susceptibility to viral infection’
(MP:0002410) based on the quality ‘decreased sensitivity to-
ward’ (PATO:0001550) and ‘defense response to virus’
(GO:0051607).

One controversial topic in providing axioms for classes in
phenotype ontologies has traditionally been the treatment of
absence [133, 134]. Some discussions center around the onto-
logical status of ‘absent’ entities where it is questioned whether
‘absent’ entities (such as an ‘absent heart’) can exist and have a
place in an ontology. One solution to this problem is to treat ‘ab-
sent’ entities as linguistic short forms for ‘absence of’ pheno-
types. For example, despite its linguistic implications, an
‘absent heart’ can be considered as an ‘absence of a heart’ in an
organism, or, more precisely, an organism without a heart as
part [131]. We focus here on the functional requirements for
classes representing absences. A desirable feature of classes
representing absence of anatomical or physiological entities is
that the absence of all entities E implies the absence of all parts
of E. For example, if an organism has an ‘absence of a heart’
phenotype, it will also have an ‘absence of left ventricle’, ‘ab-
sence of aortic arch’, etc. These implications are expressed as
subclass axioms in OWL so that ‘absence of a heart’ becomes a
subclass of ‘absence of left ventricle’ and ‘absence of aortic
arch’. To achieve this classification through automated reason-
ing, axiom patterns that involve negation need to be used [131].
In particular, an ‘absence of E’ can be defined as equivalent to
not ’has part’ some (’part of’ some E) when the relation
‘part of’ is considered as reflexive and transitive. For example,
with ‘left ventricle’ being a part of the heart, the phenotypes ‘ab-
sence of heart’ and ‘absence of left ventricle’ can be defined as
equivalent to not ’has part’ some (’part of’ some heart) and

not ’has part’ some (’part of’ some ’left ventricle’), re-
spectively. Use of an automated reasoner will then generate the
desired inference that ‘absence of heart’ is a subclass of ‘ab-
sence of left ventricle’. However, the disadvantage of these axi-
oms is the use of negation, which requires use of an expressive
fragment of OWL for which polynomial time automated reason-
ing cannot be guaranteed. Consequently, axioms of this type
are not yet widely applied in phenotype ontologies.

Another controversial topic in phenotype ontologies is the
ontological status of phenotypes [112, 87, 135]. This question is
mainly relevant when considering how to align a phenotype
ontology to an upper-level ontology such as the Basic Formal
Ontology [111]. In most cases, phenotypes are considered as
specific kinds of qualities, entities that are existentially depend-
ent on a single kind of entity (the quality bearer) throughout
their life. However, neither of the patterns we discussed here is
amenable to such an interpretation because of the use of the
‘has part’ relation in the beginning of each axiom pattern, which
is not usually considered to be applicable to qualities [124, 136,
137]. However, phenotype classes, as they are currently used in
phenotype ontologies, can be considered to be either material
entities (i.e. whole organisms) that have certain characteristics
(having parts with certain qualities) or they can equivalently be
considered as qualities. The latter choice necessitates a slight
alteration of the axiom patterns by prefixing all of them with
‘inheres in’ some. For example, instead of defining a phenotype
P as before, the pattern P EquivalentTo: ’inheres in’ some

(’has part’ some (E and has-quality some Q)) can be used.
As the ‘inheres in’ relation is functional (i.e. a quality can only
inhere in exactly one entity), the original axiom pattern and this
modified axiom pattern result in exactly the same inferences
and are therefore functionally equivalent. The only difference is
that with the original axiom pattern, phenotypes are material
entities (i.e. whole organisms), while they are qualities with the
modified axiom pattern.

Ontology-based analysis of phenotypes

Phenotype ontologies are widely used to analyze genotype–
phenotype and environment–phenotype relations. These ana-
lysis approaches crucially rely on the properties of phenotype
ontologies described here.

One key assumption behind an ontology-based analysis of
phenotypes is that a similarity between phenotypes provides
information about similarity behind the underlying mechan-
isms leading to the phenotype (Figure 3). In these types of ana-
lyses, phenotypes resulting from a known intervention and
mechanism are compared with a set of phenotypes for which
the mechanism is not known, and based on phenotype similar-
ity, inferences are made about the unknown mechanism lead-
ing to a set of phenotypes. A prime example is the application
to disease gene prioritization where known disease-associated
genes with their resulting phenotypes (the disease phenotypes)
are compared with a set of phenotypes for which the underlying
mechanism is not known (e.g. a patient’s phenotypes). High
similarity between the sets of phenotypes can then be used to
suggest a possible diagnosis for a patient, including the likely
mutation underlying the phenotypes [18]. Such an approach
can also be used to find new candidate genes when comparing
phenotypes resulting from targeted mutagenesis in model or-
ganisms with patient or disease phenotypes [138], and several
systems for candidate gene prioritization make use of these
approaches [78, 99, 130].
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For determining phenotype similarity, semantic similarity
over phenotype ontologies is the dominant approach [8]. As
phenotype ontologies use the entity as main distinguishing fea-
ture and include inheritance over parthood axioms asserted for
the entity class, semantic similarity will also predominantly ex-
ploit these relations. In particular, phenotypes affecting the
same entity (e.g. the heart), or a part thereof (e.g. the heart and
the left ventricle), will generally be grouped closer together in
the phenotype ontologies and therefore be more similar than
phenotypes affecting different entities (e.g. heart and liver).
Attributes and qualities are then used to further distinguish be-
tween phenotypes of the related entities.

Another approach to analyze phenotypes through pheno-
type ontologies can be applied to direct phenotype statements
in an evolutionary context. Through automated reasoning over
phenotype ontologies, in particular reasoning over parthood re-
lations, it is possible to complete missing values in character
matrices [139], thereby improving their potential use in phylo-
genetics studies. Furthermore, by generating comparative
phenotypes from the direct phenotype statements in character
matrices, a pioneering study has identified and confirmed can-
didate genes that are changed between different species [109].
In this study, direct phenotype statements in fish have been
used to generate the comparative phenotypes, and then com-
pared them with mutant zebrafish phenotypes to generate
hypotheses about the genetic differences between species.

Furthermore, in comparative statements, PATO contains in-
formation about whether the value of an attribute is increased
or decreased, and PATO-based phenotype ontologies can there-
fore also be used to match the ‘directions’ (i.e. increased or
decreased values) of phenotypes and find interventions that
may be used to treat certain phenotypes. This approach is par-
ticularly useful for drug-related work and identifying synergistic
drug effects as well as drug effects that are opposite to a disease
phenotype (and can be used to find indications for a drug). In
particular, to find new potential indications for drugs with a
known side-effect profile, it is possible to identify drugs that
have an effect with an ‘opposite’ directionality to (some aspects
of) the disease phenotype. For this purpose, increased and
decreased qualities in the PATO, together with the ‘opposite to’
relation, can be used to identify comparable phenotypes with
opposite directionality. Focusing only on increased and

decreased values, we can use PATO to distinguish three catego-
ries: ‘having an increased value of a quality’, ‘having a
decreased value of a quality’ and ‘having an abnormal value of a
quality’. If a disease is characterized by an ‘increased value’ of a
particular quality (such as glucose concentration in blood), we
can aim to find a drug that has a ‘decreased value’ for this qual-
ity as a known drug effect. As drugs have multiple effects, and
diseases have multiple phenotypes (signs and symptoms), we
can automate this search and use a scoring algorithm to esti-
mate the effect of a drug on a disease. For example, if a drug has
an effect with an opposite directionality to the disease pheno-
type, we may assign a 1 to the effect; if the known effect of the
drug has no directionality (e.g. ‘abnormal glucose concentration
in blood’ as drug effect), or the disease phenotype has no direc-
tionality, we may assign a 0 to the effect; and if the drug effect
and disease phenotype have the same directionality (e.g. the
drug has an ‘increased glucose concentration in blood’ as effect,
and the disease has an ‘increased glucose concentration in
blood’ as phenotype), we may assign a �1 to the effect. Based on
such a scoring algorithm, we can determine a score for a
drug–disease pair based on which we may suggest novel drug
indications. A similar approach has also been used to identify
synergistic drug combinations [140].

Licensing of ontologies

Ontologies present similar but distinct problems to software
when it comes to licensing their reuse. A major criterion for suc-
cess for many ontologies is that they are adopted and imple-
mented in a variety of settings and form the basis for further
development and research [112]. This poses an intrinsic prob-
lem, as the original developers need to protect the credit they
are due for their original work as it is being reused. A proposed
principle [112, 141] of ontology licensing is that they should be
made available under an open license if possible but on the con-
dition that the originators are credited when it is reused. This
principle is asserted by the OBO Foundry [112], and most OBO
Foundry ontologies are licensed with the Creative Commons
Attribution (CC-BY), or CC0 (no copyright reserved), license. The
CC-BY license requires the originator to be acknowledged when
the ontology is reused, and the CC0 license is a donation to the
public domain without constraints. There are advantages in
using the legal code provided with the Creative Commons li-
censes, which are carefully designed to have wide coverage in
multiple jurisdictions [142].

The strong emphasis on free and open licensing of ontolo-
gies is also a response to the restrictive licenses commonly
imposed on medical terminologies and ontologies such as
UMLS, SNOMED CT or the ICD. Around 40% of the terms within
the UMLS have specific licensing restrictions, and some of the
most restrictive licenses are associated with SNOMED CT. While
a subset of SNOMED CT is available for researchers complying
with the terms of the National Library of Medicines UMLS li-
cense, the main terminology is maintained by SNOMED
International and requires complex licensing depending on the
national location and status of the user. This leads to significant
problems with integrating SNOMED CT into other ontologies
and can restrict the general functionality of databases that use
all, of part of, SNOMED CT in their semantics.

Conclusions

The challenge of describing phenotypes in a consistent and for-
mal manner was among the first addressed by the development

Figure 3. Using phenotype similarity to understand similarity between molecu-

lar mechanisms.
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of bio-ontologies. From the starting point of relatively simple,
pre-composed, hierarchical structures, ontologies and broader
semantic frameworks have now been developed to facilitate
data retrieval from databases, literature and structured records,
data integration and analysis through semantic similarity, over-
representation analysis of phenotypes in populations of organ-
isms or molecules, automated reasoning and machine learning.
Many of these developments have been facilitated, at least in
part, through the use of formal class definitions using the EQ
formalism and PATO [16], with significant achievements in the
mobilization of model organism data for the study of human
disease.

The emergence of Resource Description Framework (RDF)
technologies and adoption of linked data approaches such as
the EBI RDF platform [143] and the Bio2RDF [144] initiative pro-
vide large-scale and powerful resources, which exemplify the
breaking of data silos and the mobilization and integration of
large and disparate data sets, which would not have been pos-
sible without the prior development of the ontologies available
today. Specifically, the move toward the development of large
integrated phenotype ontologies, such as Uberpheno [145] or
PhenomeNET [130], enabled through the systematic application
of PATO, has led to common and shared standards for charac-
terizing phenotypes that can be applied across domain and spe-
cies boundaries and without which data integration would not
be successful. Consequently, large integrated phenotype re-
sources such as Monarch [19], to which several model organism
databases directly contribute, are now emerging.

In the future, there are still several challenges to overcome
for phenotype ontologies. First, not all phenotype ontologies are
amenable to the kind of integration and analysis described
here. In particular, developing EQ-based axiom patterns often
requires manual work by domain experts and cannot always be
performed efficiently, although automated systems for identify-
ing phenotypes and decomposing them in EQ statements are
becoming available [146]. Yet, even when these patterns are
applied to define classes in phenotype ontologies, they are not
always applied consistently. Despite the standardization intro-
duced through PATO and other ontologies, there is a degree of
interpretation available when choosing entity and quality. For
example, whether ‘hearing loss’ is based on an anatomical en-
tity ‘ear’ depends on whether the class also includes sensori-
neural hearing loss, but this information is not always available
or considered and can lead to different formal representations.
These incongruities between phenotype ontologies can be
observed in particular between different species, and several
efforts are underway to improve the standardized formal
representation of the axiom patterns in phenotype ontologies
[19, 117, 147].

Furthermore, the classification of phenotypes (and diseases)
can be greatly improved when more background information
about the underlying entity is considered. In particular, anatom-
ical functions are important to assign abnormal processes (i.e.
functionings) to the responsible anatomical entity, and this
knowledge could improve phenotype ontologies. Furthermore,
the axiom patterns used to define phenotypes can be made more
precise to help improve the structure of phenotype ontologies.
For example, to determine whether ‘abnormal B-cell apoptosis’
(MP:0008781) should be a subclass of ‘abnormal apoptosis’
(MP:0001648), it is necessary to know whether all or only some
(B-cell) apoptotic processes are abnormal within the organism; if
all apoptotic processes are abnormal, then all B-cell apoptotic
processes are abnormal, too, and ‘abnormal apoptosis’ should be
considered a subclass of ‘abnormal B-cell apoptosis’. However,

currently, these distinctions are not made in phenotype ontolo-
gies and cannot be made during annotation.

Phenotypes arise from a genotype within an environment,
and, consequently, environmental conditions are necessary for
understanding the mechanisms leading to a phenotype. In the
future, studies that focus on environmental influences on the
phenotype will increase and lead to a deeper understanding of
the mechanisms leading to a phenotype [148, 149].

We are now seeing increased use of ontology-based machine
learning across the biomedical sciences, particularly with re-
gard to clinical informatics, the stratification of patient popula-
tions and discovery of novel relationships between diseases
and their pathobiology and genetics. As data in model organism
databases grow and phenotype ontologies become increasingly
more standardized and interoperable, phenotype data will be
increasingly mobilized in support of human disease gene dis-
covery and genetic diagnostics.

Infrastructure funding for ongoing maintenance and devel-
opment of ontologies and associated tools will be crucial in
maintaining the semantic frameworks now being developed.
The importance of these activities for the underpinning of our
major biomedical resources and databases should not be
underestimated.

Key Points

• Phenotypes are now increasingly captured by ontolo-
gies to facilitate data integration and computational
analysis.

• The use of Semantic Web technologies, PATO-based
EQ ontology design patterns and standard ontologies
such as PATO facilitate interoperability between
phenotype ontologies.

• Axioms in phenotype ontologies facilitate many differ-
ent types of analysis, ranging from identification of
molecular mechanisms to understanding evolutionary
relationships.
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