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Abbreviations:  

ACP = acute cor pulmonale; ARDS = acute respiratory distress syndrome; ASE = 

American Society of Echocardiography; CI = confidence interval;  CMV = conventional 

mechanical ventilation; CO2 = carbon dioxide; CRRT = continuous renal replacement 

therapy; CT = computed tomography; CRRT = continuous renal replacement therapy; 

CVP = central venous pressure; DTI = doppler tissue imaging; E/E' = the ratio of early 

tricuspid inflow to annular diastolic velocity; EF = ejection fraction; ET-1 = endothelin 1; 

ECCO2R = extracorporeal CO2 removal; FAC = fractional area change; FiO2 = fraction of 

inspired oxygen;  5HT = 5-hydroxytryptamine; HFOV = high frequency oscillatory 

ventilation;  ICU = intensive care unit; LPV = lung protective ventilation; LVEDA = left 

ventricular end-diastolic area; MAP = mean arterial pressure; mPAOP =  mean 

pulmonary artery occlusion pressure; MPI = myocardial performance index; MRI = 

magnetic resonance imaging; PAC = pulmonary artery catheter; PaCO2 = partial pressure 

of arterial carbon dioxide; PaO2 = partial pressure of arterial oxygen; PAOP = pulmonary 
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artery occlusion pressure; sPAP = systolic pulmonary artery pressure; PBW = predicted 

body weight; PCWP = pulmonary capillary wedge pressure; PDE = phosphodiesterase; 

PEEP = positive end-expiratory pressure; PLR = passive leg raise; PPV = pulse pressure 

variation; PVR = pulmonary vascular resistance; PVRi = pulmonary vascular resistance 

index; RCT= randomized controlled trial; RIMP = right ventricular index of myocardial 

performance; RV = right ventricle; RVD = right ventricular dysfunction; RVEDA =  right 

ventricular end-diastolic area; RVFAC = right ventricular fractional area change; RVEF 

= right ventricular ejection fraction; RVTDI = right ventricular tissue Doppler imaging; 

sPAP = systolic pulmonary arterial pressure;  SpO2 = oxygen saturation;  SVI = stroke 

volume index; TAPSE = tricuspid annular plane systolic excursion; TEE = 

transesophageal echocardiography; TPG = transpulmonary gradient; 3D = three 

dimensional; TTE = transthoracic echocardiography; VAECMO = veno-arterial 

extracorporeal membrane oxygenation; VVECMO = veno-venous extracorporeal 

membrane oxygenation; 
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ABSTRACT 
 
Acute respiratory distress syndrome is associated with poor clinical outcomes with a 

pooled mortality rate of approximately 40% despite best standards of care. Current 

therapeutic strategies are based upon improving oxygenation and pulmonary compliance 

while minimizing ventilator induced lung injury. It has been demonstrated that relative 

hypoxemia can be well tolerated and improvements in oxygenation do not necessarily 

translate into survival benefit. Cardiac failure, in particular right ventricular dysfunction, 

is commonly encountered in moderate to severe acute respiratory distress syndrome and 

is reported to be one of the major determinants of mortality. The prevalence rate of 

echocardiographically evident right ventricular dysfunction in acute respiratory distress 

syndrome varies across studies ranging from 22% to 50%. Although there is no definitive 

causal relationship between right ventricular dysfunction and mortality, severe right 

ventricular dysfunction is associated with increased mortality. Factors that can adversely 

affect right ventricular function include hypoxic pulmonary vasoconstriction, 

hypercapnia, and invasive ventilation with high driving pressure. It might be expected 

that early diagnosis of right ventricular dysfunction would be of benefit however, 

echocardiography markers (qualitative and quantitative) used to prospectively evaluate 

the right ventricle in acute respiratory distress syndrome have not been tested in 

adequately powered studies. In this review we examine the prognostic implications and 

pathophysiology of right ventricular dysfunction in acute respiratory distress syndrome 

and discuss available diagnostic modalities and treatment options. We aim to identify 

gaps in knowledge and directions for future research that could potentially improve 

clinical outcomes in this patient population. 

 
 

KEY WORDS: acute respiratory distress syndrome, right ventricular dysfunction, cor-

pulmonale, critical care echocardiography 
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Acute respiratory distress syndrome (ARDS) is characterized by the acute development 

of hypoxemia and bilateral lung infiltrates. 1 Five decades after it was first described and 

despite lung protective mechanical ventilation strategies2, 3 and other therapeutic 

advances such as prone positioning, fluid restrictive therapy and neuromuscular 

blockade,4-6 ARDS is still associated with substantial morbidity and mortality. In a 

systematic review and meta-analysis that included 89 ARDS studies (53 observational, 36 

randomized controlled trials), Phua et al found that the overall pooled weighted mortality 

was 44.3% (95% confidence interval [CI], 41.8-46.9). 7 In a recent randomized controlled 

trial (RCT) comparing conservative (SpO2 88–92%) versus a liberal oxygenation target 

(≥96%), there were no significant differences in organ dysfunction or mortality between 

the two groups. These results suggest that patients can survive short periods of relative 

hypoxemia without significant adverse effect and that hypoxemia may not be the leading 

cause of mortality in ARDS. 8 On the other hand, hemodynamic instability in the context 

of ARDS appears to be strongly associated with mortality.9 One potential mechanism is 

the dysfunction of the right ventricle (RV) and pulmonary vasculature which is often 

underappreciated in ARDS.10 As a result the RV fails to deliver adequate cardiac output 

to the left sided circulation thus resulting in systemic hypoperfusion and multiple organ 

dysfunction. 11 

 

The aim of the current review is to discuss the epidemiology of RV dysfunction (RVD) in 

ARDS and its effect on clinical outcomes, examine the current state of knowledge in the 

pathophysiology of RV dysfunction, identify gaps and explore the use of novel imaging 

markers, preventive and therapeutic strategies. Unanswered questions such as 

effectiveness of ‘low lung-stress’ ventilation, timing of proning and whether RVD alone 

should be an indication for proning, the role of extracorporeal life support and natural 

history of RVD in ARDS survivors will be discussed. 
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DEFINITIONS 

 

There is a variety of definitions for RV dysfunction (RVD) and failure (RVF) in the 

literature with the terms being used interchangeably at times. According to the American 

Society of Echocardiography (ASE) RVD is present when the parameters to quantify RV 

function are less than the lower value of the normal range: tricuspid annular plane 

systolic excursion (TAPSE) < 17mm, pulsed Doppler S wave < 9.5cm/sec, RV fractional 

area change (RVFAC) < 35%, RV ejection fraction (RVEF) < 45%. RVFAC has been 

used to grade the degree of RVD as mild (25-35%), moderate (18-25%) and  severe 

(<18%).12, 13 RVF is defined as the inability of the RV to provide adequate blood flow 

through the pulmonary circulation at normal central venous pressure (CVP).11 Acute cor 

pulmonale (ACP) refers to acute dilatation and/or dysfunction of the RV in the context of 

acute lung disease (eg ARDS) and associated pulmonary vascular dysfunction.14 ACP is a 

form of RVD due to acute increase in RV afterload that may lead to RVF and it is defined 

echocardiographically as septal dyskinesia with a ratio of right ventricular end-diastolic 

area (RVEDA): left ventricular end-diastolic area (LVEDA) greater than 0.6 (greater than 

1 for severe dilatation). In the RV-focused view, RV diameter greater than 41mm at the 

base and greater than 35mm at midlevel indicates chamber dilatation.12, 13 In this review 

we have chosen to use the term ‘RVD’ instead of ‘ACP’ as it provides a broader 

overview of RV pathology in acute pulmonary disease. Assessment of the RV by 

echocardiography is discussed further in the ‘diagnosis’ section of this review. 

 

 

EPIDEMIOLOGY & PROGNOSIS 

 

The reported incidence of RVD in ARDS varies across studies (22% to 50% (Table 1).15-

24) Although there is no robust evidence to support a definitive causal relationship 

between RVD and mortality in ARDS, it has been shown that RVD has a negative impact 

on the ARDS course and that severe RVD is associated with increased mortality even 

during lung protective mechanical ventilation.  
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In a prospective multicentre study (n= 200), Lhéritier et al 19 showed that ARDS patients 

with RVD (assessed by transthoracic (TTE) or transesophageal echocardiography (TEE) 

and defined as ACP), received prone mechanical ventilation and vasoactive therapy  

more frequently, and required higher dose of inhaled nitric oxide (NO) as a rescue 

therapy, than those without RVD. The incidence of RVD in this study was 22.5% (95% 

CI 19.9-28.9%). In a prospective observational study 20 which enrolled 226 patients with 

moderate to severe ARDS (Berlin definition) 25 RVD was detected in 22% and was found 

to be an independent predictor of 28-day mortality (p<0.01). A secondary analysis 22 of 

the Fluid and Catheter Treatment Trial (FACTT) examined the association between 

pulmonary vascular dysfunction, (defined as elevated transpulmonary gradient (TPG) or 

increased pulmonary vascular resistance index (PVRi) assessed by pulmonary artery 

catheter (PAC)) and outcomes in ARDS patients. Increased baseline TPG was associated 

with higher 60-day mortality (30 vs 19%; p<0.02) and PVRi was statistically higher in 

non-survivors (326 [209–518] versus 299 [199–416]; p = 0.01). Of note, the median 

PVRi was highest [304.6 (204.3–430.9)] early in the course of ARDS (Day 0 and Day 1).   

 

Mekontso Desapp and colleagues 17 undertook a large prospective observational study 

(n=752) in which patients with moderate to severe ARDS receiving the least damaging 

mechanical ventilation (low tidal volume and plateau pressure < 30 mmHg) were 

assessed using TEE. 22% of the cohort (95% CI 19-25%) had RVD (defined as ACP) and 

7.2% of patients had severe RV dilatation (RVEDA/LVEDA>1). Hospital mortality did 

not differ between patients with or without RVD but was significantly higher in patients 

with severely dilated RV [31/54 (57 %) vs. 291/698 (42 %); p = 0.03] which was also 

found to be an independent predictor of mortality. This could be explained by the fact 

that this subset of patients had established RVF which was unresponsive to therapeutic 

interventions aimed at decreasing RV afterload and ‘protecting’ the RV.17 On the other 

hand, patients with mildly dilated RV and septal dyskinesia included in the RVD group 

may have had preserved RV systolic function and this might explain the insignificant 

difference in mortality between the patients with or without RVD as defined by the 

authors. Patients enrolled had only a single TEE study during the first three days of 

ARDS diagnosis and therefore the natural history of RVD in ARDS remains unknown.17  
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Those studies assessing RV function in ARDS have not examined the impact of temporal 

changes in RV function on mortality, the natural history of RV function in survivors, nor 

the reversibility of RVD with progression of ARDS (Table 1). Whether patients with 

ARDS develop RV diastolic dysfunction, that might affect clinically important outcomes, 

also remains unknown. In most studies, RVD is defined as RV dilatation with or without 

septal dyskinesia. The clinical significance of isolated RV dilatation as a ‘red flag’ and its 

impact on mortality remain unclear. Only two studies used an ASE criterion (TAPSE) to 

define RVD (Table 1). 15, 16 There is a need for a consensual definition that reflects the 

pathophysiology of RVD in the context of ARDS and positive pressure ventilation. This 

will enable intensive care specialists to identify patients at risk of RVF and implement 

strategies that may protect the RV. 

 

 

PATHOPHYSIOLOGY 

 

The RV is responsible for maintaining adequate pulmonary perfusion pressure in order to 

deliver desaturated mixed venous blood to the respiratory membrane and low systemic 

venous pressure to prevent organ congestion. The RV is sensitive to changes in afterload 

because it is anatomically adapted for the generation of low-pressure perfusion.11, 26 

 

Why is the RV failing in ARDS? 

 

RVD is not always associated with an increase in PVR and pulmonary arterial 

hypertension; it can also be secondary to primary contractile impairment.11 As a result, 

low cardiac output (CO) with low mean arterial pressure (MAP) can occur. This can  

develop into in a vicious cycle, leading to a progressive downward spiral and cardiogenic 

shock.11,  26 
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Mekontso Desapp et al,17 reported four parameters (one clinical and three physiological) 

that were identified as statistically significant predictors of RVD in ARDS: 1) lower 

respiratory tract infection as a cause of pulmonary ARDS, 2) partial pressure of arterial 

oxygen : fraction of inspired oxygen (PaO2:FiO2 ) ratio < 150 mmHg, 3) PaCO2 > 48 

mmHg and 4) driving pressure (plateau pressure – total positive end expiratory pressure) 

> 18 cmH2O. These variables had a statistically significant correlation with RVD. 

Patients with an RVD score greater than or equal to 2 had a higher incidence of RVD 

(19%, 34% and 74% for risk scores of 2, 3 and 4 respectively). The authors recommend 

that echocardiography should be routinely performed in all ARDS patients with a score > 

2. There is lack of data that illustrate sequential relation of any of the above four 

parameters and severity of RVD. Although the RVD risk score has not yet been 

validated, it may provide a framework whereby researchers could test the hypothesis that 

early echocardiography and early implementation of RV protective measures and 

modification of the above physiological parameters might prevent RV failure and reduce 

mortality in patients with ARDS. 17 

 

 

Pulmonary Vascular Tone 

 

Elevated pulmonary vascular tone in ARDS could be due to a variety of causes including 

an imbalance between vasoconstrictors and vasodialators, endothelial injury, arteriolar 

hypoxic pulmonary vasoconstriction, hypercapnia, acidemia, in situ thrombosis, and 

muscularization of non-muscularized arteries (pulmonary vascular remodeling).27-29 

Raised PVR may lead to acute distension of the thin-walled and ‘afterload-sensitive’ RV 

resulting in increased oxygen demand, decreased  right coronary artery perfusion-

pressure with reduced oxygen delivery, and tricuspid annular dilatation worsening 

tricuspid regurgitation and exacerbating volume overload.  In addition RV dilatation can 

cause shifting of the interventricular septum toward the left impeding left ventricular 

diastolic filling and reducing left ventricular stroke volume, potentially leading to 

systemic hypotension. This phenomenon is known as ‘ventricular interdependence’.26, 30 

It has been shown that pulmonary hypertension may cause RV diastolic dysfunction 
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which is related to impaired RV mechanical compliance and elevated RV afterload and 

does improve by reducing the afterload. RV diastolic dysfunction and diastolic 

ventricular interaction again has not been systematically studied in the context of 

ARDS.31 

 

 

The role of Carbon Dioxide (CO2)  

 

Contributors to acute hypercapnia in ARDS include physiological factors such as 

increased alveolar dead space causing ventilation-perfusion mismatch and clinical factors 

such as low tidal volume/high respiratory rate ventilatory strategy in order to reduce the 

risk of ventilator induced lung injury. The role of acute hypercapnic acidemia in the 

pathophysiology of ARDS is not fully understood. Despite its potentially beneficial anti-

inflammatory effect on pulmonary cytokines 32, 33 hypercapnia could also exacerbate 

hypoxic pulmonary vasoconstriction or induce direct vasoconstriction of the pulmonary 

vasculature by increasing extracellular Ca++ influx. 34, 35 Pulmonary vasoconstriction 

induces an increase in arterial elastance of the pulmonary vascular system (Ea), whereas 

the RV system is characterized by the RV elastance (Ees). The ratio Ees/Ea reflects the 

mechano-energetic aspects of RV-pulmonary vascular coupling which is of paramount 

importance for cardiovascular performance as it determines RV systolic pressure and RV 

stroke volume. When Ees/Ea is >1 the system is coupled providing adequate RV 

performance, stroke work and right coronary blood flow. Hypercapnia-induced increase 

in RV afterload results in increased Ea and RVD may develop due to uncoupling between 

the RV and pulmonary circulation.36, 37 Experimental studies have shown that the 

buffering of respiratory acidosis is associated with worsening of ARDS.38 This 

observation suggests that some of the beneficial anti-inflammatory effects of respiratory 

acidosis are likely to be due to the acidemia rather than hypercapnia alone.38 A secondary 

analysis of the ARDSnet trial data3 showed that hypercapnic acidemia in ARDS patients 

who were mechanically ventilated with high tidal volumes (12ml/kg predicted body 

weight) was associated with reduced 28-day mortality. However, the authors did not 

examine the effect of hypercapnic acidemia on outcomes at various time-points or over 
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time and due to its observational nature this study could not prove a cause-effect 

relationship between hypercapnic acidemia and mortality benefit. 39 

 

 

It has been demonstrated that patients with severe ARDS, and hypercapnic acidemia 

induced by low tidal volume ventilation and high positive-end expiratory pressure 

(PEEP) at a constant plateau pressure, are likely to develop RVD.40 Vieillard-Baron and 

colleagues found that the partial pressure of arterial carbon dioxide (PaCO2) is an 

independent predictor of RVD in patients with ARDS receiving protective ventilation 

(p<0.0001).24 In another study which included 200 patients with moderate to severe 

ARDS, PaCO2 > 60mmHg was strongly associated with RVD [odds ratio (OR) 3.70; 95 

% CI 1.32–10.38; p = 0.01]. 19 

 

 

Positive Pressure Ventilation 

 

Patients with ARDS typically have considerably reduced functional residual capacity 

(FRC) and overall lung compliance and a need for an elevated airway pressure to 

adequately maintain alveolar recruitment.  This approach may have deleterious 

hemodynamic consequences.41 Positive pressure mechanical ventilation causes an 

increase in transpulmonary pressure (difference between alveolar and pleural pressure) 

which worsens non-physiological lung ‘stress’ and strain (ratio between tidal volume and 

functional residual capacity).42 PEEP, tidal volume and lung compliance are the main 

determinants of lung stress caused by positive pressure invasive ventilation which 

highlights the need for optimal mechanical ventilation strategies. When transpulmonary 

pressure exceeds pulmonary venous pressure, it acts as a back-pressure for pulmonary 

venous return and may increase the RV afterload.43, 44 

 

Increased PVR occurs at the extremes of lung volume. At low volumes it is caused by the 

elastic recoil forces of the lung parenchyma causing extra-alveolar vessel and terminal 

airway collapse leading to alveolar hypoxia and hypoxic pulmonary vasoconstriction.  At 
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high lung volumes increased PVR may occur due to collapse of the alveolar vessels 

consequent to the tension of the alveolar wall. When PVR is graphically plotted against 

lung volume, a U-shaped relation is observed with the lowest PVR occurring at the FRC. 
45 

 

In ARDS, the distribution of intrapulmonary gas is heterogeneous with collapsed alveoli 

coexisting with normally aerated lung areas.46 High PEEP levels can cause hyperinflation 

of the normally aerated alveoli and intra-alveolar vessel compression leading to high 

PVR and increased RV afterload.47 The effect of PEEP on the RV outflow impedance in 

the context of ARDS has been evaluated by pulmonary artery flow velocity using TEE. 

High PEEP (13+4cmH2O) was associated with a significant reduction in RV stroke index 
47 High plateau pressure (> 27 cmH2O) has been associated with a high incidence of RVD 

(up to 60%) and high mortality rates (up to 42%) in ARDS 48.  Driving pressure (as a 

surrogate of lung stress) has recently been found to be a ventilation variable that is 

strongly associated with survival and RVD risk.17, 49 

 

This suggests that it is the stress and strain on the lung that poses risks of abnormal RV 

physiology. Unfortunately, there is lack of prospective data on whether a ‘low pressure’ 

ventilatory approach is ‘RV-protective’. Also, it remains unknown as to how much the 

chest wall contributes to the calculated airway pressures and whether this needs to be 

taken into account when attempting to risk stratify patients for RVD in ARDS. 

 

Sepsis 

In sepsis-related ARDS (pulmonary or extra-pulmonary), RVD can be an early 

phenomenon and appears to be associated with increased circulating levels of endothelin-

1 (ET-1). 50 High ET-1 levels in sepsis are inversely correlated to RV function. A 

proposed mechanism for RVD in sepsis is increased PVR due to endothelial dysfunction 

and altered vaso-reactivity, despite systemic vasodilatation. (SVR). 26, 50, 51 

  

 

 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

12 
 

DIAGNOSIS OF ACUTE RIGHT VENTRICULAR DYSFUNCTION 

 

1. Hemodynamic Monitoring 

Standard hemodynamic monitoring can provide direct and indirect evidence suggesting 

the development of acute RVD.  It is important to identify and diagnose patients with 

RVD early, so that interventions aimed at reducing the sequelae may be initiated.    

 

Arterial line monitoring can detect the development of pulse pressure variation (PPV) and 

allows real-time blood pressure monitoring. PPV refers to dynamic changes of arterial 

pulse pressure (systolic blood pressure – diastolic blood pressure) induced by mechanical 

ventilation which can be derived from the arterial pressure waveform analysis and is 

thought to predict fluid responsiveness. In the context of low tidal volumes and a low 

pulmonary compliance state such as ARDS, the presence of PPV may signify either 

volume responsiveness or elevated RV afterload.52-54 Of note, for the assessment of PPV 

to be valid the patient must not be spontaneously breathing, and must be receiving an 

appropriate controlled tidal volume and be in a regular heart rhythm.  If the patient is 

deemed to be potentially volume responsive, a volume challenge may be given that will 

both confirm hypovolemia and subsequently improve RV outflow.  If the PPV is due to 

elevated RV afterload (and not secondary to reduced RV preload), a fluid challenge will 

not reduce the PPV and may in fact worsen RV outflow. In such cases PPV cannot be 

used as a reliable predictor of fluid responsiveness. However, in patients with elevated 

PPV who are ‘fluid-unresponsive’ RVD due to elevated RV afterload should be 

suspected and investigated promptly with echocardiography.55  

 

CVP monitoring directly measures right atrial (RA) pressure and although it is considered 

a poor predictor of fluid responsiveness it could be useful when values are particularly 

low or high (patients with very low CVP are likely to be ‘fluid-responsive’ and those 

with very high CVP are likely to be ‘non-responders’). A rapid increase in CVP 

following a fluid challenge could serve as an indicator of impending RVD or RVF when 

fluid resuscitation exceeds the normal RV unstressed volume operation range.56, 57   
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2. Pulmonary Artery Catheter (PAC) 

The traditional method of diagnosing RVD was to use a PAC. Given the potential risks of 

placement and development of less invasive methods of investigating cardiac function, 

the use of a PAC is now much less common. 57 

 

If a PAC is placed, then the usual findings suggestive of RVD include an elevated CVP 

(greater than 20mmHg), a CVP greater than pulmonary artery occlusion pressure, and a 

low cardiac index (< 2.0 L/min/m2) and mixed-venous oxygen saturation (SvO2 < 55%).  

The pulmonary vascular resistance is usually elevated in ARDS. 22 In addition, a PAC 

can be used to estimate the trans-pulmonary gradient (mean PA pressure – pulmonary 

artery occlusion pressure) which is also a marker of pulmonary vascular dysfunction 

which better estimates the resistance of the pulmonary vasculature in ARDS where West 

zones 1 and 2 can be abnormally extended due to increased transpulmonary pressure.22     

 

The challenges of using the PAC include the risks of insertion and measurement of the 

wedge pressure.  Its advantages, once placed, are the ease and rapidity of performing 

repeated measurements, particularly if many interventions to the patient’s physiology are 

made. However, use of PAC in ARDS should probably be reserved for those patients 

with echocardiographic evidence of severe RVD at risk of RVF or patients with 

established RVF to guide inodilator and/or pulmonary vasodilator therapy and monitor 

the effect of ventilatory strategy on PVR.  

 

There is a lack of data demonstrating the links between the rate of change in PVR and its 

implications for the management and prognosis of patients with ARDS. A potentially 

novel approach for these patients would be the use of pulmonary vasodilators early in the 

course of ARDS and testing of the hypothesis that this strategy might improve clinical 

outcomes. 
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3. Echocardiography 

The availability of and experience with critical care echocardiography has increased 

exponentially over the past decade. Now echocardiography is generally readily available 

and accessible in the ICU. Lhe´ritier et al showed that TEE is superior to TTE for 

diagnosing RVD in mechanically ventilated patients with moderate to severe ARDS. The 

authors found that using TEE as a reference the sensitivity of TTE for diagnosing RVD in 

ARDS was only 60% (95% CI 41-77%).19 Main limitation of the TEE approach is that 

serial repeat studies are more labor intensive and potentially of risk. 19, 58, 59 RVD by 

echocardiography is commonly defined as the presence of features of pressure and/or 

volume overload of the right ventricle. 14 RV volume overload is defined as dilation of 

the RV.  RV pressure overload is defined as dyskinetic movement of the septum during 

end-systole. RV volume overload can lead to pressure overload and vice versa. 60   

 

There are several qualitative and quantitative methods of interrogating the RV using 

echocardiography. 

 

2D echocardiography provides a visual appearance of the RV.  Based on this, RV global 

systolic function can be estimated.  Measurement of the RV end-diastolic dimensions and 

volumes can be made, and comparison with the left ventricle can be performed.  The RV 

is considered dilated when the RVEDA:LVEDA ratio is greater than 0.6.61, 62  In addition, 

evidence of systolic and diastolic septal dyskinesia (suggestive of RV pressure overload) 

can be determined on parasternal short axis and apical four chamber views.  

 

Quantitative assessment of RV function can be performed by several methods.  TAPSE 

can be obtained routinely and correlates well with RV function 12, 15, 16, 58 Interpretation of 

the TAPSE has two potential pitfalls however, it assumes the single segment represents 

the function of the entire RV, and its measurement is angle dependent.63   

 

The role of echocardiographic markers of global RV systolic function (such as right 

ventricular index of myocardial performance (RIMP), Doppler tissue imaging (DTI) - 

derived S’wave velocity, RV strain and RV strain rate or three-dimensional (3D) 
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echocardiographic RV ejection fraction (EF) 12) as early predictors of RVD in ARDS has 

not been studied to date. The prognostic implications of measures of diastolic RVD in 

ARDS (such as the ratio of early tricuspid inflow to annular diastolic velocity (E/E')63) 

have not been investigated either. It is possible that a predictive model based on 

echocardiographic and clinical (Berlin ARDS criteria and Mekontso Desapp clinical risk 

score) data could be developed to facilitate clinical decision making in patients with 

ARDS.   

 

4. Advanced Cardiac Imaging and Biomarkers 

Currently there is limited role for advanced cardiac imaging such as cardiac computed 

tomography (CT) or magnetic resonance imaging (MRI).  MRI is hindered by its 

availability and also the need for low heart rates to enable appropriate gating and study 

acquisition (this is often technically difficult with critically ill patients). Attempts to 

demonstrate cardiac CT’s ability to predict RV failure have been largely unsuccessful to 

date.64, 65  

 

Limited data exists on the role of BNP in the prognostication of ARDS patients with 

RVD.  In contrast, a recent study looking at patients with moderate to severe ARDS 

demonstrated that an elevated troponin, in conjunction with echo findings of RVD, 

identified a high-risk subgroup with elevated mortality. 18 

 

 

TREATMENT 

 

The treatment of RV dysfunction can be divided into several physiological targets 

including optimization of RV preload, increasing RV contractility, and reducing RV 

afterload. Extracorporeal life support (veno-venous or veno-arterial extracorporeal 

membrane oxygenation (ECMO), extracorporeal CO2 removal (ECCO2R)) may be 

considered as rescue therapy in refractory cases of ARDS and RVF.  
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1. Optimization of RV preload 

Meticulous management of volume status is crucial for the failing RV, as both low and 

high filling pressures may result in reduced CO.  In patients where hypovolemia is 

suspected volume loading may increase CO.66 This must be done cautiously as elevated 

pulmonary pressures (mean PAP greater than 30 mmHg), as seen in ARDS, may prevent 

a resultant increase in RV contractility and CO.30 Excessive volume loading inhibits 

stroke volume by altering the geometry of the RV resulting in RV dilatation, ventricular 

interdependence, and impaired LV diastolic compliance. 67 RV dilatation may also cause 

increased tricuspid regurgitation and right sided venous congestion. A ‘mini-fluid 

challenge’ (100 ml of colloid or crystalloid fluid over 1 minute) has been shown to 

predict fluid responsiveness in patients with circulatory failure receiving low tidal 

volume ventilation and may be a safer, yet rational approach in patients with suspected 

RVD as a small rise in cardiac filling pressures may lead to a greater increase in stroke 

volume during administration of a ‘mini-fluid bolus’ (steep portion of the Frank-Starling 

curve). 68, 69  

 

 

When found, the treatment of elevated filling pressures could be instituted in an attempt 

to restore RV geometry, reduce RV dilation and ventricular interdependence.  The use of 

diuretics is the simplest approach but hemofiltration and renal replacement therapy 

(CRRT) may be required if renal function is inadequate. However, there is no empirical 

evidence to support routine use of diuretics or CRRT in ARDS patients with RVF and 

this recommendation is based on clinical experience only. In addition, over-diuresis or 

excessive fluid removal on CRRT may rapidly lead to ‘under-filling’ of the RV (which is 

pre-load dependent) and decrease in stroke volume.  

 

2. Increasing RV contractility 

Ensuring the RV has an appropriate heart rate and rhythm can be amongst the simplest 

methods of improving RV contractility.  Right atrial contraction contributes up to 40% of 

RV filling and is of more importance when the RV compliance is poor.70, 71 Maintaining 

sinus rhythm avoids atrio-ventricular dyssynchrony and ensures the contribution of atrial 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

17 
 

kick to RV filling.  Patients with atrial fibrillation should be considered for restoration of 

sinus rhythm by pharmacological means or cardioversion.  Likewise if heart block is 

present, placement of a temporary atrial pacemaker could be considered.  

Tachyarrythmias can also lead to a reduction in filling time and thus heart rate should be 

optimized to diastolic filling. 

 

Initiation of vasoactive support can be important not only in improving RV contractility 

but also in preventing hemodynamic instability.  Hypotension can lead to RV ischemia 

and subsequent further impairment of RV function that can quickly spiral into a vicious 

cycle.  Targeted systemic pressure should be higher than the pulmonary pressure.   

 

Maintenance of an appropriate systemic pressure while not excessively increasing or 

even decreasing the pulmonary artery pressures (PAPs) are the traits of an ideal 

vasopressor.  Norepinephrine has been shown in both animal models and in man to 

increase SVR while reducing PAPs.71, 72 Norepinephrine at high doses was shown to 

increase PVR over SVR preferentially and thus at high doses should be used cautiously.  

Phenylephrine has been shown to not be as effective as norepinephrine, and in certain 

situations to actually worsen RV function29.  Vasopressin is also another vasopressor that 

preferentially increases SVR over PVR and thus can be useful to maintain systemic 

pressure without worsening RV afterload. At low doses (<0.03 U/min), Vasopressin 

causes pulmonary vasodilatation, but at higher doses it increases PVR and causes 

coronary vasoconstriction and should therefore be used with caution.73, 74    

 

Dobutamine and milrinone are inodilators that provide inotropism and vasodilation of the 

systemic and pulmonary vasculature.75, 76 Due to the profound systemic vasodilating 

capabilities of these agents, systemic hypotension can result and thus they are often need 

to be paired with a vasoconstrictor.  Vasopressin, in contrast to norepinephrine, has been 

shown to be more beneficial at reducing PAPs.77 When comparing dobutamine and 

milrinone, although there are equivalent reductions in PVR and improvements in cardiac 

output between the agents, there appears to be a greater reduction in SVR and PCWP 

when using milrinone. 78 Levosimendan, a calcium sensitizing agent with inotropic and 
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vasodilatory properties has been shown to improve RV performance in ARDS patients 

with septic shock.79 As an inodilator, it could potentially improve RV-pulmonary vascular 

coupling but it does not have a proven mortality benefit in the treatment of ARDS 

patients with RVF.79 Levosimendan is approved for use in Europe but does not have 

Food and Drug Administration approval in the United States. The aforementioned 

inotropic agents should be used with caution as they can cause tachyarrhythmias and 

hypotension.  

 

 

3. Reducing RV Afterload 

Reducing RV afterload in ARDS patients with RVD can be achieved through the use of 

pulmonary vasodilators, reversal and control of precipitating factors (hypoxemia, 

hypercapnia, acidemia, hypothermia) and ‘RV-protective’ mechanical ventilation 

strategies. 28 

 

Pulmonary Vasodilators 

 

It is strongly recommended that inhaled rather than systemic pulmonary vasodilators are 

used when systemic hypotension is anticipated.28 Inhaled NO (iNO) increases intra-

cellular cyclic guanosine monophosphate and has been shown to transiently improve 

PaO2/FiO2 ratio and CO in ARDS patients with RVD.80, 81 It is recommended that iNO is 

used as a short term therapy to improve oxygenation indices  in ARDS as it does not 

improve mortality regardless of ARDS severity and has also been associated with acute 

kidney injury.28, 82, 83 Inhaled prostanoids such as prostaglandin-I2  (prostacyclin, PGI2) 

and its analogues such as iloprost, reduce PVR and improve RV performance . Use of 

nebulized iloprost in ARDS patients with pulmonary hypertension has been associated 

with an improvement in gas exchange without causing hemodynamic instability.28, 84 Oral 

sildenafil, a PDE-5 inhibitor has been shown to decrease RV systolic overload and 

enhances RV performance in ARDS patients with RVD. 85 
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The use of pulmonary vasodilators should be individualized as they can worsen 

oxygenation and shunt fraction. 86 Pulmonary vasodilatation early in the course of ARDS, 

in patients at risk of RVD (eg RVD risk score >2), and its impact on clinical outcomes 

has not been studied. 

 

‘RV-protective’ ventilation strategies 

 

Understanding lung-heart clinical crosstalk in ARDS is likely to be of paramount 

importance, as RVD does occur in patients subjected to lung protective ventilation. The 

main proposed components of RV-protective ventilation strategy include: 1) minimizing 

lung stress by limiting plateau and driving pressures; 2) prevention or reversal of 

pulmonary vasoconstriction by improving oxygenation and strict CO2 control; and 3) 

prone position to unload the RV.44, 87 

 

It has been shown that ‘low-stress’ ventilation with plateau pressure less than 26-28 

cmH2O is associated with lower incidence of RVD. 48 Driving pressure (plateau pressure-

total PEEP) has also been associated with mortality and development of RVD in 

ARDS.20, 49, 87 It is recommended that plateau pressure is kept < 27cmH2O and driving 

pressure < 18 cmH2O. 44 High PEEP recruits collapsed alveoli but can cause 

overdistension of functional lung areas. Both atelectasis and overdistension result in 

increased PVR and high RV afterload. The optimal ‘RV-protective’ PEEP levels (balance 

between alveolar recruitment and overdistension) and titration of PEEP remain 

controversial and the effect of ‘low-lung stress’ ventilation approach on the RV needs to 

be validated in large RCTs. 

 

Prone ventilation in ARDS can facilitate reduction in RV afterload by recruiting 

collapsed alveoli without causing overdistension 88 and reducing airway pressure, PaCO2, 

RV enlargement and septal dyskinesia.89 A multi-center RCT (PROSEVA) showed a 

mortality benefit in patients with severe ARDS who were ventilated in the prone 

position.4 In addition, the prone group had a lower incidence of cardiac arrest (6.8 vs 

13.5%, p<0.05) and shock (14.8 vs 21%) that may suggest a positive impact of proning 
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on hemodynamics.44 PaO2:FiO2 < 150mmHg is an accepted indication for proning 4 but 

timing and optimal duration of prone ventilation in patients with ARDS and RVD has not 

been established. Whether prone position at the onset of mechanical ventilation in severe 

‘Berlin’ ARDS prevents RVD remains unknown. A strategy whereby ARDS patients are 

ventilated in prone position based on their hemodynamic status (presence of RVD) and 

not PaO2:FiO2 ratio has not been investigated either. 

 

 

4. Extracorporeal Life Support (ECLS) 

 

Veno-venous ECMO (VVECMO) may be used in cases of severe hypoxemia (PaO2:FiO2 

< 150mmHg, on FiO2 ≥0.6 and PEEP ≥5 cmH2O) despite optimization of mechanical 

ventilation settings (higher PEEP and mean airway pressure, lung recruitment 

maneuvers), neuromuscular blockade and inhaled pulmonary vasodilators. 4, 90 VVECMO 

in ARDS has been shown to effectively unload the RV by correcting hypoxemia and/or 

hypercapnia and facilitating a least damaging (‘low-pressure’) ventilatory approach.90 

 

Veno-arterial ECMO (VAECMO) is an option for mechanical circulatory support in 

ARDS patients with RVF and cardiogenic shock refractory to vasoactive drugs. 

VAECMO (percutaneous or intrathoracic) provides respiratory and cardiovascular 

support as deoxygenated blood bypasses both the failing RV and the lungs enhancing 

unloading of the RV.91 

 

Normocapnia in ARDS can be challenging to achieve with conventional mechanical 

ventilation. An increase in mechanically triggered mandatory breaths can cause increased 

auto-PEEP, worsening hypercapnia and RVD.44 Extracorporeal CO2 removal (ECCO2R) 

devices can be used as adjuncts to invasive mechanical ventilation and could potentially 

help preserve or restore optimal RV-arterial coupling and prevent RV failure in ARDS 

patients.92 Experimental evidence suggests that ECCO2R facilitates protective ventilation, 

reduces minute ventilation by 50% and improves RV function.93 
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Although ECLS can theoretically reverse physiological causes of RVD 

(hypoxemia/hypercapnia) and facilitate ‘RV-protective’ ventilation its effect on RVD and 

ARDS mortality has yet to be proven in rigorous controlled trials.  

 

 

CONCLUSIONS 

 

Right ventricular dysfunction and failure is associated with adverse outcomes in patients 

with ARDS. Understanding of RVD pathophysiology and altered cardiopulmonary 

interactions in ARDS is crucial for the bedside management of these patients.  Future 

research should focus on validation of clinical risk scoring systems to select patients at 

risk of RVD, immediate assessment by echocardiography and early implementation of 

therapeutic measures such as early pulmonary vasodilatation and prone positioning that 

may improve prognosis in ARDS. Echocardiographic markers such as TAPSE and RV 

TDI S' velocity could serve as predictors of early RVD and guide therapeutic 

interventions based on temporal changes in RV function which is another high-yield area 

of future study. Finally, the ‘RV-protective’ ventilatory strategy combined with 

extracorporeal support may be key in management of patients with established RVD and 

form part of ARDS management guidelines if validated in prospective pragmatic trials. 
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Study 
reference 

Year Type ARDS 
definition/ 
Ventilation 

strategy 

N Diagnostic 
modality: 

TTE/TEE/PAC 

Timing of 
echocardiograph

y following 
diagnosis of 

ARDS 

Definition of RVD Prevalence 
of RVD 

Outcome Non-
survivors 
(n) 

Non-
surviv
ors 
with 
RVD 
(n) 

P (<0.05 
statistically 
significant) 

 

Wadia et 
al15 

2016 Retrospecti
ve 

Berlin/LPV 14 TTE Within 2 weeks Not defined 
(authors examined 
changes in TAPSE, 
MPI, FAC pre- and 

post- ARDS) 

42.9% 30-day 
mortality 

8 (57%) - 0.002(for 
TAPSE) 

 

Shah et 
al16 

2016 Retrospecti
ve 

Berlin/LPV 38 TTE Within 2 weeks TAPSE <17mm 55% 30-day 
mortality 

18 (47%) - 0.004  

Dessap et 
al17 

2015 Prospective 
observation

al 

Berlin/LPV 752 TEE Within 3 days Septal dyskinesia 
with dilated RV 

(RVEDA/LVEDA 
>0.6) 

22% Hospital 
mortality 

322 
(43%) 

78/164 
(48%) 

 
[31/54 
(57%)

] in 
severe 
RVD] 

0.17 
 
 
0.03 

 

Lazzeri et 
al18 

2015 Prospective 
observation

al 

Berlin/ LPV 21 TEE/TTE Prior to 
VVECMO 

implantation 

sPAP 
>40 mmHg or 

dilated RV 
or 

Septal dyskinesia 
with dilated RV 

(RVEDA/LVEDA 
>0.6) 

or 
TAPSE<16mmHg 

 
90.5% 

 
 
 

9.5% 
 
 

47.6% 

 
 
 
 

ICU 
mortality 

12 
(57.1%) 

- 0.004 
 
 
 
 
 
 
 
 
0.04 

 

Lhe´ritier 
et al19 

2013 Prospective 
observation

al 

American & 
European 

consensus/LPV 

201 TEE/TTE Within 48 hours Septal dyskinesia 
with dilated RV 

(RVEDA/LVEDA 
>0.6) 

22.5% 28-day 
mortality 

 

46 (23%) 11/45(
24%) 

0.79  

Boissier 
et al20 

2012 Prospective 
observation

al 

Berlin/LPV 226 TEE Within 3 days Septal dyskinesia 
with dilated RV 

(RVEDA/LVEDA 
>0.6) 

22% 28-day 
mortality 

 
ICU 

mortality 

114 
(50%) 

28/49 
(57%) 

 
31/49 
(63%) 

<0.01 
 
 
0.04 
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Hospital 
mortality 

 

 
33/49 
(67%) 

 
 
 0.02 

Guervilly 
et al21 

2012 Prospective 
randomize

d 

American & 
European 

consensus/ CMV 
vs HFOV 

16 
(CMV 

vs 
HFOV) 

TEE Within 48 hours RVEDA/LVEDA 
>0.6 ( RV 

Dysfunction) 
 

RVEDA/LVEDA 
>0.9 (RV Failure) 

56% 
(during 
CMV) 

 
25% 

(during 
HFOV) 

ICU 
mortality 

9 (56%) - <0.01  

Bull et 
al22 

2010 Retrospecti
ve 

observation
al 

American & 
European 

consensus/LPV 

475 PAC  TPG > 24 mm Hg 
(assessed 

pulmonary vascular 
dysfunction) 

- 60-day 
mortality 

49% 41 0.0006  

Osman et 
al23 

2009 Prospective 
observation

al 

American & 
European 

consensus/LPV 

145 PAC After 24 hours (1) 
mPAOP>25mmHg 

and (2) 
CVP>PAOP and 
(3) SVI<30ml m-2 

9.6% 28-day 
mortality 

 
90-day 

mortality 

98 (68%) 9/14 
(64%) 

0.75 
 
 
 
0.56 

 

Vieillard-
Baron et 
al24 

2001 Prospective American & 
European 

consensus/LPV 

75 TEE After 2 days of 
respiratory 

support 

RVEDA/LVEDA 
>0.6 + Septal 

dyskinesia (ACP) 
 

RVEDA/LVEDA 
>1 (Severe ACP) 

25% 28-day 
mortality 

24 (32%) - <0.2  

 
 

Table 1. Characteristics of studies evaluating the prognostic value of right ventricular dysfunction assessed by echocardiography for mortality in 

patients with acute respiratory distress syndrome. 

 

 

ACP = acute cor pulmonale; ARDS = acute respiratory distress syndrome; CMV = conventional mechanical ventilation; CVP = 

central venous pressure;   FAC = fractional area change; HFOV = high frequency oscillatory ventilation; ICU = intensive care unit; 

LVEDA = left ventricular end-diastolic area;  LPV = lung protective ventilation; mPAOP =  mean pulmonary artery occlusion 
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pressure; MPI = myocardial performance index; PAC = pulmonary artery catheter; PAOP = pulmonary artery occlusion pressure;  RV 

= right ventricle; RVD = right ventricular dysfunction; RVEDA =  right ventricular end-diastolic area; SVI = stroke volume index; 

TAPSE = tricuspid annular plane systolic excursion; TEE = transesophageal echocardiography; TPG = transpulmonary gradient; TTE 

= transthoracic echocardiography; VVECMO = veno-venous extracorporeal membrane oxygenation 

  
 

 

 

 

 

 


