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Abstract
Patients with Barrett's esophagus (BO) are at increased risk of developing esophageal adenocarcinoma (EAC).
Most Barrett's patients, however, do not develop EAC, and there is a need for markers that can identify those most
at risk. This study aimed to see if a metabolic signature associated with the development of EAC existed. For this,
tissue extracts from patients with EAC, BO, and normal esophagus were analyzed using 1H nuclear magnetic
resonance. Where possible, adjacent histologically normal tissues were sampled in those with EAC and BO. The
study included 46 patients with EAC, 7 patients with BO, and 68 controls who underwent endoscopy for dyspeptic
symptoms with normal appearances. Within the cancer cohort, 9 patients had nonneoplastic Barrett's adjacent to
the cancer suitable for biopsy. It was possible to distinguish between histologically normal, BO, and EAC tissue in
EAC patients [area under the receiver operator curve (AUROC) 1.00, 0.86, and 0.91] and between histologically
benign BO in the presence and absence of EAC (AUROC 0.79). In both these cases, sample numbers limited the
power of the models. Comparison of histologically normal tissue proximal to EAC versus that from controls
(AUROC 1.00) suggests a strong field effect which may develop prior to overt EAC and hence be useful for
identifying patients at high risk of developing EAC. Excellent sensitivity and specificity were found for this model to
distinguish histologically normal squamous esophageal mucosa in EAC patients and healthy controls, with 8
metabolites being very significantly altered. This may have potential diagnostic value if a molecular signature can
detect tissue from which neoplasms subsequently arise.
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Introduction
In many Western countries, rates of esophageal adenocarcinoma
(EAC) have been increasing for more than 20 years, particularly
among overweight, white men and those with severe gastroesophageal
reflux disease [1,2]. Among patients with gastroesophageal reflux
disease, some develop Barrett's esophagus (BO), characterized by
metaplastic columnar epithelium in which mucus-secreting goblet
cells appear. In some patients, this lining becomes unstable,
progressing from low-grade to high-grade dysplasia (HGD) and
then neoplasia. Identification of this at-risk population presently relies
on endoscopic surveillance of large cohorts of patients with BO, most
of whom will not develop a cancer.
The exact risk of patients with BO and HGD developing EAC

is not known, but one meta-analysis gave a weighted incidence rate
of 6.58 per 100 patient-years during the first 1.5 to 7 years [3].
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Likewise, Konda et al. suggested that the true rate of invasive
EAC was 12% in patients diagnosed with HGD who underwent
surgical resection. The other 88% of patients had only HGD or
intramucosal carcinoma, potentially treatable by endoscopic ablation
or endoscopic mucosal resection [4,5]. New markers are needed to
distinguish BO patients at highest risk of developing EAC and to
guide treatment options [6]. Identifying patients with BO and
progression to HGD based on histology alone can be challenging
because of sampling limitations and interobserver variability among
pathologists [7]. In addition, most endoscopic studies have focused
on the Barrett's epithelium itself, with little attention given to the
squamous epithelium.

The presence of genetic mutations and evidence of dysregulation in
histologically unaffected tissues adjacent to cancers implies a “field
effect” that might be exploited if signatures exist that are associated
with progression to HGD and intramucosal cancer in BO patients.
[8]. Many different field effect biomarkers including changes in gene
and protein expression, and epigenetic and metabolomic markers
have been reported for different types of cancers [9]. Different
techniques have been used to detect field effects in EAC, including
nanoscale structural properties [10,11] and nuclear magnetic
resonance (NMR)–based metabolomics of histologically normal
cells proximal to EAC [12].

Some of the previous EAC metabolomics studies were based on
different types of samples, relying on serum or urine samples to
separate EAC patients from normal or other cancer patients.
Sanchez-Espiridian et al. identified a panel of possible serum
biomarkers to distinguish EAC patients and healthy controls using
a liquid chromatography/mass spectrometry (MS) apprEACh for
samples from more than 650 patients and controls [13]. Likewise,
Davis et al. used 1H-NMR metabolomics on urine samples to
distinguish EAC patients or Barrett's patients from controls. Ikeda et
al. used gas chromatography/MS metabolomics on human serum to
identify various different biomarkers that distinguished EAC patients
from colon cancer patients, gastric cancer patients, and controls [14].
Zhang et al. used liquid chromatography/MS and NMR to build a
model based on samples from cancer patients and controls to address
the more challenging task of separating EAC patients from patients
with BO and HGD using serum metabolite levels [15].

There have also been two tissue metabolomics studies on EAC.
Yakoub et al. [12] reported that a high phosphocholine/glutamate
ratio indicated the presence of cancer proximal to histologically
normal tissue in a 1H Magic Angle Spinning NMR study of 35 EAC
patients and 52 controls. Doran et al. observed a decrease in the ratio
of carbohydrate to creatine-containing metabolites in Barrett's tissue
samples in the presence of EAC compared with Barrett's in the
absence of EAC for 29 controls and 43 cancer patients [16].

The present investigation was carried out using 1H-NMR
spectroscopy–based metabolomics looking at tissue samples from
patients with EAC, patients with BO, or controls. The same samples
were also subject to a previous Matrix-Assisted Laser Desorption/
Ionisation analysis [17]. Metabolic profiling from both squamous and
columnar epithelia across a range of patients was undertaken. The
goal of this study was to identify specific metabolic profiles in EAC
tissues compared to BO and control tissues, including metabolic
changes in the histologically nonneoplastic tissues adjacent to EAC.
This study attempted to identify metabolic markers that identify EAC
and see if there was evidence of a field effect in histologically normal
squamous or nondysplastic columnar epithelia in cancer patients.
Material and Methods

Tissue Samples
Tissue samples were obtained from patients with EAC, patients

with BO, and controls (patients undergoing upper gastrointestinal
endoscopy for dyspeptic symptoms but without endoscopic abnor-
malities) who presented to University Hospitals, Birmingham, UK,
between May 2009 and March 2010. Overall 1H-NMR spectra
for 211 polar extracts from tissue samples were used in this study
(Table 1).

Ethics Approval and Consent to Participate. Patients were recruited
from University Hospitals Birmingham between May 2009 and March
2010. All patients included in this study gave informed consent. Ethical
approval for this study was obtained from South Birmingham Research
Ethics Committee (REC reference number 08/H1207/3).

Sample Collection. Healthy normal esophageal squamous muco-
sa biopsies were obtained from 68 patients presenting with symptoms
of benign gastroesophageal reflux disease (NN). A total of 51 EAC
patients contributed samples either pre- or postchemotherapy (or
both). Their disease was staged as T2/3N0/1. Five EAC patients with
other major comorbidities were not included in the subsequent
analysis. There were 7 Barrett's patients who contributed both
histologically normal and Barrett's tissue samples.

For patients with gastroesophageal malignancies, biopsies of tumor
mucosa; histologically normal tissue at least 5 cm from tumor; and, if
available, Barrett's mucosa were obtained under general anesthetic
prior to staging laparoscopy. For some patients, a second set of
samples was collected after chemotherapy. All diagnoses were
histologically confirmed using biopsies. For Barrett's patients,
biopsies were obtained at the time of endoscopy for Barrett's mucosa
and for normal mucosa at least 5 cm from the Barrett's mucosa.
Samples from controls were also obtained at the time of endoscopy.
All tissue vials were stored on ice for 1 hour and then at −80°C.
Patient and sample data are summarized in Table 1.

Sample Preparation. Methanol chloroform extraction, as origi-
nally described by Bligh and Dwyer [18], was used to prepare polar
extracts for NMR analysis. Tissues were homogenized using a
Precellys 24 ceramic bead-based homogenizer (Stretton Scientific
Ltd., UK). All solvents were kept on ice. Eight microliters per
milligram of methanol and 2.5 μl/mg of water were added to each
Precellys tube, and tubes were placed in the Precellys 24 homogenizer
for two 10-second bursts at 6400 rpm. The homogenized mixture was
pipetted into a clean 1.8-ml glass vial using a Pasteur pipette. Eight
microliters per milligram of chloroform and 4 μl/mg of water were
subsequently added to each vial. The vials were vortexed at full power
for 30 seconds each and left on ice for 10 minutes. They were then
centrifuged at 1800g (3000 rpm) at 4°C for 10 minutes. The polar
fraction was dried in a centrifugal evaporator (SpeedVac).

NMR Spectra
Data Acquisition. For NMR analysis, dried polar extracts were

then resuspended in 100 mM sodium phosphate, pH 7, with 0.5 mM
TSP as internal reference and 10% D2O as lock solvent. All 1H
Nuclear Overhauser Spectroscopy spectra were acquired on a
600-MHz Bruker AVANCE2 spectrometer with a 1.7-mm TXI
probe at 288 K using the standard Bruker sequence, noesygppr1d
with a very short Nuclear Overhauser Spectroscopy mixing time of 10
milliseconds and with a 9.8-microsecond 1H hard pulse at 17 dB. A
total of 32 k points were acquired over an acquisition time of 2.2



Table 1. Tissue Samples Used in This Study

Class Tissue Postchemotherapy Patient Group Number of Samples

1: NN Histologically normal squamous esophageal mucosa (“normal tissue”) N Controls 68
2: NB Histologically normal squamous esophageal mucosa (“normal tissue”) N Barrett's patients 7
3: NCpr Histologically normal squamous esophageal mucosa (“normal tissue”) N EAC patients 30
4: BB Nondysplastic Barrett's tissue N Barrett's patients 7
5: BCpr Nondysplastic Barrett's tissue N EAC patients 4
6: CCpr EAC tissue N EAC patients 28
7: NCpo Histologically normal squamous esophageal mucosa (“normal tissue”) Y EAC patients 29
8: BCPo Nondysplastic Barrett's tissue Y EAC patients 9
9: CCPo EAC tissue Y EAC patients 29

Abbreviations: First letter indicates tissue type: N: normal tissue. B: Barrett's tissue; C: (cancer) EAC tissue. Second letter indicates patient type: N: normal controls; C: EAC patients; B: Barrett's patients
(in absence of EAC). Final two letters: pr: prechemotherapy; po: postchemotherapy.
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seconds, giving a spectral width of 7289 Hz. With an interscan delay
of 4 seconds and 512 scans per sample, total experiment time was
about 53 minutes per spectrum.

Data Processing. Free induction decays were zero-filled to 32 K
points and multiplied by a squared cosine window function before
Fourier transformation and phasing. All spectra were then aligned on
the TSP signal, a spline baseline correction was applied, and the water
(4.49-5.89 ppm) and TSP (below 0.14 ppm) regions of the spectra
were excluded. A number of regions were subjected to segmental
alignment using the icoshift software [19] to align resonances slightly
shifted by small differences, for example, in sample pH. Finally, all
spectra were scaled using total spectra area scaling. For multivariate
analysis, a generalized logarithmic transformation (y0 = 1e-7, λ = 0.0005)
was applied to increase the weighting given to less intense resonances [20].
Then, the x-block data were mean-centered, and principal component
analysis (PCA) was performed initially to look for any model-free group
separation and to identify spectra with high Q-residuals that should be
excluded from subsequent analysis.

Statistical Analysis. For the partial least squares discriminant
analysis (o-PLS-DA), the x-block data were mean-centered and
subject to orthogonal signal correction. Cross-validation used
Venetian blinds except in cases of 20 or fewer spectra in the model,
in which case the “leave-one-out”method was used. The permutation
test had n = 100 cycles. For multilevel (ML)-PLS-DA, double
cross-validation was used with 20 repeats and a maximum of 3 latent
variables, and then a 200-cycle permutation test was performed. For
the PLS-DA models, the following statistical parameters are reported:
the area under the receiver operator curve (AUROC), the
cross-validated error rate (CVER), and the permutation test P values
(P).

Sample Selection and Statistical Models. The specific statistical
method and parameters used are summarized in Table S1. Pre- and
postchemotherapy samples were available for some but not all of the
patients. For most of the study, we used prechemotherapy samples
and o-PLS-DA. However, for the smaller groups, we also included
some postchemotherapy samples. Specifically, there were 30 and 29
histologically normal samples from EAC patients pre- and post-
chemotherapy. Fifteen of these were paired (i.e., from the same
patients). Likewise, 28 and 29 EAC samples from EAC patients, pre-
and postchemotherapy, were available. Fourteen of these were paired.
Because approximately half of the samples were unpaired, o-PLS-DA
was used rather than ML-PLS-DA. The only cases where
ML-PLS-DA was used were comparisons between normal versus
Barrett's tissue in Barrett's patients (classes 2 and 4) and a model
where normal versus Barrett's in EAC patients and Barrett's versus
EAC in EAC patients were compared.

Univariate Analyses. To compare metabolite concentrations, one
well-resolved peak was picked for each metabolite in the first
spectrum, and peaks were picked in the other spectra in an automated
manner using in-house subroutines of MetaboLab [21]. The mean
and standard deviations for that metabolite for different classes
were calculated using Matlab functions mean and std., respectively.
The Shapiro-Wilk test was used to test each class's metabolite
intensities for normality (cutoff, P = .05). Depending upon the
results of the normality test, one of four tests was performed. If the
data were unpaired, then if the two Shapiro tests retained the null
hypothesis, the Welch test was used; otherwise, the Wilcoxon rank
sum test was used. If the data were paired, then if the Shapiro test
retained the null hypothesis, the paired t test was used, but if the
Shapiro test rejected the null hypothesis, the paired Wilcoxon signed
rank test was used. In all cases, a 5% cutoff (P value b .05) was used to
test the null hypothesis that the peak intensities for the two classes
were the same.

Results
Metabolite levels were analyzed in nine classes of tissue samples as
described in Table 1. Multivariate models were run to compare
different tissue classes to see where the most profound changes in the
metabolome occurred. Individual metabolite levels were compared to
determine which metabolite levels were statistically significantly
altered between classes. The results of the multivariate models
comparing different tissue classes to identify the most profound
changes in the metabolome are summarized in Figure 1. Metabolite
levels varied with tissue type, but there was also considerable
intragroup variability (Figure S1). Table S1 summarizes the results for
all class comparisons giving statistical parameters for the PLS-DA
models and information about individual metabolite level changes.

Effect of Chemotherapy (Class 6 vs Class 9 and Class 3 vs Class 7)
This initial test was important to clarify whether tissue samples

from pre- and postchemotherapy patients could be treated as one
similar group in subsequent models.

For the cancer tissue, PCA showed separation (between groups 6
and 9) (Figure S2A) and PLS-DA demonstrated near-perfect
separation (Figure S2B) between the two groups (AUROC = 1.00,
CVER = 0.018, P = .007, .007) (Figure S2C). The most discrimi-
nating metabolites with P b .00005 were lactate which increased and
formate which decreased postchemotherapy.



Figure 1. Overview of model with statistical data and metabolic changes between classes. PLS-DA models were assessed by
cross-validation and permutation testing (au = area under receiver operator curve, cv = cross-validated error rate, p = permutation test
P value). For individual metabolite changes, P values are reported: *P b .005, **P b .0005; red: metabolite level increased, blue:
metabolite level decreased. $: a paired significance test was used. # refers to the 10-case model with paired samples from EAC patients,
both either pre- or postchemotherapy.
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The PCA model built for normal squamous epithelium from
cancer patients (groups 3 vs 7) also showed good separation (Figure
S2D), confirmed by the PLS-DA model (Figure S2E) between the
pre- and postchemotherapy groups (AUROC = 1.00, CVER = 0.00,
P = .005, .005) (Figure S2F). Here the metabolite level changes were
often more statistically significant, with key metabolite changes being
elevated valine, succinate, myoinositol, glycine, creatine, and lactate,
and reduced formate and aspartate. The discriminating metabolites
were very similar in histologically normal tissue to those seen in cancer
tissue (Figure S3), suggesting that the observed metabolic signature
reflects the general effect of chemotherapy rather than a
cancer-specific response. These results imply that in looking for
differences between tissues in controls, Barrett's patients, and cancer
patients, it is essential to use only prechemotherapy samples from
EAC patients. For these reasons, all except one of the subsequent
comparative analyses relied on prechemotherapy samples only.

Overview of Metabolome Changes between Different Tissue
Types

Figure 1 summarizes the differences between tissue classes showing
the strength of PLS-DA models in terms of their statistical
significance and indicating which metabolites were statistically
significantly altered between tissues. The figure is laid out to show
squamous tissues at the top and columnar tissues at the bottom.

We expected the strongest metabolic changes between the
histologically normal tissue in controls and the EAC cancer tissue
in EAC patients. Hence, we first compared these tissues using a
PLS-DA model. Then, we looked at models that involved tissues that
are histologically different, e.g., comparing Barrett's (columnar) tissue
in Barrett's patients with histologically normal (squamous) tissue in
Barrett's patients to derive specific differences between squamous and
metaplastic columnar tissues. Next, we looked at the models of
greatest clinical relevance, namely, those that seek to differentiate
different columnar tissues, e.g., Barrett's tissues in Barrett's and EAC
patients. Finally, we compared histologically “normal tissues” from
controls, Barrett's patients, and EAC patients to look for evidence of
field effects in Barrett's and EAC patients.

Controls versus Prechemotherapy EAC Tissue (Class 1 vs
Class 6)

In an initial PCA, one EAC spectrum gave a very high Q-residual
and was removed. The subsequent PCA model had 68 control and 27
EAC spectra with good separation between the groups (Figure 2A).
The two groups also showed excellent separation in PLS-DA
(Figure 2B) confirmed by statistical analysis. For the PLS-DA
model, AUROC was 1.00, with a CVER of 0.00 and permutation
test P values of .008 and .005 (Figure 2C) for control and cancer
tissue, respectively, in random t tests. This model demonstrated that
cancer tissue has a significantly different metabolic signature
compared with normal tissue. Many individual metabolite levels
were significantly altered (P b .0005); specifically, myoinositol,
inosine, hypoxanthine, 3-hydroxybutyrate, glycerophosphocholine,
phosphocholine, and formate were all elevated, whereas glutamine,
alanine, creatine, ADP, and fumarate were all reduced.

Metabolic Differences between Squamous and Columnar
Tissues (Class 4 vs Class 2, Class 5 vs Class 3, and Class 6 vs
Class 3)

From Figure 1, it is clear that metabolomics PLS-DA models
readily resolve histologically distinct tissues. For example, the



A B C

D E F

Figure 2. (A–C) Multivariate analysis of normal tissue in controls versus cancer tissue in EAC patients. (A) Scores plot for PCA model. (B)
Scores plot for PLS-DAmodel. (C) Permutation test for n = 100. Normal tissue in controls as blue triangles; EAC tissue in cancer patients
as red squares. (D–F) Multivariate analysis for normal tissue proximal to EAC and cancer tissue from EAC patients prechemotherapy. (D)
Scores plot for PCA model. (E) Scores plot for PLS-DA model. Normal tissue proximal to EAC as blue triangles; EAC tissue as red
rectangles. (F) Permutation test, n = 100.
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PLS-DA model for class 4 versus class 2 has an AUROC of 1.00, a
CVER of 0.00, and a P value of .005. The histological changes
observed in the shift from squamous to columnar tissues are fully
reflected in very strong metabolic signatures, both in the case of
cancer patients and in those with histologically nondysplastic
Barrett's.

Histologically Normal Squamous and EAC Tissues from EAC
Patients Prechemotherapy (Classes 3 vs 6)
A similar signature should also be expected if one compares

histologically normal and EAC tissues, both from EAC patients,
although more significant changes must be expected than for the
previous model. Spectra from 30 “normal” and 28 cancer specimens
were used. Following PCA analysis (Figure 2D), one cancer tissue
spectrum was omitted because of high Q-residuals. The resulting
PLS-DA model (Figure 2, E–F; AUROC = 0.93, CVER = 0.106,
P = .058/.039) showed good group separation in latent variable 1
The differentiating metabolites were similar to those in the controls
versus EAC model, but the fold changes were often reduced.

Barrett's Tissue in the Presence and Absence of EAC (Class 5 vs 4)
Histologically nondysplastic Barrett's tissue samples were available

from four EAC patients prechemotherapy. A PCA model (Figure 3A)
showed that three of seven samples from patients with BO alone
grouped with the four EAC-associated Barrett's samples, mainly
because they had elevated phosphocholine and glycerophosphocho-
line (Figure 3B). A PLS-DA model (Figure 3C) gave a weak
separation (CVER = 0.27, AUROC = 0.79) of these metaplastic
tissues from Barrett's and EAC patients. The only statistically
significantly altered metabolites between cancer-associated and
cancer-free Barrett's samples were phosphocholine, which was
elevated, and leucine, isoleucine, and valine, which were reduced in
the EAC-associated Barrett's.

Comparison of Histologically Normal, Barrett's, and EAC
Tissues in Patients with EAC

An O-PLS-DA model was constructed to compare the three tissue
types of histologically normal tissue, nondysplastic Barrett's tissue,
and cancer tissue, all from cancer patients. Of the 51 EAC patients
recruited overall, only 7 had all 3 tissue types available to be entered
into this model. Of these, three patients had complete sets of the three
tissue types available both prechemotherapy and postchemotherapy.
A further four patients had a complete set of samples postchemother-
apy but no samples prechemotherapy. Thus, there were just 10 sets of
samples available. Although this model contains pre- and post-
chemotherapy samples, each class contains the same number of pre-
and postchemotherapy samples. Therefore, the model should not be
biased by the effect of chemotherapy (see Figure S4 for further
details). PCA, shown in Figure 4A, separated the histologically
normal squamous tissue from the columnar Barrett's and EAC tissues
but not the Barrett's from the EAC tissue. The PLS-DA model
(Figure 4B) showed good separation of the normal tissue from the
columnar tissue in latent variable 1 and reasonable separation of the
Barrett's and cancer tissue in latent variable 2 (AUROC 1/0.86/0.91;
CVER = 0, 0.225, 0.125; and P = .021, .138, .049 for normal,
Barrett's, and cancer tissues, respectively).



A B C

Figure 3. Multivariate analysis for Barrett's tissues in Barrett's and EAC patients. (A) Scores plot for PCA model (blue triangles: EAC
patients, red squares: Barrett's patients); (B) choline region of the 1H-NMR spectrum (red: Barrett's from EAC patients, green: Barrett's
from Barrett's patients that group in PCA scores with Barrett's from EAC patients, blue: Barrett's from Barrett's patients that do not group
with Barrett's from EAC patients). (C) Scores plot for PLS-DA model (blue triangles: EAC patients, red squares: Barrett's patients).
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Considering that the signatures for BO and EAC tissue were
similar, ML-PLS-DA was performed in an attempt to build a model
that separated paired Barrett's and cancer tissue samples from the
same patients. The resulting model still had a relatively high error rate
(AUROC = 0.85, CVER = 0.27), but the permutation test result
was .055, suggesting that the model had some value (Figure 4C). The
following metabolites were statistically significantly altered (P b .05):
A B

C D

Figure 4. O-PLS-DA model for spectra from the three different tissue
EAC tissue, Barrett's tissue proximal to EAC tissue, and EAC tissue. (A
and cancer (black circles). (B) Scores plot for PLS-DA: normal (blue
Permutation test for paired Barrett's and EAC samples. Red circle
number of misclassifications in each of 200 permutation tests, corr
cases; first 6 sets are postchemotherapy, and the last 4 sets are pre
glutamate, glycerophosphocholine, and hypoxanthine were increased,
and propionate and creatine were decreased.

Interestingly, the only metabolites that were statistically signifi-
cantly altered (in both paired and unpaired t tests) in a consistent
direction from histologically normal tissue to Barrett's tissue to EAC
tissue in EAC patients were glycerophosphocholine and hypoxan-
thine, which increased, and creatine, which decreased (Figure 4D).
types from EAC patients: histologically normal tissue proximal to
) Scores plot for PCA: normal (blue triangles), Barrett's (red squares),
triangles), Barrett's (red squares), and cancer (black circles). (C)

= number of misclassifications in model. Bar chart showing the
esponding to a P value of .055. (D) Metabolite levels for these 10
chemotherapy.
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Comparisons of Histologically Normal Squamous Esophageal
Mucosa in Controls, Barrett's Patients, and EAC Patients
(Classes 1, 2, and 3)
Three-way and pairwise comparisons were carried out for classes 1,

2, and 3 to see whether changes in BO and EAC patients are observed
in histologically normal tissue proximal to abnormal tissue.

Three-Way Comparison (Classes 1, 2, and 3). An initial PCA
model compared histologically normal tissue from controls (1),
Barrett's patients (2), and EAC patients (3). This readily separated
classes 1 and 3, with BO samples (2) overlapping the other two classes
(Figure 5A). The corresponding PLS-DA model (Figure 5, B and C)
readily separated class 1 well from 2 and 3 but was poor at
distinguishing classes 2 and 3 (CVER = 0.028, 0.23,0.15;
AUROC = 1.00, 0.73, 0.97; P = .005, .288, .005). The power of
this model was limited by the very small number of samples from BO
patients.

Histologically Normal Tissue from Controls and from BO Patients
(Class 1 vs Class 2). The quality of this PLS-DA model (AUROC =
0.94, CVER = 0.10, P = .08, .18) was limited by the small sample
size of class 2. Metabolites contributing to this separation included
formate which increased and 3-hydroxybutyrate which decreased in
Barrett's patients.

Histologically Normal Tissue from BO and EAC Patients (Class 2 vs
3). This PLS-DA model was worse than the previous model
(AUROC = 0.70, CVER = 0.28, P = .30, .30), suggesting that the
normal tissue in Barrett's patients is metabolically closer to the normal
tissue in EAC patients than to the normal tissue in the controls. Only
3-hydroxybutyrate was increased (P b .05) in the normal tissue of the
EAC patients compared with the normal tissue of the Barrett's patients.
A

C

B

Figure 5. Multivariate models for histologically normal tissue from co
Scores plot for PCA model. (B) Scores plot for PLS-DA model. (C) P
tissues from controls (blue triangles), from Barrett's patients (red squ
Histologically Normal Tissue Samples from controls (Non-
cancer Patients) and EAC Patients (Class 1 vs 3)

Good sample size and significant metabolic differences between the
histologically normal tissue samples from controls and EAC patients
resulted in a strong PLS-DA model (AUROC = 1.00, CVER =
0.017, P = .007, .005; Figure 6), giving a near-perfect separation of
histologically normal tissue from controls and EAC patients. This
signature arose mainly from 3-hydroxybutyrate, succinate, and
formate, which increased (P b .0005) along with acetate, glyceropho-
sphocholine, ADP, and lactate (P b .05).

These models provide strong evidence of a profound metabolic
field effect around EAC tissue.

Changes Induced by Chemotherapy
Figure S3 shows a scheme for postchemotherapy samples, although the

analysis presented here focuses on prechemotherapy samples. It is
however noteworthy that the metabolic profile of postchemotherapy
samples from normal squamous esophageal mucosa in EAC patients did
not shift toward the profile of truly normal squamous esophageal mucosa
in control patients (Figure S3). Lactate levels increased postchemotherapy
(Figure S3), probably reflecting the Warburg effect in malignant tissues.

Discussion
Some 211 tissue samples from 121 EAC, BO, or control subjects
were examined to identify markers of disease severity and treatment
effects. Samples included EAC and BO tissues along with normal
squamous epithelia proximal to EAC or BO. The analysis focused on
prechemotherapy samples, as chemotherapy itself had a pronounced
effect on metabolic signatures.
ntrols, Barrett's patients, and EAC patients (prechemotherapy). (A)
ermutation test with n = 100.Color coding in (A) and (B): Normal
ares), and from EAC patients (black circles).
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Figure 6.Multivariate models for normal tissues from controls and from EAC patients pre- and postchemotherapy. (A) Scores plot for PCA
model comparing normal tissues from controls, EAC patients prechemotherapy, and EAC patients postchemotherapy. Color coding:
controls: blue triangles; histologically normal tissue in EAC patients prechemotherapy: red squares; normal tissue in EAC patients
postchemotherapy: black circles. (B) Scores plot for PLS-DA model comparing histologically normal tissue from control and EAC patients
prechemotherapy. Color coding: controls: blue triangles; EAC patients: red squares. (C) Permutation model for PLS-DA comparing
histologically normal tissue from controls and EAC patients prechemotherapy.
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Previous studies using blood serum or urine have identified various
potential biomarkers for EAC and disease progression [13,15,22].
However, model power tends to be reduced when the patient groups
are more similar. From these studies, it appears that only the extremes
can be readily identified from blood samples, and it is possible that the
metabolites that have so far been identified may only reflect systemic
and therefore advanced disease. From this perspective, tissue samples
at or near the site of disease may be more promising. Although there
are a few reports for metabolomics studies in esophageal squamous
cell carcinoma [23,24], only two groups have analyzed tissue samples
from EAC patients [16], with one study focused on the squamous
mucosa of these patients [12]. The results from these studies will be
compared with those from our models.

Field effects in histologically normal squamous tissue
Our study clearly confirms the hypothesis of a field effect

observable in metabolite compositions. Metabolomics signatures
related to field effects were previously studied by Yakoub et al. [12]
who used 1H Magic Angle Spinning NMR to compare histologically
normal tissue from 35 EAC patients with 52 age-matched controls
and observed that a high phosphocholine/glutamate ratio indicated
the presence of cancer proximal to histologically normal tissue. In our
study, we did observe slightly elevated phosphocholine and indeed
glycerophosphocholine, but not reduced glutamate. In our models,
the comparison of histologically normal tissue in EAC patients versus
controls benefitted from good sample numbers prechemotherapy and
gave a strong signature (AUROC = 1) with highly elevated
3-hydroxybutyrate, succinate, and formate and somewhat increased
acetate, lactate, ADP, and glycerophosphocholine. As recently
suggested by Meiser and Vazquez, the increase in formate may relate
to its role in one-carbon metabolism. One possibility is that the reverse
activity of cytosolic or mitochondrial 10-formyl-tetrahydrofolate
synthetase producing ATP and the by-product, formate from
10-CHO-THF, could be used to produce ATP and NAD(P)H
from serine and/or glycine. Thus, the increased levels of cellular
formate could be a by-product of ATP and NAD(P)H synthesis as
the cells make early changes in how they meet their energy
requirements [25].
Large metabolic differences between squamous and columnar
tissues

The present analysis shows that the normal squamous and
abnormal columnar tissues have very distinct metabolic signatures
and are readily identified in multivariate analyses. Specifically,
3-hydroxybutyrate, hypoxanthine, phosphocholine, and glyceropho-
sphocholine increased, whereas glutamine and alanine decreased.
These results are consistent with the early study of Doran et al. which
found the choline to creatine ratio increased in EAC tissue compared
with proximal normal tissue [16].

These changes can be rationalized as cancer-promoting changes. For
example, with cancer cell proliferation, increased amounts of purine
nucleotides are required for DNA synthesis, for energy storage in ATP,
and for co-factors such as NAD and NADP. In the salvage pathway for
purine biosynthesis, hypoxanthine-guanine phosphoribosyl transferase
catalyzes the addition of 5-phosphoribose-1-pyrophosphate to hypo-
xanthine to produce inosine monophosphate. Thus, uptake by cancer
cells of hypoxanthine and guanine, produced in other tissues or
ingested, should facilitate purine biosynthesis. This rationalizes our
observation of steadily increasing levels of hypoxanthine from normal to
Barrett's to EAC tissues in EAC patients.

It is well known that 3-hydroxybutyrate levels in blood and tissues
may increase during starvation caused by end-stage malignancy.
However, in cancer tissue, 3-hydroxybutyrate levels may also be
elevated because of the “reverse Warburg effect” whereby energy-rich
molecules are taken up by cancer cells perhaps from neighboring cells,
are converted to acetyl CoA, and enter the TCA cycle, ultimately
generating ATP via oxidative phosphorylation. Evidence supporting
this theory comes from the work of Bonuccelli et al. in breast cancer
[26]. The fact that, in our models, 3-hydroxybutyrate levels were
higher in EAC patients than in controls or Barrett's patients could be
a starvation effect. However, the higher 3-hydroxybutyrate in EAC
tissue compared with normal tissue in EAC patients is consistent with
the “reverse Warburg effect.”

Furthermore, phosphocholine and glycerophosphocholine, compo-
nents of cell membrane phospholipids, are commonly altered in many
cancers, especially in breast cancer [27]. It is therefore not surprising that
these metabolites are increased in more proliferative tissues.
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Many cancer cells are glutamine dependent in culture as pyruvate
gets converted into lactate, and glutaminolysis becomes an important
anaplerotic source for the Krebs cycle, thus promoting oxidative
phosphorylation and replenishing oxalEACetate lost to anabolism.
Also, in certain cancer cells with mitochondrial dysfunction,
α-ketoglutarate can be carboxylated to produce isocitrate, citrate,
and acetyl-CoA. Thus, the fact that glutamine and indeed glutamate
levels are lower in columnar than squamous tissues is perhaps due to
greater utilization of glutamine [28].

Limited metabolic differences among Barrett's and EAC
columnar tissues
In the original study of Doran et al., a decrease in the carbohydrate

region of the spectrum (3.5-4 ppm) compared with the region around
3 ppm containing resonances from creatine-containing metabolites
was observed in Barrett's tissue samples in the presence of EAC
compared with Barrett's in the absence of EAC [16]. In our study,
creatine levels were decreased, but the result was not statistically
significant (P N .05). We identified different potential biomarkers for
disease progression, including elevated phosphocholine and reduced
leucine, valine, and isoleucine by comparing Barrett's tissues in BO
and EAC patients. However, all these changes were relatively modest
and serve to emphasize that the different types of columnar tissue
were much less readily distinguished metabolically.
A larger and longer longitudinal study would be required to

validate these markers. The limited differences between Barrett's in
Barrett's patients, Barrett's tissue in EAC patients, and EAC tissue in
EAC patients are consistent with genetic and epigenetic studies which
have indicated that most of the genetic and epigenetic changes present
in EAC are also present in Barrett's tissues [29].

Conclusion
The most interesting finding in the present study was the very strong
metabolic signature differentiating normal squamous epithelium from
controls and the apparently normal squamous epitheliumof EACpatients.
Although it is tempting to suggest that this reflects reflux-induced changes
in the squamousmucosa of patients with EAC, this seems unlikely because
many of the normal control group were referred with dyspeptic symptoms
that included reflux. It seemsmore plausible that the signature is related to
a nearby cancer or that the squamous epithelium of the patient destined to
develop EAC might have a specific metabolic profile. A metabolic
signature for a field effect in histologically normal esophageal squamous
mucosa in EAC patients would be of potential diagnostic value to assess
risk of progression in adjacent nondysplastic BOat a stage before histologic
changes have occurred.
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