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Improved Runtime Bounds for the Univariate Marginal
Distribution Algorithm via Anti-Concentration

Per Kristian Lehre & Phan Trung Hai Nguyen

School of Computer Science, University of Birmingham
Birmingham B15 2TT, United Kingdom.

Abstract

Unlike traditional evolutionary algorithms which produce offspring via ge-
netic operators, Estimation of Distribution Algorithms (EDAs) sample solu-
tions from probabilistic models which are learned from selected individuals.
It is hoped that EDAs may improve optimisation performance on epistatic
fitness landscapes by learning variable interactions.

However, hardly any rigorous results are available to support claims
about the performance of EDAs, even for fitness functions without epistasis.
The expected runtime of the Univariate Marginal Distribution Algorithm
(UMDA) on OneMax was recently shown to be in O (nλ log λ) [9]. Later,
Krejca and Witt proved the lower bound Ω (λ

√
n+ n log n) via an involved

drift analysis [16].
We prove a O (nλ) bound, given some restrictions on the population

size. This implies the tight bound Θ (n log n) when λ = O (log n), matching
the runtime of classical EAs. Our analysis uses the level-based theorem
and anti-concentration properties of the Poisson-binomial distribution. We
expect that these generic methods will facilitate further analysis of EDAs.

Keywords: Runtime Analysis, Level-based Analysis, Estimation of
Distribution Algorithms

1. Introduction

Estimation of Distribution Algorithms are a class of randomised search
heuristics with many practical applications [14]. Unlike traditional EAs
which look for optimal solutions by explicitly building and maintaining a
population of promising individuals, EDAs rely on a probabilistic model
to represent information gained from the optimisation process over gener-
ations. There are many different variants of EDAs have been developed

Preprint submitted to Pure April 19, 2017



over the last decades, and the fundamental differences between them are
the ways the interactions of decision variables are captured as well as how
the probabilistic model is updated over generations. The earliest EDAs
treated each variable independently, whereas later ones model variable de-
pendencies [19]. Some examples of univariate EDAs are the compact ge-
netic algorithm (cGA) and the Univariate Marginal Distribution Algorithm
(UMDA). Multi-variate EDAs, such as the Bayesian Optimisation Algo-
rithms which builds a Bayesian network with nodes and edges represent-
ing variables and conditional dependencies, attempt to learn relationships
between the decision variables [14]. See [14] for other variants and more
practical applications of EDAs.

The compact genetic algorithm was the first univariate EDA whose run-
time was analysed rigorously. Introduced in [13], the algorithm samples two
individuals in each generation and then evaluates them to determine the
winner which is used to update the probabilistic model. A quantity of 1/K
is shifted towards the winning bit value for each position where the two indi-
viduals differ. The first rigorous runtime analysis of cGA was completed by
Droste in [10] where a lower bound Ω(K

√
n) for any functions is provided

using additive drift theory where n being the problem size. The result is
obtained by estimating an upper bound for an entity named surplus which
is believed to reduce the overall running time if a large value appears in
every generation. In addition, he proved an upper bound O(nK) for any
linear function where K = n1+ε for any small constant ε > 0. Later studies
showed that given a fitness function f , cGA have problems optimising func-
tions with many f -independent bit positions, such as LeadingOnes [12].
This is because the marginal probabilities of those positions are very close
to the borders 0 or 1, which makes it harder to change those bits. A variant
of the cGA, the so-called stable compact genetic algorithm (scGA) was in-
troduced where the marginal probability pt(i) of any f -independent position
tends to concentrate around 1/2 (i.e. stable). Given certain parameter set-
tings, scGA is able to optimise LeadingOnes withinO(n log n) generations
with probability polynomially close to 1.

Similar to cGA, UMDA is a powerful algorithm with a wide range
of applications not only in computer science but also in other areas. The
most studied variant is often implemented with upper and lower borders for
marginal probabilities to prevent decision variables from being fixed at val-
ues zero or one. The population in each generation is sampled from a joint
distribution which is the product of marginal probabilities for all variables.
The UMDA is related to the notion of linkage equilibrium, which is a pop-
ular assumption in Population Genetics. Hence, understanding of UMDA
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can contribute to the understanding of population dynamics in Population
Genetics models.

Despite the fact that the UMDA has been analysed over the past years,
the understanding of its runtime is still limited. The algorithm was anal-
ysed in series of papers [4, 5, 3, 6] where time-complexities of the UMDA on
simple unimodal functions were derived. These result shows that UMDA
with margins often outperforms other variants of UMDA without margins,
especially on functions like BVLeadingOnes. Shapiro [19] investigated
UMDA with a different selection mechanism rather than truncation se-
lection. In particular, their variant of UMDA samples individuals whose
fitnesses are no less than the mean fitness before using them to update the
probabilistic model. By representing UMDA as a Markov chain, the pa-
per shows that the population size has to be in the order of square-root of
the problem size for UMDA to be able to optimise OneMax. The first
upper bound on the expected optimisation time of UMDA on OneMax
was not published until 2015 [9]. By working on another variant of UMDA
which employs truncation selection, Dang and Lehre [9] proved an upper
bound O(nλ log λ) for UMDA on OneMax which requires a population
size Ω(log n). If λ = O(log n), then the upper bound is O(n log n log logn).
The result is obtained by applying a relatively new technique called level-
based theorem [7]. Very recently, Krejca and Witt [16] obtain a lower bound
Ω(µ
√
n+n log n) of UMDA on OneMax via an involved drift analysis where

λ = (1 + Θ(1))µ. As can be seen, the upper and lower bounds are still dif-
ferent by Θ(log log n), which raises the question of whether this gap could
be closed and a better asymptotic runtime would then be obtained.

This paper derives the upper bound O(nλ) for UMDA on OneMax
which holds for λ = Ω(µ) and c log n ≤ µ = O(

√
n) , where c is some positive

constant. If λ = O(log n), we have a tight bound Θ(n log n) which matches
with the well-known expected runtime Θ(n log n) of the (1+1) EA on the
class of linear functions. The result is achieved with the application of an
anti-concentration bound which might be of general interest. The new result
improves the known upper bound O(nλ log λ) of UMDA on OneMax [9] by
removing the logarithmic factor O(log λ). This improvement is significant
becauses it for the first time it closes the gap mentioned above for a small
range of population size. In addition, we also believe that the easy-to-use
method employed to obtain the result can be used for other algorithms and
fitness functions.

This paper is structured as follows. In Section 2, we first present the
UMDA algorithm under investigation. This section also includes a pseudo-
code of the UMDA. The level-based theorem which is central in the paper
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will be stated in Section 3. In this section, a sharp bound on the sum
of Bernoulli random variables is also described. Given all necessary tools,
Section 4 illustrates our proof idea in a visual way and suggests how it could
be applied for other problems. The main result for UMDA on OneMax
is presented in Section 5. Section 6 presents a brief empirical analysis of
UMDA on OneMax to complement the theoretical findings in Section 5.
Finally, concluding remarks are given in Section 7.

Post-review added note: Witt [20] independently obtained the upper
boundsO(µn) on the expected optimisation time of the UMDA on OneMax
for µ ≥ c log n, where c is a positive constant, and λ = (1 + Θ(1))µ using an
involved drift analysis. While our result does not hold for µ = ω(

√
n), our

methods yield a significantly easier proof which also holds when the parent
population size µ is not proportional to the offspring population size λ.

2. UMDA

The Univariate Marginal Distribution Algorithm (UMDA) proposed in
[18] is one of the simplest variants of Estimation of Distribution Algorithms.
In each generation, the algorithm builds a probabilistic model over the search
space based on information gained about the individuals in the previous
generation. To optimise a pseudo-Boolean fitness function f : {0, 1}n →
R, the UMDA builds a product distribution represented by a vector pt =
(pt(1), pt(2), . . . , pt(n)) in every generation t ∈ N. Each component pt(i) ∈
[0, 1] for i ∈ [n] and t ∈ N represents the probability of sampling a 1-bit at
the i-th position of the offspring in generation t+1 where [n] denotes the set
{1, 2, 3, . . . , n}. Therefore, each candidate solution (x1, . . . , xn) ∈ {0, 1}n is
sampled with joint probability

Pr (x1, . . . , xn) =

n∏
i=1

pt(i)
xi · (1− pt(i))(1−xi).

We will use the standard initialisation p0(i) := 1/2 for all i ∈ [n]. Starting
with the initial model p0, the algorithm continuously, in every generation
t ∈ N, sample λ individuals Pt(1), . . . , Pt(λ) using the current model pt. All
individuals in the current population are sorted according to their fitnesses,
and the top µ individuals are selected to compute the next model pt+1. Let
Pt(k, i) denote the value in the i-th bit position of the k-th individual in
current population Pt. Then each component of the next model is defined
as

pt+1(i) :=
1

µ

µ∑
k=1

Pt(k, i)
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which can be interpreted as the frequency of 1-bit among the µ best indi-
viduals in position i.

The special case pt+1(i) ∈ {0, 1} must be avoided because the bit in
position i would remain fixed forever at either 0 or 1. This would result in
parts of the search space becoming unreachable. In order to prevent this
situation, the model components are often restricted to a closed interval, i.e.
pt+1(i) ∈ [m′/µ, 1−m′/µ], where the parameter m′ < µ controls the size of
the margins. For completeness, the following pseudo-code describes the full
algorithm (see Algorithm 1).

Algorithm 1: UMDA

begin
initialise p0(i) = 1/2 for all i ∈ [n],
for t = 0, 1, 2, . . . until termination condition met do

for k = 1, 2, . . . , λ do
sample Pt(k, i) ∼ Ber (pt(i)) for all i ∈ [n]

sort Pt in descending order according to fitness,
for i = 1, 2, . . . , n do

let Xi :=
∑µ

k=1 Pt(k, i),
if Xi < m′ then

pt+1(i) = m′/µ,
else if Xi > µ−m′ then

pt+1(i) = 1−m′/µ,
else

pt+1(i) = Xi/µ.

3. Methods

3.1. Level-Based Theorem

The level-based theorem is a general tool that provides upper bounds on
the expected optimisation time of many population-based algorithms on a
wide range of optimisation problems. For example, it has been successfully
applied to investigate the runtime of the Genetic Algorithms with or without
crossover on various problems like Linear or LeadingOnes [8]. Besides,
the first upper bounds of UMDA on OneMax and LeadingOnes have
been obtained using this method [9].
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The theorem assumes that the algorithm to be analysed can be described
in the form of Algorithm 2. Let X be a finite search space which is, for ex-
ample, {0, 1}n in the case of binary representation. The algorithm considers
a population Pt at generation t ∈ N of λ individuals that is represented as
a vector (Pt(1), Pt(2), . . . , Pt(λ)) ∈ X λ. The theorem is general because it
does not assume specific fitness functions, selection mechanisms, or generic
operators like mutation and crossover. Rather, the theorem assumes that
there exists, possibly implicitly, a mapping D from the set of populations
X λ to the space of probability distribution over the search space X . The
mapping D depends only on the current population and is used to produce
the individuals in the next generation [8].

Algorithm 2: Population-based algorithm

Data: Finite search space X , population size λ ∈ N, a
mapping D from X λ to probability distributions over X , and an
initial population P0 ∈ X λ.
begin

for t = 0, 1, 2, . . . until termination condition met do
for i = 1, 2, 3, . . . , λ do

sample Pt+1(i) ∼ D(Pt)

Furthermore, the theorem assumes a partition A1, . . . , Am of the search
space X into m subsets, which we call levels. We assume that the last level
Am consists of all optimal solutions. Although there are many different ways
to create the partition, it should be chosen using prior knowledge of the spe-
cific problem under investigation and the behaviour of the algorithm. One
class of such partition is the well-known canonical fitness-based partition
where all solutions with the same f -value are gathered to form a level. Let
A≥j := ∪mi=jAi be the set of all individuals belonging to level Aj or higher.
We denote |Pt ∩ Aj | := |{i | Pt(i) ∈ Aj}| to be the number of individuals of
the population Pt belonging to level Aj . Given these conventions, we can
state the level-based theorem as follows.

Theorem 1 (Theorem 1, [8]). Given a partition (Ai)i∈[m] of X , define T :=
min{tλ | |Pt ∩ Am| > 0} to be the first time t that at least one element of
level Am appears in the current population Pt. If there exist z1, . . . , zm−1, δ ∈
(0, 1], and γ0 ∈ (0, 1) such that for any population Pt ∈ X λ,
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• (G1) for each level j ∈ [m− 1], if |Pt ∩A≥j | ≥ γ0λ then

Pr
y∼D(Pt)

(y ∈ A≥j+1) ≥ zj .

• (G2) for each level j ∈ [m− 2], and all γ ∈ (0, γ0], if |Pt ∩A≥j | ≥ γ0λ and
|Pt ∩A≥j+1| ≥ γλ then

Pr
y∼D(Pt)

(y ∈ A≥j+1) ≥ (1 + δ) γ.

• (G3) and the population size λ ∈ N satisfies

λ ≥
(

4

γ0δ2

)
ln

(
128m

z∗δ2

)
where z∗ := minj∈[m−1]{zj}, then

E [T ] ≤
(

8

δ2

)m−1∑
j=1

[
λ ln

(
6δλ

4 + zjδλ

)
+

1

zj

]
.

Informally, the first condition (G1) requires that the probability to ob-
tain an individual at level Aj+1 or higher is at least zj given that at least
γ0λ individuals in the current population are in level Aj or higher. Condi-
tion (G2) requires that given that γ0λ individuals of the current population
belong to level Aj or higher, and, moreover, γλ of them are lying at levels no
lower than Aj+1, the probability of sampling a new offspring belonging to
level Aj+1 or higher is no smaller than (1+δ)γ. The last condition (G3) sets
a lower limit on the population size λ. As long as all three conditions are
satisfied, an upper bound on the expected runtime of the population-based
algorithm is guaranteed.

Traditionally in Evolutionary Computation, we often define running time
(or optimisation time) as the total number of fitness evaluations performed
by the algorithm until an optimal solution has been found for the first time.
However, the random variable T := min{tλ | |Pt ∩ Am| > 0} in Theorem 1
is the total number of candidate solutions sampled by the algorithm until
the first generation where an optimal solution is witnessed for the first time.
In the context of UMDA, these two entities are not always identical as T
is never smaller than the optimisation time. Since the level-based theorem
provides upper bounds on the optimisation time, this will not cause any
problems.
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The detailed proof of the level-based theorem can be seen in [8] in which
drift theory is applied to the distance measured by a level function. To
apply the level-based theorem, it is recommended to follow a five-step pro-
cedure (see [8] for more details). It starts by identifying a proper partition of
the search space, and then find specific parameter settings such that condi-
tions (G1) and (G2) are met, followed by verifying that the population size
that should be large enough, and, finally, an upper bound on the expected
runtime is provided.

3.2. A Uniform Bound on the Sum of Bernoulli Trials

In order to show that conditions (G1) and (G2) in the level-based the-
orem are verified, we will use a sharp upper bound on the probability
Pr (Y = y) for any y, where Y represents the level of a sampled offspring. Let
Yi be a Bernoulli random variable with success probability pi that represents
the bit value at position i in a sampled offspring, and then Y :=

∑n
i=1 Yi.

The distribution of Y is known as the Poisson-Binomial Distribution, and
it has expectation E [Y ] =

∑n
i=1 pi and variance σ2n =

∑n
i=1 pi (1− pi). We

will make use of a sharp upper bound on Pr (Y = y) from [1].

Theorem 2 (Theorem 2.1, [1]). Let Y1, Y2, . . . , Yn be n independent Bernoulli
random variables with success probability pi. Let Y =

∑n
i=1 Yi denote the

sum of these random variables and let σ2n =
∑n

i=1 pi(1− pi) be the variance
of Sn. The following result holds for all n, y and pi

σn · Pr (Y = y) ≤ η

where η is an absolute constant being

η = max
λ≥0

√
2λe−2λ

∞∑
k=0

(
λk

k!

)2

∼ 0.4688.

3.3. Feige’s Inequality

To demonstrate that conditions (G1) and (G2) of the level-based the-
orem hold, it is necessary to compute lower bounds on the probability of
Pr (Y ≥ y) where Y represents the level of a sampled individual. Following
[9], we will make use of a general result due to Feige to compute such lower
bounds [11] when y < E [Y ]. For our purposes, it will be convenient to use
the following variant of Feige’s theorem.
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Theorem 3 (Corollary 3, [9]). Let Y1, . . . , Yn be n independent random
variables with support in [0, 1], define Y =

∑n
i=1 Yi and µ = E [Y ]. It holds

for every ∆ > 0 that

Pr (Y > µ−∆) ≥ min

{
1

13
,

∆

1 + ∆

}
.

4. Proof idea

This section is dedicated to showing how the upper bound on the ex-
pected runtime of UMDA on OneMax is achieved using the level-based
theorem with anti-concentration bounds. Our approach refines the analysis
in [9] by taking into account anti-concentration properties of the random
variables involved. As already discussed in Section 3.1, we need to verify
three conditions (G1), (G2) and (G3) before an upper bound is guaranteed.
The first two conditions concern the probability of sampling an offspring be-
longing to a higher level. Often verifying condition (G2) requires less effort
than that of condition (G1) since for (G2) we usually have more information
on the current population by assumption.

We chose m′ < 1, then it follows that the marginal probabilities are in

pt(i) ∈
{
k

µ
| k ∈ [µ− 1]

}
∪
{

1− 1

n
,

1

n

}
.

When pt(i) = 1 − 1/n or 1/n, we say that the marginal probability is at
the upper or lower border, respectively. Therefore, we can categorise values
for pt(i) into three groups: those at the upper margin 1− 1/n, those at the
lower margin 1/n, and those within the closed interval [1/µ, 1 − 1/µ]. For
OneMax, all bits have the same weight and the fitness is just the sum of
these bit values, so the re-arrangement of bit positions will not have any
impact on the distribution of sampled offspring. As a result, without loss
of generality, we can re-arrange the bit-positions so that for two integers
k, ` ≥ 0, it holds

• for all i ∈ [1, k], 1 ≤ Xi ≤ µ− 1 and pt(i) = Xi/µ,

• for all i ∈ (k, k + `], Xi = µ and pt(i) = 1− 1/n, and

• for all i ∈ (k + `, n], Xi = 0 and pt(i) = 1/n.

Given the search space X := {0, 1}n, we define the levels as the canonical
fitness-based partition

Aj := {x ∈ X | OneMax(x) = j − 1} . (1)
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Y

Figure 1: Distribution of number of one-bits

For a given time t ∈ N, and for all integers i, j with 1 ≤ i ≤ j ≤ n, define
the Poisson-Binomially distributed random variables

Yi,j :=

j∑
k=i

Yk, where Yk ∼ Ber(pt(k)) for all k ∈ [n].

Note that the probability occurring in conditions (G1) and (G2) of the level-
based theorem can now be re-written as

Pr
y∼D(Pt)

(y ∈ A≥j+1) = Pr (Y1,n ≥ j) .

To verify condition (G1), by assumption all µ top candidate solutions
in the current population belong to Aj , i.e. having exactly j − 1 one-bits.
We need to calculate a lower bound zj on the probability of sampling an
offspring having at least j 1-bits. This probability Pr(Y1,n ≥ j) is the area
marked by the diagonal lines in Figure 1.

We aim to obtain an upper bound O(nλ) of UMDA on OneMax using
the level-based theorem. Note that the logarithmic factor O(log λ) in the
first upper boundO(nλ log λ) in [9] stems from the lower bound zj = Ω(µ−1).
We need a better bound zj = Ω ((n− j + 1)/n). This led us to consider three
cases according to different configurations of the current population in Step
3 of Theorem 4 below.

1. k ≥ µ. We will see that this implies that the variance of Y1,k is quite
large, hence the distribution of Y1,k cannot be too concentrated on the
mean E[Y1,k] = j − `− 1. As a result, it is sufficient to get an extra 1-bit
from the first k positions to obtain an offspring belonging to A≥j+1. The
probability of sampling j 1-bits is bounded from below by Pr(Y1,n ≥ j) ≥
Pr(Y1,k ≥ j − `) · Pr(Yk+1,k+` = `), where Pr(Y1,k ≥ j − `) is measured
using the anti-concentration result from Theorem 2 and Lemma 1.
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2. k < µ and j ≥ n + 1 − n/µ. In this case, the current level is very
close to the optimal one, and the bitstring has few zero-bits. As already
obtained from [9], the upgrade probability in this case is Ω(µ−1). Since
the condition can be rewritten as µ−1 ≥ (n − j + 1)/n, it ensures that
zj = Ω(µ−1) = Ω((n− j + 1)/n).

3. The remaining cases. Later will we prove that given µ ≤
√
n(1− c) for

some constant c ∈ (0, 1), all remaining cases excluded by the first two
cases are covered in 0 ≤ k < (1−c)(n− j+1). In this case, k is relatively
small, and ` is not too large since the current level is not very close to
the optimal one. This implies that most zero-bits must be located in the
last n − k − ` positions, and it suffices to sample an extra 1-bit from
this region. The probability of sampling an offspring belonging to levels
A≥j+1 is then Ω((n− j + 1)/n).

5. Runtime of UMDA on OneMax

OneMax is the problem of maximising the number of one-bits in a bit-
string, and is formally defined by OneMax (x) =

∑n
i=1 xi. It is well-known

that the OneMax problem can be optimised in expected time Θ(n log n)
using the (1 + 1) Evolutionary Algorithm. The level-based theorem was ap-
plied to derive the first upper bound on the expected optimisation time of
the UMDA on OneMax, which is O(nλ log λ), assuming λ = Ω(log n) [9].
By refining this method, we will obtain the better bound O(nλ).

Theorem 4. For some constant a > 0, and any constant c ∈ (0, 1), the
UMDA with parent population size a ln(n) ≤ µ ≤

√
n(1− c), offspring

population size λ ≥ (13e)µ/(1 − c), and margin m′ := µ/n, has expected
optimisation time O (nλ) on OneMax.

Proof. First, we define γ0 := µ/λ. Since µ ≤
√
n(1− c), it follows that

m′ = µ/n < 1, and the upper and lower borders for pt(i) simplify to 1−1/n
and 1/n, respectively. We re-arrange the bit positions and define the random
variable Yi,j as in Section 4. We now closely follow the recommended 5-step
procedure for applying the level-based theorem [8].

Step 1. The levels are defined as in Eq. (1). There are exactly m = n+1
levels from A1 to An+1, where level An+1 consists of the optimal solution.

Step 2. We verify condition (G2) of the level-based theorem. In partic-
ular, for some δ ∈ (0, 1), and for any level j ∈ [m − 2], and any γ ∈ (0, γ0],
assuming that the population is configured such that |Pt ∩ A≥j | ≥ γ0λ = µ
and |Pt ∩A≥j+1| ≥ γλ > 0, we must show that the probability to sample an
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offspring belonging to level Aj+1 or higher must be no less than (1 + δ)γ.
By the re-arrangement of the bit-positions mentioned in Section 4, it holds

k+∑̀
i=k+1

Xi = µ` and

n∑
i=k+`+1

Xi = 0, (2)

where Xi, i ∈ [n], are given in Algorithm 1. By assumption, the current
population Pt consists of at least γλ individuals with j one-bits and µ− γλ
individuals with j − 1 one-bits, therefore

n∑
i=1

Xi ≥ γλj + (µ− γλ) (j − 1) = γλ+ µ (j − 1) . (3)

Combining (2), (3) and noting that λ = µ/γ0 yield

k∑
i=1

Xi =
n∑
i=1

Xi −
k+∑̀
i=k+1

Xi −
n∑

i=k+`+1

Xi

≥ γλ+ µ (j − 1)− µ` = µ

(
j − `− 1 +

γ

γ0

)
.

Let Z = Y1,k + Yk+`+1,n be the total number of 1-bits sampled in the first k
and the last n− k − ` positions. Y1,k and Yk+`+1,n take integer values only,
and so does Z. Since k + ` ≤ n, the expected value of Z is

E [Z] =
k∑
i=1

pt(i) +
n∑

i=k+`+1

pt(i)

=
1

µ

(
k∑
i=1

Xi

)
+

1

n
(n− k − `) ≥ j − `− 1 +

γ

γ0
.

In order to obtain an offspring with at least j one-bits, it is sufficient to
sample ` one-bits in positions k+ 1 to k+ ` and at least j − ` one-bits from
the other positions. The probability of this event is bounded from below by

Pr (Y1,n ≥ j) ≥ Pr (Z ≥ j − `) · Pr (Yk+1,k+` = `) . (4)

The probability to obtain ` 1-bits in the middle interval from position k+ 1
to k + ` is

Pr (Yk+1,k+` = `) =

(
1− 1

n

)`
≥
(

1− 1

n

)n−1
≥ 1

e
. (5)
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We now need to calculate Pr (Z ≥ j − `). Since Z takes integer values only,
then

Pr (Z ≥ j − `) = Pr (Z > j − `− 1)

≥ Pr

(
Z > E [Z]− γ

γ0

)
.

Applying Theorem 3 for ∆ = γ/γ0 ≤ 1 and noting that we chose µ and λ
such that such that 1/γ0 = λ/µ ≥ 13e/(1− c) = 13e(1 + δ) yield

Pr (Z ≥ j − `) ≥ min

{
1

13
,

∆

∆ + 1

}
(6)

≥ ∆

13
=

γ

13γ0
≥ e (1 + δ) γ. (7)

Therefore, combining (4), (5), and (7) give Pr (Y1,n ≥ j) ≥ (1 + δ) γ, and
condition (G2) holds.

Step 3. We now consider condition (G1) for any level j defined with
γ = 0. In other words, all the top µ individuals in the current popula-
tion Pt have exactly j − 1 one-bits, and, therefore,

∑n
i=1Xi = µ (j − 1)

and
∑k

i=1Xi = µ (j − `− 1). There are three different cases that cover all
situations according to variables k and j.

Case 1: Assume that k ≥ µ. The variance of the first k bits is

Var [Y1,k] =

k∑
i=1

pt(i) (1− pt(i)) ≥
k

µ

(
1− 1

µ

)
≥ 9k

10µ
≥ 9

10
,

where the second inequality holds for sufficiently large n because µ ≥ a ln(n).
Theorem 2 applied with σk ≥

√
9/10 now gives

Pr (Y1,k = j − `− 1) ≤ η/σk.

Furthermore, since E [Y1,k] is an integer, Lemma 1 implies

Pr (Y1,k ≥ E [Y1,k]) ≥ 1/2.

By combining these two probability bounds, the probability to obtain at
least j − ` one-bits from the first k positions is

Pr (Y1,k ≥ j − `) = Pr (Y1,k ≥ j − `− 1)− Pr (Y1,k = j − `− 1)

= Pr (Y1,k ≥ E [Y1,k])− Pr (Y1,k = j − `− 1)

≥ 1

2
− η

σk
>

1

2
− 0.4688√

9/10
= Ω(1). (8)
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In order to obtain an offspring belonging to levels A≥j+1, it is sufficient to
sample at least j − ` one-bits from the first k positions and ` 1-bits from
position k+ 1 to position k+ `. By (5) and (8), the probability of this event
is bounded from below by

Pr (Y1,n ≥ j) ≥ Pr (Y1,k ≥ j − `) · Pr (Yk+1,k+` = `)

> Ω(1) · 1

e
= Ω(1).

Case 2: k < µ and j ≥ n(1−1/µ)+1. The second condition is equivalent
to 1/µ ≥ (n− j + 1)/n. The probability to obtain an offspring belonging to
levels A≥j+1 is then bounded from below by

Pr (Y1,n ≥ j) ≥
Pr (Y1,1 = 1) Pr (Y2,k ≥ j − `− 1) Pr (Yk+1,k+` = `)

≥ 1

µ
Pr (Y2,k ≥ j − `− 1)

1

e
≥ 1

14eµ
,

where we used the inequality Pr (Y2,k ≥ j − `− 1) ≥ 1/14 for µ ≥ 14 proved
in [9]. Since 1/µ ≥ (n− j + 1)/n, we can conclude that

Pr (Y1,n ≥ j) ≥
1

14eµ
≥ n− j + 1

14en
= Ω

(
n− j + 1

n

)
.

Case 3: k < µ and j < n(1−1/µ)+1. This case covers all the remaining
situations not included by the first two cases. The latter inequality can be
rewritten as n − j + 1 ≥ n/µ. We also have µ ≤

√
n(1− c), so n/µ ≥

µ/(1− c), then

(1− c)(n− j + 1) ≥ (1− c)(n/µ) ≥ (1− c)µ/(1− c) = µ > k.

Thus, the two conditions can be shortened to 0 ≤ k < (1− c)(n− j + 1). In
this case, the probability of sampling j one-bits is

Pr(Y1,n ≥ j)
≥ Pr (Y1,k ≥ j − `− 1) Pr (Yk+1,k+` = `) Pr (Yk+`+1,n ≥ 1)

≥ 1

2
· 1

e
· n− k − `

n
=
n− k − `

2en
.

Since ` ≤ j − 1 and k < (1− c)(n− j + 1), then

Pr (Y1,n ≥ j) >
n− (1− c)(n− j + 1)− j + 1

2en
= Ω

(
n− j + 1

n

)
.
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Combining all three cases together yields the upgrade probability

Pr (Y1,n ≥ j) ≥ min

{
Ω(1), Ω

(
n− j + 1

n

)}
= Ω

(
n− j + 1

n

)
=: zj ,

and, therefore, z∗ := minj∈[n]{zj} = Ω(1/n).
Step 4. We consider condition (G3) regarding the population size. We

have 1/δ2 = O(1), 1/z∗ = O(n), and m = O(n). Therefore there must exist
a constant a > 0 such that(

a

γ0

)
ln(n) ≥

(
4

γ0δ2

)
ln

(
128m

z∗δ2

)
.

The requirement µ ≥ a ln(n) now implies that

λ =
µ

µ/λ
≥
(
a

γ0

)
ln(n) ≥

(
4

γ0δ2

)
ln

(
128m

z∗δ2

)
,

hence condition (G3) is satisfied.
Step 5. We have shown that conditions (G1), (G2), and (G3) are sat-

isfied. By Theorem 1 and the bound zj = Ω((n − j + 1)/n), the expected
optimisation time is therefore

E [T ] = O

λ n∑
j=1

ln

(
n

n− j + 1

)
+

n∑
j=1

n

n− j + 1

 .

We now estimate the two terms separately. By Stirling’s approximation
(Lemma 2), the first term is

O

λ n∑
j=1

ln

(
n

n− j + 1

) = O

λ ln
n∏
j=1

n

n− j + 1

 = O
(
λ ln

nn

n!

)

= O
(
λ ln

nn · en

nn+1/2

)
= O (nλ) .

The second term is

O

 n∑
j=1

n

n− j + 1

 = O

(
n

n∑
k=1

1

k

)
= O (n log n) .

Since λ > µ = Ω(log n), the expected optimisation time is

E [T ] = O (nλ) +O (n log n) = O (nλ) .

�
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Best-fit function Correlation coefficient

2.806 · n log n 0.9994

0.287 · n3/2 0.9900
0.003 · n2 0.9689

Table 1: Best-fit models.

6. An empirical result

So far we have proven an upper bound O (nλ) on the expected runtime
of UMDA on OneMax with parent population size a log n ≤ µ = O(

√
n)

, offspring population size λ = Ω(µ), and margin size m′ ≤ 1. This result
is tighter than the bound O(nλ log λ), obtained in [9], which provided the
first upper bound for UMDA on OneMax. However, the bound O(nλ) is
asymptotic and only provides information on the growth of the expected
runtime according to the problem size n for sufficiently large n ≥ n0. It
provides no information on the multiplicative constant or the influences of
lower order terms. Hence it makes sense to consider the empirical runtime
of UMDA on OneMax to partially compensate for the limitations in the
theoretical analysis.

We carry out a small experiment by running the UMDA on OneMax
with initial parameter settings consistent with those conditions mentioned
above. The settings of parameters are as follows: λ =

√
n, µ = log n and

m′ = 0.5 for n ∈ {100, 200, . . . , 10000}. The results are shown in Figure 2.
For each value of n, the algorithm is run 100 times, and then the average
runtime is computed. The mean runtime for each value of n is estimated
with 95% confidence intervals using the bootstrap percentile method [17] with
100 bootstrap samples. Each mean point is plotted with two error bars to
illustrate the upper and lower margins of the confidence intervals.

From the parameter settings chosen for the experiment, Theorem 4 gives
the upper bound O(n3/2) for the expected optimisation time. We now
compare this theoretical bound with the empirical runtime and two other
bounds close to this model: O(n log n) which is the runtime of (1+1) EA
on OneMax, and the quadratic bound O(n2). Following [17], we fit three
positive constants c1, c2 and c3 to the models c1 ·n log n, c2 ·n3/2 and c3 ·n2
using non-linear least square regression. The correlation coefficient for each
model is calculated to measure the fit of each model to the data.

From Table 1, it can be seen that the first two models 2.806 ·n log n and
0.287 · n3/2, with the correlation coefficients 0.9994 and 0.9900 respectively,
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Figure 2: Mean runtime of UMDA on OneMax with 95% confidence intervals plotted
with error bars. The fitted models are also plotted.

fit well with the empirical data. The quadratic model fits less well with the
empirical data. These findings are consistent with the theoretical expected
optimisation time since the first two models are members of O(n3/2). As
already stated before, our bound O(nλ) is tight for λ = O(log n); however,
in this experiment we chose a larger offspring population size λ =

√
n. For

this case, the model 2.806 ·n log n has higher correlation coefficient than the
model 0.287 · n3/2, indicating that our theoretical bound may not be tight
for this case.

7. Conclusion

Despite the long-time use of EDAs by the Evolutionary Computation
community, little has been known about their runtime, even for apparently
simple settings such as UMDA on OneMax. Results about the UMDA
are not only relevant to Evolutionary Computation, but also to Population
Genetics where it corresponds to the notion of linkage equilibrium.

We have proved the upper bound O(nλ) which holds for a log n ≤ µ =
O(
√
n) where a is a positive constant. Although our result assumes that

λ ≥ (1 + c′)µ for some positive constant c′ > 0, it does not require that µ is
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proportional in size to λ. The bound is tight when λ = O(log n); in this case,
a tight bound Θ(n log n) on the expected optimisation time of the UMDA
on OneMax is obtained, matching the well-known bound Θ(n log n) for the
(1+1) EA on the class of linear functions. Although the bound assumes a not
too large parent population size µ = O(

√
n), it finally closes the Θ(log log n)

gap between the first upper bound O(n log n log logn) [9] for certain settings
of λ and µ and the recently discovered lower bound Ω(µ

√
n + n log n) for

λ = (1 + Θ(1))µ [16]. Future work should consider the runtime of UMDA
on OneMax for larger offspring population sizes µ = ω(

√
n) and different

combinations of µ and λ, as well as the runtime on more complex fitness
landscapes.

Our analysis further demonstrates that the level-based theorem can
yield, relatively easily, asymptotically tight bounds for non-trivial, population-
based algorithms. An important additional component of the analysis was
the use of anti-concentration properties of the Poisson-Binomial distribu-
tion. Unless the variance of the sampled individuals is not too small, the
distribution of the population cannot be too concentrated anywhere, yield-
ing sufficient diversity to discover better solutions. We expect that these
arguments will lead to new results in runtime analysis of evolutionary algo-
rithms.

8. Appendix and References

We use the following property of the Poisson-Binomial distribution.

Lemma 1 (Theorem 3.2, [15]). Let Y1, Y2, . . . , Yn be n independent Bernoulli
random variables. Let Y :=

∑n
i=1 Yi be the sum of these random variables

and let µ be the expectation of Y . If µ is an integer, then

Pr (Y ≥ µ) ≥ 1/2.

Lemma 2 (Stirling’s approximation [2]). For all n ∈ N,

n! = Θ

(
nn+1/2

en

)
.
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