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Abstract

Discriminating the causative disease variant(s) for individuals with inherited or de novo

mutations presents one of the main challenges faced by the clinical genetics community

today. Computational approaches for variant prioritization include machine learning meth-

ods utilizing a large number of features, including molecular information, interaction net-

works, or phenotypes. Here, we demonstrate the PhenomeNET Variant Predictor (PVP)

system that exploits semantic technologies and automated reasoning over genotype-phe-

notype relations to filter and prioritize variants in whole exome and whole genome sequenc-

ing datasets. We demonstrate the performance of PVP in identifying causative variants on a

large number of synthetic whole exome and whole genome sequences, covering a wide

range of diseases and syndromes. In a retrospective study, we further illustrate the applica-

tion of PVP for the interpretation of whole exome sequencing data in patients suffering from

congenital hypothyroidism. We find that PVP accurately identifies causative variants in

whole exome and whole genome sequencing datasets and provides a powerful resource for

the discovery of causal variants.

Author summary

We address the problem of how to distinguish which of the many thousands of DNA

sequence variants carried by an individual with a rare disease is responsible for the disease

phenotypes. This can help clinicians arrive at a diagnosis, but also can be instrumental in

improving our understanding of the pathobiology of the disease. Many methods are cur-

rently available to help with the problem of determining causative variant, using informa-

tion about evolutionary conservation and prediction of the functional consequences of
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the sequence variant. We have developed a novel algorithm (PVP) which augments exist-

ing strategies by using the similarity of the patients phenotype to known phenotype-geno-

type data in human and model organism databases to further rank potential candidate

genes. In a retrospective study, we apply PVP to the interpretation of whole exome

sequencing data in patients suffering from congenital hypothyroidism, and find that PVP

accurately identifies causative variants in whole exome and whole genome sequencing

datasets and provides a powerful resource for the discovery of causal variants.

Introduction

Since the first successful identification of disease-causing variation From whole exome

sequencing in 2010 [1], impressive advances have been made in the field of next generation

sequencing and its related analysis, with the aim of fulfilling the promise of whole exome

(WES) and whole genome (WGS) sequencing for personalized medicine. Such approaches

have revolutionized our ability to identify the genetic underpinnings of disease as well as

improve our capacity to stratify patient populations and diagnose them in a more accurate and

timely manner [2]. A recent critical study provided some objective estimates of the efficiency

of diagnoses by traditional medical genetics diagnostic approaches, with 54% of referred

patients undiagnosed [3]. The introduction of next generation sequencing (NGS) technologies

in clinical settings is anticipated to improve diagnosis efficiency, and between 13% [4] to 50%

of those remaining undiagnosed are likely to receive a molecular diagnosis following WES or

WGS [5]. Nevertheless, the success rate of the state-of-the-art tools for identifying causative

variants using WES data range between 22% to 25% [6, 7], and WGS data in a similar range

[8] depending on the disease type and the availability of sequence data from family members.

The identification of the causative disease mutations in an individual patient remains a

challenge due to the complexity and scale of the task. An individual exome might contain

20,000-30,000 variants with respect to the reference genome; a third of which might comprise

non-synonymous variation [9]. Many thousands of variants in an average genome might be

unique, and on average 20 genes may have complete loss of function (LOF) mutations [10]

whose physiological consequences for the bearer are unpredictable [11]. Adding to the com-

plexity of analysis are contingencies such as oligogenicity and haploid insufficiency. Oligogeni-

city is the phenomenon where additional genes modify the phenotypic effect of a variant in a

primary gene, so that the overall disease phenotype is the consequence of multiple variants in

the same genome. Haploid insufficiency describes a situation where loss of function of one

allele of a gene in a normal diploid cell or individual results in an abnormal phenotype. For

many genes, loss of function of one allele is not significant, but for some genes, dosage is criti-

cal and phenotypic effects are seen with the loss of one allele. Consequently, in haploid insuffi-

ciency, a heterozygote with a loss of function allele may develop an abnormal phenotype [12].

Given these phenomena, it is clear why finding the “needle in a stack of needles” [13] remains

one of the key challenges in fully utilizing WES and WGS data for personalized medicine.

The main approaches taken to prioritize the pathogenic consequences of genomic muta-

tions involve variant calling to identify variants from raw sequencing data, filtering by variant

quality, filtering by minor allele frequency, and then successive assessment of variant proper-

ties based on its potential to affect protein integrity and function, for example, by the insertion

of nonsense codons or indels, compromising the function of active sites, protein-protein inter-

actions, dominant or recessive inheritance, physico-chemical properties, sequence conserva-

tion [14], or analysis of changes in the DNA regulatory domains [15]. Although the majority
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of the methods currently used to assess pathogenicity of a variant are focused on exonic varia-

tion, there are also methods that examine non-coding sequences, notably GWAVA, CADD,

DANN, FATHMM-MKL, and others [16–20].

However, many of these methods alone are not able to identify the causative variants under-

lying a patient’s phenotype and require additional investigation, such as analysis of additional

family members, to look for de novo variants, identification of shared rare variants in unrelated

individuals with similar diseases [21], and identity-by-descent inference [2].

Prioritizing disease candidates by using phenotypic similarity to known diseases and char-

acterized non-human disease models can potentially add an additional layer of discrimination

to gene prioritization, but until recently the ability to computationally establish formal pheno-

typic relatedness at scale was not possible. Two crucial developments have enabled the compu-

tational integration and comparison of phenotypes: the systematic application of the PATO

framework [22, 23] and the development of the cross-species anatomy ontology Uberon [24].

While PATO provides a uniform way of describing phenotypes, Uberon can be used to sys-

tematically describe and relate anatomical structures between species. In 2011, PhenomeNET

[25] was developed to exploit phenotype-genotype associations observed in humans and

model organisms and prioritize candidate causal genes based on patient phenotypes. Phenom-

eNET makes use of axioms and formal definitions in the major phenotype ontologies using

the PATO ontology [22] to formally integrate species-specific phenotypes [26–30]. It gathers

phenotype data from model organism and human genotype-phenotype databases, applies

measures of phenotypic similarity and then systematically compares them across species. Phe-

nomeNET has been demonstrated to provide a high degree of predictive accuracy for the dis-

covery of animal models of human disease [31], novel pathways [32], gene function [33], and

druggable therapeutic targets [34]. Since the introduction of PhenomeNET, several further

methods have been been developed that take advantage of this approach and utilize phenotypic

similarity between patients and gene-phenotype associations in public databases to improve

variant prioritization for WES datasets [35–37].

We developed PhenomeNET Variant Predictor (PVP) to prioritize causal variants based on

comparing patient phenotypes with gene-phenotype associations made in humans and model

organisms. PVP combines two main sources of information: molecular and phenotypic. We

use molecular information from multiple pathogenicity prediction tools to identify the patho-

genicity of a variant and the phenotypic information to determine whether a variant is causa-

tive. PVP facilitates a highly accurate identification of causative variants from both WES and

WGS datasets, and we demonstrate the performance of PVP on a set of synthetic and real

whole exome and whole genome sequences. Our results demonstrate that PVP significantly

outperforms other state of the art tools revealing that phenotypic similarity can provide a pow-

erful approach for prioritizing causal variants.

Results and discussion

Integration of genotype and phenotype information predicts causal

variants in whole exome and whole genome sequencing

PVP has been developed to facilitate the identification of causative variants in genomic data

(whole exome or whole genome). We consider a variant to be causative if it is both pathogenic

(evaluated based on molecular information) and involved in developing the patient’s pheno-

type (evaluated based on the gene–disease similarities provided by PhenomeNET). Variants

may be pathogenic but not causative if they are not involved in the pathogenesis of the

patient’s phenotype [11], whilst non-functional, benign variants are generally not causative.

Semantic variant prioritization
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In PVP, we combine methods to determine whether a variant is pathogenic (i.e., functional)

with information about the phenotypes in which a gene is known to be involved to identify

candidate causative variants in WES and WGS data. For predicting pathogenicity, we utilize

tools that can provide a pathogenicity score for every variant within a genome, i.e. CADD [17],

DANN [18], and GWAVA [16]; for the latter, we use an improved version of the Phenom-

eNET framework to match a patient’s phenotypes with a database of gene-phenotype associa-

tions derived from human, mouse and fish resources. The full list of features used for

prediction in PVP is provided as S1 Table. PhenomeNET consists of a repository of gene-phe-

notype associations from human and model organisms, an ontology that integrates pheno-

types across species, and a semantic similarity measure that determines the similarity between

two sets of phenotypes. It provides a score that measures the similarity between a set of patient

phenotypes and sets of phenotypes in the PhenomeNET repository.

Depending on the intended application, the choice of gene-phenotype associations can

strongly affect the performance of PhenomeNET [31]. Here, we utilize two overlapping sets of

gene-phenotype associations; we include gene-phenotype associations observed in zebrafish

and mouse (marked “Model” for Model Organism Databases), and additionally include

human phenotypes propagated from known gene-disease and disease-phenotype associations

(marked “Human” in our experiments). We also use both genotype-phenotype associations

together.

We represent variants by their pathogenicity scores, the scores provided by the Phenom-

eNET system to measure similarity between the patient’s phenotype and known phenotypes

associated with the gene affected by the variant, a small set of high-level phenotypes observed

in a patient, as well as mode of inheritance of the disease (if known) and zygosity of the variant.

We use these as features to train a random forest classifier that separates variants into causative

variants and non-causative variants. Initially, we use 80% of the pathogenic variants available

from the ClinVar database [38] to train our model, keeping 20% of the ClinVar variants for

further testing. In 10-fold cross validation on these 80%, our model achieves an area under the

receiver operating characteristic curve (ROC AUC) of up to 0.994 and F-measure of up to

0.963 (S2 Table).

To test the performance of this model in identifying causal variants in sequencing data, we

generated a synthetic dataset of 11,251 whole genomes sequences (one for each of the 20% var-

iants in ClinVar that were not used to train the model). The synthetic dataset was created by

randomly choosing one of the WGS samples from the 1,000 Genomes Project (1KGP) [39]

and inserting a single causative variant in each of these. 8,746 causative variants were inserted

in exonic regions and 2,505 in non-exonic regions. Next, we mark the synthetic individual as

having the disease and use the phenotypes associated with the disease in the HPO database

[40] as the patient phenotypic profile before trying to recover the inserted pathogenic variant

using our PVP-based models. Before applying our PVP models, we apply a filter to remove

variants with� 1% global minor allele frequency from 1KGP on each variant.

We perform two experiments to test the performance of PVP, PVP-Human and PVP-Mo-

del. First, we remove all non-exonic variants from the synthetic genomes to simulate a WES

dataset and employ the resulting WES dataset to assess our recovery rate of causative variants

located in an exonic region. We identify 45.82% of the candidate causative variants as the top

ranked and 72.64% of the causative variants in the top 10 ranked variants for WES data using

only model organism phenotypes to determine phenotypic similarity, 79.21% of variants top-

ranked and 87.94% variants in the top 10 ranks when using only human phenotypes, and

78.80% top-ranked and 89.50% within the top 10 when using both human and model organ-

ism phenotypes together. As second experiment, we apply our approach to all variants in the

whole genome sequences, and recover 12.62% of the variants at first rank and 23.75% within

Semantic variant prioritization
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the first 10 ranks using only model organism phenotypes, 75.10% variants top-ranked and

89.36% in the top 10 ranks using only human phenotypes, and 76.47% top-ranked and 88.61%

within the top 10 when using both model organism and human phenotypes. Tables 1 and 2

summarize these results.

We compare our method against several state of the art variant prioritization tools, namely

CADD [17], DANN [18] and GWAVA [16], as well as the phenotype-based tools Exomiser/

Genomiser [41, 42], Phevor [35] and eXtasy [37]. Our results and the comparison with state of

the art tools is summarized in Tables 1 and 2 as well as Figs 1 and 2, demonstrating that PVP

outperforms the other methods in our experiments.

We further assess how well our method performs on identifying causative variants for dis-

eases with different mode of inheritance (MOI) in WES data. The percentage of cases in which

the causal variant is ranked first is shown in Table 3. We find that, unsurprisingly, our models

perform better on recessive diseases as the variants have to be homozygous, which can be used

as an additional filter, while a dominant mode of inheritance may be caused by either hetero-

zygous or homozygous variants, and complicated by haploid insufficiency, and hence cannot

be used to discriminate between causative and non-causative variants.

To evaluate the importance of the “depth” of phenotyping [43] for predicting candidate var-

iants, we compared the predictive accuracy of PVP with the information content in the disease

(or patient) description. Information content of a phenotype class is measured by its depth in

the PhenomeNET ontology and the number of diseases in our sample that contain this pheno-

type. For diseases associated with multiple phenotypes, we sum the information content of the

individual phenotype classes. We evaluate the correlation between the rank of the causative

variant in our set of 8,746 synthetic exome sequences and the information content associated

with the disease, and find a negative correlation (Spearman’s rank correlation ρ = −0.54), i.e., if

the information content of the phenotypes used to characterize the disease (or patient) is

higher, PVP can provide better predictions.

The set of phenotypes observed in patients is not always complete, or patients may suffer

from multiple co-morbidities that can affect our phenotype-based analysis. To determine the

effect of noise on our analysis, we focus on a subset of 8,522 out of 8,746 synthetic whole

exome sequences for which the disease is characterized phenotypically (the remaining cases

were imputed by our algorithm, see Materials and Methods), and we perform two experiments

(see S3 Table): first, we randomly add the phenotypes of a second disease to the phenotypes of

the patient to simulate co-morbidity; and second, we randomly remove each phenotype used

Table 1. Overview of how many causative variants out of 8,746 exonic were recovered on rank 1 and within the top 10 ranks by PVP and PVP-Hu-

man, and comparison to CADD, DANN, GWAVA, Exomiser eXtasy, and Phevor. Analysis was performed on WES data. If a tool did not provide a score

for a causative variant, we excluded the variant from this table; consequently, the total number of samples analyzed differs between the methods and the per-

centages reported are based on the number of samples for which the causative variant was ranked.

Top hit (exonic) Top 10 (exonic) Total (exonic) Median (exonic)

CADD 1,095 (15.15%) 2,317 (32.05%) 7,229 49

DANN 406 (6.06%) 1,789 (26.69%) 6,704 108

GWAVA 102 (1.41%) 458 (6.32%) 7244 339

eXtasy 553 (14.85%) 1,601 (42.99%) 3,724 19

Exomiser 2,156 (24.65%) 5,122 (58.56%) 8,746 5

Phevor 1,679 (28.25%) 3,845 (64.70%) 5,943 4

PVP-Model 4,007 (45.82%) 6,353 (72.64%) 8,746 2

PVP-Human 6,928 (79.21%) 7,691 (87.94%) 8,746 1

PVP 6,892 (78.80%) 7,828 (89.50%) 8,746 1

https://doi.org/10.1371/journal.pcbi.1005500.t001
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to characterize the patient’s disease with a probability of 1/3 (i.e., on average, 1/3 of the pheno-

type annotations for each disease are removed). Using the PVP-Human model, we find that in

the first experiment, only 3,547 (41.62%) variants are ranked first and 4,315 (50.63%) in the

top 10, compared to over 75% ranked first with phenotypes matching the disease exactly. In

our second experiment, removing phenotypes with probability 1/3 results in 3,963 (46.50%) of

causative variants ranked first and 4,921 (57.74%) in the top 10. We further investigated how

well PVP can distinguish between variants that are causative for closely related diseases. For

this purpose, we insert a second causative variant v2 to the whole exome sequence of the syn-

thetic patients (each containing a single causative variant v1). The second variant v2 is chosen

Table 2. Overview of the performance of PVP, CADD, DANN, GWAVA and Exomiser in prioritizing causative variants in WGS data. We prioritize all

variants in a VCF file resulting from WGS using the same models. Analysis is separated reflecting the performance of the various tools identifying exonic and

non-exonic variants. For CADD, DANN, and GWAVA, we report only analysis results for which a prediction score is returned; consequently, total numbers are

less than the total of 11,251 causative variants.

PVP

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 6,500 74.32% 7,595 86.84% 8,746

Non-exonic 2,104 83.99% 2,374 94.77% 2,505

Total 8,604 76.47% 9,969 88.61% 11,251

PVP-Model

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 1,012 11.57% 1,992 22.78% 8,746

Non-exonic 435 17.37% 703 28.06% 2,505

Total 1,447 12.86% 2,695 23.95% 11,251

PVP-Human

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 6,611 75.59% 7,620 87.13% 8,746

Non-exonic 2,156 86.07% 2,368 94.53% 2,505

Total 8,767 77.92% 9,988 88.77% 11,251

CADD

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 441 6.1% 1759 24.33% 7229

Non-exonic 118 4.77% 599 24.2% 2475

Total 559 5.76% 2358 24.3% 9704

DANN

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 325 4.85% 1287 19.2% 6704

Non-exonic 101 5.32% 347 18.27% 1899

Total 426 4.95% 1634 18.99% 8603

GWAVA

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 34 0.47% 44 0.61% 7244

Non-exonic 9 0.42% 22 1.04% 2121

Total 43 0.46% 66 0.7% 9365

Exomiser/Genomiser

# top 1 hits % top 1 hits # top 10 hits % top 10 hits Total

Exonic 2,747 31.41% 6,879 78.65% 8,746

Non-exonic 780 31.14% 1,895 75.65% 2,505

Total 3,527 31.35% 8,774 77.98% 11,251

https://doi.org/10.1371/journal.pcbi.1005500.t002
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to be causative for the most phenotypically similar disease (within our test dataset). We then

use the phenotypes associated with v1 and test at which rank v1 and v2 are predicted by PVP.

Using PVP-Human, we find v1 ranked first in 62.38% of the cases, while v2 is ranked first in

15.36% of the cases, demonstrating that PVP can also discriminate between closely related dis-

eases. Combining the phenotypes associated with v1 and v2, we predict both v1 and v2 with

equal probability of 37% on the first rank (see S3 Table).

To make PVP available as a tool for diagnostic support, we re-train all our models using the

whole ClinVar dataset and combine the phenotype similarity computation using Phenom-

eNET with annotation of pathogenicity into the PVP tool. PVP can analyze WES or WGS

Fig 1. Performance of PVP in retrieving causative variants in whole exome sequences. Results are compared against CADD, DANN, and GWAVA,

and the phenotype-based tools Exomiser, Phevor and eXtasy.

https://doi.org/10.1371/journal.pcbi.1005500.g001

Fig 2. Performance of PVP in identifying causative variants in whole genome sequences using human phenotypes (PVP-Human), model

organisms phenotypes (PVP-Model), and combined phenotypes (PVP), and comparison of PVP to CADD, DANN, GWAVA, and Genomiser.

https://doi.org/10.1371/journal.pcbi.1005500.g002
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datasets using the VCF file and a set of observed patient phenotypes as input and then output-

ting a list of variants ranked by the likelihood they are causative for the observed phenotypes.

PVP predicts causative variants in diagnosed cases

We evaluate the performance of PVP on a series of real exomes from individuals diagnosed

as having Congenital Hypothyroidism (CH), included in the UK10K dataset [44] (see Meth-

ods), to assess how well we could recover potentially pathological variants in genes already

associated with the disease. Congenital hypothyroidism is one of the most frequent endo-

crine disorders of the neonate with a frequency of up to 1/1,500 births [45], although some

forms and molecular etiologies can be much more rare, such as Central Congenital Hypo-

thyroidism (CCH) [46] estimated at around 1/16,000. Historically, most cases were thought

to be due to thyroid gland dysgenesis comprising ectopias, hypoplasia and complete agenesis

[47]. However, recently, an increase in diagnosis of CH in the presence of apparently

anatomically normal glands (gland-in-situ) has been reported [45]. The pathophysiology of

such cases may include organisational and functional defects (dyshormonogenesis) within

the glands leading to compromised or absent function. A range of genes has been implicated

in these processes which include thyroid transcription factors, genes involved in thyroid

hormone biosynthesis, and the Thyroid Stimulating Hormone receptor (TSHR) [48]. Muta-

tions in known genes are implicated in less than 5% of thyroid dysgenesis cases, whereas

dyshormonogenesis is usually associated with mutations in components of the thyroid hor-

mone biosynthetic machinery [47].

We analyze 43 individuals from the UK10K rare disease cohort of patients and relatives

with congenital hypothyroidism, using PVP. The dataset includes 11 confirmed cases of thy-

roid dysgenesis (DG), 30 CH with gland-in-situ (GIS, likely involving dyshormonogenesis),

and two with CCH, in addition to 80 individuals that do not show any phenotypes but have a

family relation to the affected individuals. We use a common set of phenotypes from the HPO

for the whole cohort, comprising hypothyroidism (HP:0000821), congenital hypothyroid-

ism (HP:0000851), TSH excess (HP:0002925), thyroid hypoplasia (HP:0005990), and

TSHR defect (HP:0011791); these are the most relevant phenotypes in HPO. We analyze the

individual cases independently and do not account for the relationships between individuals.

Thirty six of these show variants in genes already associated with CH within the top 20 hits, fil-

tered for a minor allele frequency (MAF) of 1% (S4 Table) while the remainder do not show

known CH-associated disease genes above this rank. We do not, in the current study, further

analyze the likelihood that high ranking genes in these 7 individuals might represent novel

genes in this disease or differential diagnoses.

Of the 11 cases of thyroid dysgenesis, 9 show homozygous or heterozygous alleles of genes

already implicated in dysgenesis-associated CH within the first five ranked hits. All were

assessed as deleterious or possibly deleterious by SIFT [49], PolyPhen [50], or both. These

genes include GLIS3 [51], NKX2-1 [52], and PAX8 [53]. One case shows a predicted deleterious

allele of LHX3 normally associated with CCH through an effect on pituitary development [46].

Table 3. Performance of PVP in variant prioritization in WGS data, separated by mode of inheritance of the disease.

Coding Noncoding

Dominant Recessive Others/Unknown Dominant Recessive Others/Unknown

PVP 4006 (77.61%) 2005 (93.26%) 881 (61.44%) 1178 (83.66%) 684 (97.3%) 310 (78.68%)

PVP-Model 2100 (40.68%) 1535 (71.40%) 372 (25.94%) 754 (53.55%) 587 (83.50%) 179 (45.43%)

PVP-Human 4027 (78.01%) 1993 (92.7%) 908 (63.32%) 1197 (85.01%) 686 (97.58%) 321 (81.47%)

https://doi.org/10.1371/journal.pcbi.1005500.t003
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Of the cases with GIS all but 9 show deleterious alleles in DUOX2 [54], TG [55], or TPO
[56], and in some cases predicted pathogenic variants of two or three of these genes are found

together in the highest ranks in our analysis. The remainder show variants in NKX2-1, LHX3,

and, in one case, PAX8. Homozygous alleles in DUOX2 and TPO are present in 15 individuals.

One homozygous variant has been previously reported in ClinVar to be pathogenic and affects

iodotyrosyl coupling (NM_003235.4(TG):c.638+5G>A) [57]. In five cases of GIS, homozy-

gous mutations of TG are found in the same individual as deleterious heterozygous DUOX2
alleles. In one case, a homozygous DUOX2 allele is found with a compound heterozygote in

TG.

While our analysis of the complete dataset provides hypotheses about the most likely dis-

ease-causing variants, confirmation requires detailed analysis and re-sequencing. Of the 43

cases we analyze, 15 individuals with CH were previously subjected to Sanger sequencing of

candidate variants, confirming the association with the disease [58]. In 9 of these 15 cases,

PVP correctly implicates the likely causative alleles as the first hit. In six of the cases, potentially

deleterious mutations are found in two genes, and in five of these six cases, PVP correctly iden-

tifies the second gene within the first 10 ranks. Additionally, multiple mutations in TG are

found in three cases, and in two of these, PVP identifies the second variant as the second rank

(S5 Table). The unexpected involvement of oligogenic and triallelic loss of function/hypo-

morphic mutations in the genesis of congenital thyroid disease is discussed in [58].

We also test PVP with diseases displaying different sets of phenotypes. We utilize data avail-

able from the Personal Genomes Project (PGP) [59] and examine if we can predict disease-

associated variants consistent with the information that patients that participate in the PGP

have declared. We analyze two patients from the PGP, one patient (PGP:hu92FD55) with a

disease in mental functioning (Asperger’s Syndrome) the other (PGP:hu432EB5) with

hemostasis abnormalities (Von Willebrand disease). For the individual associated with Asper-

ger Syndrome (OMIM:300494), the top variant predicted by our approach is in PLCB1, phos-

pholipase C beta 1, located at 20p12.3. PLCB1, which is involved in extracellular signal

transduction in the phosphoinositol pathway, has been implicated in GWAS analysis for

autism spectrum associated phenotypes in the ALSPAC study [60] and a homozygous deletion

in a single case of malignant migrating partial seizures in infancy (MMPEI) [61]. Rare muta-

tions associated with autistic spectrum disorders, largely small deletions and duplications,

have been reported within and around the gene [62]. The variant seen here is predicted to be

pathogenic, heterozygous, and has not been previously reported, suggesting that this is not a

simple LOF mutation as seen in MMPEI, and may warrant further research. For the case of the

patient associated with von Willebrand disease (OMIM:193400) [63], VWF is the top hit in

our analysis, identifying the variant (chr12:6143978G>A), already described as pathogenic.

This individual is heterozygous, consistent with the known pathogenesis of type 1 von Willeb-

rand disease.

Effects of datasets and evaluation method

PVP provides a system for prioritization of causative genomic variants. While other systems

have previously used phenotypes for variant prioritization [35, 37, 41, 42], key novelties of

PVP are a novel cross-species phenotype ontology and the way in which gene-phenotype

information is used for variant prioritization. The choice of gene-phenotype associations

strongly determines the performance of the system and possible application scenarios. In par-

ticular, in contrast to systems such as Phevor or Exomiser, we explicitly provide PVP with the

option to ignore human phenotype information and rely only on independent data from

model organisms. Human phenotypes, provided by the HPO project [40], are derived from

Semantic variant prioritization

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005500 April 17, 2017 9 / 21

https://doi.org/10.1371/journal.pcbi.1005500


disease phenotypes by identifying causative genes for a disease and propagating the pheno-

types associated with the disease to the known disease genes. While we observe a strong

increase in performance when using these propagated human phenotypes, methods that are

trained using them will likely over-emphasize known disease genes and therefore only provide

limited performance in identifying variants in novel disease genes.

Another observation from our experiments is that the type of evaluation has a strong

impact on the reported performance. We evaluate PVP and related variant prioritization sys-

tems using ClinVar variants, and, since PVP was trained using this dataset, we specifically eval-

uate PVP and the other systems using a 20% holdout set that we have not used for training our

models so that we can determine its performance on unseen variants. While we find that PVP

performs comparably to, or better than, other systems in our experiments using WES data, we

also observe a striking difference in performance to previously reported results for some vari-

ant prioritization systems. For example, Exomiser has been reported to identify up to 97% of

causative variants on the first rank in prior experiments using WES data [41], and over 70% of

causative variants on the first rank in WGS data [42]. The main difference between our experi-

ments and those performed to evaluate Exomiser/Genomiser is the use of a different evalua-

tion dataset which only partially overlaps with the dataset used to evaluate Exomiser/

Genomiser. Additionally, the results reported in the evaluations of Exomiser and Genomiser

[41, 42] that found up to 97% of variants to be predicted correctly were performed on the mod-

el’s training data, i.e., using an overfitted model [41]. Such a strategy will be able to accurately

find known variants (i.e., variants on which the model has been trained), but, as demonstrated

by our results, will perform with lower accuracy on previously unseen or novel data.

In PVP, we chose to focus on two different application scenarios that should be among the

most useful in the task of interpretation of variants in a clinical setting: identification of causa-

tive variants in known disease genes (using PVP-Human), and identification of causative vari-

ants in potentially novel genes (using PVP-Model or PVP).

Impact of the use of model organism phenotypes on variant prioritization

and disease gene discovery

Use of phenotypic similarity of experimental mouse models to human diseases has been

shown to guide the discovery of the associated human gene. For example the mouse “hairless”

mutation was first described in 1859 and the gene identified in 1994 [64]. On the basis of phe-

notypic similarity to alopecia universalis, the human gene was identified as the human homo-

logue of mouse “hairless” in 1998 [64]. In PVP, phenotype data from mouse and fish models is

particularly useful when no human phenotypes are available for a gene, i.e., when a variant is

in a gene not previously implicated in a disease. Currently (23 Jan 2017), mouse phenotypes

are available for 9,045 mouse genes with human orthologs, but only 3,698 genes are associated

with phenotypes in OMIM, and we evaluated the effect of using mouse phenotype data for var-

iants in genes without available human phenotypes (see S6 Table).

In our analysis, we can identify a variant (rs766783183) in the keratin 25 (KRT25) gene

at rank 8 for Hypotrichosis 8 (OMIM:278150) in our analysis based on a strong concordance

between mouse phenotypes (all of which are associated with hair and nail morphology and

hair growth) and the phenotypes associated with the human disease. Using PVP without

model organism phenotypes results in rank 172 for the same variant. Similarly, we can

improve the rank of a variant (rs764239923) in the Gliomedin (GLDN) gene as causative

for lethal congenital contracture arthrogryposis-11 (OMIM:617194) from rank 342 without

model organism phenotype to rank 7 using model organism phenotypes based on matching

nervous system abnormality phenotypes in the mouse.
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However, in some cases, the model organism phenotypes add noise to the results, especially

where there are discordant phenotypes, either for reasons intrinsic to the disease, due to differ-

ences in human and mouse physiology, or because the scope of phenotyping in the model

organism is distinct from that carried out on humans. For example, a variant

(rs121908425) in the collapsin response mediator protein 1 (CRMP1) gene would be priori-

tized at rank 1 for the disease Ellis-van Creveld syndrome (OMIM:225500) without relying

on any phenotypes and based on pathogenicity of the variant alone. All phenotypes associated

with the mouse ortholog Crmp1 are associated with abnormal nervous system physiology and

morphology, while the phenotypes associated with the human disease relate to a wide range of

morphological abnormalities. Consequently, when relying on PVP-Mod that uses phenotypic

similarity to model organism phenotypes, prediction of the causative variant drops to rank 65.

In our quantitative evaluation, predictive performance including mouse phenotypes is slightly

less than performance relying on human phenotypes alone, demonstrating (unsurprisingly)

that model organism phenotypes are overall less similar to a human disease than phenotypes

observed in humans. However, in particular in cases where no human phenotypes are available

or causative variants occur in genes not previously implicated in a disease, model organism

phenotypes may aid in identifying causative variants. In the future, methods should be devel-

oped that can determine automatically whether the phenotypes observed in a model organism

are of sufficient quality and depth to contribute to prioritization of causative variants.

Conclusions

Mobilizing the volume and richness of genotype-phenotype associations From human and

model organism databases provides a powerful resource with which potential disease candi-

dates can be discriminated. Data From large scale mutagenesis efforts and hypothesis-driven

science have created sufficient genotype-phenotype association data. PhenomeNET [25] was

developed as a framework that exploits these phenotypes in a computational approach, using

phenotypes as surrogates for their underlying genes. By identifying relations between pheno-

types, PhenomeNET identifies the similarity between the underlying molecular processes and

their components. We have developed PVP as a computational method to prioritize variants,

and we demonstrate here using synthetic and real patients’ genomic data that PVP is a system

for highly accurate genome-scale identification of causative variants involved in human dis-

ease. PVP on its own relies only on model organism phenotypes and is particularly useful

when variants in potentially novel genes should be found; PVP-Human emphasizes variants in

known disease genes and should be used when variants are suspected in genes already known

to be involved in the pathogenesis of a disease.

Materials and methods

Updates to the PhenomeNET system

Changes in the HPO, MP and other ontologies, as well as improved OWL reasoning technolo-

gies [65], allowed us to improve upon the method originally used to build the PhenomeNET

[25] to generate a more comprehensive phenotype ontology spanning zebrafish, mouse and

human. PhenomeNET includes all classes contained in the HPO, MP, but is formalized pri-

marily based on the structure of anatomy and physiology ontologies [66]. All our experiments

are based on ontology versions downloaded from the AberOWL ontology repository [67] on

10 June 2016, and all ontologies included in the PhenomeNET ontology are from this date.

The PhenomeNET ontology includes UBERON [24], GO [68], BSPO [69], ZFA [70],

PATO [22], CL [71], NBO [72], but removes all disjointness axioms from these ontologies

prior to inclusion due to possible inconsistencies arising from these. Furthermore, the
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PhenomeNET ontology includes the CHEBI [73] and MPATH [74] ontologies as imports.

Within the PhenomeNET ontology, axioms are rewritten to follow the phene pattern [66] so

that phenotypes are primarily organized by anatomical structure or physiological process.

In particular, within HPO and MP, we identify axioms for a phenotype class P by identify-

ing a class E and Q, and reformulate the formal definition of P as P EquivalentTo:has-
part some (E and has-qualitysome Q). We initialize E and Q with owl:Thing and

then generate axioms from the definition of P provided by HPO or MP using the following

rules:

• modifiersome X: we keep the object property and target class as modifier of the quality

Q, setting Q≔ Q and modifiersome X

• inheres-insome X: set E≔ X

• inheres-in-part-ofsome X: set E≔ part-ofsome X

• towardssome X: set E≔ E and towardssome X

• has-qualitysome X: set E≔ E and has-qualitysome X

• exists-duringsome X: set E≔ E and exists-duringsome X

• has-partsome X1 and . . . and has-partsome Xn: treated as intersection, P≔ X1
and . . . and Xn

• part-ofsome X: set E≔ E and part-ofsome X

• has-central-participantsome X: set E≔ E and has-central-partici-
pant some X

• results-fromsome X: set E≔ E and results-fromsome X

• occurs-insome X: set E≔ E and occurs-insome X

These axioms are intended to reformulate axioms in the HPO and MP so that each pheno-

type class characterizes a whole organism that has an entity E as part which is further charac-

terized by its qualities and relations to other entities. Furthermore, the axioms aim to enforce a

taxonomic structure that closely resembles anatomy (from Uberon) and physiology (from

GO). Specifically, if X is a subclass of part-ofsome Y in either Uberon or GO, the axioms

aim to force X phenotype to become a subclass of Y phenotype. To completely resemble

parthood relations, we further generate an additional phenotype class S for each unique E that

we identify, using the axiom S EquivalentTo:has-partsome (part-ofsome (E
and has-qualitysome owl:Thing)). This class serves as additional class that is not

usually present in either HPO or MP, and enforces the taxonomic structure of the Phenom-

eNET ontology to follow both the taxonomic structure and parthood structure of the GO and

Uberon.

Zebrafish phenotypes are not represented using a dedicated phenotype ontology but rather

annotated using E and Q classes directly. Within the PhenomeNET ontology, we generate one

class for each unique combination of E and Q found in annotations to zebrafish models. If two

entities are used to annotate a zebrafish model (i.e., E1 and E2, we generate the axiom P≔
has-partsome (E1 and has-qualitysome (Q and towardssome E2)).

The ontology structure is not manually created but must be inferred using deductive rea-

soning. We rely on the ELK reasoner [65] to infer the ontology structure. The PhenomeNET

ontology is updated regularly, is freely available and can be queried using the ELK reasoning

in the AberOWL ontology repository [67].
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Model organism phenotypes and similarity search

We collected the mutant model organism phenotypes for mouse from the MGI database [75]

on 14 December 2015, human phenotypes From the HPO database [40] on 14 December

2015, and zebrafish phenotypes from the ZFIN database [70] on 13 December 2015.

We compute semantic similarity between a patient phenotype and the collection of model

organism and human phenotypes using Resnik’s measure [76] with the Best Matching Average

(BMA) strategy for combining pairwise similarities. We use Resnik’s information content

measure [76] computed over the corpus of gene-phenotype associations (from human, mouse

and zebrafish) as specificity measure for each class in the phenotype ontology. Semantic simi-

larity is computed using the Semantic Measures Library [77]. We normalize semantic similar-

ity values to the range of [0, 1] for the annotation of variants by dividing each similarity value

by the maximum similarity observed for each patient phenotype profile.

Generation of model training data

To train our models, we used the set of variants from ClinVar [38]. ClinVar is a public archive

of human variations with their corresponding clinical significance. Clinical significance infor-

mation in ClinVar is provided based on the American College of Medical Genetics and Geno-

mics (ACMG) guidance in describing variants identified in genes that cause Mendelian

disorders.

We used ClinVar (dated 05 January 2016) using the reference genome of GRCh37.p13 as

our main set. Within the 120,509 records in this dataset, we identified two sets of variants that

we use for training, a set of pathogenic variants (ClinVar significance code 5) and a set of

benign variants (ClinVar significance code 2). Additionally, for each pathogenic variant, we

obtain the disease that the variant causes, identified through its OMIM identifier [78].

By default, ClinVar grouped a variant with multiple alleles into a single record. By using the

VCF2TSV parser script from VCFLIB (https://github.com/vcflib) we converted the VCF for-

mat file of ClinVar to a tab-delimited format file and split the variants with multiple alleles

into multiple records. We further split variants that are associated with multiple diseases into

multiple records.

Next, we downloaded the mode of inheritance (MOI) for diseases in OMIM From the HPO

phenotype database. We obtained a total of 5,864 MOI records which were classified as “Dom-

inant”, “Recessive”, “Multifactorial”, “Others”, “Sporadic”, “X-linked” and “Y-linked”. We

combined this information with the variants from ClinVar to generate candidate disease-caus-

ing genotypes; if the MOI of the disease associated with a ClinVar variant is “Recessive”, we

generate a single homozygote genotype using the variant; in all other cases, we generate a het-

erozygote as well as a homozygote genotype based on the variant. The results are 43,236 geno-

types classified as pathogenic and 52,084 genotypes classified as benign. This set includes

12,783 pathogenic non-coding variants (i.e., variants that do not lie in an exonic region,

including intronic and intergenic variants).

Generation of synthetic exomes/genomes

So that we can quantitatively evaluate our method, we generated 11,251 synthetic whole

genome sequences corresponding to our hold-out test sets. To generate this test set, we

inserted a single pathogenic variant into a randomly selected whole genome sequence from the

1000 Genomes Project, hg19. In 8,746 of these sequences we inserted an exonic causative vari-

ant and in 2,505 we inserted a non-exonic causative variants. 46 exonic and 7 non-exonic vari-

ants from our holdout set were excluded as they have a MAF higher than our cutoff of 1%. We

generated synthetic exome sequences by removing non-exonic variants from the 8,746 WGS
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files that include an exonic variant. We use these synthetic whole exome and whole genome

sequences to test the performance of our method.

Model training

We split the set of 43,236 pathogenic variants randomly into 80% for training and 20% for test-

ing. We annotated all variants in these sets with methods that can predict pathogenicity of

both coding and non-coding variants. We used the Combined Annotation Dependent Deple-

tion (CADD) [17], Genome Wide Annotation of VAriants (GWAVA) [16] and a deep neural

network approach (DANN) [18] to obtain three pathogenicity prediction scores for each of the

variants. Additionally, we used the genotype (homozygote or heterozygote) of a variant as

feature.

For each variant, we also added features related to the disease the variant is involved in

according to ClinVar. In particular, we added as features the mode of inheritance of the dis-

ease, using only “Dominant”, “Recessive”, “X-linked”, and “Other” as features, and a binary

vector of 54 high-level phenotypes of the disease based on our PhenomeNET ontology com-

bining HPO and MP. Finally, we added the normalized semantic similarity between the disease

phenotypes and the gene in which the variant is located as a feature. If a variant is non-exonic,

we used the gene that is closest to the variant in genomic coordinates as the gene for which

similarity was computed. In total, each variant is represented as 60 features (see S1 Table).

Based on these 60 features, we trained a random forest classifier to classify variants into

causative and non-causative (given a set of phenotypes observed in a patient). We understand

a causative variant as a variant that is both pathogenic and involved in the pathogenesis of the

disease phenotypes observed in the patient. For training, we represented the patient’s disease

phenotypes by the phenotypes associated with the disease in the HPO database. A variant may

be pathogenic but not causative for a set of patient phenotypes [11]. We simulated this case by

randomly selecting another disease from the OMIM database and assigning these phenotypes

as patient phenotypes in the feature representation of the variant. We called these variants

pathogenic non-causative variants. We treated all variants identified as benign in ClinVar as

non-causative and selected the phenotypes of a random OMIM disease to represent them. For

training, missing values were imputed using the C4.5 method [79].

We use pathogenic causative variants as positives, but have two different types of negatives:

pathogenic non-causative variants and benign non-causative variants. We train three models

that emphasize the negative variants differently: a first model uses only pathogenic non-causa-

tive variants as negatives, a second model uses only benign variants as negatives, and a third

model uses 50% pathogenic non-causative and 50% benign non-causative variants as negatives.

Since the first model cannot distinguish variants by their pathogenicity prediction scores

(since both positive and negative variants are pathogenic and only differ in the disease for

which they are causative), it is trained to under-emphasize pathogenicity of a variant and rely

primarily on the phenotype similarity. The second model can clearly distinguish pathogenic

variants from non-pathogenic based on pathogenicity prediction scores and will not have to

rely heavily on the phenotype similarity scores; therefore, it is trained to under-emphasize phe-

notype similarity and predict primarily based on pathogenicity of a variant. The third model

aims to achieve a balance between both.

For each model, we train a random forest binary classifier (using the pre-selected 80% of

the variants in ClinVar [38] while keeping 20% of the variants as holdout set for final valida-

tion) and evaluate the results using stratified 10-fold cross-validation. We trained the models

using the Random Forest implementation in Weka [80] using 100 trees, unlimited depth of

trees, and constructing each tree considering 6 random features. Random forests are trained to
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output probability estimates of class assignment, which we use as prediction score to rank vari-

ants. We report cross-validation evaluation results in S2 Table.

Model evaluation

The trained models are then applied to our synthetic exomes and genomes. Each synthetic

whole exome or whole genome sequence is taken randomly from one of the 1,000 Genomes

project sequences, with one causal variant from our holdout set artificially inserted. We use

the phenotypes associated with the disease for which this variant is causal as patient pheno-

types and use our models to compute a prediction score for each variant in the synthetic

sequences. We then evaluate the ranks on which we recover the causal variant and compare

the results against Exomiser version 7.2.1, Phevor version 2, eXtasy version 0.1beta (for whole

exome sequences only), and CADD version 1.3, DANN version 1, GWAVA version 1, and

Genomiser version 7.2.1 (for whole genome sequences). For evaluation, none of our models

were trained on the variants we inserted in these sequences. We report the area under the

receiver operating characteristic curve (ROC AUC) and the top ranks and top 10 ranks

obtained by applying each method.

We analyze the synthetic whole exome sequences with the Exomiser [41] using the same

sets of phenotypes and mode of inheritance as input and using its variant prioritization mode.

For comparison with Phevor, we first rank variants based on their CADD score and submit

the ranked list to the Phevor web interface using the same phenotypes used in our analysis.

Phevor provides a ranked list of genes, not variants, and we assign variants the Phevor rank of

the gene in which it is located. We performed the analysis with eXtasy using its default parame-

ter settings with imputation of missing values, and combining multiple phenotypes. eXtasy

was not able to utilize all HPO phenotype classes in our analysis and we omitted the pheno-

types that were not available to eXtasy.

In all tools besides PVP, we remove variants for which no rank is assigned from the analysis.

For DANN and GWAVA, this includes all insertions and deletions as they are not scored by

these tools.

PVP

In PVP, we remove all variants that are not clearly identified as homozygote or heterozygote

(e.g., genotypes that were not confidently called). Moreover, if the mode of inheritance of the

disease is known to be recessive, we filter out variants associated with 0/1 genotype call as the

disease will require a variant with a 1/1 genotype call in order to be present. MAF is also used

as a filtering option for some of the experiments we conducted. MAF data were obtained from

the 1000 Genomes Project corresponding to all populations (release August 2015) using the

Annovar tool [81]. The source code of PVP is freely available at https://github.com/bio-

ontology-research-group/phenomenet-vp.

Ethical approval

Use of UK10K data for this project was approved by the UK10K Data Access Committee at the

European Genome-phenome Archive for GVG, RH, MK, IB, and RBMR. Access to UK10K

data and analysis was limited to GVG, RH, MK, IB, RBMR.

Availability of data and material

Source code developed for this project is available at https://github.com/bio-ontology-research-

group/phenomenet-vp, and analysis results at http://www.cbrc.kaust.edu.sa/onto/pvp/.
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Data to UK10K samples is available from the European Genome-Phenome Archive through

the UK10K Data Access Committee (datasharing@sanger.ac.uk, https://www.uk10k.org/data_

access.html) for researchers who meet the criteria for access to confidential data.
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