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Abstract 

Structural degradation of rails will unavoidably take place with time due to cyclic 

bending stresses, Rolling Contact Fatigue (RCF), impact and environmental 

degradation. Rail infrastructure managers employ a variety of techniques and 

equipment to inspect rails. Still tens of rail failures are detected every year on all 



major rail networks. Inspection of the rail network is normally carried out at night 

time, when normal traffic has ceased. As the implementation of the 24-hour railway 

moves forward to address the increasing demand for rail transport, conventional 

inspection processes will become more difficult to implement. Therefore, there is an 

obvious need to gradually replace out-dated inspection methodologies with more 

efficient Remote Condition Monitoring (RCM) technology. The RCM techniques 

employed should be able to detect and evaluate defects without causing any reduction 

in optimum rail infrastructure availability. Acoustic Emission (AE) is a passive RCM 

technique which can be employed for the quantitative evaluation of the structural 

integrity of rails. AE sensors can be easily installed on rails in order to monitor 

structural degradation rate in real time. Therefore, apart from detecting defects AE 

can be realistically applied to quantify damage. In this study the authors investigated 

the performance of AE in detecting and quantifying damage in rail steel samples 

subjected to cyclic fatigue loads during experiments carried out under laboratory 

conditions. Herewith, the key results obtained are presented together with a detailed 

discussion of the approach employed in filtering noise sources during data acquisition 

and subsequent signal processing.  

 

Keywords: Rail defects, cracks, inspection, remote condition monitoring, acoustic 

emission, quantitative 

 

1. Introduction 



In-service rails may develop structural defects due to contact and bending stresses, 

impact loading and environmental conditions they are subjected to. If defects remain 

undetected, they will reach critical size resulting ultimately into final failure of the 

damaged rail section. Therefore, inspection and evaluation of rail damage evolution is 

crucial for maintenance and track renewal in order to ensure maximum reliability and 

availability of railway operations.  

 

The growing traffic density coupled with higher axle loads and travel speeds further 

intensify the need to optimise availability and reliability of rail infrastructure. As 

network capacity becomes used up by increasing numbers of passengers and freight, 

financial and mobility consequences arising from unplanned delays and disruption 

become rapidly amplified. Traditional rail inspection techniques such as Ultrasonic 

Testing (UT), Magnetic Flux Leakage (MFL) and Eddy Current Testing (ECT) have 

significant limitations in terms of Probability of Detection (PoD) of certain types of 

defects and maximum speed of deployment [1-2].  

 

The gradual implementation of the 24-hour railway, already demonstrated by London 

Underground in the UK, coupled with increasing traffic density further increase the 

need for effective Remote Condition Monitoring (RCM) of the structural integrity of 

rails. This is because the time available for inspection using traditional means will 

gradually drop below to what is required as a minimum to complete the inspection 

task [1, 3]. 



 

More advanced inspection techniques, which have the potential of being deployed 

under normal train traffic speeds have been investigated extensively, including eddy 

current pulsed thermography [4-6], Alternating Current Field Measurement (ACFM) 

[7-13] and pitch-catch ultrasonic testing using EMATs [14]. Although these 

techniques have yielded promising results, they are more appropriate for the detection 

of rail head surface breaking defects such RCF cracks. The detection of defects 

growing in deeper sections of the rail geometry still relies on conventional UT. 

Although the severity of RCF cracks can be qualitatively assessed using ACFM on the 

fly, more time-consuming approaches [15] and sophisticated signal processing [16] 

are required for quantifying damage more accurately. An additional consideration that 

should be taken into account is that the data gathered from each inspection pass 

should be correlated with the previous ones in order to establish the rate of 

propagation of various defects effectively.  

 

Depending on the severity of damage, a defective rail can remain in service with or 

without repairs being carried out or replaced within a standardised time-schedule 

ranging from immediately to up to one week after an Emergency Speed Restriction 

(ESR) has been imposed [17]. For certain defects, the application of fish plates or 

clamps may be necessary to ensure that, at least theoretically, the defect is not 

growing further during passage of the trains after the ESR has been imposed. During 

emergency repairs, normal operation of the railway line affected can be seriously 



disrupted resulting in delays and unnecessary costs.  

 

Railway infrastructure managers have been gradually shifting their maintenance 

strategy from conventional reactive mode to predictive and prognostic modes. In 

order for predictive and prognostic maintenance approaches to be applied efficiently 

and reliably in the railway context, identification of the type of defects and evaluation 

of their severity are necessary. Accurate prediction of the remaining life time of 

in-service rails would enable better allocation of available resources and improved 

scheduling of repairs. This would contribute to the overall minimisation of disruption 

and reduction of cost of maintenance. Moreover, techniques which could confirm the 

status of in-service rails in terms of whether a defect is propagating or not could allow 

higher ESRs to be applied instead or the requirement of an ESR to be imposed 

removed all together [18-20].  

 

AE testing is a dynamic non-destructive testing technique which is extensively used 

for online Structural Health Monitoring (SHM) and evaluation of critical structural 

components. AE has the potential of being employed as an efficient tool for real-time 

monitoring of the structural integrity of rails. The technique is capable of detecting 

crack growth even at rates as low as 2.5×10
-6

mm/cycle exhibiting very high 

sensitivity to small increments of damage [21].  

 

However, an inherent limitation associated with AE is its sensitivity to unwanted 



noise sources. Such noise sources include the rubbing of the facets of fatigue cracks 

or wheel-rail interface interactions associated with friction and/or impact. According 

to Elber’s rule cracks can open and close during loading and unloading cycles. 

Therefore, the facets of fatigue cracks opening and closing during loading and 

unloading can rub against each other producing measurable AE events which can be 

confused with crack growth activity. The rubbing noise can be filtered out as it will 

occur during the unloading stage of the crack.  

 

To remove the noise arising from fatigue crack facets rubbing various approaches can 

be applied. For example, one potential approach could be the use of accurate timing 

parametrisation of the AE measurement. This would ensure that the exact time that the 

unloading occurs can be pinpointed thus filtering out any AE signals recorded during 

this period. The unloading event could be established easily using strain gauges in 

conjunction with the AE sensors.  

 

When the use of strain gauges is not possible or strain measurements are not available, 

the AE characteristics of the signal can be considered instead. For example, the 

amplitude, duration, energy and frequency of the AE signals associated with crack 

facets rubbing against each other will tend to be lower. Hence appropriate thresholds 

can be applied in order to remove the effect of noise arising from this phenomenon.   

 

To ensure good agreement exists between the AE activity recorded and the actual 



structural degradation of the component being monitored, it is highly essential that 

appropriate filtering and signal processing are employed to discriminate the signals 

correlated with defects from background noise. AE data filtering and appropriate 

processing should at least reduce the influence of background noise on the useful part 

of the signal associated with damage propagation. This is particularly important when 

AE inspection is performed in a noisy environment like the rail network. 

 

In this study, three-point fatigue crack growth tests have been performed on R260 rail 

steel samples extracted from the web of a rail section made available by Network Rail. 

Damage evolution during fatigue tests has been monitored using AE to evaluate the 

capability of the technique for structural RCM of rails in the field. The analysis of the 

raw data has been based on the application of different AE signal-related parameters 

and signal processing based on Spectral Kurtosis (SK). The relationship between Key 

Parameter Indicators (KPIs) of the AE signal, such as amplitude, AE signal energy 

and duration, with stress intensity factor (∆K) have been investigated in order to 

establish the quantitative relationship between crack growth rate and AE activity 

detected. The main aim of this study has been to identify the core principles of the AE 

data analysis required to be carried out to both detect and quantify crack growth 

events in rail steel.  

 

Although the relationship of certain KPIs with ∆Κ has been reported previously for 

various steel grades, including rail steel, as a means of predicting fatigue life and 



crack length [22-27] none of them has considered the effect of loading frequency, and 

the relationship of AE duration rate (dd/dn) with ∆Κ as an alternative to AE energy 

rate (de/dn) which has conventionally been employed in the past. Also complete 

waveform analysis using SK is reported for the first time.  

 

There are various signal processing techniques that can be applied for the analysis of 

waveforms captured during AE testing. These include both time and frequency 

domain analysis such as moving RMS, Crest Factor and Kurtosis (time-domain) and 

Fast Fourier Transform (FFT), spectral subtraction, correlation, etc. (frequency 

domain). The use of SK is advantageous because it enables the simultaneous analysis 

of the AE waveforms in both time and frequency domains. Nonetheless, further work 

not reported herewith has been ongoing to investigate the appropriateness and 

effectiveness of alternative signal processing techniques, including the use of 

wavelets.   

 

Railway steel grades have a predominantly pearlitic microstructure. Pearlite tends to 

behave differently during fatigue crack growth in comparison with steel grades with a 

ferritic microstructure due to the presence of the harder cementite (Fe3C) lamellae. 

This gives also rise to different AE response characteristics. Bassim et al., Yilmazer, 

and Han et al. have investigated AE monitoring of crack propagation in rail steel [19, 

25-27]. However, the relationship between AE signals and fatigue crack growth in rail 

steel is yet to be evaluated in depth and subsequently under actual operational 



conditions. The present study has focused on establishing the necessary criteria that 

need to be applied during AE testing for data acquisition and subsequent signal 

processing so as effective quantification of damage propagation can be realised. 

Although the results of this work are based on laboratory experiments the principles 

are similar to those applicable in the field. 

 

2. Rail defects 

Rail steel cleanliness has improved profoundly in recent decades. Therefore, the 

occurrence of rail failure due to manufacturing defects is unlikely [1, 28]. The quality 

of newly produced rails is also checked prior to installation on the network using 

various non-destructive evaluation (NDE) techniques including UT, ECT and MFL 

which further reduces the likelihood of manufacturing-related failures [1].  

 

Defects caused by improper usage, handling or installation of a rail section can occur 

but they are also not common. In most cases defects detected in rails have arisen due 

to structural degradation from loads sustained with time. In-service, rails are subjected 

to five major types of stresses, including bending, shear, contact, thermal and residual 

stresses. Bending and contact stresses are the most significant in terms of their 

cumulative fatigue damage effect.   

 

Due to the superior hardness of R260 steel grade, wear of the rail head is limited. This 

however, gives sufficient time for surface and near-surface defects to initiate with 



time due to Rolling Contact Fatigue (RCF) [29-30]. Other types of rail defects 

commonly encountered include transverse and longitudinal cracks in the rail head, 

bolt hole cracking, vertical cracking or more rarely rail foot corrosion [28]. Any of 

these defects, if it remains undetected will grow to critical dimensions eventually 

resulting in final failure of the damaged rail section.  

 

The rail industry employs a Rail Defect Management (RDM) system for reporting and 

monitoring and archiving rail failures. Rail failure reports can subsequently be used to 

build a general statistical picture of the occurrence of rail failures, their causative 

factors and their frequency within the rail network [1, 28]. This information can then 

be used to evaluate the inspection requirements for a particular section of the rail 

network. RDM systems could in the future become integral parts of the 

implementation of rail RCM based on AE.  

 

 

3. Remote Condition Monitoring using Acoustic Emission 

A distinct advantage of AE over conventional NDE techniques is that it is passive in 

nature. Hence ultrasonic piezoelectric transducers can be used to capture the elastic 

energy released in the form of stress waves as damage evolves in a solid. AE activity 

can arise from various sources in a structural material including dislocation slip, 

micro-cracking initiation and subsequent growth, impact, phase transformation, 

corrosion, fibre breaking, debonding and delamination [31]. Detection of a growing 



defect does not require the sensor to be installed over it since stress waves from the 

source will propagate for some distance. Gradual attenuation of the propagating stress 

waves will take place as distance between the source and the sensor increases. The 

level of attenuation is not the same in every material and will depend on several 

factors including its Young’s modulus and microstructural characteristics, such as 

grain size, phase constituents, presence of voids, anisotropy, etc. However, since AE is 

passive in nature, quantification of defect size is inherently more difficult. Individual 

AE signals need to be correlated between them and overall AE activity trended using 

various KPIs in order to evaluate damage severity.  

 

One significant drawback of the AE technique, is the fact that it is only sensitive to 

active damage. If a defect is no longer growing, then no AE activity will arise from it 

and hence no signals will be logged. Nonetheless, in the case where several defects 

are present in the structure, growing defects will generate AE activity. Individual AE 

sources can be distinguished using various location techniques. Linear location is the 

simplest approach and requires the use of two AE sensors. This location technique is 

appropriate for use when damage is evolving somewhere between the two AE sensors. 

In more complex situations zonal or point location techniques are normally required 

involving at least three AE sensors or more.  

 

In in-service rails AE activity is expected to be generated when the rails are loaded, 

hence when rolling stock is moving over them. AE signals may arise due to 



mechanical noise from wheel-rail interaction, wheel tread damage such as flats giving 

rise to impact noise, faulty axle bearings, braking, tension and compression due to 

thermal dilation and contraction, fatigue crack growth and corrosion. Fatigue crack 

growth in rails will only occur when rolling stock loads the rail. Therefore, although 

the principles of AE testing require that the structure is continuously monitored for 

fatigue crack growth related events, in the case of rails this will only occur when 

sufficiently high loads are applied on the rail section being monitored by passing 

rolling stock. Hence, AE data logging can be reduced to a few seconds per loading 

sequence, i.e. only when rolling stock is passing over the instrumented rail section.  

 

AE signals can be classified into two types of waveforms; continuous and burst-type 

(shown in figure 1). During fatigue crack growth burst-type signals are expected. 

Continuous signals are likely to arise due to mechanical noise and will have different 

characteristics. However, rubbing fatigue crack facets can also produce burst type AE 

signals and therefore appropriate filtering needs to be carried out to remove them as 

discussed earlier in the present paper.   

 



Figure 1: Burst-type AE signal arising from a crack growth event. 

 

AE acquisition can be based on the use of preset parameters or signal (complete 

waveform) logging. In parameter-based acquisition only signals that fulfill the 

characteristics of the parameters set are logged. In signal-based acquisition the entire 

signal is captured over the preset period of time. Both techniques have advantages and 

disadvantages. Parameter-based acquisition requires the detection of important events 

only, such as crack increments, in the entire AE activity occurring over time. The rest 

of the signal not associated with an important event is discarded. In signal-based 

acquisition the entire waveform is logged over time. Subsequent analysis needs to be 

carried out to evaluate the signal features associated with damage propagation.  

 

The sampling rates employed in AE testing are normally in excess of 1MS/s. This 

means that signal-based acquisition can only be maintained over a few tens of seconds 

at best before data processing becomes very computationally demanding. Also the 

data files created are much larger in size in comparison with parameter-based files 

which contain the signal only from the event of interest. Capturing the entire 

waveform offers the opportunity of more in-depth signal processing but logging needs 

to be interrupted after a few tens of seconds of acquisition at high sampling rates. 

Parameter-based logging can be maintained for very long periods of time as long as 

events of interest are not excessive in number resulting in very high number of AE 

hits being recorded. For rail RCM, AE signal-based acquisition is possible since 



loading will only occur over a few seconds; for as long as the rolling stock needs to 

pass over the instrumented rail section. The signal-to noise ratio can be easily 

evaluated from the captured waveform.  

 

In order to analyse the complete AE waveform various signal processing techniques 

can be employed. Signal analysis can be carried out in the time, frequency or 

time-frequency domain. Time domain analysis can be carried out by processing the 

waveform with respect to peak-peak values, moving RMS, Crest Factor and Kurtosis. 

Frequency domain analysis on the other hand can be based on the application of Fast 

Fourier Transform (FFT) to extract the power spectrum of the raw signal, spectral 

subtraction, wavelet analysis or signal correlation. Alternatively, FFT can be applied 

on the envelope of the demodulated signal. SK is particularly useful for characterizing 

signal transients and their location in the time and frequency domains. SK was 

originally introduced by Dwyer as the normalized fourth moment of the real part of 

short time fourier transformation (STFT) [32]. Otonnello and Pagnan modified the 

original definition and defined SK as the fourth order moment of the magnitude of 

STFT [33-34]. Antoni proposed Equation 1 for calculating the SK [35]: 

 

Ky(f)=S4y(f)/[S2Y(f)]
2
-2   (1) 

 

   and SnY(f) ≜＜｜Yw(t,f)｜
n
＞  

 



Yw(t,f) ≜   

 

where Yw(t,f ) is estimated using STFT and Y(n) is the selected part of the signal Y(t) 

using and W(n) is the window function which is zero-valued outside the chosen 

interval. The most important parameter in designing a SK estimator is the selection of 

the window size. If the window size is set too big, the SK value will decrease very 

quickly after a certain limit is exceeded, whereas if it is set too small, some bias will 

be induced.  

 

The stress waves emitted from a source can propagate towards the sensors in different 

types of waves (compression and shear waves, Rayleigh (or surface) waves and Lamb 

waves) and modes (longitudinal, flexural and torsional). The type of waves 

transmitted to the sensor will depend on the geometry of the structure as well as the 

distance between the source and the sensor. 

 

4. Test rail steel grade and fatigue specimen extraction 

The R260 rail steel grade has become the most widely used steel grade for rail 

manufacturing worldwide. It has a predominantly pearlitic microstructure with very 

small amounts (>1%) of pro-eutectoid ferrite present along the pearlite grain boundary. 

The chemical composition and material properties for the R260 steel grade are 

summarised in Tables 1 and 2 respectively [36]. 

 



Table 1: Typical chemical composition of R260 steel grade (in weight %) [36]. 

C Si Mn P S Cr V Al N 

0.6-0.82 0.13-0.6 0.65-1.25 <0.03 0.008-0.03 <0.15 <0.03 <0.004 <0.008 

 

Table 2: Typical mechanical properties of R260 rail steel grade [36]. 

Minimum UTS(ultimate 

tensile strength)/MPa 

Minimum elongation / % Hardness / BHN 

880 10 220-260 

 

Standard single edge notched specimens were extracted from new (three samples) and 

used (one sample) R260 steel grade rail sections provided by Network Rail with 

dimensions 120mm x 20mm x 10mm. As it can be seen from figure 2, all fatigue 

specimens were extracted from the web plane, in the longitudinal orientation of the 

rail steel.  

 

Figure 2: Schematic showing the location on the rail section from which the fatigue 

specimens were extracted. 

 



The optical micrograph in figure 3 shows the typical pearlitic microstructure of R260 

steel grade. The presence of small amounts pro-eutectoid ferrite is visible in some 

areas along the pearlite grain boundaries. 

 

 

Figure 3: Optical micrograph of R260 steel grade showing a predominantly pearlitic 

microstructure. Some very small amount of pro-eutectoid ferrite can be seen at the 

grain boundaries in some areas. 

 

5. Experimental procedure 

Three-point bending fatigue testing is partially representative of the type of loading 

experienced by rails supported by two sleepers underneath it. Although, rail stresses at 

the wheel-rail interface involve RCF loads, certain defects, such as vertical cracks in 

the web or foot of the rail, will grow due to bending stresses only. Therefore, the 

laboratory three-point bending fatigue testing carried out in this study fulfils certain 

important real-life loading criteria for rails installed on the network.  

 

Pro-eutectoid 

ferrite 



The three-point bending fatigue tests were performed using a Dartec 50kN 

servo-hydraulic universal test machine. All tests were carried out at room temperature. 

The three specimens extracted from the new rail section were pre-cracked using a 

Vibrophore to initial crack lengths of 9.5mm, 10mm, and 10.8mm respectively. All 

specimens were tested under sinusoidal cyclic loading at a frequency of 1Hz and load 

ratio, R = 0.1. 

 

One additional three-point bending sample was extracted from the web of a used rail 

section removed from the UK rail network. This sample had the same geometrical 

dimensions as the other three samples but the notch depth was kept to only 2mm with 

30° angle. The last fatigue sample was also pre-cracked using a Vibrophore to an 

initial crack length of 3mm. This sample was also tested under sinuisoidal cyclic 

loading but at a frequency of 10Hz and load ratio, R = 0.1 using an ESH 

servo-hydraulic universal testing machine. 

 

For the first three specimens the peak load was set at 3.5kN. For the sample extracted 

from the used rail section the peak load was set at 9kN. The fatigue crack length was 

measured throughout the fatigue process using a Direct Current Potential Drop 

(DCPD) instrument calibrated with respect to the original notch depth. The actual 

crack lengths with respect to ∆K were calculated for all samples following testing 

completion. The fractured surfaces of the tested specimens were observed using a 

Scanning Electron Microscope (SEM). 



 

AE signals generated during the fatigue tests were recorded and analysed using a 

commercial industrial AE system procured by Physical Acoustic Corporation, PAC, 

(now Mistras), U.S.A. Two Pico wideband AE piezoelectric transducers with a 

bandwidth range between 150-750kHz were used to monitor AE activity during 

fatigue testing of the first three samples. Two PAC R50A narrow band resonant 

sensors with an operating frequency of 150–700kHZ were employed for the test of the 

fourth sample. The pico AE sensors were coupled to the surface of the sample using 

vaseline and held in place with duct tape. The R50A sensors were coupled to the 

surface of the fourth sample using Araldite®.  

 

The AE sensors were mounted approximately 20mm away from the centre of the 

sample, one on either side of the cracked region. The signals from the AE sensors 

were amplified using PAC pre-amplifiers set at 40dB gain. The main amplification 

stage was set at 6dB provided together with the phantom voltage of 28V by a PAC 

DiSP acquisition board. AE data were logged using the PAC AEwin v2 software 

package.  

 

During AE signal acquisition for the first three samples, a signal filter of 

100–1000kHz was employed to minimise the effect of unwanted mechanical noise 

during fatigue testing. The AE minimum amplitude and duration thresholds were set 

at 40 dB and 50 µs respectively. For the fourth sample, due to the noisier testing 



configuration arising from the more rapid cyclic loading (10Hz), the filtering range 

employed was set slightly higher at 200–1000kHz. Also the amplitude threshold was 

set at 55dB. The sampling rate in all cases was set at 2MS/s. 

 

6. AE results and analysis  

Fatigue crack growth in all four samples was successfully monitored using the AE 

technique. The scatter observed in the total fatigue lifetime recorded for each sample 

is attributed to the different pre-crack lengths achieved prior to the actual three-point 

fatigue bending tests. In figure 4a-h crack growth has been plotted with respect to AE 

signal amplitude and duration with number of fatigue cycles for each of the tested 

specimens. Once a critical crack length was reached all samples failed in brittle 

fashion as shown in figure 5.  

 

For the first three specimens the critical crack length was determined to be near 13mm. 

At this point ∆Κ became too high resulting in final brittle failure of the specimens. 

The fourth sample also failed in brittle fashion once the critical crack length of 

approximately 5.2mm was reached. Small sudden increments in crack growth did 

occur during fatigue testing of all samples. Such increments were very clearly obvious 

in the fourth fatigue sample extracted from the used rail section.  

 



 

a) Specimen A – AE signal amplitude in dB versus number of fatigue cycles with 

crack growth in mm 

 

b) Specimen A – AE signal duration in µs versus number of fatigue cycles with 

crack growth in mm 

 



 

c) Specimen B – AE signal amplitude in dB versus number of fatigue cycles with 

crack growth in mm 

 

 

d) Specimen B – AE signal duration in µs versus number of fatigue cycles with 

crack growth in mm 

 



 

e) Specimen C – AE signal amplitude in dB versus number of fatigue cycles with 

crack growth in mm 

 

 

 

f)  Specimen C: AE signal duration in µs versus number of fatigue cycles with 

crack growth in mm 



 

g) Specimen D: AE signal amplitude in dB versus number of fatigue cycles with 

crack growth in mm 

 

h) Specimen D: AE signal duration in µs versus number of fatigue cycles with 

crack growth in mm 

Figure 4: a-h) AE signal amplitude and duration plots versus number of fatigue cycles 

with crack growth. 



 

Figure 5: Macroscopic view of the fractured surface of one of the fatigue samples 

with SEM micrographs showing the morphologies of the fatigue crack growth area 

and the brittle fracture area. 

 

For all samples with the exception of the fourth sample, high amplitude AE events 

were detected throughout the duration of the fatigue test. The discrepancy in the 

fourth sample could be related to the different sensor and filtering employed. It is 

evident that the longer duration AE events recorded are predominantly related to those 

exhibiting also high signal amplitude. As crack length extends nearer to critical 

dimensions and final failure becomes imminent a higher population of high amplitude 

and high duration AE events are recorded. In fact, the longer duration AE signals are 

recorded just prior and during the final failure stage of the sample. The same trend is 

exhibited by all samples tested.  

 



An interesting feature in plots 4g-h is the quiet stage in AE activity during testing of 

the fourth sample. During this stage only a few AE events are recorded due to the fact 

that crack growth is still very small. The intense activity recorded prior to any crack 

growth is attributed to dislocation movement and plasticity in the crack tip zone. AE 

activity does intensify gradually as crack grows.  

 

Some high amplitude and high duration AE events are detected during momentary 

accelerations in crack growth rate. Such events have been clearly captured by the 

DCPD measurements as well as the AE instrument. By plotting the cumulative AE 

energy it is evident that the AE activity detected closely matches the DCPD 

measurement. The plots in figures 6 and 7, show the measured crack length using 

DCPD and the cumulative AE energy for the fourth sample respectively. The plot in 

figure 8 is the zoomed in part of the signal. 

 

 

Figure 6: Crack growth length measured with DCPD versus testing time. Points a, b 

a 

b 

c 



and c indicate the points where crack propagation exhibited momentary acceleration. 

 

Figure 7: Plot of cumulative AE energy with number of fatigue cycles for the fourth 

sample. The points where crack growth rate has accelerated are also marked by a clear 

sudden increase in the accummulated AE energy 

a 

b c 



 

Figure 8: Zoomed in part of the cumulative AE energy with number of fatigue cycles. 

The sudden increase in the accummulated AE energy is more clearly manifestated. 

This is due to the fact that significant AE energy is emitted at the final stage of 

structural failure of the sample.  

 

Subsequent microscopic analysis of the fractured surface of the fourth sample 

revealed the locations where crack growth accelerated momentarily during testing. 

This is shown in the micrographs in figure 9. It is evident that the morphology 

changes sharply from smooth (fatigue morphology) to cleavage (fracture morphology) 

when the crack growth accelerated. The exact locations where cleavage facets have 

been found correspond well in terms of crack depth measured and AE activity 

recorded in test time. 



 

Figure 9: The fractured surface of the fourth specimen showing evidence of cleavage 

fracture at the locations where the AE energy accumulation rapidly increased and 

where a sudden acceleration in crack growth rate was recorded by the DCPD 

instrument. 

Previous research has shown that AE energy and energy rate can be used for 

quantitative analysis of the AE data. However, AE duration rate has not been 

considered previously. Since the energy of the AE signal is directly related to the 

duration and amplitude, AE energy rate and duration rate are expected to follow 

similar trends. Figure 9 shows the fatigue crack growth rates (da/dN) and AE energy 

rates (dE/dN) with ∆K on the double logarithmic axes. Figure 10 shows the fatigue 

crack growth rates with AE duration rate (dD/dN). The similarities between the two 

plots are obvious indicating there is a close relationship between the two parameters. 

For all samples the Paris-Erdogan law is obeyed [37]: 

 

mda
C K

dN
= ∆ , or: log( ) log log

da
C m K

dN
= + ∆              (2) 

 



where C and m are constants for a particular material. The fitting values for the first 3 

samples are summarised in Table 3.  

 

Since dE/dN exhibits similar trend as da/dN, the relationship between dE/dN and ∆K 

can be described as [37-38]:  

 

pdE
B K

dN
= ∆ , or: log( ) log log

dE
B p K

dN
= + ∆               (3) 

 

The fitting parameters (C, m, B, and p) are also summarised in table 3.  

 

Figure 9: da/dN and dE/dN with ∆Κ for all four samples. The fourth sample exhibits 

large excursion due to momentary acceleration of crack growth at certain stage. 



 

Despite the fact that all four samples largely obey the Paris-Erdogan law dE/dN does 

exhibit fluctuations which are particularly evident in samples C and D. Similar results 

are yielded when plotting dD/DN with ∆K.  

 

Figure 10: Crack growth rate and duration rate with ∆K. The results for dD/dN with 

∆Κ show similar trends with those for dE/DN. 

 

From the results obtained it is apparent that prediction of rail steel fatigue lifetime 

using AE is not straightforward and requires further investigation. This is attributed to 

cleavage fracture which results in high amplitude, high duration and hence high 

energy AE events as it was clearly shown for the fourth sample. Brittle fracture events 



appear to occur intermittently throughout the fatigue crack growth process. However, 

for the fourth sample these events seem to intensify as the crack length nears critical 

dimensions.  

 

Table 3: Summary of pre-crack length and total loading cycles to failure for the first 

three samples tested at 1Hz. 

Sample Pre-crack 

length in mm 

Total loading 

cycles to 

failure 

M C P B 

A 9.5 10894 6.07 5E-13 4.29 8E-06 

B 10 9579 6.65 5E-14 7.23 3E-10 

C 10.8 5196 4.88 2E-11 5.45 7E-08 

 

7. Signal-based acquisition and analysis 

One additional sample was pre-cracked and subjected to 1Hz sinusoidal cyclic 

loading using the DARTEC servo-hydraulic universal testing machine. The purpose 

of these tests was to evaluate the complete AE waveform with and without crack 

propagation occurring. AE activity was monitored using a PAC R50A sensor 

connected to a customised AE system which was set to acquire for 5s intervals every 

10s. The sampling rate was set at 1MS/s. Pre-amplification and amplification stages 

were held the same as before (40dB and 6dB respectively). No previous filtering has 

been applied to the acquired signal.  



 

Prior to testing the pre-cracked rail steel specimen, a reference mild steel sample 

without any notch or cracking was used to evaluate the background noise level and 

AE waveform arising under this particular testing configuration. Figure 11 shows the 

raw AE signal captured for the reference sample. As it can be seen the peak to peak 

value is very low and there are no distinct peaks indicating the presence of any crack 

growth. The small fluctuations in the signal are due to mechanical noise from the 

hydraulic pump during loading and unloading of the sample. 

 

Time / s

0 2 4 6 8 10

A
m
p
lit
u
d
e
 /
 V

-0.15

-0.1

-0.05

0

0.05

0.1

0.15
Raw data

 

Figure 11: Raw AE signal for the reference sample within a 10-sec acquisition 

window. No crack growth event occurs. 

 



Figure 12 shows the plot of SK of the raw AE signal shown in figure 11. SK values 

are low particularly at higher frequency range. At the lower frequency range the peaks 

observed are attributed to mechanical noise from the machine. 
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Figure 11: SK versus normalized frequency for the reference sample 

 

Figure 12 shows the raw AE signal from pre-cracked R260 rail steel sample recorded 

with the customised AE system at the early stage of the fatigue test. Clear peaks 

related to crack growth event can be seen and the maximum amplitude reaches around 

0.5V. 
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Figure 12:  Raw AE data obtained during testing of a pre-cracked R260 rail steel 

sample during a 5s acquisition window. Peaks seen are related to crack growth events. 

 

Figure 13 shows the SK plot for the above raw AE signal. It is clearly seen that the 

peaks have shifted towards higher frequencies and maximum peak value has 

increased considerably. As crack growth rate increases peak-peak values and SK 

values are expected to also increase. 

    

Crack growth related peaks 



Normalized frequency

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45
-1

0

1

2

3

4

5

6

7
Spectral Kurtosis

 

Figure 13: SK versus normalized frequency for the same sample. 

 

Figure 14 shows the raw AE data for the same sample at a later stage where crack 

length has increased further. The amplitude of the crack growth related signal peaks 

has intensified during certain loading cycles in comparison with the previous plot. 

However, what is also interesting is that peaks of significant amplitude arise during 

the unloading part of the signal. This is attributed to the rubbing of the two facets of 

the fatigue crack as it unloads giving rise to AE peaks with significant amplitude in 

some cases. Rubbing of crack facets is an AE source which can be filtered out either 

by using appropriate parameter thresholds (e.g. minimum amplitude, duration, etc.) as 

well as higher frequency filters not present in the customised acquisition system. The 

nature of the source of these peaks is also further ascertained in the SK plot shown in 

figure 15 where the highest peak is present at a lower frequency range (around 120 

kHz). 
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Figure 14: Raw AE data for the R260 rail steel sample at a later stage showing higher 

amplitude peak-peak values during crack growth. 

 

The resulting SK peaks exhibit higher amplitudes but vary further with frequency in 

comparison with the previous plot as seen from figure 15. This is due to the more 

intense effect of mechanical noise generated by the rubbing of the crack facets as the 

crack opens and closes during each loading and unloading cycle. Crack growth is still 

occurring but the amplitude of the crack growth related events varies considerably.  

Crack growth related peaks 

Peaks due to rubbing of 

crack facets during 

unloading 
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Figure 15: SK versus normalised frequency for above raw AE signal showing higher 

amplitude peaks but also increased variability over frequency range due to the effect 

from the mechanical noise arising from the rubbing of the crack facets. 

 

8 Conclusions and future work 

From the results obtained it has been clearly shown that AE can be applied for 

monitoring crack growth in rails. Two different loading frequencies have been 

considered each posing different challenges in terms of filtering background 

mechanical noise associated with the fatigue testing machines. As a result different 

filtering strategies have been employed together with two different sets of sensors. 

From the results obtained, although it is obvious that all samples largely obey the 

Paris-Erdogan law, dE/dN with respect to ∆K shows noticeable variability. This 

makes difficult the prediction of the remaining fatigue lifetime of rail steel using AE 

data alone. Nonetheless, it has also been shown that dD/dN is a plausible alternative 



parameter to dE/dN producing similar trends when plotted versus ∆K.  

 

The AE energy and fractograph results showed that brittle fracture occurred 

intermittently and at some certain crack lengths during fatigue crack growth for all 

specimens. The AE data were clearly related to the microstructural features associated 

with cleavage fracture events in the case of the fourth sample. This is a clear 

indication that brittle fracture can be quantitatively characterised using AE energy.  

 

In addition, complete AE waveform acquisition has been attempted for short 

interrupted data acquisition intervals lasting for 5s. Signal processing has been 

conducted based on SK. Although both peak-peak and SK values change in line with 

damage progression, SK results show strong variability. This is due to the effect 

arising from the mechanical noise cause by the rubbing of the facets of the crack as it 

opens and closes during loading and unloading.   

 

Based on the raw AE data obtained, time domain signal processing based on moving 

RMS, Crest Factor and Kurtosis can produce reasonably good results. However, care 

needs to be given in filtering out the peaks arising from background mechanical noise 

prior to using time domain-based algorithms. Although the application of SK is 

challenging it is worth investigating its applicability in more depth along with other 

algorithms including FFT, wavelet analysis, etc.  

 



Although prediction of the remaining lifetime of defective challenges using AE data 

alone is by no means straightforward, it seems that using AE energy and duration 

rates can provide a meaningful indicator in evaluating the criticality of monitored 

cracks. Therefore, these two parameters can be effectively correlated with the 

structural degradation in a dynamic manner. Some short-term predictive capacity is 

also possible in this way. However, long-term prediction of the remaining lifetime is 

still risky considering also the stochastic nature of loading patterns sustained by rails 

which add further to the complexity of the problem.  

 

Further work is planned to be undertaken under actual operational conditions and 

under more noisy environments in order to evaluate the feasibility of applying AE 

RCM in the field. Alternative signal processing methodologies combined with FE 

simulation and fatigue models will also be considered as part of this work. 
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