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Abstract 

Train trajectory optimisation plays a key role in improving energy saving performance and it 

is currently receiving increasing attention in railway research because of rising energy prices 

and environmental concerns. There have been many studies looking for optimal train 

trajectories with various different approaches. However, very few of the results have been 

evaluated and tested in practice. 

This paper presents a field test of an optimal train trajectory on a metro line to evaluate the 

performance and the practicability of the trajectory with respect to operational energy 

computation. A train trajectory optimisation algorithm has been developed specifically for 

this purpose, and a field test of the obtained trajectory has been carried out on a metro line. In 

the field test the driver controls the train in accordance with the information given by a 

driving advisory system, which contains the results of the train trajectory optimisation. 

The field test results show that, by implementing the optimal train trajectory, the actual 

energy consumption of the train can be significantly reduced, thereby improving the 

operational performance. Moreover, the field test results are very similar to the simulation 

results, proving that the developed train kinematics model is effective and accurate.  

1 Introduction 

Recent decades have seen the development of a significant number of metro systems 

worldwide, due to their convenience and efficiency in modern cities. However, metro systems 

use a considerable amount of energy in day-to-day operations, with the whole life cost of the 

energy used to operate a train potentially costing as much as the train itself. Due to increasing 

environmental concerns, metro operators are facing growing pressure to save energy. As a 

main foundation of metro operation, train trajectory plays a key role in metro energy 

consumption. An optimal train trajectory is able to provide a means of minimising energy 

consumption during train operation. 
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Research on the optimal railway operation performance began in the middle of 20
th
 century 

and since then various methods have been developed for the problem. Due to the complexity 

of the solution domain, metaheuristic methods such as genetic algorithms (GA) are often 

considered to driving speed curve optimisation. Bocharnikov introduced a method to calculate 

the most appropriate maximum and minimum coasting speeds to minimise train operation 

energy consumption using a mixed searching method including a fuzzy logic and a genetic 

algorithm [1, 2]. Umiliacchi introduced a combined macro and microscopic level approach in 

a train trajectory optimisation algorithm to consider the trade-off between train running time 

and energy consumption in a delay situation [3]. Chang presented a novel approach to obtain 

the best coasting control method using a genetic algorithm [4, 5]. Ye discussed a simulation 

model to calculate the optimal train speed as a function of time on a single-track railway line 

[6]. The authors have previously developed a multiple train simulator, and implemented one 

numerical algorithm and two exhaustive searching methods to optimise multiple train 

trajectories simultaneously. The comparison between the algorithms showed that the 

numerical algorithm is able to produce more accurate results, but with a higher computational 

time, when compared with the exhaustive methods [7]. However, metaheuristics methods use 

iteration methods or heuristic information to guide the search procedure converging. 

Therefore, in order to reduce the computational time, a number of researchers developed 

mathematical models and solutions to model the train network and optimise the train 

operation from different theoretical points of view [8, 9]. Howlett utilised a Pontryagin 

principle and proposed a method to analyse train operation into different sections in order to 

produce an optimal train trajectory in a relatively short time [10, 11]. Miyatake developed a 

mathematical formulation to find an energy-efficient train operation and compared three 

different methods to solve it [12]. 

All of the previous works have discussed train trajectory optimisation based on computer 

modelling. However, very few of them have been evaluated and tested in practice by field 

tests. There are significant differences between simulation and practice due to system delay, 

driver response delay, environmental disturbance and other uncertainties. It is therefore 

necessary to evaluate and test the optimal train trajectory on real trains in order to facilitate 

the understanding of the feasibility and robustness of the algorithm. It is also important to 

assess the practicability of implementing optimal train trajectories in the real world. 

In this paper, a train kinematics model is introduced, followed by a description of the 

proposed train trajectory optimisation method. The method aims to minimise train energy 

consumption by calculating the most appropriate train movement mode on different route 

sections. This paper then presents a field test of the optimal train trajectory on a metro line. 
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The test aims to evaluate the developed optimal train trajectory by using a driving advisory 

system. 

2 Model formulation  

2.1 Nomenclature 

Parameters Expansion 

A Curve resistance constant number 

a Train resistance constant 

aacc Train acceleration rate and braking rate, m/s 

abrk Train braking rate, m/s 

b Train resistance constant 

c Train resistance constant 

Ce Unit energy cost per kWh, pound 

Dmax Maximum delay time, seconds 

Dsg Delay time for a single train, seconds 

Eit Inter-station energy consumption, kWh 

Esg Single train energy consumption, kWh 

F Train traction force or braking force, N 

f[v(t)] Train maximum tractive effort at the current vehicle speed v(t), N 

Fbr(v) Train braking effort at the current vehicle speed v 

Fgrad Force due to the gradient, N 

Ftr(v) Train traction effort at the current vehicle speed v 

g Gravitational acceleration, m/s 

IT Inter-station journey time, seconds 

ITr 
Maximum variation between scheduled journey time and optimal journey time, 

seconds 

ITsh Scheduled inter-station journey time, seconds 

MC Movement mode code for each inter-station journey (detailed in Figure 1) 

Meff Train effective mass, kg 

Mls Rolling stock mass, kg 

Mopt 
Train traction energy composition that needs to be optimised for a single 

journey 

Mp Passenger mass, kg 

RAD radius of the curve, m 

Rcu Train curve resistance, N 
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Rmo Train resistance to motion, N 

s train position, m 

Sacc Train acceleration distance, m 

Sbrk Train braking distance, m 

Scur Train cruising distance, m 

si Number of sections 

sn Number of stations 

st Train position at the terminal station, m 

t Train time, seconds 

Tacc Train acceleration time, seconds 

Tbrk Train braking time, seconds 

Tcur Train cruising time, seconds 

TM Train movement mode sequence 

Tsg Train journey time for a single train from Origin to Destination, seconds 

Tsh Scheduled single journey time, seconds 

ub Train control signals for braking effort 

uf Train control signals for traction effort 

v Train speed, m/s 

vlimit(s) Line speed limit at the current position s 

Vmax Train cruising speed, m/s 

x 
The first sections in each inter-station journey that need to be considered in the 

optimisation 

x+j 
The last sections in each inter-station journey that need to be considered in the 

optimisation 

α Gradient angle 

λw Rotary allowance 

 

2.2 Vehicle Kinematics Modelling 

In this study, Lomonossoff’s Equations are used in the kinematics modelling as the general 

equations of vehicle motion, which is based on Newton’s second law of motion. The 

equations are as follows, and are subject to the constraints imposed on the train movement by 

the route and driving style [13-15]. 
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The resistance to motion, the constants a, b, c being empirical and related to the track and 

aerodynamic resistance known as the Davis equation [16]; The curve resistance constant 

number, which may vary in different countries. The number is set at 600 in this study 

(English and Chinese standard). The effective mass (Meff) can be calculated as follows. 

 

Time is a dependent variable in this vehicle kinematics model. Based on Equation (1), the 

state equation of the train motion can be further described as follows: 

 

Some constraints are shown in following: 

 

The traction or braking effort will be equal to zero when the corresponding control signal is 

set at 0. 

The boundary condition, initial condition and final conditions are imposed as follows: 
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Table 1. Control signals for different movement modes. 

Movement Mode uf ub Equations (6) 

Motoring 1 0  

Cruising 1 0  

Coasting 0 0  

Braking 0 1  

Four typical movement modes form a train motion are considered [17], as shown in Figure 1 

and Table 1. In the motoring mode, the forward traction control signal is set at 1. Therefore 

the traction power is applied to achieve the required train speed. In the cruising mode, the 

traction power is used to overcome the resistances (motion resistance and curve resistance) 

and the force due to the gradient, so that the train can keep running at a constant speed. In the 

coasting mode, the forward traction control signal is set at 0. Therefore the traction power is 

switched off and the train motion is affected by the resistances and the force due to the 

gradient. Travelling in coasting mode as long as possible on an inter-station section is 

considered to be the most energy-effective method [18, 19]. In the braking mode, the forward 

control and backward braking control signals are set at 0 and 1 respectively. The train applies 

necessary braking effort to reduce the speed. 

Speed

Speed limit

1. Motoring 

mode

2. Cruising 

mode

3. Coasting 

mode

4. Braking 

mode

 
Figure 1. Four train movement modes. 

3 Train Trajectory Optimization Algorithm 

In this optimisation study, the route is divided into a number of sections with respect to 

gradient changes, line speed limit changes and section length, as shown by the vertical dot 

dash lines in Figure 2. Applying different movement modes (TM) in each section will result in 

different train trajectories (running profile).  
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Figure 2. Train trajectory optimization for an inter-station section. 

In this study, the aim of the train trajectory optimisation is to search the most appropriate train 

movement mode sequence (TM) to minimise train energy consumption (Esg) within a given 

delay allowance (Dsg). f represents for the simulation process to calculate IT and Eit. The 

fitness function is shown in following:  

 

In order to minimise the impact of the timetable rescheduling, it is best to set Dmax at a small 

number (1 second in this study). The single train energy consumption (Esg), journey time (Tsg) 

and delay time (Dsg), which can be calculated using the following equations: 

 

The maximum variation between scheduled journey time and optimal journey time (ITr) is set 

at 5 seconds in this study.  
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As shown in Equation (7), each movement mode sequence is assumed to be a candidate 

solution. Depending on the assumed search boundary and the number of sections, the solution 

domain can be huge. Due to the complexity of the problem, it is important to find an 

appropriate algorithm to search for the optimum properly and efficiently.  

As an exact algorithm, the Brute Force method is often used in computer science. It provides 

a more straightforward approach than metaheuristics (such as Genetic Algorithm), and, 

importantly, it guarantees to find the optimum solution by enumerating all possible solutions 

in the solution domain to prove optimality [20, 21]. However, the algorithm becomes 

impractical in some complex problems as the computational time increases rapidly when the 

complexity increases. To overcome this weakness, an enhanced Brute Force searching 

method has been developed in this study. The algorithm is able to address the complexity 

problem by constraining the solution domain [22] with the following steps: 

Step 1: First, the method calculates an estimated movement mode sequence (TMest) by using 

the simulator (g) based on the scheduled inter-station journey time (ITsh).  

 

 

In this calculation, the coasting mode will not be implemented in order to simplify the 

process. 

 

The train cruising speed (Vmax) can be calculated using Equation (10) and 

Equation (11). 
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Step 2: The estimated movement mode sequence will be used to reduce the solution domain. 

The acceleration mode sections at the beginning of the journey (for example, TM1 and 

TM3 in Figure 2), and braking mode sections at the end of the journey (for example, 

TM11 and TM12 in Figure 2) will be retained. The algorithm will not re-calculate the 

movement modes for these sections in the following steps. The complexity of the 

Brute Force algorithm is O(n
2
) [23]. Therefore, reducing the number of sections (n) 

can significantly constrain the solution domain, thereby shortening the computational 

time. 

Step 3: The algorithm then enumerates all possible solutions in the reduced solution domain. 

The following notation (journey time and energy consumption pairs) (ALLSOL) for 

each inter-station journey will be calculated using the following equations: 

 

Step 4: Based on Equation (12), the solutions that do not meet the constraint conditions will 

be discarded. Furthermore, as shown in Figure 3, the results (ALLSOL) may contain 

solutions with the same journey time (Tsg) but different energy consumption (for 

example, a train runs at a constant median speed may achieves the same journey time 

as a train runs at a high speed at first and then runs at a low speed. But their energy 

consumptions will be different). In this study, only the solution with the lowest 

energy consumption will be retained as optimum for each journey time. Assume there 

are ζ solutions in ALLSOL, if: 

 

Then the solution θ will be discarded because the solution θ-1 achieves lower energy 

consumption for the journey time Tsgθ. 
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Minimum 

journey time 

allowance

Maximum 

journey time 

allowance

Possible 

solutions

(green area)

Optimal solutions 

(solid line)

Journey time, seconds  

Figure 3. Dependence of energy consumption on journey time for each inter-station 

journey. 

Step 5: After Step 4, only the optimal solutions remain and are ready to be converted into a 

driving advisory system for the field test. 

4 Case Study 

4.1 Route Introduction 

In order to evaluate and identify the performance of the optimised train trajectory, a field test 

has been carried out on the China Beijing Yizhuang Line. It is a suburban metro line 

connecting Yizhuang Railway Station to Songjiazhuang Station (up direction). The line is 

22.7 km long with 12 intermediate stations. The line speed limits and gradient profile are 

shown in Figure 4. The scheduled single journey time (one-way journey from the first station 

to the terminal) is 2087 seconds with 1632 seconds running time and 455 seconds dwell time 

for the up direction, as shown in Table 2. 

Table 2. Scheduled timetable of Beijing Yizhuang Line. 

 
Station name 

Scheduled 

journey time,  

-down direction-, 

seconds 

Scheduled 

journey time, 

-up direction-, 

seconds 

Distance 

between 

stations, m 

Dwell 

time, 

seconds 

1 Songjiazhuang  
  

30 

193 190 2631 

2 Xiaocun 30 

104 106 1275 

3 Xiaohongmen 30 

155 156 2366 
4 Jiugong 30 
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134 131 1982 

5 Yizhuangqiao 35 

85 86 993 

6 Yizhuang Park 30 

113 112 1538 

7 Wanyuanjie 30 

99 100 1280 

8 Rongjingdongjie 30 

103 103 1354 

9 Rongchangdongjie 30 

160 163 2338 

10 Tongjinanlu 30 

148 147 2265 

11 Jinghailu 30 

140 135 2086 

12 Ciqu South 35 

101 100 1286 

13 Ciqu 45 

105 103 1334 

14 
Yizhaung Railway 

Station 
40 

 
  

Total  1640 1632 22728 455 
 

 
Figure 4. Beijing Yizhuang Line gradient, speed limits and station locations. 

Table 3 and Figure 5 show the vehicle traction characteristics. The train uses a DC 750 V 

third-rail power supply and is equipped with a regenerative braking system. Each train is 

formed of 6 carriages and the total mass is 287 tonnes with a standard passenger load (AW2). 

The train can be controlled by an ATO system or by a manually driving system. The 

maximum service speed and average operation speed are 80 km/h and 40 km/h respectively. 
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Table 3. Train traction characteristics. 

Parameters Value/Equation 

Overall train mass, tonnes 199 (3M3T) 

Passenger mass, tonnes 88 (AW2) 

Train formation 3M3T 

Train length, m 138 

Rotary allowance 0.08 

Resistance, N/tonne 3.48184+0.04025v+0.0006575v
2
  (V: km/h) 

OHL power DC 750V 

Maximum traction power, kW 3144 

Maximum braking power, kW 4237 

Engine efficiency from electrical 

power to mechanical power 
82% 

Maximum operational speed, km/h 80 

Tractive effort, kN Figure 5 (maximum 289) 

Braking effort, kN 238 (constant) 

Train control system 
Automatic Train Operation (ATO), 

manually 

 

 

Figure 5. Train traction system characteristics. 

4.2 Driver Advisory System Development 

Due to the policy of the Beijing Yizhuang Metro Line operator, it is not possible to modify 

the existing ATO system in the field test due to safety concerns. Therefore, the field test is 

carried out by a human driver. A simple driver advisory system (DAS) has been developed 

using Microsoft PowerPoint. All of the proposed optimal train trajectories have been input 

into the DAS. The driver is expected to control the train in accordance with the instructions 
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displayed by the DAS. The field test results will be compared with the existing ATO 

operation and existing manual driving operation. 

As shown in Figure 6, the DAS contains a number of slides for each inter-station operation. 

Each slide shows the movement instructions for the current section (in red), and advanced 

instructions for the next section (in blue) with a countdown function. For example, in Figure 6, 

the train is running in Section 1 (S1). The DAS is instructing the driver to accelerate up to a 

speed of 38 km/h. Then, 15 seconds later, the driver should switch the train to the coasting 

mode, and a new slide will be displayed to the driver at that time.  

 

Figure 6. Converting the train trajectory into DAS instructions. 

Figure 7 shows photos of the field test being carried out on the Beijing Yizhuang Line. A 

laptop is placed on the left-hand side of the cab desk, which displays instructions to the driver. 

The driver is watching the screen and controls the train in accordance with the instructions. 
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Figure 7. Field test on the Beijing Yizhuang Metro Line. 

4.3 Comparison between Simulation and Practice 

Figure 8 and Figure 9 show the train trajectory comparison between the existing operation 

(ATO), simulated optimal operation and actual optimal operation (manual driving) for the up 

direction and down direction, respectively. All of the actual operation data is obtained from 

the on-board Train Information Measurement System (TIMS). As shown in Figure 8(a) and 

Figure 9(a), in the existing operation, after the train reaches the maximum target speed 

(approximately 75 km/h), ATO tries to drive the train at a constant speed (cruising mode) 

until the train approaches the station stop. However, due to the limitations of the ATO speed 

tracking algorithm and the traction characteristic, the train movement is switched between 

motoring and braking modes frequently in order to maintain the given speed. The yellow lines 

(acceleration rate) in Figure 8(a) and Figure 9(a) are increasing and decreasing throughout the 

cruising period. Such a driving strategy will cause more energy to be consumed. Furthermore, 

the maximum target speeds for different inter-station stretches are not optimised but remain 

the same. 
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(b) Simulation optimal operation -Down direction-

(c) Actual optimal operation (human driving) -Down direction-

(a) Existing operation (ATO) -Down direction-

Train trajectory

Traction power

Acceleration

Line speed limit

Train trajectory

Traction power

Acceleration

Line speed limit

Train trajectory

Traction power

Acceleration

Line speed limit

(manual driving)

 
Figure 8. Comparison between existing operation (ATO) (a), simulated optimal operation (b) and actual optimal 

operation (manual driving) (c) -down direction- 
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(b) Simulation optimal operation -Up direction-

(c) Actual optimal operation (human driving) -Up direction-

(a) Existing operation (ATO) -Up direction-

(manual driving)

 

Figure 9. Comparison between existing operation (ATO) (a), simulated optimal operation (b) and actual optimal 

operation (manual driving) (c) -up direction- 

Figure 8(b) and Figure 9(b) show the simulated optimal train trajectory obtained using the 

developed enhanced brute force algorithm. It can be observed that the train performs more 

efficiently. In order to reduce the energy consumption, the train control system coasts for as 

long as possible, rather than switching between motoring and braking modes frequently. 

Furthermore, the train takes full advantage of the gradient profile. For example, there is a 

steep downhill stretch from km18 to km 19 as shown in Figure 4; the train control system 

selects the coasting mode in these sections so that the train speed can be increased without 

using any traction power. Compared with the existing operation’s one, the maximum train 

target speeds in different inter-station stretches are optimised based on the time requirements.  

Figure 8(c) and Figure 9(c) show the actual optimal train trajectory from the field test. It can 

be seen that the actual optimal trajectory is similar to the simulated optimal trajectory (Figure 

8(b) and Figure 9(b)). This shows that the developed vehicle kinematics model is accurate, 
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and that the human driver is able to control the train following the instructions from the DAS 

in practice. The train acceleration rate (yellow lines) does not change frequently throughout 

the journey when compared with the existing operation. 

4.4 Comparison between Different of Practical Operations 

In the previous sections the differences between simulated optimal operation and actual 

optimal operation were discussed. In the following sections, different actual operations will 

be compared. All data (time, speed, energy usage, etc.) is obtained from train on-board Train 

Information Measurement System. 

Figure 10 and Figure 11 show energy consumed in three different actual operations, which are: 

existing operation (ATO), existing operation (manual driving) and optimal operation (manual 

driving). It can be observed that the optimal operation (yellow line) achieves the lowest total 

energy usage, which is 13% and 19% lower than the existing operation (ATO) in the down-

direction and up-direction respectively. In existing operations, a human being drives the train 

more energy efficiently than an ATO system, but worse than the optimum found in simulation. 

(manual driving)

(manual driving)

(ATO)

 
Figure 10. Energy comparison between existing operation (ATO), existing operation (manual driving) and optimal 

operation (manual driving) -Down direction- 
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(manual driving)

(ATO)

(manual driving)

 
Figure 11. Energy comparison between existing operation (ATO), existing operation (manual driving) and optimal 

operation (manual driving) -Up direction- 

Table 4 summarises a comparison of the journey time in three different actual operations. 

Compared with the scheduled timetable shown in Table 2, the differences in the total journey 

time between the scheduled operation and the optimal operation are very small (within 

15 seconds). This result is in line with the policy of the metro operator, which requires that 

the difference should be less than 60 seconds. It can be observed that the existing operation 

(manual driving) and optimal operation achieves a higher energy usage when running in 12-

13 but a much lower energy usage in 13-14 due to better journey time distribution application. 

Table 4. The actual journey time comparison between existing operation (ATO), existing operation 

(manual driving) and optimal operation (manual driving). 

  Station name 

Actual journey time  

-down direction-, seconds 

Actual journey time  

-up direction-, seconds 

Existing 

operation 

(ATO) 

Existing 

operation 

(manual 

driving)  

Optimal 

operation 

(manual 

driving)  

Existing 

operation 

(ATO) 

Existing 

operation 

(manual 

driving)  

Optimal 

operation 

(manual 

driving)  

1 Songjiazhuang 
            

191 202 199 196 199 200 

2 Xiaocun 

105 99 106 116 104 112 

3 Xiaohongmen 

155 152 154 158 156 159 

4 Jiugong 

131 126 135 132 135 132 

5 Yizhuangqiao 

82 80 85 82 84 81 

6 Yizhuang Park 

110 109 109 111 111 112 

7 Wanyuanjie 
96 98 100 96 99 97 
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8 Rongjingdongjie 

100 99 100 101 104 100 

9 Rongchangdongjie 

163 162 163 160 163 169 

10 Tongjinanlu 

148 144 147 149 146 144 

11 Jinghailu 

136 136 140 139 143 140 

12 Ciqu South 

98 98 100 107 102 99 

13 Ciqu 

100 105 108 102 105 102 

14 
Yizhaung Railway 

Station             

Total  1615 1610 1646 1649 1651 1647 

 

5 Conclusion 

In this paper, a field test of the optimal train trajectory has been presented. The test aims to 

assess the practicability of the optimal train trajectory in day-to-day operation. A train 

kinematics model and an enhanced brute force searching method have been developed in 

order to obtain the optimal train trajectory. Furthermore, a driving advisory system has been 

produced to display the optimal train trajectory to the train driver in the field test. 

The field test results show that the train trajectory of the actual optimal operation is similar to 

the simulated optimal operation one. It is therefore considered that the developed train 

kinematics model is accurate and meets the design requirements. The test also reveals that the 

human driver is able to follow the instructions from the DAS.  

The energy consumption comparison between different actual operations shows that 

implementing an optimal trajectory could successfully reduce the energy consumption of the 

train by up to 51 kWh (19%) for each one-way operation. There are 242 services in each day 

on the Beijing Yizhuang Line. So the annual energy saving could be up to 4,504,830 kWh, 

that is, assuming a cost of 10 pence/kWh, £450 k per annum. Therefore, it can be concluded 

that implementing the optimal train trajectory is both practicable and convenient, and it could 

help the train operator to significantly reduce annual energy costs. 
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