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AMPK  AMP-activated kinase  

HCC  hepatocellular carcinoma 

mTOR  mammalian target of rapamycin 

NAD  nicotinamide adenine dinucleotide   

NAMPT  nicotinamide phosphoribosyltransferase 

NAPRT  nicotinic acid phosphoribosyltransferase 

PARP  poly-ADP-ribosyltransferase 

SIRT1  Sirtuin 1  
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URI  Unconventional Prefoldin RBP5 Interactor 

  

1. Need for novel treatment options in HCC  

Hepatocellular carcinoma (HCC) is still one of the leading causes of death caused by cancer 

worldwide [1]. Despite different curative treatment modalities available, advanced-stage HCC has a 

poor prognosis and high tumor recurrence rate. Since early stages of HCC are asymptomatic, many 

patients represent with non-resectable advanced-stage tumors. In every respect, early diagnosis of 

HCC is the key for a survival benefit because only in early stages treatment options such as resection, 

liver transplantation or nonsurgical approaches are available and lead to improved outcomes [2]. 

The pan-tyrosine kinase inhibitor Sorafenib is the only standard drug therapy available for patients 

with advanced HCC, with modest effectiveness at extending the overall survival of patients for 2-3 

months. The mechanism by which Sorafenib acts on advanced HCC is not well understood, and no 

biomarkers have been identified to predict response to Sorafenib treatment in patients with HCC [3]. 

Moreover, resistance to Sorafenib and severe side effects further limit its clinical efficacy [3]. One 

factor which could play a role in the resistance to Sorafenib is Sirtuin 1 (SIRT1). Sirtuins are a family of 

nicotinamide adenine dinucleotide (NAD)-dependent enzymes that modulate distinct metabolic, 

energetic and stress response pathways. In a recent study, higher SIRT1 protein levels in HCC tissue 

were associated with worse outcome, and SIRT1 overexpression supported resistance to Sorafenib 

[4]. SIRT1 activity depends on intracellular NAD levels. Nicotinamide phosphoribosyltransferase 

(NAMPT) is the key enzyme in mammalian NAD salvage from nicotinamide and therefore regulates 

the activity of NAD-dependent enzymes, such as sirtuins or poly-ADP-ribosyltransferases (PARPs) 

(reviewed in [5], figure 1).  

 

2. Inhibition of NAD biosynthesis in HCC 
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Cancer cells have a higher demand for NAD because of their rapid proliferation which is associated 

with the need for increased energy metabolism, ATP generation, nucleotide biosynthesis, DNA repair 

and increased activity of NAD consuming enzymes [6]. NAMPT has been extensively studied as a 

target of anti-cancer therapy. NAMPT is overexpressed in several types of tumor tissue and its 

expression often correlates with cancer therapy resistance and poor outcome in cancer patients [6]. 

NAMPT inhibitors as single agents have not been applied successfully in clinical studies so far [6]. 

Possible successful treatment combinations with NAMPT inhibitors include DNA damaging agents, 

inhibitors targeting enzymes involved in cellular stress responses or DNA repair and rescue with 

nicotinic acid in nicotinic acid phosphoribosyltransferase (NAPRT)-negative tumors to increase 

tolerance of non-tumor tissue to NAMPT inhibition [6]. Another promising possibility is the 

simultaneous inhibition of NAMPT and other enzymes providing precursors for NAD biosynthesis, e.g. 

CD73 [7]. 

We found that NAMPT expression is lower in hepatocarcinoma cell lines compared to primary 

hepatocytes. NAMPT enzymatic activity, however, is higher in HCC with the result of comparable 

NAD levels in HCC cell lines and primary hepatocytes [8]. Nevertheless, blocking NAMPT enzymatic 

activity by the specific inhibitor FK866 induced depletion of NAD, ATP and delayed cell death in 

human hepatocarcinoma cell lines. FK866 treatment induced AMP-activated kinase (AMPK) 

activation while the activity of mammalian target of rapamycin (mTOR) complex 1 and downstream 

targets was blocked [9]. We and others showed that the catalytic subunit of AMPK is significantly 

downregulated while mTOR complex 1 activation is higher in HCC compared to primary hepatocytes 

or normal liver tissue [9, 10]. Thus, increasing AMPK activity by inducing energy stress through 

NAMPT inhibition or by Metformin, an activator of AMPK, could help to antagonize the Warburg 

effect and could become a novel option for the treatment of HCC [11]. 

The polyphenol resveratrol was found to inhibit carcinogenesis in different types of cancer with a 

pleiotropic mode of action and has been considered in HCC prevention and treatment [12]. We found 
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that resveratrol treatment of hepatocarcinoma cell lines led to cell cycle arrest and apoptosis with 

concomitant reduced NAMPT activity and NAD levels, which resulted in reduced SIRT1 activity [8].  

 

3. Extracellular NAMPT in HCC 

In addition to its key role in intracellular NAD biosynthesis, NAMPT (also known as visfatin or PBEF in 

this context) is also found in human circulation. Extracellular NAMPT was found to act both as 

enzyme, converting nicotinamide to nicotinamide mononucleotide (NMN) and as cytokine (reviewed 

in [5]). Increased NAMPT serum concentrations have been associated with a variety of cancers and 

extracellular NAMPT was found to influence the microenvironment of cancer cells in a way to 

promote tumor progression and metastasis [13]. In patients with HCC, serum NAMPT levels were 

significantly correlated with stage progression and tumor enlargement. Extracellular NAMPT 

preferentially stimulated the proliferation of human HCC cell lines compared with normal 

hepatocytes via activation of ERK and AKT pathways, and glycogen synthase kinase-3β [14]. Similar 

results for extracellular NAMPT action have been found in breast cancer [15].  

 

4. Boosting NAD levels in HCC 

One of the cellular events preceding HCC development is oncogene-induced DNA damage. 

Expression of Unconventional Prefoldin RBP5 Interactor (URI) in hepatocytes was shown to reduce 

the expression of enzymes of de novo NAD biosynthesis. The resulting NAD depletion induced DNA 

damage by inhibiting the NAD-dependent DNA repair enzyme PARP-1, subsequent genotoxic stress, 

apoptosis and compensatory proliferation leading to the development of liver tumors in mice [16]. 

HCC development was blocked by the restoration of hepatocellular NAD pools by supplementing 

nicotinamide ribose, a precursor of NAD biosynthesis [16]. HCC is also driven by hepatocyte death 

during NAFLD progression. Studies on NASH patients and animal models revealed that there is a 

negative correlation of NAMPT expression and NAFLD progression. We could demonstrate that 
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during early stage NAFLD, NAD salvage via NAMPT is upregulated in mice [17], whereas in later 

disease stages NAMPT and NAD levels were reported to be downregulated (reviewed in [5]). Low 

NAD levels may then reduce the activity of PARP-1 thereby impairing genomic integrity as was 

described by Tummala et al. [16].  

5. Conclusion 

HCC is an extremely heterogeneous cancer, varying widely in etiology (genotoxic stress, metabolic 

disorders) and progression in individual patients [2]. Both, NAD depletion (for example via NAMPT 

inhibition) and NAD replenishment could be beneficial in the prevention and treatment of HCC, 

especially in case of Sorafenib resistance. Boosting NAD levels could be a preventive treatment, 

especially since recent studies on long-term supplementation of NAD precursors or intermediates did 

not show obvious toxicity or deleterious effects and increased NAD levels in mouse liver [18, 19]. 

Early therapeutic intervention prior to genomic instability may protect risk patients from tumor 

initiation and genotoxic-induced tumorigenesis.  

Future studies focusing on inhibition of NAD biosynthesis in hepatocarcinoma animal models could 

help to elucidate questions regarding the timing of NAD inhibition (early vs. advanced stage tumors), 

finding biomarkers to predict response to NAMPT inhibitor treatment and test drug combinations 

that enhance the efficiency of NAD depletion. Complete inhibition of NAMPT is crucial to prevent 

tumor recurrence, as incomplete NAMPT inhibition, which impedes NAD+ metabolism but does not 

kill a tumor cell, can alter its phenotype to be more aggressive and metastatic [20]. 

Unraveling the role of NAMPT activity in HCC development and the function of NAMPT´s non-

enzymatic activity in inflammation, angiogenesis and metastasis will pave the way for future novel 

NAMPT-based oncotherapy options for HCC.  
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stability of several crucial factors in hepatocarcinoma (HCC) tumorigenesis. YAP: Yes-associated 

protein; c-MYC: V-Myc Avian Myelocytomatosis Viral Oncogene Homolog; TERT: telomerase catalytic 

subunit; p53: tumor suppressor protein 53; PTEN: phosphatase and tensin homolog;  Data from Wu 

et al. Tumor Biol. (2015) 36:4063–4074. 




