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 31 

ABSTRACT 32 

It has become increasingly recognised that multiple processes can generate similar shapes of 33 

species abundance distributions (SADs), with the result that the fit of a given SAD model 34 

cannot unambiguously provide evidence in support of a given theory or model. An alternative 35 

approach to comparing the fit of different SAD models to data from a single site is to collect 36 

abundance data from a variety of sites, and then build models to analyse how different SAD 37 

properties (e.g. form, skewness) vary with different predictor variables. Such a 38 

biogeographical approach to SAD research is potentially very revealing, yet there has been a 39 

general lack of interest in SADs in the biogeographical literature. In this Perspective, we 40 

address this issue by highlighting findings of recent analyses of SADs that we consider to be 41 

of intrinsic biogeographical interest. We use arthropod data drawn from the Azorean 42 

archipelago to further highlight how analyses of SAD form and function may be 43 

biogeographically informative. We hope that, by reviewing a number of novel approaches, 44 

our article may prove to be a catalyst for a greater interest in analysing SADs in 45 

biogeography. 46 

Keywords   47 

applied biogeography, function regression, gambin model, lognormal model, logseries model, 48 
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 50 

INTRODUCTION 51 

A species abundance distribution (herein ‘SAD’) describes how the total number of 52 

individuals sampled within a given community is distributed amongst the sampled species. 53 

Patterns of SADs have been studied for over 70 years, with seminal papers published in the 54 

1940s by Fisher et al. (1943) and Preston (1948), but have received renewed interest in the 55 

last decade (McGill et al., 2007; McGill, 2011; Matthews & Whittaker, 2015). One common 56 

recent use of the SAD has been as a means to test different ecological theories. For example, 57 

following the introduction of Hubbell’s (2001) spatially implicit neutral model (SINM) for 58 

application in biogeography and biodiversity studies, many authors attempted to test the 59 

theory by evaluating the fit of the SAD predicted by Hubbell’s SINM to empirical data –  60 



with varying levels of success (e.g. Hubbell, 2001; McGill, 2003; Etienne, 2005; for a review 61 

see Matthews & Whittaker, 2014).  62 

Unfortunately, it has become increasingly apparent that multiple processes can generate 63 

similar shapes of SAD curves, thus causing a problem of equifinality: the fit of a given SAD 64 

model cannot unambiguously provide evidence in support of a given theory (McGill et al., 65 

2007). An alternative and less frequently applied approach to that of simply comparing the fit 66 

of different SAD models to data from a single site, is to collect species abundance data from a 67 

variety of sites to build models that can then be used to analyse how different SAD properties 68 

(e.g. form, skewness) vary with different predictor (environmental) variables. In other words, 69 

the question of which mechanisms drive SADs can be approached instead by assessing which 70 

biogeographical variables control the relative abundances of species. Such an approach to 71 

SAD research may be more revealing and encourage interest in using SADs in 72 

biogeographical studies.  73 

Here we set out to highlight the use of SADs as a fruitful and instructive approach in 74 

biogeographical research and we hope that this article may encourage greater interest in 75 

analysing SADs amongst biogeographers. We begin by describing how two different 76 

regression-based methods (standard linear regression and function regression) can be used to 77 

determine the mechanisms underlying SADs and provide examples from the recent literature 78 

of studies that have used these approaches. This is followed by an analysis of arthropod data 79 

from the Azorean archipelago to illustrate how the study of SADs can generate interesting 80 

information from a biogeographical point of view. 81 

USE OF REGRESSION METHODS FOR EXPLAINING VARIATION IN SADS 82 

Assessing SAD model parameters within a standard linear regression framework 83 

One useful way of assessing which variables underpin various SAD properties is to use a 84 

parameter from a given SAD model as the response variable in, for example, a regression 85 

model. Traditionally, the lognormal and logseries models have been used in such an approach 86 

(see Matthews & Whittaker, 2015). For instance, Sæther et al. (2013) used a Scottish lake 87 

macro-benthos community dataset to show that the σ2 parameter (the variance) of the 88 

lognormal model varied significantly according to the severity of pollution.  89 

Whilst the lognormal and logseries models are sound statistical representations of many 90 

empirical communities and still represent useful tools, more recently introduced models offer 91 



additional possibilities for such analyses. For example, the immigration parameter (m) of 92 

Hubbell’s (2001) SINM can be used to make inferences regarding the importance of dispersal 93 

from the metacommunity into the local community: if m is close to 1, the local community is 94 

a random sample of the regional metacommunity, whereas if m is close to zero, the local 95 

community receives very few immigrants from the metacommunity (Hubbell, 2001; 96 

Matthews & Whittaker, 2014). The m parameter can easily be estimated by maximum 97 

likelihood fitting of the zero-sum multinomial SAD model (Etienne, 2005). If multiple sites 98 

are surveyed it is then possible to regress m against various predictor variables to determine 99 

what factors influence the importance of dispersal in ecological communities. For example, in 100 

one recent analysis Chust et al. (2013) found that m was consistently lower in tropical relative 101 

to temperate marine phytoplankton communities. The frequency dependence parameter 102 

(delta) of Jabot & Chave’s (2011) non-neutral generalisation of Hubbell’s model provides an 103 

alternative parameter to use in such exercises (e.g. see Jabot & Chave’s 2011, Figure 2 for a 104 

correlation between delta and precipitation for a variety of tropical tree plots). 105 

The gambin SAD model (Matthews et al., 2014a) can also be used in biogeographical 106 

analyses (e.g. Dornelas et al., 2011). The gambin model combines the flexible gamma 107 

distribution with a binomial sampling process. It is a single free parameter model and its 108 

parameter (α) characterizes the shape of the SAD. Low values characterize logseries SAD 109 

shapes, while higher values indicate lognormal curve shapes (Ugland et al., 2007; Matthews 110 

et al., 2014a). Extreme values can indicate more complex situations in which common 111 

species are the most prevalent type of species in the community. Thus, α condenses the shape 112 

of the SAD into a single value that can then be used in regression models. The gambin model 113 

is beneficial in this regard as it is flexible and has been found to fit a wide range of SAD 114 

shapes.  115 

A recent paper published in Journal of Vegetation Science (Ulrich et al., 2015) provides a 116 

useful example of what can be gained from a biogeographical approach to SAD research. 117 

Ulrich et al. (2015) examined the SADs of 605 tree assemblages across six continents. Ulrich 118 

et al. fitted two SAD models (logseries and lognormal) in rank-abundance form and related 119 

various properties of the observed SADs (e.g. shape and evenness) to geographical and 120 

climatic variables (e.g. latitude, elevation and evapotranspiration) using linear regression. A 121 

relationship between latitude and SAD evenness and shape was found. Logseries distributions 122 

were more prevalent at lower latitudes, whilst there was an increase in the prevalence of 123 

lognormal distributions towards northern latitudes. Again, whilst these results are interesting 124 



in themselves, what is perhaps more intriguing is that this approach allows the user to make 125 

inferences regarding classic SAD and community assembly theory. For example, the 126 

lognormal distribution has traditionally been used to model undisturbed ecological 127 

communities (Ugland et al., 2007; Matthews & Whittaker, 2015). In contrast, logseries SADs 128 

have been linked to disturbed communities and communities in severe environments with low 129 

productivity (Gray et al., 1979; Hill & Hamer, 1998; Ugland et al., 2007). As such, a number 130 

of studies have used deviation from a lognormal distribution as a means of assessing the 131 

impact of disturbance (e.g. pollution) on natural communities (e.g. Hill & Hamer, 1998; 132 

reviewed in Matthews & Whittaker, 2015). The results of Ulrich et al. (2015) are at variance 133 

with this theory, as it was found that logseries distributions were associated with species rich, 134 

productive and low-latitude tree communities. Instead, their results point to the importance of 135 

dispersal and stochastic processes in shaping the SADs of tree communities. It is worth 136 

noting that the R2 values of the models in Ulrich et al. were generally quite low (< 0.3), 137 

indicating that there must be other important "hidden variables" that were not included in the 138 

study, thus pointing towards information needs for future biogeographical SAD studies and 139 

meta-analyses. For example, isolation is known to be an important variable in many 140 

ecological systems and may therefore explain some of the additional variation in Ulrich et 141 

al.’s data. A distance-decay approach may be useful in such circumstances to evaluate the 142 

impact of between patch distances on SAD metrics.   143 

Function regression and the species abundance distribution 144 

A recent paper by Yen et al. (2015) introduces the method of function regression in the 145 

context of ecological applications. Function based regression models have been used in the 146 

statistical literature for some time (see Müller & Stadtmüller, 2005), but as Yen et al. note, 147 

applications in biogeography and ecology are uncommon. Function regression models enable 148 

functions to be used as the response variable (and as predictor variables, although this 149 

possibility is not discussed here), which allows the user to regress a function on different 150 

predictor variables (Yen et al., 2015). Questions such as ‘how does the form of the SAD 151 

change in response to fragment area and/or isolation?’ are perfectly suited to this 152 

methodological approach. However, instead of condensing the SAD into a single value, for 153 

example the gambin α parameter, function regression models allow us to use function-valued 154 

data and therefore the whole SAD, as the response variable. Multiple methods are available to 155 

fit function regression models (e.g. Bayesian estimation using reversible-jump Markov chain 156 

Monte Carlo computation). The original ‘FREE’ R package (see Yen et al., 2015) provides 157 



functionality for six of these different methods. An updated version of the package 158 

(‘FREElite’) that includes fewer fitting methods is also available. The use of function 159 

regression in SAD research is technically more complex than the simple linear models 160 

discussed above, but the former are arguably more revealing models as they allow the user to 161 

determine how different parts of the SAD are affected by a given predictor, e.g. the relative 162 

abundances of very common species. As such, “a function- valued method is likely to provide 163 

much deeper ecological and evolutionary insight” (Yen et al., 2015, p. 18). In their paper, 164 

Yen et al. provided examples of function regression using individual size distributions of 165 

various taxa.  166 

EXEMPLIFICATION WITH AZOREAN ARTHOPOD SADS  167 

Using standard linear regression to examine variation in gambin’s alpha parameter 168 

To highlight the utility of using SAD model parameters within a linear regression framework 169 

we focused on the α parameter of the gambin model (described above). We used well 170 

specified arthropod SAD data from the long-running Biodiversity of Arthropods from the 171 

Laurisilva of Azores (BALA) project in the Azores (see Borges et al., 2005; Ribeiro et al., 172 

2005) in combination with a linear regression modelling framework to determine which 173 

environmental variables explained variance in the shape of the SAD. Arthropods were 174 

sampled using a combination of pitfall traps and a canopy beating method following a 175 

rigorously standardized protocol. Eighteen fragments of native Laurisilva forest were 176 

sampled across seven islands in the Azorean archipelago over 13 years. The full sampling 177 

methodology can be found in Gaspar et al. (2008). The gambin model was fitted to the SADs 178 

from these 18 fragments using the ‘gambin’ R package (Matthews et al., 2014a), recording 179 

the α parameter in each case. As differences in sample size have been found to influence α 180 

(Matthews et al., 2014a), we used a re-sampling approach in which we first determined the 181 

fragment with the smallest number of individuals, denoting the number of individuals in this 182 

fragment as n. For each of the remaining 17 fragments, we then randomly sampled n 183 

individuals and fit the gambin model to the sampled data. This process was repeated 100 184 

times in each case and the average α value of 100 iterations taken. The response variable 185 

therefore constituted the standardised α values for 18 forest fragments. We collected data on 186 

five predictor variables, representing different fragment characteristics: fragment area, 187 

fragment isolation, precipitation, temperature and relative humidity (RH). Climatic data were 188 

obtained from the CIELO model (Azevedo et al., 1999). Fragment area and isolation were 189 



obtained from Gaspar et al. (2008) and were calculated using a geographic matrix of 190 

centroids using the DIVA-GIS software (Hijmans et al., 2005). Isolation was measured in 191 

meters as the distance between fragments within an island, except in the case of the single 192 

fragment on the island of Santa Maria, for which we used the distance to closest fragment on 193 

the nearest island of São Miguel. All predictors were log-transformed (base e), which induced 194 

normality. Variance inflation factors were used to assess multi-collinearity between 195 

predictors, while Cook’s distance was used to identify any outliers. Two data points were 196 

removed as outliers, so that our results are for 16 fragments only. The dredge function in the 197 

‘MuMIn’ R package (Bartoń, 2012) was used to fit a complete set of models that were 198 

compared using Akaike’s information criterion corrected for small sample size (AICc; 199 

Burnham & Anderson, 2002). Weight of evidence values were calculated for each predictor 200 

as the sum of the AICc weights from all models in which a predictor was included (Burnham 201 

& Anderson, 2002).  202 

 The best model contained isolation and temperature, and both of these variables had 203 

relatively high WoE values (Table 1). The best model had an adjusted R2 of 0.74, which is 204 

noteworthy, as it indicates that a substantial part of the variation in α between sites can be 205 

attributed to isolation and temperature alone, for these 16 fragments. Isolation was included 206 

in all models within 10 ΔAICc of the best model, and had a near maximum WoE value (0.99). 207 

The effect of isolation was negative (see Fig. 1), meaning that increasing isolation results in a 208 

decrease in α and therefore a shift from a more lognormal-like SAD towards a more 209 

logseries-shaped distribution. This is an interesting finding because it is could be expected 210 

that more isolated fragments/islands will have fewer really rare species of forest-dependent 211 

arthropods due to reduced rescue effects and re-colonisations following patch level 212 

extinctions. Thus, based on this line or reasoning, more isolated fragments would be expected 213 

to have a lower proportion of rarer species and therefore have SADs closer to lognormal in 214 

form. One possible ecological interpretation of this result is that, as these fragments are 215 

isolated in a matrix of human-modified habitats, our samples contain a relatively high 216 

proportion of tourist species represented by few individuals (Borges et al., 2008), and that the 217 

proportion of tourist species is higher in the more isolated fragments. For example, in our 218 

previous work we found that the presence of non-forest specialist species within fragments 219 

affects the shape of the SAD (Matthews et al., 2014b). Nonetheless, the most remarkable 220 

point in the context of the current paper is how this methodological approach can be used to 221 



determine the variables driving variation in SADs between sites, and in turn provides useful 222 

information on the key processes underpinning community structure. 223 

Examining variation in the shape Azorean arthropod SADs using function regression 224 

To our knowledge function regression has not been used in conjunction with SADs and so we 225 

return to the Azorean arthropod data described above to illustrate the approach. For this 226 

analysis, we used the SAD data from the 18 forest fragments as the response variable, but this 227 

time in their raw form. We used two predictor variables: fragment area and isolation. 228 

Following Yen et al. (2015), both predictors were standardized to have a mean of zero and a 229 

standard deviation of one. The function regression model was fitted using the FREE R 230 

package, and we used the ‘INLA’ (Integrated nested Laplace approximation) method as it 231 

was found to perform well in Yen et al.’s various tests. A Gaussian error structure was 232 

assumed. To convert the SAD data into a matrix, we binned the data from each fragment into 233 

octaves using functionality available in the gambin R package (Matthews et al., 2014a). This 234 

procedure uses a simple log2 transformation that doubles the number of abundance classes 235 

within each octave (see method 3 in Gray et al., 2006). A matrix was then created in which 236 

the columns represented abundance octaves, and the rows represented fragments.  237 

 The R2 value of the resultant model was high (0.87), but the credible intervals around 238 

the model coefficient estimates were quite large (e.g. Fig. 2). In the function regression 239 

analysis, isolation had a relatively large positive effect on the number of species in the rarer 240 

octaves (Table 2 and Fig. 2), which in turn will make the SAD more logseries-like. The 241 

results of this analysis match up well with our analysis above in which we used the gambin α 242 

parameter as the response variable in a standard linear regression model. However, the use of 243 

the function regression model allows us to make additional observations, which we were 244 

unable to make using the simple linear model. For example, from Fig. 2 it is clear that the 245 

effect of isolation is most pronounced for the two rarest octaves (1:2), and the effect 246 

decreases towards the more common octaves. Thus, it does appear that isolation is resulting 247 

in a relatively higher proportion of rare, possibly tourist (see e.g. Borges et al., 2008), species 248 

in isolated fragments. A single parameter value (e.g. α) will never be able to convey this 249 

detailed level of information; which is one reason why function regression represents a useful 250 

tool for SAD studies.  251 

 252 



CONCLUSIONS 253 

Many authors have commented on how simply evaluating the fit of a predicted SAD is a poor 254 

test of any ecological theory (e.g. McGill, 2003; McGill et al., 2007; Matthews & Whittaker, 255 

2014; May et al., 2015). Perhaps then a more fruitful avenue for SAD research is to adopt a 256 

more biogeographic perspective, and examine the factors that underpin the observed variation 257 

in SAD form between sites in both space and time. A large number of biogeographical 258 

studies have attempted to interpret the parameters of the power species–area relationship 259 

model (c and z) ecologically by assessing which predictor variables explain variation in the 260 

parameters across datasets (Connor & McCoy, 1979; Triantis et al., 2012; Matthews et al., 261 

2015). Similar biogeographic analyses involving parameters of SAD models are much less 262 

prevalent in the biogeography literature, probably due in part to the additional data 263 

requirements involved in constructing SADs. In fact, obtaining standardized abundance 264 

values for many species across large scales is not trivial, particularly for invertebrates. 265 

However, many SAD datasets have now been published (Borges et al., 2005; Ribeiro et al., 266 

2005; Ulrich et al., 2010, 2015), including a number of large-scale total counts (i.e. not 267 

samples; e.g. the Barro Colorado Island 50ha tree plot). Coupled with this increasing 268 

availability of data, it is hoped that, by reviewing a number of novel approaches, the present 269 

paper may act as a catalyst for a greater uptake and application of SADs in biogeography. 270 
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TABLES 384 

Table 1 The results of the linear regression analysis. The response variable was the 385 
standardised gambin α value from 16 arthropod SADs in native Laurisilva forest fragments, 386 
in the Azores. The five predictor variables were fragment area, isolation, precipitation 387 
(Precip.), relative humidity (RH) and temperature (Temp.). The best model and all models 388 
within 4 ΔAICc of the best model are shown. The weight of evidence (WoE) of each 389 
predictor was calculated by summing the AICc weights (wAICc) of each model in which a 390 
predictor was included. NI indicates a variable was not included in a model. 391 

Model Area Isolation Precip. RH Temp. ΔAICc  wAICc 
1 NI -0.19 NI NI 2.01 0 0.67 
2 NI -0.19 NI 3.00 2.59 3.60 0.11 
WoE 0.11 0.99 0.10 0.15 0.97   
 392 

 393 

Table 2 The mean fitted model coefficients for a function regression model with two 394 
predictor variables: fragment area, and isolation. The response variable was 18 arthropod 395 
species abundance distribution (binned into octaves) from 18 fragments of native Laurisilva 396 
forest, in the Azores. The SAD data were binned into octaves procedure using a simple log2 397 
transformation.  398 

 Octave 
 1 2 3 4 5 6 7 8 9 10 11 12 
Intercept 26.5 18.3 13 10.2 9.5 8.4 6.8 4.8 2.9 1.2 0.5 0.0 
Area -1.5 -1.2 -0.9 -0.7 -0.5 -0.5 -0.4 -0.4 -0.3 -0.2 -0.1 0.0 
Isolation 2.4 2.0 1.4 0.9 0.5 0.3 0.2 0.3 0.1 0.0 -0.1 -0.1 
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 423 

 424 

Figure 1 The relationship between fragment isolation and the standardized alpha parameter 425 
value of the gambin species abundance distribution model. The data are 16 arthropod SADs 426 
from native Laurisilva fragments in the Azores. Fragment isolation ranged from 970 m to 427 
90780 m. The blue line represents the best fit linear regression model. The islands in which 428 
the fragments are located are provided in the key. 429 
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 448 

 449 

Figure 2 Fitted parameter estimates from a function regression model. The fitted curve 450 
indicates the effect (Beta) of the predictor variable (fragment isolation) on the species 451 
abundance distributions of arthropods in 18 native Laurisilva forest fragments, in the Azores. 452 
A higher value of Beta indicates a greater effect of isolation on that particular area of the 453 
SAD (see the main text for further information). The solid line represents the mean value, and 454 
the dashed lines represent the approximate 95% pointwise credible intervals. The SAD data 455 
were binned into octaves procedure using a simple log2 transformation: octave 1 contains the 456 
number of species with 1 individual, octave 2 the number of species with 2 or 3 individuals, 457 
octave 3 the number of species with 4 to 7 individuals, and so forth. 458 
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