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ABSTRACT: Michael addition of a proline-derived triketopiperazine (TKP) to -substituted enones and acrylamides, mediated by 

a cinchona alkaloid catalyst, delivers products possessing a bicyclo[2.2.2]diazaoctane structure in high yield and enantiomeric ratio 

(er). Further modification of the amide products towards polycyclic scaffolds resembling members of the prenylated alkaloid family 

is also demonstrated. 

Members of the prenylated indole alkaloid family, pos-

sessing a bicyclo[2.2.2]diazaoctane core structure, remain the 

subject of intense research interest in respect of their synthesis, 

biosynthesis, and diverse biological activities.
1
 These com-

pounds, which have been isolated from both marine and terres-

trial fungal sources, feature complex polycyclic architectures 

with multiple functionalities and stereogenic centres, e.g. 1–4. 

Paraherquamide A (1) is a venerable example, which suc-

cumbed to synthesis by the Williams group, who have spear-

headed research in this area.
2
 The arrival of stephacidins A and 

B in 2002 triggered widespread interest, due to both the mo-

lecular complexity of stephacidin B (2) (itself a dimer of an-

other compound, avrainvillamide), and its potent activity 

against testosterone-dependent prostate LNCaP cells (IC50 = 

60 nm).
3
 Notable syntheses of these compounds by the groups 

of Myers, Baran and Williams,
4-6

 spurred further activity.
7 

Taichunamides (e.g 3), peniciherquamides (e.g 4) are repre-

sentative of more recently isolated examples, which also in-

clude mangrovamides, penioxalamine A, and waikialoid A, as 

well as novel paraherquamide and notoamide variants.
8
  

The reported activities of these compounds are as varied as 

the structures themselves and include tumour cell cytotoxicity, 

anti-hepatitis C virus activity, and potential neuroprotective 

action. A further intriguing aspect of this natural product fami-

ly is their stereochemical diversity, with either C-6 stereo-

chemistry being evident, and some members having been iso-

lated in either enantiomeric series.
9
  

The principle access to these compounds involves either a 

biomimetic intramolecular hetero-Diels-Alder reaction or 

stepwise elaboration of alkylated prolines obtained using the 

Seebach ‘self-regeneration of stereocentres’ method.
10

 Both 

approaches have limitations and a definitive access to the bi-

cyclo[2.2.2]diazaoctane structures with control of absolute and 

relative stereochemistry remains elusive.
11,12

 

 
Figure 1. Structures of prenylated indole alkaloids 

 

Against this backdrop, a new catalytic approach, providing 

access to this type of alkaloid structure, in either enantiomeric 

series, and with high levels of control, would be very valuable. 

Herein we report one such solution, which relies upon our 

recently described method for activation of amino acid sys-

tems towards organocatalysed Michael addition by formation 

of a derived triketopiperazine (TKP).
13

 

Engagement of a proline derived TKP (e.g. 5 below) in a 

chiral catalyst-driven Michael addition process could result in 

a kinetic resolution if the TKP were to be configurationally 

stable, or a stereochemical convergence through dynamic ki-

netic resolution if the TKP proved to be configurationally la-

bile under the reaction conditions.
14

 To probe which of these 

situations would prevail we initiated our study by synthesis of 

TKP 5 in three steps from Boc-L-proline, using an established 

approach, (see ESI for details). 



 

TKP isolated from the key ring forming reaction, involving 

oxalyl diimidazole proved to be racemic, and despite strenu-

ous efforts, it has not been possible to isolate non-racemic 

samples of 5, a result which attests to the activating effect of 

the TKP ring towards enolization. 

Preliminary screening of Michael additions of TKP 5 to me-

thyl vinyl ketone (MVK), mediated by typical cinchona alka-

loid derived catalysts, identified the O-phenanthryl (PHN) 

system 6 as the most promising (Table 1).
15

 Interesting levels 

of selectivity were seen using catalyst 6a, with a number of 

enone acceptors and also an unsaturated N-acyl oxazolidinone, 

giving products 7 in up to 94:6 er. In the case of MVK we also 

established that the pseudoenantiomeric catalyst 6b gave the 

enantiomeric product (Entry 2).
 

Table 1. Michael additions of TKP 5. 

 

Entry Cat. R Timea 7b [%] erc 

1 6a Me 22 7a 93 10:90 

2 6b Me 30 7a 81 78:22d 

3 6a Et 25 7b 75 13:87 

4 6a Ph 20 7c 88 6:94 

5 6a H 24 7d 64e 21:79 

6 6a 
 

48 7e 98 15:85 

a Hours. b Isolated yield after chromatography. c Determined 

by HPLC analysis. d enantiomeric product to one shown. e Isolat-

ed yield of derived acetal product over two steps (see ESI). 

When we explored the enone acceptor class in more detail it 

was a surprise to find in-situ ring-closure had occurred to give 

products 8 (Table 2). Previously this reactivity had only been 

observed with alternative Michael acceptors.
 13

 

Entry 1 details the remarkable outcome of TKP reaction 

with chalcone, using catalyst 6a, tricyclic hydroxy-DKP 8a 

being isolated as a single diastereoisomer, possessing four 

contiguous stereocenters, and in 96% yield and 99:1 er.  Com-

parison of this result with the similarly selective enantiocom-

plementary version in Entry 2 underlines the power of this 

approach for asymmetric synthesis of either enantiomeric se-

ries, and confirms the operation of a highly efficient dynamic 

kinetic resolution. 

To further explore this mode of reaction, a number of addi-

tional -substituted enones were reacted with TKP 5 (Entries 

3-8). Ring closure was found to occur in all cases and excel-

lent levels of asymmetric induction were obtained, with er ≥ 

94:6. Interestingly, N-cinnamoyl oxazolidinone was also found 

to undergo addition–ring-closure, to provide adduct 8h in 

good yield and with excellent selectivity (Entry 9). 

Table 2. Michael additions of TKP 5 to -substituted Mi-

chael acceptors. 

 

Entry R R2 Timea 
8b 

[%] 
erc 

1 Ph Ph 18 8a 96 99:1 

2 Ph Ph 18 8a 85 1:99d 

3 Ph o-C6H4Br 27 8b 75 97:3 

4 p-C6H4F Ph 20 8c 95 94:6 

5 p-C6H4OMe Ph 22 8d 70 99:1 

6 Ph Me 21 8e 98 98:2 

7 Me Ph 22 8f 99 99:1 

8 Me Et 24 8g 96 99:1 

9 Ph 
 

24 8h 81 97:3 

a Hours. b Isolated yield after chromatography. c Determined by 

HPLC analysis. d Enantiomeric structure to that shown (cat 6b). 

Ring closure in these systems may be promoted by a ‘but-

tressing’ effect, akin to a Thorpe-Ingold effect, with the -

substituent causing the intermediate enolate to be in closer 

proximity to the electrophilic TKP C=O function at C-3. Ori-

entation of the intermediate ketone enolate to minimise inter-

actions with the -substituent and with the TKP N-benzyl sub-

stituent, results in the formation of a single diastereoisomer. 

Notably, this is the same relative configuration seen in the 

majority of the natural product series – i.e. C-6 in Figure 1.  

Crystallisation of adduct 8a, allowed the absolute and rela-

tive configuration to be determined by X-ray crystallography 

(Figure 2).
16

 The sense of initial asymmetric Michael addition 

matches that seen in our previous work and is in agreement 

with the stereochemical model originally proposed by Deng.
22

  

 

     

Figure 2. (A) The structure of one of the two crystallographically 

independent molecules of 8a, with ellipsoids drawn at the 50% 

probability level;16 (B) Model for 6a catalysed Michael addition 

of 5 to chalcone. 

Figure 3(B) shows an alternative speculative picture based 

upon a modification of recently disclosed calculations by the 

Houk group.
18

 The proposed model shows activation of the 

A B 



 

acceptor by the quinuclidinium ion, whilst the TKP enolate is 

orientated by association with the phenolic group on the quin-

oline. In this novel model variant the ether group at the C-9 

position is not actively involved in hydrogen bonding. 

In subsequent screening of alternative Michael acceptors that 

might also provide direct access to the chiral bicy-

clo[2.2.2]diazaoctane, but without the need for a -substituent, 

we identified unsubstituted acrylamides as systems that deliver 

exceptional results (Table 3). Amides 9, having a wide variety 

of nitrogen substituents, were isolated as single diastereoiso-

mers and with excellent levels of enantioselectivity, (er ≥ 

97:3). 

Table 3. Michael reaction of TKP 5 with ,-unsaturated 

amides. 

 

Entry R R2 Timea 9b [%] erc 

1 H Ph 20 9a 72 97:3 

2 H Bn 48 9b 64 99:1 

3 Me Ph 64 9c 83 99:1 

4 Me Me 48 9d 81 99:1 

5 Ph Ph 22 9e 80d 96:4 

6 Me OMe 42 9f 98 98:2e 

7 Piperidine 20 9g 80 99:1 

8 Morpholine 44 9h 98 99:1 

9 Indoline 40 9i 95d 98:2 

a Hours. b Isolated yield after chromatography. c Determined by 

HPLC analysis. d ca. 5-10% of the corresponding amide epimer in 

the crude reaction mixtures. e HPLC run on 7a (MeMgBr addi-

tion). 

That amides should perform so well here was unexpected 

and to our knowledge, these are the first enantioselective Mi-

chael additions to aliphatic acrylamides using a cinchona alka-

loid catalyst, as well as the first Michael additions to acryla-

mides using an amidic donor.
19–22 

Interestingly, treatment of Weinreb amide product 9f with 

excess MeMgBr or MeLi afforded the bridge-opened ketone 

7a (Scheme 1). The er of 7a obtained this way was considera-

bly higher (98:2) than that obtained from the direct MVK ad-

dition approach, and establishes 9f as a useful stepping stone 

to ‘open’ TKP adducts 7 via apparent addition–ring-opening. 

Although the products obtained in Table 3 possess the char-

acteristic tricyclic core common in the prenylated indole alka-

loid family, the bridgehead hydroxyl group, which forms part 

of a hemiaminal type function, renders these products some-

what reactive. We were keen to demonstrate that this bridge-

head function could be either removed, or engaged in useful 

C–C bond formation to generate novel scaffolds more closely 

resembling the natural alkaloids. To this end we chose to ex-

plore bridgehead radical chemistry with selected amides 9.
23

 

Initial conversion of Michael adducts 9c, 9d and 9f into the 

corresponding thiocarbonates 10 was achieved using O-phenyl 

chlorothionoformate (see ESI for details). 

Scheme 1. Transformations of Michael adduct 9. 

 

When thiocarbonate 10d was heated with tristrimethylsi-

lylsilane (TTMS) and 1,1′-azobis(cyclohexane-carbonitrile) 

(ACCN) in toluene under reflux, quantitative reduction of the 

bridgehead position was observed, leading to 11d. Analogous 

reduction of Weinreb amide 9f, via 10f, also proceeded in 

excellent yield, although with unexpected concomitant amide 

deoxygenation, giving secondary amide 11f (Scheme 1). 

The pentacyclic lactam 12 was generated cleanly, albeit in 

moderate yield, starting with 10c, resulting from intramolecu-

lar radical addition and re-aromatisation. Such polycyclic scaf-

folds are obvious mimics of the natural products and may well 

possess interesting biological activities. 

 

Scheme 2. Deprotection of PMB adduct 8i. 

 

Attempts to address the issue of protecting group removal 

using an N-p-methoxybenzyl (PMB) series showed that Mi-

chael addition chemistry can be applied without erosion in 

selectivity. Despite well-documented difficulties in the remov-

al of the PMB group from this type of structure, we have 

found that oxidative conditions readily generate the desired 

deprotected bridged DKP 13 (Scheme 2).
24

 

In conclusion, we have shown that the proline derived TKP 

motif can allow access to a number of highly enantioenriched 

hydroxy DKPs, that share key similarities to a number of the 

prenylated indole alkaloids. A number of Michael acceptors 

have been shown to undergo addition, including unsubstituted 

acrylamides. Either enantiomeric series can be accessed by 

switching between pseudoenantiomeric cinchona alkaloid 

derivatives, starting from a racemic starting TKP, demonstrat-

ing that a highly effective dynamic kinetic resolution is opera-

tive. Further reduction and cyclisation of the hydroxy-DKPs at 

the bridgehead position has also been demonstrated. Extension 

of this approach to enable synthesis of more complex exam-

ples, including natural products, is under way. 
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