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ABSTRACT
Asteroseismic parameters allow us to measure the basic stellar properties of field giants
observed far across the Galaxy. Most of such determinations are, up to now, based on simple
scaling relations involving the large-frequency separation, �ν, and the frequency of maximum
power, νmax. In this work, we implement �ν and the period spacing, �P, computed along
detailed grids of stellar evolutionary tracks, into stellar isochrones and hence in a Bayesian
method of parameter estimation. Tests with synthetic data reveal that masses and ages can
be determined with typical precision of 5 and 19 per cent, respectively, provided precise
seismic parameters are available. Adding independent on the stellar luminosity, these values
can decrease down to 3 and 10 per cent, respectively. The application of these methods to
NGC 6819 giants produces a mean age in agreement with those derived from isochrone fitting,
and no evidence of systematic differences between RGB and RC stars. The age dispersion of
NGC 6819 stars, however, is larger than expected, with at least part of the spread ascribable
to stars that underwent mass-transfer events.

Key words: stars: fundamental parameters – Hertzsprung–Russell and colour–magnitude
diagrams.

1 IN T RO D U C T I O N

With the detection of solar-like oscillation in thousands of red giant
stars, Kepler and CoRoT missions have opened the way to the deriva-
tion of basic stellar properties such as mass and age even for single
stars located at distances of several kiloparsecs (e.g. Chaplin &
Miglio 2013, and references therein). In most cases, this derivation
is based on the two more easily measured asteroseismic properties:
the large-frequency separation, �ν, and the frequency of maximum
oscillation power, νmax. �ν is the separation between oscillation
modes with the same angular degree and consecutive radial orders,
and scales to a very good approximation with the square root of the
mean density (ρ), while νmax is related with the cut-off frequency
for acoustic waves in an isothermal atmosphere, which scales with
surface gravity g and effective temperature Teff. These dependences

� E-mail: thaise.rodrigues@oapd.inaf.it

give rise to the so-called scaling relations:

�ν ∝ ρ1/2 ∝ M1/2/R3/2

νmax ∝ gT
−1/2

eff ∝ (M/R2)T −1/2
eff . (1)

It is straightforward to invert these relations and derive masses M
and radii R as a function of νmax, �νand Teff. The latter has to be
estimated in an independent way, for instance via the analysis of
high-resolution spectroscopy. M and R can then be determined ei-
ther (1) in a model-independent way by the ‘direct method’, which
consists in simply applying the scaling relations with respect to
the solar values, or (2) via some statistical method that takes into
account stellar theory predictions and other kinds of prior informa-
tion. In the latter case, the methods are usually referred to as either
‘grid-based’ or ‘Bayesian’ methods.

Determining the radii and masses of giant stars brings conse-
quences of great astrophysical interest: The radius added to a set
of apparent magnitudes can be used to estimate the stellar distance
and the foreground extinction. The mass of a giant is generally very
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close to the turn-off mass of its parent population, and hence closely
related with its age; the latter is otherwise very difficult to estimate
for isolated field stars. In addition, the surface gravities of astero-
seismic targets can be determined with an accuracy generally much
better than allowed by spectroscopy.

Although these ideas are now widely recognized and largely used
in the analyses of CoRoT and Kepler samples, there are also several
indications that asteroseismology can provide even better estimates
of masses and ages of red giants, than allowed by the scaling rela-
tions above. First, there are significant evidences of corrections of
a few per cent being necessary (see White et al. 2011; Miglio 2012;
Miglio et al. 2013, 2016; Brogaard et al. 2016; Handberg et al. 2016;
Guggenberger et al. 2016; Sharma et al. 2016) in the �ν scaling re-
lation. Although such corrections are expected to have little impact
on the stellar radii (and hence on the distances), they are expected to
reduce the errors in the derived stellar masses, hence on the derived
ages for giants. Secondly, there are other asteroseismic parameters
as well – like for instance the period spacing of mixed modes, �P
(Beck et al. 2011; Mosser et al. 2014) – that can be used to estimate
stellar parameters, although not via so easy-to-use scaling relations
as those mentioned earlier.

In this paper, we go beyond the use of simple scaling relations
in the estimation of stellar properties via Bayesian methods, first
by replacing the �ν scaling relation by using frequencies actually
computed along the evolutionary tracks, and second by including
the period spacing �P in the method. We study how the precision
and accuracy of the inferred stellar properties improve with re-
spect to those derived from scaling relations, and how they depend
on the set of available constraints. The set of additional param-
eters to be explored includes also the intrinsic stellar luminosity,
which will be soon determined for a huge number of stars in the
Milky Way, thanks to the upcoming Gaia parallaxes (Lindegren
et al. 2016, and references therein). The results are tested both
on synthetic data and on the star cluster NGC 6819, for which
Kepler has provided high-quality oscillation spectra for about 50
giants (Basu et al. 2011; Stello et al. 2011; Corsaro et al. 2012;
Handberg et al. 2016).

The structure of this paper is as follows. Section 2 presents the
grids of stellar models used in this work, describes how the �ν

and �P are computed along the evolutionary tracks, and how the
same are accurately interpolated in order to generate isochrones.
Section 3 employs the isochrone sets incorporating the new as-
teroseismic properties to evaluate stellar parameters by means
of a Bayesian approach. The method is tested both on synthetic
data and on real data for the NGC 6819 cluster. Section 4 draws
the final conclusions.

2 MO D E L S

2.1 Physical inputs

The grid of models was computed using the MESA code (Paxton
et al. 2011, 2013). We computed 21 masses in a range between
M = 0.6–2.5 M�, in combination with seven different metallicities
ranging from [Fe/H] = −1.00 to 0.50 (Table 1).1 The following
points summarize the relevant physical inputs used.

1 According to the simulations by Girardi et al. (2015), less than 1 per cent
of the giants in the Kepler fields are expected to have masses larger than
2.5 M�.

Table 1. Initial masses and chemical composition of the com-
puted tracks.

Mass (M�)

0.60, 0.80, 1.00, 1.10, 1.20, 1.30, 1.40, 1.50, 1.55, 1.60,
1.65, 1.70, 1.75, 1.80, 2.00, 2.15, 2.30, 2.35, 2.40, 2.45, 2.50

[Fe/H] Z Y

−1.00 0.001 76 0.250 27
−0.75 0.003 12 0.251 64
−0.50 0.005 55 0.254 09
−0.25 0.009 87 0.258 44
0.00 0.017 56 0.266 18
0.25 0.031 23 0.279 94
0.50 0.055 53 0.304 41

(i) The tracks were computed starting from the pre-main se-
quence (PMS) up to the first thermal pulse of the asymptotic giant
branch (TP-AGB).

(ii) We adopt the Grevesse & Noels (1993) heavy elements
partition.

(iii) The OPAL equation of state (Rogers & Nayfonov 2002) and
OPAL opacities (Iglesias & Rogers 1996) were used, augmented
by low-temperature opacities from Ferguson et al. (2005). C–O
enhanced opacity tables were considered during the helium-core
burning (HeCB) phase.

(iv) A custom table of nuclear reaction rates was used (NACRE;
Angulo et al. 1999).

(v) The atmosphere is taken according to the Krishna Swamy
(1966) model.

(vi) Convection was treated according to mixing-length theory,
using the solar-calibrated parameter (αMLT = 1.9657).

(vii) Overshooting was applied during the core-convective burn-
ing phases in accordance with the Maeder (1975) step function
scheme. We use overshooting with a parameter of αovH = 0.2Hp

during the main sequence, while we consider αovHe = 0.5Hp pene-
trative convection in the HeCB phase (following the definitions in
Zahn 1991 and the result in Bossini et al. 2015).

(viii) Element diffusion, mass-loss and effects of rotational mix-
ing were not taken into account.

(ix) Metallicities [Fe/H] were converted in mass fractions of
heavy elements Z by the approximate formula Z = Z� × 10[Fe/H],
where Z� = 0.017 56, coming from the solar calibration. The ini-
tial helium mass fraction Y depends on Z and was set using a linear
helium enrichment expression

Y = Yp + �Y

�Z
Z (2)

with the primordial helium abundance Yp = 0.2485 and the slope
�Y/�Z = (Y� − Yp)/Z� = 1.007. Table 1 shows the relationship
between [Fe/H], Z and Y for the tracks computed.

2.2 Structure of the grid

To build the tracks actually used in our Bayesian-estimation code,
we select from the original tracks computed with MESA about 200
structures well distributed in the HR diagram and representing all
evolutionary stages. From these models, we extract global quan-
tities, such as the age, the photospheric luminosity, the effective
temperature (Teff), the period spacing of gravity modes (�P; see
Section 2.4). In addition, each structure is also used to compute
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individual radial mode frequencies with GYRE (Townsend &
Teitler 2013) in order to calculate large separations (�ν), as de-
scribed in Section 2.3.

2.3 Average large-frequency separation

2.3.1 Determination of the large-frequency separation

In a first approximation, the large separation �ν can be estimated in
the models by equation (1). However, this estimation can be inaccu-
rate, since it is affected by systematic effects that depend, e.g. on the
evolutionary phase and, more generally, on how the sound speed
behaves in the stellar interior. To go beyond the seismic scaling
relations, we calculate individual radial-mode frequencies for each
of the models in the grid. Based of the frequencies, we compute
an average large-frequency separation 〈�ν〉. We adopt a definition
of 〈�ν〉 as close as possible to the observational counterpart. The
average �ν as measured in the observations depends on the num-
ber of frequencies identified around νmax and on their uncertainties.
Therefore, with the aim of a self-consistent comparison between
data and models, any 〈�ν〉 calculated from stellar oscillation codes
must take into account the restrictions given by the observations.
Handberg et al. (2016) estimated the quantity �νfit for the stars in
the Kepler’s cluster NGC 6819. In that paper, �νfit is estimated
by a simple linear fit of the individual frequencies (weighted on
their errors) as function of the radial order. The value of the slope
resulting from the fitting line gives the estimated �ν. However, the
same method cannot be applied to theoretical models since their
frequencies have no error bars. Therefore, we need to take into
account the uncertainties associated with each frequency in order
to give them a consistent weight. Observational errors depend pri-
marily on the frequency distance between a given oscillation mode
and νmax, with a trend that follows approximately the inverse of a
Gaussian envelope (smaller errors near νmax, larger errors far away
from νmax; Handberg et al. 2016). For this reason, we adopt a Gaus-
sian function, as described in Mosser et al. (2012a), to calculate the
individual weights:

w = exp

[
− (ν − νmax)2

2σ 2

]
, (3)

where w is the weight associated with the oscillation frequency ν,
and

σ = 0.66 × ν0.88
max . (4)

The 〈�ν〉 is then calculated by a linear fitting of the radial frequen-
cies νn, 0 as function of the radial order n, with the weights taken at
each νn, 0 frequency. In order to test our estimations, we use the ob-
served frequencies in Handberg et al. (2016) simulating their errors
using the Gaussian weight function in equation (3). Fig. 1 shows
the comparison between 〈�νgauss〉, determined from the method
above, with 〈�νfit〉 estimated in the paper using the actual errors.
The method estimate 〈�νgauss〉 with relative differences within the
error bars for the majority of the stars. Although the definition of
〈�ν〉 may seem a minor technical issue, it plays an important role
in avoiding systematic effects on, e.g. the mass and age estimates.

2.3.2 Surface effects

It is well known that current stellar models suffer from an inaccurate
description of near-surface layers leading to a mismatch between
theoretically predicted and observed oscillation frequencies. These

Figure 1. Comparison between the average large separation 〈�νfit〉 of the
star in NGC 6819, estimated by linear fitting with the actual error, and the
output of the method described in Section 2.3.1, for which the actual errors
were substituted by a Gaussian function centred in νmax.

Figure 2. Large-frequency separation (�ν) of radial modes as function of
frequency, as observed in the Sun (Broomhall et al. 2014, dots connected by
a blue line) and in our calibrated solar model (red line). The grey Gaussian
profile represents the weights given by each point of �ν when estimating
〈�ν〉 (accordingly to the method described in Section 2.3.1).

so-called surface effects have a sizable impact also on the large-
frequency separation, and on its average value. When using model-
predicted �ν it is therefore necessary to correct for such effects.
As usually done, a first attempt at correcting is to use the Sun as
a reference, hence by normalizing the 〈�ν〉 of a solar-calibrated
model with the observed one.

In our solar model, αMLT and X� are calibrated to reproduce,
at the solar age t� = 4.57 Gyr, the observed luminosity
L� = 3.8418 × 1033 erg s−1, the photospheric radius
R� = 6.9598 × 1010 cm (Bahcall et al. 2005), and the present-
day ratio of heavy elements to hydrogen in the photosphere
(Z/X = 0.02452; Grevesse & Noels 1993). We used the same
input physics as described in Section 2. A comparison between
the large-frequency separation of our calibrated solar model and
that from solar oscillation frequencies (Broomhall et al. 2014)
is shown in Fig. 2. We find that the predicted average large
separation, 〈�ν�,mod〉 = 136.1 μHz (defined cf. Section 2.3), is

MNRAS 467, 1433–1448 (2017)
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0.8 per cent larger than the observed one (〈�ν�,obs〉 = 135.0
μHz). We then follow the approach by White et al. (2011) and
adopt as a solar reference value that of our calibrated solar model
(〈�ν〉� = 〈�ν〉mod,� = 136.1 μHz).

This is an approximation that should be kept in mind, and an
increased accuracy when using 〈�ν〉 can only be achieved by both
improving our theoretical understanding of surface effects in stars
other than the Sun (e.g. see Sonoi et al. 2015; Ball et al. 2016)
and trying to mitigate surface effects when comparing models and
observations. In this respect, a way forward would be to determine
the star’s mean density by using the full set of observed acoustic
modes, not just their average frequency spacing. This approach was
carried out in at least two RGB stars (Huber et al. 2013; Lillo-Box
et al. 2014), and led to determination of the stellar mean density
that is ∼5–6 per cent higher than derived from assuming scaling
relations, and with a much-improved precision of ∼1.4 per cent. Fur-
thermore, the impact of surface effects on the inferred mean density
is mitigated when determining the mean density using individual
mode frequencies rather than using the average large separation
(e.g. see Chaplin & Miglio 2013). This approach is however not yet
feasible for populations studies, mostly because individual mode
frequencies are not available yet for such large ensembles, but it is
a path worth pursuing to improve both precision and accuracy of
estimates of the stellar mean density.

2.3.3 �ν: deviations from simple scaling

Small-scale deviations from the 〈�ν〉 scaling relation have been
investigated in several papers. This is usually done by comparing
how well model predicted 〈�ν〉 scales with ρ1/2, taking the Sun
as a reference point (see White et al. 2011; Miglio 2012; Miglio
et al. 2013, 2016; Brogaard et al. 2016; Handberg et al. 2016;
Guggenberger et al. 2016; Sharma et al. 2016).

Such deviations may be expected primarily for two reasons. First,
stars in general are not homologous to the Sun, hence the sound
speed in their interior (hence the total acoustic travel time) does not
simply scale with mass and radius only. Secondly, the oscillation
modes detected in stars do not adhere to the asymptotic approxima-
tion to the same degree as in the Sun (see e.g. Belkacem et al. 2013,
for a more detailed explanation).

The combination of these two factors is what eventually deter-
mines a deviation from the scaling relation itself. Cases where a
small correction is expected are likely the result of a fortuitous
cancellation of the two effects (e.g. in RC stars).

We would like to stress that beyond global trends, e.g. with global
properties, such corrections are also expected to be evolutionary-
state and mass dependent, as discussed, e.g. in Miglio (2012), Miglio
et al. (2013) and Christensen-Dalsgaard et al. (2014). As pointed
out in these papers, the mass distribution is very different inside
stars with same mass and radius but in RGB or RC phases. An RGB
model has a central density ∼10 times higher than an RC one; the
former has a radiative degenerate core of He, while the latter has a
very small convective core inside an He-core. The mass coordinate
of the He-core is roughly a factor of 2 larger for the RC model, while
the fractional radius of this core is very small (∼2.5–6 × 10−3)
in both cases. The frequencies of radial modes are dominated by
envelope properties, which do not have very different temperatures.
How the difference in the deep interior of the star affects then
the relation between mean density and the seismic parameter? As
suggested in the above-mentioned papers, different distribution of
mass implies a lower density of the envelope of the RC with respect

to the RGB one, and hence a different sound speed in the regions
effectively probed by radial oscillations. As shown by Ledoux &
Walraven (1958, and references therein), the oscillation frequencies
of radial modes depend not only on the mean density of the star, but
also on the mass concentration, with mode frequencies (and hence
separations) increasing with mass concentration. Although in the
RGB model the centre density is 10 times larger than the same in
the RC one, the latter is a more concentrated model since for 1 M�;
for instance, half of the stellar mass is inside some thousandths of its
radius. Moreover, as mass concentration increases, the oscillation
modes tend to propagate in more external layers. Hence, not only
the envelope of the RC model has a lower density, in addition the
eigenfunctions propagate in more external regions with respect to
their behaviour in RGB stars. The adiabatic sound speed of the
regions probed by these oscillation modes is smaller in the RC than
in the RGB, leading to differences in large-frequency separations
and corrections with respect to the scaling relation.

Fig. 3 shows the ratio between the large separation obtained from
the scaling relation, �νscal., and 〈�ν〉 (calculated as described in
Section 2.3.1) as a function of νmax for a large number of tracks in
our computed grid. These panels illustrate the dependence of �ν

corrections on mass, evolutionary state and also chemical compo-
sition that affects the mass distribution inside the star.

As shown in Fig. 3 the deviation of �ν with respect to the scaling
relation tends to low values for stars in the secondary clump. We
must keep in mind however that the masses of stars populating the
secondary clump depend on the mixing processes occurred during
the previous main-sequence phase, and also on the chemical compo-
sition, that is metallicity and initial mass fraction of He. Therefore,
a straightforward parametrization of correction as function of mass
and metallicity is not possible.

2.4 Period spacing

It has been shown by Mosser et al. (2012b) that it is possible to
infer the asymptotic period spacing of a star, by fitting a simple
pattern on their oscillation spectra. This is particularly relevant for
those stars that present a rich forest of dipole modes (l = 1), like,
for instance, the red giants. The asymptotic theory of stellar oscil-
lation tells us that the g-modes are related by an asymptotic relation
where their periods are equally spaced by �Pl. The relation states
that the asymptotic period spacing is proportional to the inverse of
the integral of the Brunt–Väisälä frequency N inside the trapping
cavity:

�P l = 2π2

√
l(l + 1)

(∫ r2

r1

N

r
dr

)−1

, (5)

where r1 and r2 are the coordinates in radius of turning points that
limit the cavity. It is easy to see that its value depends, among
other things, on the size and the position of the internal cavity, fact
that will become particularly relevant in the helium-core-burning
phase, giving the uncertainties on the core convection (Montalbán
et al. 2013; Bossini et al. 2015). On the RGB, the period spacing
is an excellent tool to set constrains on other stellar quantities, like
radius, and luminosity (see for instance Lagarde et al. 2016 and
Davies & Miglio 2016). Moreover the period spacing gives an easy
and immediate discrimination between stars in helium-core-burning
and in RGB phases, since the former have a �P systematically larger
of about ∼200–300 s than the latter, while after the early-AGB phase
it decreases to similar or smaller values.

MNRAS 467, 1433–1448 (2017)
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Figure 3. Correction of scaling relation �ν in function of νmax, for a subsection of the grid of tracks presented in Section 2.2.

2.5 A quick introduction to grid-based and Bayesian methods

Having introduced the way �ν (hereafter, to simplify �ν = 〈�ν〉)
and �P are computed in the grids of tracks, let us first remind how
they enter in the grid-based and Bayesian methods.

In the so-called direct methods, the asteroseismic quantities are
used to provide estimates of stellar parameters and their errors, by
directly entering them either in formulas (like the scaling relations
of equation 1) or in 2D diagrams built from grids of stellar models.

MNRAS 467, 1433–1448 (2017)
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In grid-based methods with Bayesian inference, this procedure is
improved by the weighting of all possible models and by updat-
ing the probability with additional information about the data set,
described approximately as:

p(x| y) ∼ p( y|x)p(x), (6)

where p(x| y) is the posterior probability density function (PDF),
p( y|x) is the likelihood function, which makes the connection be-
tween the measured data y and the models described as a function
of parameters to be derived x, and p(x) is the prior probability
function that describes the knowledge about the derived parameters
obtained before the measured data. The uncertainties of the mea-
sured data are usually described as a normal distribution, therefore
the likelihood function is written as

p( y′|x) =
∏

i

1√
2πσyi

× exp

(
−(y ′

i − yi)2

2σ 2
yi

)
, (7)

where y ′
i and σy′

i
are the mean and standard deviation, for each of

the i quantities considered in the data set.
In order to obtain the stellar quantity xi, the posterior PDF is

then integrated over all parameters, except xi, resulting a PDF for
this parameter. For each PDF, a central tendency (mean, mode, or
median) is calculated with their credible intervals. Therefore, this
method requires not only trusting the stellar evolutionary models
but also adopting a minimum set of reasonable priors (in stellar age,
mass, etc.). In addition to avoiding the scaling relations, the method
requires that the asteroseismic quantities are tabulated along a set
of stellar models, covering the complete relevant interval of masses,
ages and metallicities.

2.6 Interpolating the �ν deviations to make isochrones

The �ν computed along the tracks appropriately sample stars in
the most relevant evolutionary stages, and over the interval of mass
and metallicity to be considered in this work. However, in order
to be useful in Bayesian codes, a further step is necessary: such
calculations need to be interpolated for any intermediate value of
evolutionary stage, mass and metallicity. This would allow us to de-
rive detailed isochrones that can enter easily in any estimation code
that involves age as a parameter. Needless to say, such isochrones
may find many other applications.

The computational framework to perform such interpolations is
already present in our isochrone-making routines, which are de-
scribed elsewhere (see Marigo et al. 2017). In short, the following
steps are performed: our code reads the evolutionary tracks of all
available initial masses and metallicities; these tracks contain age
(τ ), luminosity (L), Teff, �νand �P from the ZAMS until TP-AGB.
These quantities are interpolated between the tracks, for any inter-
mediate value of initial mass and metallicity, by performing linear
interpolations between pairs of ‘equivalent evolutionary points’,
i.e. points in neighbouring tracks that share similar evolutionary
properties. An isochrone is then built by simply selecting a set of
interpolated points for the same age and metallicity. In the case of
�ν, the interpolation is done in the quantity �ν/�νSR, where �νSR

is the value defined by the scaling relation in equation (1). In fact,
�ν/�νSR varies along the tracks in a much smoother way, and has a
much more limited range of values than the �ν itself; therefore, the
multiple interpolations of its value among the tracks also produce
well-behaved results. Of course, in the end the interpolated values
of �ν/�νSR are converted into �ν, for every point in the generated
isochrones.

Fig. 4 shows a set of evolutionary tracks until the TP-AGB phase
in the range [0.60, 1.75] M� for [Fe/H] = 0.25 (Z = 0.031 23) and
interpolated isochrones of 2 and 10 Gyr both in the Hertzsprung–
Russell (HR), the ratio �ν/�νSR versus νmaxand the �P versus
�ν diagrams. The middle panel shows the deviation of the scaling
�ν of few per cent mainly over the RGB and early-AGB phases.
Deviations at the stages of main sequence and core helium burning
are generally smaller than 1 per cent.

Fig. 4 also shows that our interpolation scheme works very well,
with the derived isochrones reproducing the behaviour expected
from the evolutionary tracks.

No similar procedure was necessary for the interpolation in �P,
since it does not follow any simple scaling relation, and it varies
much more smoothly and covering a smaller total range than �ν.
The interpolations of �P are simply linear ones using parameters
such as mass, age (along the tracks), and initial metallicity as the
independent parameters.

3 A PPLI CATI ONS

We derived the stellar properties, using the Bayesian tool PARAM

(da Silva et al. 2006; Rodrigues et al. 2014). From the measured
data – Teff, [M/H], �νand νmax– the code computes PDFs for the
stellar parameters: M, R, log g, mean density, absolute magnitudes
in several passbands and as a second step, it combines apparent
and absolute magnitudes to derive extinctions AV in the V band
and distances d. The code uses a flat prior for metallicity and age,
while for the mass, the Chabrier (2001) initial mass function was
adopted with a correction for small amount of mass lost near the
tip of the RGB computed from Reimers (1975) law with efficiency
parameter η = 0.2 (cf. Miglio et al. 2012). The code also has a prior
on evolutionary stage that, when applied, separates the isochrones
into three groups: core-He burners (RC), non-core He burners
(RGB/AGB) and only RGB (till the tip of the RGB). The statistical
method and some applications are described in detail in Rodrigues
et al. (2014).

We expanded the code to read the additional seismic informa-
tion of the MESA models described in Section 2. We implemented
new variables to be taken into account in the likelihood function
(equation 7), such as �ν from the model frequencies, �P, log g and
luminosity. Hence, the entire set of measured data is

y = ([M/H], Teff,�ν, νmax, �P , log g, L),

where �ν can still be computed using the standard scaling relation
(hereafter �ν(SR)). Therefore PARAM is now able to compute stellar
properties using several different input configurations, i.e. the code
can be set to use different combinations of measured data. Some
interesting cases are, together with Teff and [M/H],

(i) �ν and νmax from scaling relation (equation 1);
(ii) �ν from model frequencies and νmax from scaling relation;
(iii) �ν (either from model frequencies or from scaling relation),

together with some other asteroseismic parameter, such as �P;
(iv) log g;
(v) any of the previous options together with the addition of a

constraint on the stellar luminosity.

The first two cases constitute the main improvement we consider
in this paper, which is already subject of significant attention in the
literature (see e.g. Guggenberger et al. 2016; Sharma et al. 2016).
The third case is particularly important given the fact that the νmax

scaling relation is basically empirical and may still reveal small
offsets in the future. Finally, the fourth and fifth cases are aimed
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Figure 4. MESA evolutionary tracks colour coded according to mass in the
HR (top panel), �ν/�νSR versus νmax(middle) and �P versus �ν (bottom)
diagrams. The solid and dashed black lines are examples of interpolated
isochrones of 2 and 10 Gyr, respectively.

at exploring the effect of lacking of seismic information, when
only spectroscopic data are available for a given star; and adding
independent information in the method, like e.g. the known distance
of a cluster, or of upcoming Gaia parallaxes, respectively.

3.1 Tests with artificial data

To test the precision that we could reach with a typical set of ob-
servational constraints available for Kepler stars, we have chosen
six models from our grid of models and considered various com-
binations of seismic, astrometric and spectroscopic constraints (see
Table 2).

The seismic constraints taken from the artificial data are �ν,
νmax and �P. The latter is used by taking its asymptotic value as
an additional constraint in equation (7), and not as only a discrim-
inant for the evolutionary phase as done in previous works (e.g.
Rodrigues et al. 2014). Uncertainties on �ν and νmax were taken
from Handberg et al. (2016) and on �P from Vrard, Mosser &
Samadi (2016). We adopted 0.2 dex as uncertainties on log g based
on average values coming from spectroscopy. For luminosity, we
adopted uncertainties of the order of 3 per cent based on Gaia par-
allaxes, where a significant fraction of the uncertainty comes from
bolometric corrections (Reese et al. 2016).

We derived stellar properties using 11 different combinations as
input to PARAM, in all cases using Teff and [Fe/H], explained as
following:

(i) �ν – only �ν from model frequencies;
(ii) �ν and νmax – to compare with the previous item in order to

test if we can eliminate the usage of νmax;
(iii) �ν(SR) and νmax – traditional scaling relations, to compare

with the previous item and correct the offset introduced by using
�ν scaling;

(iv) �ν and �P – in order to test if we can eliminate the usage
of νmax and improve precision using the period spacing not only as
prior, but as a measured data;

(v) �ν, νmax and �P – using all the asteroseismic data available;
(vi) �ν, �P and L – in order to test if we can eliminate the usage

of νmax, when luminosity is available (from the photometry plus
parallaxes);

(vii) �ν, νmax, �P and L – using all the asteroseismic data avail-
able and luminosity, simulating future data available for stars with
seismic data observed by Gaia;

(viii) νmax and L – in the case when it may not always be possible
to derive �ν from light curves, simulating possible data from K2
and Gaia surveys;

(ix) log g and L – in the case when only spectroscopic data are
available (in addition to L);

(x) �ν and log g – again in order to test if we can eliminate the
usage of νmax, replacing it by the spectroscopic log g;

(xi) �ν and L – again in order to test if we can eliminate the
usage of νmax, when luminosity is available.

In all cases, the prior on evolutionary stage was also tested. The
resulting mass and age PDFs for each artificial star are presented
using violin plots2 in Figs 5 and 6, respectively. The x-axis indicates
each combination of input parameters, as discussed before; the left
side of the violin (cyan colour) represents the resulting PDF when
prior on evolutionary stage is applied, while in the right side (white

2 Violin plots are similar to box plots, but showing the smoothed probability
density function.
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Table 2. Set of artificial data considered in Section 3.1.

Label M/M� log Age/yr Teff (K) [Fe/H] log g L/L� νmax (µHz) �ν (µHz) �P (s) Ev. state

S1 1.00 9.8379 4813 ± 70 − 0.75 ± 0.1 2.38 ± 0.20 54.77 ± 1.64 30.26 ± 0.58 3.76 ± 0.05 61.40 ± 0.61 RGB
S2 1.00 9.8445 5046 ± 70 − 0.75 ± 0.1 2.39 ± 0.20 64.52 ± 1.94 30.31 ± 0.58 4.04 ± 0.05 304.20 ± 3.04 RC
S3 1.60 9.3383 4830 ± 70 0.0 ± 0.1 2.92 ± 0.20 25.57 ± 0.77 105.01 ± 1.83 8.66 ± 0.05 70.80 ± 0.71 RGB
S4 1.60 9.3461 4656 ± 70 0.0 ± 0.1 2.55 ± 0.02 51.36 ± 1.54 45.99 ± 0.84 4.56 ± 0.05 62.00 ± 0.62 RGB
S5 1.60 9.3623 4769 ± 70 0.0 ± 0.1 2.54 ± 0.20 58.40 ± 1.75 43.97 ± 0.81 4.60 ± 0.05 268.30 ± 2.68 RC
S6 2.35 8.9120 5003 ± 70 0.0 ± 0.1 2.85 ± 0.20 51.41 ± 1.54 86.79 ± 1.54 6.86 ± 0.05 251.20 ± 2.51 RC

Figure 5. PDFs of mass for the six artificial stars presented in Table 2 using violin plots. Each panel shows the results of one star, named in the top together
with its evolutionary stage. The x-axis indicates each combination of input parameters for PARAM code as described in Section 3.1. The left side of the violin
(cyan colour) represents the resulting PDF when prior on evolutionary stage is applied, while in the right side (white colour) the prior is not being used. The
black dots and error bars represent the mode and its 68 per cent credible intervals of the PDF with prior on evolutionary stage (cyan distributions). The dashed
line indicates the mass of the artificial stars.
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Figure 6. The same as Fig. 5 but for logarithm of the ages. The right y-axis gives the age in Gyr. The dashed line indicates the age of the artificial stars.

colour) the prior is not being used. The black dots and error bars
represent the mode and its 68 per cent credible intervals of the PDF
with prior on evolutionary stage (cyan distributions).

In most cases, we recover the stellar masses and ages within the
68 per cent credible intervals. Using only �ν results in wider and
more skewed PDFs [case (i) in the plots], while adding νmax con-
fines the solution in a much smaller region [cases (ii) and (iii)].
When combining with �P, the solution is tied better [case (v)].
In most cases, the combination of �ν and νmax provides narrower
PDFs than �ν and �P, which indicates that �P does not constrain
the solution as tightly as νmax [cases (ii) and (iv)] even for RC stars.
As expected, adding more information as luminosity, narrows the
searching ‘area’ in the parameter space that provides the narrowest
PDFs when all asteroseismic parameters and luminosity are com-
bined [case (vii)]. The usage of only νmax and luminosity [case (viii)]

is very interesting, because it provides PDFs slightly narrower than
using the typical combination of �ν and νmax or �ν and luminosity
[case (xi)] and it is similar to the (v) and (vi) cases. The lack of aster-
oseismic information [case (ix)] worsens the situation, providing a
significant larger error bar than most other cases, simply because of
large uncertainties on gravity coming from spectroscopic analysis.
Case (x) results in PDFs very similar with case (i). This is to be
expected: including �ν as a constraint [case (i)] leads to a typical
σ (log g) 
 0.02 dex (see also the discussion in Morel et al. 2014,
page 4), i.e. adding the spectroscopic log g (σ (log g) 
 0.2 dex) as
a constraint [case (x)] has a negligible impact on the PDFs.

Finally, the prior on evolutionary stage does not change the shape
of the PDFs in almost all cases, except for the RGB star S4. Regard-
ing this case, it is interesting to note that S4 and S5 have similar �ν

and νmax, but different �P, that is, they are in a region of the �ν

MNRAS 467, 1433–1448 (2017)



1442 T. S. Rodrigues et al.

Table 3. Average relative uncertainties for each combination of input pa-
rameters for PARAM code as described in Section 3.1.

Case <σM/M > <σAge/Age >

RGB RC RGB RC

(i) �ν 0.173 0.077 0.734 0.217
(ii) �ν, νmax 0.078 0.045 0.284 0.144
(iii) �ν(SR), νmax 0.061 0.047 0.220 0.146
(iv) �ν, �P 0.109 0.052 0.336 0.181
(v) �ν, νmax, �P 0.054 0.030 0.192 0.109
(vi) �ν, �P, L 0.043 0.035 0.122 0.101
(vii) �ν, νmax, �P, L 0.034 0.025 0.097 0.075
(viii) νmax, L 0.039 0.033 0.107 0.102
(ix) log g, L 0.124 0.108 0.427 0.310
(x) �ν log g 0.173 0.077 0.727 0.215
(xi) �ν L 0.052 0.046 0.143 0.146

versus νmax diagram that is crossed by both RC and RGB evolu-
tionary paths. In similar cases, not knowing the evolutionary stage
causes the Bayesian code to cover all sections of the evolutionary
paths, meaning that there is a large parameter space to cover, which
often causes the PDFs to become multipeaked or spread for all pos-
sible solutions as cases (ix) and (x). Further examples of this effect
are given in fig. 5 of Rodrigues et al. (2014). Knowing the evolution-
ary stage, instead, limits the Bayesian code to weight just a fraction
of the available evolutionary paths, hence limiting the parameter
space to be explored and, occasionally, producing narrower PDFs.
This is what happens for star S4, which, despite being an RGB star
of 1.6 M�, happens to have asteroseismic parameters too similar
to those the more long-lived RC stars of masses ∼1.1 M�.

Table 3 presents the average relative mass and age uncertainties
for RGB and RC stars, which summarize well the qualitative de-
scription given above. Cases (i) [very similar to case (x)] and (ix)
result in the largest uncertainties: 17 and 12 per cent for RGB, and
8 and 11 for RC masses; up 70 and 40 per cent for RGB, and 22
and 31 for RC ages, respectively. From the traditional scaling re-
lations [case (ii)] to the addition of period spacing and luminosity
[case (vii)], the uncertainties can decrease from 8 to 3 per cent for
RGB and 5 to 3 for RC masses; 29 to 10 per cent for RGB and 14 to
8 for RC ages. It is remarkable that we can also achieve a precision
around 10 per cent on ages using νmax and luminosity [case (viii)],
and 15 per cent using �ν and luminosity [case (xi)].

Average relative differences between masses are ≤1 per cent
for cases (v), (vi), (vii) and (viii), around 1 per cent for cases (ii)
and (xi), ∼6 per cent for case (iii), and greater than 6 per cent for
cases (i), (ix) and (x). Regarding ages, relative absolute differences
are lesser than 5 per cent for cases (v), (vi), (vii), (viii) and (xi),
around 10 per cent when using �ν and νmax, ∼20 per cent when
using �ν(SR) and νmaxand greater than 40 per cent for cases (i), (ix)
and (x).

We also applied mass-loss on the models. Fig. 7 shows the re-
sulting mass and age PDFs for stars S2 and S5 with the efficiency
parameter η = 0.2 (cyan colours) and η = 0.4 (white colours).
For cases (v), (vi), (vii), (viii) and (xi), a mass-loss with efficiency
η = 0.4 produces differences on masses of ∼1 per cent, while on
ages, may be greater than 47 per cent for S2 and than 18 per cent
for S5. The small difference in masses results from the fact that,
in these cases, mass values follow almost directly from the observ-
ables – roughly speaking, they represent the mass of the tracks that
pass closer to the observed parameters. As well known, red giant
stars quickly lose memory of their initial masses and follow evo-
lutionary tracks that are primarily just a function of their actual

mass and surface chemical composition. So their derived masses
will be almost the same, irrespective of the mass-loss employed to
compute previous evolutionary stages. But the value of η will affect
the relationship between the actual masses and the initial ones at
the main sequence, which are those that determine the stellar age.
For instance, S2 have nearly the same actual mass (very close to 1
M�) for both η = 0.2 and η = 0.4 cases, but this actual mass can
derive from a star of initial mass close to 1.075 M� in the case
of η = 0.2, or from a star of initial mass close to 1.15 M� in the
case of η = 0.4. This ∼13 per cent difference in the initial, main
sequence mass is enough to explain the ∼47 per cent difference
in the derived ages of S2. More in general, this large dependence
of the derived ages on the assumed efficiency of mass-loss, warns
against trusting on the ages of RC stars.

3.2 NGC 6819

The previous section demonstrates that it is possible to recover,
generally within the expected 68 per cent (1σ ) credible interval
expected from observational errors, the masses and ages of artificial
stars. It is not granted that a similar level of accuracy will be obtained
in the analysis of real data. Star clusters, whose members are all
expected to be at the same distance and share a common initial
chemical composition and age, offer one of the few possible ways
to actually verify this. Only four clusters have been observed in the
Kepler field (Gilliland et al. 2010), and among these NGC 6819
represents the best case study, owing to its brightness, its near-
solar metallicity (for which stellar models are expected to be better
calibrated) and the large numbers of stars in Kepler data base. NGC
6791 has even more giants observed by Kepler; however, its super-
solar metallicity, the uncertainty about its initial helium content,
and larger age – causing a non-negligible mass-loss before the
RC stage – makes any comparison with evolutionary models more
complicated.

Handberg et al. (2016) reanalysed the raw Kepler data of the stars
in the open cluster NGC 6819 and extracted individual frequencies,
heights and linewidths for several oscillation modes. They also de-
rived the average seismic parameters and stellar properties for ∼50
red giant stars based on targets of Stello et al. (2011). Effective tem-
peratures were computed based on V − Ks colours with bolometric
correction and intrinsic colour tables from Casagrande & Vanden-
Berg (2014), and adopting a reddening of E(B − V) = 0.15 mag.
They derived masses and radii using scaling relations and com-
puted apparent distance moduli using bolometric corrections from
Casagrande & VandenBerg (2014). The authors also applied an em-
pirical correction of 2.54 per cent to the �ν of RGB stars, thus
making the mean distance of RGB and RC stars to become identi-
cal. As we based the definition of the average �ν for MESA models
similar to the one used in Handberg et al. (2016)’s work, we adopted
their values for the global seismic (�ν and νmax) and spectroscopic
(Teff) parameters. We verified that their Teff scale is just ∼57 K
cooler than the spectroscopic measurements from the APOGEE
Data Release 12 (Alam et al. 2015). The metallicity adopted was
[Fe/H] = 0.02 ± 0.10 dex for all stars. We also adopted period spac-
ing values from Vrard et al. (2016), who automatically measured
�P for more than 6000 stars observed by Kepler. In order to derive
distances and extinctions in the V band (AV), we also used the fol-
lowing apparent magnitudes: SDSS griz measured by the KIC team
(Brown et al. 2011) and corrected by Pinsonneault et al. (2012);
JHKs from 2MASS (Cutri et al. 2003; Skrutskie et al. 2006); and
W1 and W2 from WISE (Wright et al. 2010).
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Figure 7. PDFs of mass (top panels) and ages (bottom panels) for the artificial RC stars S2 and S5 presented in Table 2 using violin plots. The left side of the
violin (cyan colour) represents the resulting PDF with the efficiency parameter on mass-loss η = 0.2, while in the right side (white colour) η = 0.4. The black
dots and error bars represent the mode and its 68 per cent credible intervals of the PDF with η = 0.2 (cyan distributions). The dashed line indicates the mass
and the ages of the artificial stars.

Table 4. Average relative uncertainties on masses and ages for stars in NGC
6819 using the combination of input parameters (ii), (iii) and (v) for PARAM

code.

Case <σM/M > <σAge/Age >

RGB RC RGB RC

(ii) �ν, νmax 0.057 0.026 0.210 0.100
(iii) �ν(SR), νmax 0.044 0.026 0.161 0.102
(v) �ν, νmax, �P 0.013 0.021 0.050 0.077

We computed stellar properties for 52 stars that have Teff, [Fe/H],
�ν and νmax available using cases (ii) and (iii); and for 20 stars that
have also �P measurements using case (v). Table 4 presents the
average relative uncertainties on masses and ages for these stars.
These average uncertainties are slightly smaller than the ones from
our test with artificial stars in the previous section.

Fig. 8 shows the masses and ages derived using PARAM with
cases (ii) and (iii) as observational inputs. The blue and red colours
represent RC and RGB stars, respectively. The median and mean
relative differences between stellar properties are presented in
Table 5. The RGB stars have masses ∼8 per cent greater when
using �ν scaling relation, while many RC stars present no differ-
ence and only few of them have smaller masses (≈2 per cent). The
mass differences reflect RGB stars being on average ∼18 per cent
younger and no significant differences on RC stars. The ∼5 per cent
difference on RGB radii reflects on the same difference on distances.

Fig. 9 shows the masses and ages derived using cases (ii) and (v)
as observational input. The average relative uncertainties are much
smaller for RGB stars when adding �P as an observational con-
straint (see Table 4). The agreement on masses is very good, except
for massive stars, when masses are around the upper mass limit of
our grid (2.50 M�). Two overmassive stars result ∼10 per cent less
massive when adding �P (KIC 5024476 and 5112361). The ages
also present a good agreement inside the error bars, although with
a dispersion of ∼5 per cent.

The top panel of Fig. 10 shows the comparison between masses
estimated with case (ii) versus masses from Handberg et al. (2016).
The masses have a good agreement with a dispersion of ∼7 per cent,
showing that the proposed correction of 2.54 per cent on �ν for
RGB stars in Handberg et al. (2016) compensates the deviations
when using �ν scaling. The authors also discussed in details some
stars that seem to experience non-standard evolution based on their
masses and distances estimations and on membership classifica-
tion based on radial velocity and proper motion study by Milliman
et al. (2014). These stars are represented with different symbols
in all figures of this section: asterisks – non-member stars (KIC
4937257, 5024043, 5023889); diamonds – stars classified as over-
massive (KIC 5024272, 5023953, 5024476, 5024414, 5112880,
5112361); squares – uncertain cases (KIC 5112974, 5113061,
5112786, 4937770, 4937775); triangle – Li-rich low-mass RC (KIC
4937011). A similar detailed description star by star is not the scope
of this paper, however the peculiarities of these stars should be kept
in mind when deriving their stellar and the cluster properties. Some
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Figure 8. Comparison between masses (top panel) and ages (bottom) es-
timated with case (ii) versus case (iii). The bottom panel excludes KIC
4937011 (Li-rich low mass RC) that has an estimated age in both cases of
∼13.8 Gyr. Sub-panels show relative differences. Dotted black lines are the
identity line. The blue and red colours represent RC and RGB stars, respec-
tively. Different symbols are peculiar stars that were discussed in details
in Handberg et al. (2016) – asterisks are stars classified as non-members;
diamonds: stars classified as overmassive; squares: uncertain cases; triangle:
Li-rich low-mass RC (KIC 4937011).

Table 5. Median and mean relative (and absolute) differences between
properties estimated using case (ii) and (iii) for RGB and RC stars from
NGC 6819.

Properties RGB RC
Median Mean Median Mean

Masses 0.088 0.079 0.000 − 0.012
Ages − 0.195 − 0.180 − 0.002 − 0.004
Radii 0.048 0.043 0.000 − 0.007
AV 0.005 0.031 0.001 0.001
Distances 0.047 0.045 − 0.001 − 0.006

Figure 9. Same as Fig. 8, but with case (ii) versus case (v).

of the overmassive stars do not have a good agreement, because of
the upper mass limit of our grid of models (2.5 M�). Taking into
account only single member stars, the mean masses of RGB and
RC stars using case (ii) are 1.61 ± 0.04 M� and 1.62 ± 0.03 M�,
which also agree with the ones found in Handberg et al. (2016) and
Miglio et al. (2012).

The bottom panel of Fig. 10 shows the comparison between dis-
tance moduli estimated with case (ii) versus distance moduli in the
V band estimated in Handberg et al. (2016). The solid line repre-
sents the linear regression μ0 = μV(Handberg) − AV, which results
AV = 0.475 ± 0.003 mag, which is in a good agreement with the
average extinction for the cluster (see Fig. 11). Our method esti-
mates the extinction star-to-star and it varies significantly in the
range AV = [0.3, 0.7] for the stars in the cluster. This seems to
be in agreement with Platais et al. (2013), who showed a substan-
tial differential reddening in this cluster with the maximum being
�E(B − V) = 0.06 mag, what implies extinctions in the V band
in the same range that we found. Extinctions and distance moduli
estimated using case (ii) are presented in Fig. 11. The average un-
certainties on extinctions and distance moduli are 0.1 and 0.03 mag
(<2 per cent on distances), respectively. We derived the distance
for the cluster by computing the mean distances, μ0 = 11.90 ±
0.04 mag with a dispersion of 0.23 mag (solid and dashed black
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Figure 10. Comparison between masses (top panel) and distance moduli
(bottom) estimated with case (ii) and from Handberg et al. (2016). Dotted
black lines are the identity line. The blue and red colours represent RC
and RGB stars, respectively. Different symbols are the same as Fig. 8.
The solid black line in the bottom panel shows the agreement between our
distance with the distance in the V-band, representing a measurement of the
extinction.

lines in Fig. 11), excluding stars classified as non-members (as-
terisks) by Handberg et al. (2016). This value compares well with
distance moduli measured for eclipsing binaries, μ0 = 12.07 ±
0.07 mag (Jeffries et al. 2013).

Fig. 12 shows the histogram of the age estimated using case (ii).
The grey line represents the histogram of all stars, except the three
stars classified as non-members and the star KIC 4937011 that likely
experienced very high mass-loss during its evolution (see discussion
in Handberg et al. 2016). Red and blue lines represent the ages of
RGB and RC stars. The mean age by the grey histogram is 2.22 ±
0.15 Gyr with a dispersion of 1.01 Gyr, which agrees with the age
estimated by fitting isochrones to the cluster CMDs by Brewer et al.
(2016) (2.21 ± 0.10 ± 0.20 Gyr). Taking into account only stars
classified as single members (31 stars), i.e. excluding stars that are
binary members, single members flagged as over/undermassive and
with uncertain parameters classified according to Handberg et al.
(2016), the mean age results 2.25 ± 0.12 Gyr with a dispersion
of 0.64 Gyr. Importantly, RGB and RC apparently share the same-

Figure 11. Extinction versus distance moduli estimated with case (ii). The
blue and red colours represent RC and RGB stars, respectively. Solid and
dashed black lines are the mean and its uncertainty of distance moduli
computed taking into account all stars, except for the ones classified as
non-member (asterisks) by Handberg et al. (2016). Different symbols are
the same as Fig. 8.

Figure 12. Histogram of ages estimated using case (ii). The grey line
represents all stars, except the ones classified as non-members stars and
KIC 4937011 that has ∼13.8 Gyr. Red and blue lines represent the ages of
RGB and RC stars.

age distribution, i.e. there is no evidence of systematic differences
in the ages of the two groups of stars. This result reflects taking
into consideration the deviations from scaling relations, which are
quite relevant for RGB stars but smaller for the RC. Adding �P
[case (v)], the mean age is 2.12 ± 0.19 Gyr with a dispersion of
0.79 Gyr, excluding the star KIC 4937011 and also the one classified
as a non-member KIC 4937257 (triangle and asterisk symbols in
Fig. 9). For this case, there are 13 stars classified as a single member
according to Handberg et al. (2016), whose mean age is 2.18 ±
0.20 Gyr with a dispersion of 0.73 Gyr. In the case with �ν scaling
[case (iii)] the mean age is 1.95 ± 0.11 Gyr (dispersion of 0.78 Gyr,
computed also excluding the three stars classified as non-members
and the star KIC 4937011), 12 per cent younger than using �ν from
models.
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Figure 13. CMD for the cluster stars with membership probability
≥90 per cent according to radial velocity by Hole et al. (2009) (grey dots).
The blue and red colours represent RC and RGB stars, respectively. Differ-
ent symbols are the same as Fig. 8. The green, cyan and orange lines are
MESA isochrones with ages 2.0, 2.2 and 2.3 Gyr, using μ0 = 11.90 mag and
E(B − V) = 0.14 mag.

Fig. 13 shows the colour–magnitude diagram (CMD) for the
cluster stars with membership probability ≥90 per cent according
to radial velocity by Hole et al. (2009) (grey dots). The red and blue
symbols are the stars analysed in this work. There is a significant
dispersion on the RGB and RC, but still our isochrones match well
the photometry. This points to a significant consistency between
the ages of evolved stars derived from asteroseismology, and the
CMD-fitting age that would be derived from the photometry. This
particular result, however, should not be generalized, since it applies
only to the specific set of stellar models and cluster data that has
been used here.

Another important aspect, however, is that the ages derived for
cluster stars turn out to present a larger scatter than expected. If we
assume that all cluster stars really have the same age, their mean
standard deviation implies that the final errors in the ages are of
roughly 46 per cent, which is a factor of 2 larger than the individual
age uncertainties for case (ii) (see Table 4).

The scatter is reduced when excluding from the sample stars that
are binary members, single members flagged as over/undermassive
and with uncertain parameters classified according to Handberg
et al. (2016). In this case the scatter (28 per cent) is higher than, but
comparable with, the expected uncertainty (21 per cent).

At present, the origin of this increased age dispersion is not
clear. We note however that the NGC 6819 giants are also dispersed
around the best-age isochrones in the CMD. The magnitude of this
dispersion is not simply attributable to differential reddening or
photometric errors (Hole et al. 2009; Milliman et al. 2014; Brewer
et al. 2016). Therefore, it is possible that it reflects some physical
process acting in the individual cluster stars, rather than a failure in
the method.

We also notice that in the cluster CMD (Fig. 13) the main-
sequence turn-off is well defined and the comparison with

isochrones appears to rule out internal age spreads larger than
∼0.2 Gyr. Even larger age spreads have been suggested to explain
the very extended (and sometimes bimodal) main-sequence turn-
offs observed in some very massive star clusters in the Magellanic
Clouds (Goudfrooij et al. 2015, and references therein). However,
there is no evidence of a similar feature occurring in the photometry
of NGC 6819.

4 D I S C U S S I O N A N D C O N C L U S I O N S

Our main conclusions are as follows.

(i) It is possible to implement the asteroseismic quantities �ν and
�P, computed along detailed grids of stellar evolutionary tracks,
into the usual Bayesian or grid-based methods of parameter estima-
tion for asteroseismic targets. We perform such an implementation
in the PARAM code. It will soon become available for public use
through the web interface http://stev.oapd.inaf.it/param.

(ii) Tests with synthetic data reveal that masses and ages can
be determined with typical precision of 5 and 19 per cent, if
precise global seismic parameters (�ν, νmax, �P) are available.
Adding luminosity, these values can decrease to 3 and 10 per cent,
respectively.

(iii) Combining the luminosity expected from the end-of-mission
Gaia parallaxes with �ν, enables us to infer masses (ages) to
∼5 per cent (∼15 per cent) independently from the νmax scaling
relation, which is still lacking a detailed theoretical understanding
(but see Belkacem et al. 2011). A similar precision on mass and age
is also expected when combining luminosity and νmax: this will be
particularly relevant for stars where data are not of sufficient qual-
ity/duration to enable a robust measurement of �ν. Stringent tests
of the accuracy of the νmax scaling relation (as in Coelho et al. 2015)
are therefore of great relevance in this context.

(iv) Any estimate based on asteroseismic parameters is at least a
factor of 4 more precise than those based on spectroscopic param-
eters alone.

(v) The application of these methods to NGC 6819 giants pro-
duces mean age of 2.22 ± 0.15 Gyr, distance μ0 = 11.90 ±
0.04 mag, and extinctions AV ≈ 0.475 ± 0.003 mag. All these
values are in agreement with estimates derived from photometry
alone, via isochrone fitting.

(vi) Despite these encouraging results, the application of the
method to NGC 6819 stars also reveals a few caveats and far-from-
negligible complications. Even after removing some evident outliers
(likely non-members) from the analyses, the age dispersion of NGC
6819 stars turns out to be appreciable, with the τ = 2.22 ± 0.15 Gyr
with a dispersion of 1.01 Gyr, implying an ∼46 per cent error on
individual ages (or ∼28 per cent taking into account only single
members and removing over-massive stars indentified in Handberg
et al. 2016). The mean age value is compatible with those deter-
mined with independent methods (e.g. the τ = 2.21 ± 0.10 ±
0.20 Gyr from isochrone fitting).

The result of a large age dispersion for NGC 6819 stars is no doubt
surprising, given the smaller typical errors found during our tests
with artificial data. Since asteroseismology is now widely regarded
as the key to derive precise ages for large samples of field giants
distributed widely across the Galaxy, this is surely a point that has
to be understood: any uncertainty or systematics affecting the NGC
6819 stars will also affect the analyses of the field giants observed
by asteroseismic missions.

We could point out that, on the one hand, a clear source of bias
in age is the presence of over/under-massive stars that are likely
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to be the product of binary evolution. Additionally, even restricting
ourselves to RGB stars and weeding out clear over/undermassive
stars, we are left with an age/mass spread that is larger than ex-
pected (28 per cent compared to 21 per cent). Grid-based modelling
increases the significance of this spread, compared to the results
presented in Handberg et al. (2016).

Whether this spread is an effect specific to the age-metallicity
of NGC 6819 is yet to be determined. Previous works on NGC
6791 and M 67, for instance, have not reported on a significant
spread in mass/age of their asteroseismic targets (Basu et al. 2011;
Corsaro et al. 2012; Miglio et al. 2012; Stello et al. 2016). These
three clusters are different in many aspects, with NGC 6791 being
the most atypical one given its very high metallicity. Apart from
this obvious difference, in both NGC 6791 and M 67 the evolved
stars have masses smaller than 1.4 M�, and were of spectral type
mid/late-F or G – hence slow rotators – while in their main se-
quence. In NGC 6819, the evolved stars have masses high enough
to be ‘retired A-stars’, which includes the possibility of having been
fast rotators before becoming giants. This is a difference that could,
at least partially, be influencing our results. Indeed, rotation during
the main sequence is able to change the stellar core masses, chem-
ical profile and main-sequence lifetimes (Eggenberger et al. 2010;
Lagarde et al. 2016). A spread in rotational velocities among co-
eval stars might then cause the spread in the properties of the red
giants, which might not be captured in our grids of non-rotating
stellar models. The possible impact of rotation in the grid-based
and Bayesian methods has still to be investigated.

On the other hand, this ∼46 per cent uncertainty is comparable
to the 0.2 dex uncertainties that are obtained for the ages of giants
with precise spectroscopic data and Hipparcos parallax uncertain-
ties smaller than 10 per cent (Feuillet et al. 2016), which refer to
stars within 100 pc of the Sun. In this sense, our results confirm that
asteroseismic data offer the best prospects to derive astrophysically
useful ages for individual, distant stars.
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