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Abstract
A compact proximal retarding field analyzer for scanning probe energy loss spectroscopy
measurements is described. Using the scanning tunneling microscope (STM) tip as a field
emission (FE) electron source in conjunction with this analyzer, which is placed at a glancing
angle to the surface plane, FE sample current and electron reflectivity imaging may be performed
simultaneously. This is demonstrated in measurements of Ag nanostructures prepared on
graphite by electron-beam lithography, where a material contrast of 13% is observed, with a
lateral resolution of 25 nm, between the silver and graphite in electron reflectivity images.
Topological contrast mechanisms such as edge enhancement and shadowing are also observed,
giving rise to additional features in the electron reflectivity images. The same instrument
configuration has been used to measure electron energy loss spectra on bare graphite, where the
zero loss peak, π band plasmon loss peak and secondary electron peaks are observed. Using this
simple and compact analyzer an STM, with sufficient open access to the tip-sample junction,
may easily be augmented to provide simultaneous elemental and topographic mapping,
supplementing STM image measurements with FE sample current and electron reflectivity
images, as well as electron energy loss spectroscopy measurements, in the same instrument.

Keywords: scanning tunneling microscope, field emission, backscattered electrons, energy loss
spectroscopy, silver nanostructures

(Some figures may appear in colour only in the online journal)

1. Introduction

Scanning tunneling microscopy (STM) has become firmly
established as a mature technique for surface characterization
since it was first demonstrated more than three decades ago
[1]. In that time there have been substantial efforts to develop
STM in new directions in order to push the boundaries of the
information that can be obtained with this tool. For some time
now, researchers have been developing a family of scanning
probe techniques based on a predecessor of STM, the Topo-
grafiner [2]. In this configuration the scanning tip is used as a
localized emission source of free electrons with which to

probe the sample surface. The field-emission (FE) current
measured at the sample may be used to construct an image of
the surface topography or, with the addition of a suitable
detector, electrons leaving the sample surface can be recorded
to perform microscopy [3–10] and spectroscopy [11–32].

Depending on the particular instrument configuration a
wealth of information about the sample surface can be
obtained. For example, FE and secondary electron images
with atomic vertical resolution and a lateral resolution of a
few nanometres have been demonstrated on graphite [4] and
W(110) [9], respectively. In the former case, images were
acquired using the FE current measured at the sample, while
in the latter case images were recorded using a secondary
electron detector placed near to the sample surface. By using
an electron energy analyzer the energy spectrum of the
electrons leaving the surface can be resolved into back-
scattered, secondary and Auger electron peaks. For example,

Nanotechnology

Nanotechnology 28 (2017) 105711 (8pp) https://doi.org/10.1088/1361-6528/aa5938

Original content from this work may be used under the terms
of the Creative Commons Attribution 3.0 licence. Any

further distribution of this work must maintain attribution to the author(s) and
the title of the work, journal citation and DOI.

0957-4484/17/105711+08$33.00 © 2017 IOP Publishing Ltd Printed in the UK1

mailto:r.e.palmer@bham.ac.uk
https://doi.org/10.1088/1361-6528/aa5938
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/aa5938&domain=pdf&date_stamp=2017-02-08
http://crossmark.crossref.org/dialog/?doi=10.1088/1361-6528/aa5938&domain=pdf&date_stamp=2017-02-08
http://creativecommons.org/licenses/by/3.0/


scanning probe based Auger electron spectroscopy and
energy loss spectroscopy measurements were demonstrated
by Reihl and Gimzewski [11] and subsequently by Tomitori
et al [12] and Eves et al [13]. The attraction of combining
these experiments in a single STM instrument is that it allows
the direct comparison of topograhic information with maps of
elemental composition (or electronic excitations such as
plasmons) from the same surface area of the sample. For
example, Festy and Palmer [21] demonstrated that spectro-
scopically resolved images of topological features on a
roughened Si surface could be obtained with a lateral reso-
lution below 50 nm. More recently, spatially resolved maps of
electron energy loss spectra showing clear elemental identi-
fication and discrimination were obtained on Ag structures on
graphite with a lateral resolution as low as 100 nm [26, 32].
Other noteworthy configurations have produced spin-polar-
ized [33, 34], electron diffraction [35–39] and luminescence
[40] measurements.

A key factor for most of these measurements is that the
electric field between the tip and sample plays a significant
role in the imaging process. Using angle-resolved measure-
ments, Eves et al [13] demonstrated that the trajectories of
backscattered electrons are deflected back towards the surface
by the field between the tip and sample. As a result, the
reflected electron signal is sharply peaked in the direction
parallel to the surface plane. Therefore, the detector must be
placed at a grazing angle to the surface plane in order to
maximize the collection of electrons from the surface. One
consequence of this is that geometric effects can strongly
influence the imaging process and must be considered when
evaluating the origins of contrast in the image. Festy et al [7]
showed that edge enhancement and shadowing effects were
important contrast mechanisms in backscattered electron
images measured with a retarding field analyzer (RFA) placed
at a glancing angle (< 5 ) to the surface. Another consequence
of this configuration is that the high population of back-
scattered electrons produced in the region directly under the
tip apex is suppressed by the electric field and only electrons
from an annular region around the tip position are able to
reach the detector [15, 16]. Significantly, while this reduces

the signal-to-noise ratio it also improves the spatial resolution
of the measurements. In these cases, while an unfocused field
emitter like a polycrystalline W tip, which is typical for STM
measurements, will generate an electron beam with a diameter
that is comparable to the tip-sample separation, the measured
electron signal will originate from a much smaller area [16].
The size of this probe area depends mainly upon the accep-
tance angle of the detector and on the field strength and
structure (i.e. applied voltage and tip shape), but will gen-
erally decrease with emission bias so that high resolution
images are best achieved at lower electron energies.

Here, we present a series of scanning probe energy loss
spectroscopy (SPELS) measurements obtained using a RFA,
an easily implemented and compact device that can be
mounted on a standard O.D. 2.75” CF port and can be
positioned in close proximity to the sample surface in order to
maximize collection efficiency. We demonstrate electron
reflectivity measurements of Ag nanostructures on highly
oriented pyrolytic graphite (HOPG), which were prepared by
e-beam lithography with a minimum structure size of 50 nm.
Our measurements show a substructure in the electron
reflectivity contrast of the nanostructures, resulting from the

Figure 1. Schematic illustration of the retarding field analyzer. The outer diameter and length of the analyzer are 31 mm and 43 mm,
respectively. The entrance aperture, four grid holders, insulating spacer rings, channel electron multiplier (CEM) and backplate with
feedthroughs are indicated. The diameter of the grids is 14 mm, while the diameter of the entrance aperture is 3 mm.

Figure 2. Scanning electron micrographs of 30 nm thick Ag
nanostructure array produced on HOPG by electron-beam
lithography.
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interplay between material contrast and topological contrast
mechanisms.

2. Experiment

2.1. SPELS instrument

The measurements were performed at room temperature in a
modified Omicron STM-1 scanning tunneling microscope,
which is housed in an ultrahigh vacuum chamber with a base
pressure in the mid 10−11 mbar range. To minimize stray
electric fields near the sample surface, a grounded Ta foil was
added around the STM tip and piezo scanner. The foil can be
moved forwards or backwards using a wobblestick in order to
facilitate tip exchange. The pre-amplifier near the scan head
of the STM-1 was removed and replaced by an amplifier
(Femto DLPCA-200) outside the vacuum chamber to allow
measurements at higher currents in FE mode using a
picoammeter. This instrument has been previously used in
combination with a cylindrical sector analyzer with multi-
channel detector to map the plasmon response of Ag
nanoislands on HOPG with SPELS [32]. For the experiments
described here, the analyzer has been replaced with a RFA
described below.

Figure 1 shows a schematic of the RFA. It consists of a
1 mm thick stainless steel plate with a 3 mm central aperture,
a series of four Au grids (SPI 02199G-AB, bar width 20 μm,
hole size 234 μm, 85% open area) for the retarding field and a
channel electron multiplier (Photonis CEM 4502) as the
detector. Each grid is held between two stainless steel rings
that are spot-welded together. A stainless steel rod is welded
to each of the four grid holders to act as a contact at the
backplate of the analyzer. PTFE distance rings isolate the grid
holders from one another and from the grounded casing of the
analyzer. The electron multiplier is mounted on a backplate
which is fixed to the RFA casing by three screws located at
120° around its circumference. The backplate has seven
PTFE-isolated feedthroughs for the four grids and three
contacts of the multiplier. Three long screws are used to hold
the stack of grids and aperture in place once the backplate is
secured to the RFA casing. The RFA is designed to be
retractable into a standard O.D. 2.75” CF port during tip and
sample exchange. It has an outer diameter of 31 mm, an inner
diameter of 14 mm and an overall length of 43 mm. The
retarding voltage is applied to the second and third grid, while
the first and fourth grids are grounded. The CEM entrance is
positively biased at 350 V with respect to the fourth grid to
increase detection efficiency at low electron energies. It is
operated at space charge saturation while using an Ortec 9302
Amplifier/Discriminator and an Ortec 9349 Ratemeter to
count the incident electrons. The distance from the sample to
the CEM is 38 mm. This design allows high collection effi-
ciency and can be easily implemented into an existing STM-1
setup.

As backscattered electrons are deflected by the field
between the tip and sample, the highest signal can be mea-
sured near the sample plane. However, to avoid multiple
interference of the electrons with the sample on their way to
the detector, we omit the electrons that travel too close to the
sample plane by placing the analyzer at a glancing angle of 7◦

to the sample surface. The distance between the sample and

Figure 3. (a) SEM image showing the shape of 30 nm high Ag
nanostructures on HOPG. (b) An electron reflectivity image
measured of the same type of Ag nanostructures as those shown in
(a). (c) The corresponding field-emission image measured with the
RFA. These images were taken at a FE voltage of 60 V, a current
setpoint of 10 nA and a retarding voltage of 20 V. The tip-sample
separation was 100 nm. The orientation of the RFA relative to the
scan direction is indicated by the legend in the lower left corner
of (b).
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the entrance aperture of the analyzer is 20 mm, which results
in a solid angle of 9.2 msr of the 3 mm aperture. The negative
FE voltage is applied to the tip while the FE current is
measured between the sample and ground. All FE images
were obtained in constant current mode. Tungsten tips were
prepared using the standard electrochemical etching proce-
dure (i.e. etching in 2 M NaOH with a dc bias of 6 V until
drop-off occurs). This was followed in situ by prolonged FE
at 1–5 μA.

2.2. Electron beam lithography (EBL) of Ag nanostructures

EBL was used to produce well-defined Ag nanostructures on
HOPG. SML-100 (EM Resist) was used as the positive tone
resist, methyl isobutyl ketone (MIBK) 1:3 diluted in isopropyl
alcohol (IPA) as the developer and acetone was used for lift-
off. First, 20 μl of SML-100 was spin coated at 500 rpm for 5
s and 3000 rpm for 30 s onto a 12 mm×12 mm piece of
freshly cleaved HOPG and baked at 160 °C for 3 min on a
hotplate. The EBL tool was a Philips XL 30 SEM in com-
bination with an ELPHY Quantum controller (Raith). For the
exposure of the structures an electron energy of 3 keV, a

beam current of 40 pA and an area dose of 750 μC cm–2 was
used. After exposure the samples were developed for 30 s,
rinsed in IPA and dried in a nitrogen gas flow. Ag was eva-
porated at a deposition rate of 2 MLmin–1 to a thickness of
30 nm. An example of the arrays of different Ag nanos-
tructures produced by electron-beam lithography for these
experiments is shown in figure 2.

3. Results and discussion

3.1. Electron reflectivity

Figure 3 shows a series of measurements obtained on some of
the Ag nanostructures produced by electron-beam litho-
graphy. The shape of the individual nanostructures can be
observed in the SEM image shown in figure 3(a). FE mea-
surements were performed on the same type of nanos-
tructures. An example is shown in figure 3(b), which was
acquired with a FE voltage of 60 V, a current setpoint of
10 nA and a tip-sample separation of 100 nm. The simulta-
neously acquired electron reflectivity image of the

Figure 4. (a) Electron reflectivity image and (b) field emission image of the area marked with the black frame in figure 3. A line-by-line linear
correction was applied for both images. The field emission voltage was 55 V, the current setpoint was 30 nA, the retarding voltage was 15 V
and the tip-sample separation was 40 nm. The graphs show (c) the count rate per ampere of FE current of the backscattered electrons and (e)
the FE current measured along line A in (a). Three distinct regions are visible in the backscattered electron signal, marked I to III, while the
field emission current measured at the sample remains constant.
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nanostructures is shown in figure 3(c). This was measured
with the RFA using a retarding voltage of 20 V to suppress
the secondary electron signal so that only the backscattered
electron signal is detected. The lateral resolution of the FE in
figure 3(b) is limited by the full width of the electron beam,
which is comparable to the tip-sample separation of 100 nm.
In this case, the FE parameters used have been chosen to
obtain a sizeable backscattered electron signal at the RFA
(~106 counts per second). Higher resolution FE images can
be obtained by lowering the FE bias and reducing the tip-
sample separation. However, this would result in a substantial
reduction in the backscattered electron signal measured by the
RFA. The increased spatial resolution observed in the electron
reflectivity image in figure 3(c) is due to the fact that the
backscattered electrons are detected from a small segment of
the annular surface region around the tip, which itself origi-
nates from the suppression effect of the tip-sample electric
field as described above [15, 16, 41]. Also, as the electron
mean free path in a solid is at its minimum at between 50 and
100 eV, the electrons are backscattered from the first few
layers of the sample. This leads to a high surface sensitivity of
the backscattered electron signal compared to electron ima-
ging techniques operating at higher beam energies.

Another noteworthy point is that the Ag nanostructures
yield a lower backscattered electron signal than the sur-
rounding HOPG substrate. We have recently reported on this
effect in [32], which is counterintuitive as one would expect a
larger electron backscattering cross-section for the element
with the higher atomic number. Moreover, since the RFA was
configured to suppress the secondary electron signal in these
measurements, it is unlikely that variations in the work
function of the surface are causing the material contrast. We
can only speculate at this point until further experiments are
carried out. However, it is possible that differences in electron

diffraction (known to occur in these type of experiments [35–
39]) from the Ag nanostructures and the HOPG substrate
impact upon how much of the backscattered electron signal is
collected by the analyzer from each material. The back-
scattered electron images shown here have been obtained with
the detector positioned in the lower left corner of the image as
indicated by the legend in figure 3(b). On closer inspection of
figure 3(b) it is clear that in addition to the material contrast
between Ag and graphite, there is also increased reflectivity
on areas of the nanostructures that face towards the detector
and decreased reflectivity from the edges that face away from
the detector. As the electron detector is positioned at a
glancing angle to the sample surface high aspect features can
block outgoing electrons leading to a lower signal from
shadowed regions, while there is less suppression from sur-
faces that are facing towards the detector.

The various contrast mechanisms are more easily dis-
cerned in figure 4, which shows a single Ag nanostructure
under high magnification. Figure 4 was taken at a FE voltage
of 55 V and a current setpoint of 30 nA, using a retarding
voltage of 15 V and a tip-sample separation of 40 nm.
Figure 4(c) shows the backscattered electron signal normal-
ized by the FE current, while figure 4(d) displays the FE
current, which remains constant due to the feedback control
of the tip. A linear fit has been subtracted from each line in
figures 4(a) and 4(b) while the data of the graphs has not been
processed. The line-profile A in figure 4(c) shows three dif-
ferent regions in the reflectivity image; the area facing the
detector (I), the surface of the Ag nanostructure, which has a
reduced reflectivity compared to the surrounding HOPG (II)
and the surface area where backscattered electrons are
blocked from the RFA by the nanostructure (III). The count
rate increases at the sides of the nanostructure that face the
detector (region I), while the FE current remains constant. The

Figure 5. Full electron energy loss spectrumQ1 measured on bare HOPG using a field emission voltage of 85 V, a current setpoint of ∼175 nA
and a 1 mm aperture in the RFA. The solid curve plots the integrated signal measured at the CEM as the retarding voltage is ramped. The
scatter plot shows the differentiated signal, which has been smoothed using a moving average filter.
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reflectivity in region II is reduced by 12.6±1.4%, while the
drop in region III is 25.3±1.0%. These values and errors
have been calculated using linear fits to the count rate mea-
sured on the HOPG substrate and Ag island. This substructure
is consistent with measurements of other Ag islands. It can
therefore be ruled out that the drop in region III is due to a
patch of residual resist as these should be distributed arbi-
trarily on the sample.

The lateral resolution of the electron reflectivity image is
taken to be the half-width of the transition from regions II to
III, which is 25 nm when measured perpendicular to the Ag
island edge.

3.2. Electron energy loss spectra

To investigate the performance of the RFA for SPELS mea-
surements, electron energy loss spectra were measured on
bare HOPG. The RFA has been tested with entrance apertures
of 1 and 3 mm using the CEM in pulse counting mode. The

aperture size is a trade off between signal and energy reso-
lution, with a smaller aperture giving better resolution at the
cost of lower signal. Appropriate aperture sizes have been
derived from electron trajectory simulations using the pro-
gram SIMION. Figure 5 shows the full energy loss spectrum
obtained on bare HOPG using a FE voltage of 85 V, a current
of ∼175 nA and a 1 mm aperture in the RFA. The solid curve
plots the integrated signal measured at the CEM as the
retarding voltage is ramped, while the scatter plot shows the
differentiated signal, which has also been smoothed using a
moving average filter. As the RFA is a high pass filter all
electrons with sufficient energy to overcome the retarding
potential are detected. Thus, it is difficult to detect plasmon
loss peaks against the background of the much larger zero
loss peak in the integrated signal measured by the CEM.
However, secondary electron peaks in the low kinetic energy
range are readily observed as they have comparable inten-
sities to the zero loss peak. These can be seen in figure 5 at

Figure 6. (a) Electron energy loss spectrum measured near the zero loss peak, using a FE voltage of 100 V, a current setpoint of ∼85 nA and
a 3 mm aperture in the RFA. The solid curve plots the integrated signal measured at the CEM as the retarding voltage is ramped, while the
scatter plot shows the differentiated signal, which has been smoothed using a moving average filter. The full width at half maximum of the
zero loss peak is 1.4 eV. (b) For comparison an energy loss spectrum of bare HOPG measured with the cylindrical sector analyzer and
multichannel detector described by Murphy et al [32].
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retarding potentials of 19 V and 2 V and agree well with
previous SPELS measurements of secondary electron emis-
sion spectra of graphite, which were obtained with a con-
centric hemispherical analyzer [23, 27]. The full width at half
maximum of the zero loss peak is around 1.7 eV. Figure 6
compares the energy loss spectrum measured on bare HOPG
obtained with the RFA (using a 3 mm aperture) with one
measured using a cylindrical sector analyzer used in an earlier
study [32]. It is possible to discern a loss peak associated with
the graphite π band plasmon at ∼ 8 eV [16]. However, given
the poor signal-to-noise ratio in the region between the zero
loss peak and the π band plasmon loss peak, it has not cur-
rently been possible to detect the plasmon loss peak for Ag,
which occurs at ∼3.7 eV [32]. By modulating the retarding
field with an ac component and using lock-in detection it
might be possible to resolve the Ag plasmon using this RFA
in future experiments.

4. Conclusion

A compact and easily implemented proximal RFA for SPELS
measurements in a commercial STM has been demonstrated.
When positioned close to the sample surface at a glancing
angle and used in conjunction with field emitted electrons
from the STM tip, material contrast with a resolution of 25 nm
can be routinely observed in electron reflectivity images of
Ag nanostructures produced by EBL on HOPG. In addition to
the material contrast, topological contrast effects such as edge
enhancement and shadowing have also been observed. The
material contrast resulted in the backscattered electron signal
decreasing by about 13% over the Ag nanostructures com-
pared to the surrounding HOPG substrate, which is roughly
half of the drop in signal measured in shadowed regions. By
sweeping the retarding potential, electron energy loss spectra
were measured on bare HOPG where the zero loss, π band
plasmon loss peak and secondary electron peaks could be
observed. With this analyzer an STM may be easily config-
ured for comprehensive sample characterization as material
contrast and topographic information can be obtained simul-
taneously from electron reflectivity and FE images, and
supplemented by electron energy loss spectra and STM
measurements using the same instrument.
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