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First-principles calculations of thermodynamic properties and planar
fault energies in Co3X and Ni3X L12 compounds

A. Breidi,∗ J. Allen, and A. Mottura
School of Metallurgy and Materials, University of Birmingham, Edgbaston B15 2TT, United Kingdom

(Dated: April 3, 2017)

We do Density Functional Theory based total-energy calculations of the L12 phase in Co3X and
Ni3X compounds, X being a transition metal element. The lattice parameters, magnetic moments,
formation enthalpies, are determined and compared with the available experimental data. The
(111) superlattice intrinsic stacking fault energy (SISF), a crucial factor affecting materials strength
and their mechanical behavior is calculated using the axial interaction model. We have applied the
quasiharmonic Debye model in conjunction with first-principles in order to establish the temperature
dependence of the lattice parameters and the (111) SISF energies. We investigate our prediction
of a low formation enthalpy in the system Ni-25 at.%Zn by doing auxiliary simulations for the fcc
random alloy at the composition 25 at.%Zn. Our simulations indicate that the elements: Ti, Zr,
Hf, Nb and Ta can help stabilizing the promising and extremely important Co3Al0.5W0.5 alloy.

I. INTRODUCTION

Superalloys are very significant to a wide ar-
ray of industries including aerospace1, nuclear2

and fossil fuel3–5. The main application for
these alloys is in turbine blades, as there is
a desire for alloys that function in more ex-
treme environments, namely higher tempera-
tures. Superalloys were traditionally based off
nickel because of the high temperature strength
and creep resistance that derives from the two
phase γ/γ′ microstructure6–8. Older Co based
alloys were less successful as they relied on car-
bides for strengthening4–6, but the discovery
in 2006 by Sato et al.9 of the γ′ phase in the
Co3(Al,W) system has led to a renewed inter-
est in Co based alloys which have the potential
to be used at higher temperatures and to expe-
rience greater creep10 and oxidation resistance5.
A greater understanding of the consequences
of adding solutes to Co and Ni based alloys is
necessary in order to improve their mechanical
properties such as increasing planar fault en-
ergies, as well as increasing the γ′ solvus tem-
perature as this is the upper limit in operating
temperature in these alloys3,11,12.
Despite the fact that the lattice parameters
and the formation enthalpies of the stable L12

phases in cobalt and nickel based compounds
are available in the literature, there is no sys-

tematic calculation of these properties for the
whole set of these compounds. In fact, most of
the 3, 4, and 5d elements are used in superal-
loys as solutes. A possible dependence of the
formation enthalpies and lattice parameters on
the position of the element in the periodic ta-
ble can be helpful in understanding the role of
a given element, when added as an alloying el-
ement, on affecting these properties in alloys.
The knowledge of the geometrical stacking fault
energies, known as superlattice intrinsic stack-
ing fault (SISF) energies is of prime inter-
est since they consist together with antiphase
boundary (APB) and complex stacking fault
(CSF) energies an indespensable set of values,
where the relative difference in magnitude be-
tween these fault energies controls the equilib-
rium configuration of glissile superlattice dis-
locations and the relative stability of different
dissocciation modes, which in turn have the
strongest impact on the mechanical behaviour
of L12 compounds13.
There are two main ways to assess stacking fault
energies (SFE), the first is by the use of ex-
perimentation and the second is by the use of
first-principles density functional theory (DFT)
simulations14,15. Experimental measurements
are typically conducted by measuring the width
of the stacking fault ribbon. Considering that
the width of this ribbon is inversely propor-
tional to the fault energy5,16,17, this technique
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is typically fraught with difficulties such as: (a)
thin film effects, (b) short length ribbons can be
comparable to the errors, (c) uncertainty about
how to apply corrections, and (d) dislocations
can interact with other dislocations resulting in
non-equilibrium scenarios13,18–20.
The abovementioned measurement problemat-
ics are not encountered with first-principles sim-
ulations. DFT-based simulations have the ad-
vantage that they can be used to compute
wide variety of properties for phases that are
metastable. In addition, they are characterized
by high accuracy21,22.
Within the context of a larger study, we inves-
tigate in this paper the variation of the ground
state properties i.e., lattice parameter, mag-
netic moment, formation enthalpies, and (111)
SISF in Co3X and Ni3X L12 compounds, where
X belongs to most of 3d (Ti through Zn), 4d
(Zr through Cd), and 5d (Hf through Hg). We
do spin-polarized (SP) and spin-restricted (non
spin-polarized – non-SP) calculations. Our sim-
ulations demonstrate the instrumental role of
magnetism in rendering L12 compounds stable
or unstable.
The paper is organized as follows: the next sec-
tion (II) presents the calculating methodology
and the first-principles technique. In section III
we present and discuss the ground state proper-
ties: lattice parameter, magnetic moment, and
formation enthalpies. In section IV, the (111)
SISF formation energies of selected systems are
presented and discussed. In section V we con-
clude, highlighting key outcomes from the new
results.

II. COMPUTATIONAL METHOD

A. Methodology: Axial Interaction Model

The AIM model is used to calculate the en-
ergy of a structure ofN close packed planes17,23.
According to this model, each plane is assigned
a value of a spin variable Si, where the layer at
(i+ 1) assumes the value of +1 (known as spin
up) if it follows the nature stacking sequence,
otherwise a value of −1 (spin down). This al-

lows the total energy of the system (E) to be
defined using the following expansion17

E = J0 − J1

∑
i

SiSi+1 − J2

∑
i

SiSi+2

− J3

∑
i

SiSi+3 − J4

∑
i

SiSi+4 − ...,

(1)

where the J ′s are expansion coefficients. The
occurence of a stacking fault causes a layer or
a series of layers to deviate from the original
stacking sequence10,17,24, for example the for-
mation of an Intrinsic Stacking fault (ISF) in
the (111) plane of an FCC structure leads to the
stacking sequence ABCACABC. The energy of
the faulted structure can be expressed in terms
of the expansion coefficients Ji and the area of
the fault A. The ISF formation energy γISF ,
where the expansion coefficients up to J4 are
taken into account1 is

γISF =
4(J1 + J2 + J3 + J4)

A
. (2)

The expansion coefficients J ′s used in Eq. 2 are
calculated from ordered structures using elec-
tronic band structure methods1,

EFCC(N) = J0 −NJ1 −NJ2 −NJ3 −NJ4...,

(3a)

EHCP (N) = J0 +NJ1 −NJ2 +NJ3 −NJ4...,

(3b)

EDHCP (N) = J0 +NJ2 −NJ4 + ...

(3c)

Considering up to term J1 in Eq. 1, reduces the
model to its first-order approximation, the axial
nearest-neighbor Ising model (ANNI), and γISF
in this case takes the follwing form1,25,

γISF =
2EHCP − 2EFCC

A
. (4)

Otherwise, if terms up to J4 terms are taken
into account, the model is reduced to the axial
next-nearest-neighbor model (ANNNI) and the
double hexagonal close packed (DHCP) struc-
ture having the sequence ABACABAC needs to
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be considered. Consequently, the γISF is now
given as1,

γISF =
EHCP − 3EFCC + 2EDHCP

A
. (5)

In metals, generally, the ANNNI model is suffi-
cient as interactions are generally very short in
range1,18. The AIM model does not perfectly
account for all the effects as the supercell ap-
proach does, but it has been found to produce
similar results1,25.

AIM applied to L12

The (111) SISF formation energy of L12 com-
pounds can be calculated using the ANNI and
ANNNI models using variants of Eqs. 4&5, due
to the analogy of stacking sequences between
FCC and L12, HCP and D019, DHCP and
D024

1. Hence, the (111) SISF formation en-
ergy of L12 compounds using the ANNI model
becomes,

γL12
ANNI =

8(ED019 − EL12)

V
2/3
L12 ·

√
3

. (6)

where VL12 is the volume of 4-atoms L12 unit

cell and V
2/3
L12 ·

√
3 is the area of 4-atoms in the

L12 (111) plane over which the stacking fault
extends. EL12 and ED019 are the energies per
atom of the L12 and D019 structures.
Similarly, the (111) SISF formation energy of
L12 compounds according to the ANNNI model
is,

γL12
ANNNI =

4 (ED019 − 3EL12 + 2ED024)

V
2/3
L12 ·

√
3

.

(7)

where ED024 is the energy per atom of the D024

structure calculated at VL12 equilibrium vol-
ume.

B. Quasiharmonic Debye Model

In order to get the equation of state EOS,
particularly V = f(T ), of the different crys-
talline phases considered here, we employ the

quasiharmonic Debye Model26. At any given
temperature and pressure, the system (crys-
tal phase) is described thermodynamically by
the general Gibbs function, denoted as non-
equilibrium Gibbs,

G∗(T, P, a) = Ee(a) + PV (a) +Avib(T,w(a)) .
(8)

Ee is the total-energy of the system at a lattice
parameter a. PV is the constant hydrostatic
pressure condition, where P is the pressure and
V is the volume. Avib(T,w(a)) is the Helmholtz
vibrational energy term. The dependence of Ee
on the lattice parameter a is explicit, while Avib
depends on a, implicitly, through the frequen-
cies of vibration w(a). Since the volume is de-
pendent on a, this gives the desired interdepen-
dence between temperature and volume. At a
given set of temperature and pressure (T ,P ),
the equilibrium state is the one that minimizes
G∗ of the crystal phase with respect to volume.
The Helmholtz vibrational energy is

Avib(T, V ) = Uvib − TSvib . (9)

According to Debye model Uvib and Svib are:

Uvib =
9

8
nkBΘD + 3nkBTD(ΘD/T ) ,(10)

Svib = 4nkBD(ΘD/T )

− 3nkBln
(

1− e−ΘD/T
)
, (11)

D(x) =
3

x3

∫ x

0

ζ3dζ

eζ − 1
, (12)

ζ =
hw

kBT
, (13)

x =
~wD
kBT

=
ΘD

T
. (14)

n is the number of atoms per formula unit
and ΘD is the Debye temperature of the solid
which can assume this expression after some
assumptions27,

ΘD =
~
kB

f(ν)
(

6π2nV 1/2
) 1

3

√
Bstatic
M

(15)

M is the molecular mass per formula unit, ~ is
the reduced Planck’s constant, kB is Boltzmann



4

FIG. 1. The change in Co3X (panel a) and Ni3X (panel b) 0 K L12 lattice parameter as a function of X
position in the periodic table.

constant, ν is the Poisson ratio of the solid, f(ν)
is given by27

f(ν) =

{
3

[
2

(
2

3

1 + ν

1− 2ν

)3/2

+

(
1

3

1 + ν

1− ν

)3/2
]−1}1/3

(16)

Bstatic the static bulk modulus,

Bstatic(V ) = V

(
∂2Ee(V )

∂V 2

)
. (17)

Thus the volume dependence of Debye temper-
ature Θ is established. The volume that makes
G∗ (T, P ;V ) minimum i.e,(

∂G∗

∂V

)
T,P

= 0 . (18)

is the equilibrium volume for given conditions
of T and P , and the set of equilibrium volumes
at different temperatures and pressures provides
the equation of state (EOS) of solid, V (T ,P ).
The minimization of G∗ is implemented in the
gibbs code27.

C. First-principles calculations

The calculations reported in this work are
based on the density-functional theory14,15

DFT. The total energies inasmuch they are
needed for optimization of the volume were cal-
culated using the projector augmented wave
(PAW) method28 implemented in the Vienna
first-principles simulation package (VASP)

29–31.
The exchange correlation energy was treated in
the generalized gradient approximation (GGA)
with the PBE96 functional32,33. After neces-
sary tests to control the stability of energy, the
energy cut-off was set to 400 eV. A mesh of
165, 192 and 96 special k-points for L12, D019

and D024, respectively, were taken in the irre-
ducible wedge of the Brillouin zone for the total-
energy calculation. The selected number of k-
points was determined using the Monkhorst-
Pack scheme34. We emphasize that convergence
tests for the plane-wave cutoff and the number
of k-point were essential to assure reliable total-
energy differences. The electronic minimisation
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FIG. 2. The variation of the lattice parameters
of stable Ni3X and Co3X L12 systems due to ther-
mal expansion. The plotted temperature range of
every system corresponds to approximately its crit-
ical point (order-disorder phase transition).

was judged complete when the energy difference
between steps was less than 1 ·10−5eV. For 7 el-
ements (Mo, Tc Nb, Rh, Ta, W Os) semi-core
states were modelled as valence states using the
correspondent potentials.
Regarding the D019 and D024 phases, we em-
phasize that the total energy was minimized,
through performing only local atomic relax-
ations at the corresponding L12 equilibrium
volume-per-atom and at fixed D019 and D024

ideal c/a ratios, in this way we guaranteed
that (aD019 and cD019) and (aD024 and cD024)
correspond to the underlying L12 lattice i.e.,
(aD019/aL12 =

√
2 and cD019/aL12 =

√
4/3)

and (aD024
/aL12

=
√

2 and cD024
/aL12

=

4/
√

3). The atomic positions for both phases
were relaxed using the conjugate gradient
algorithm35, a highly recommended scheme
to relax the atoms into their instantaneous
groundstate, especially in case atomic relax-
ation is problematic.

III. GROUND STATE PROPERTIES

A. Lattice parameters

The change in the lattice parameter of the
L12 phase in Co3X and Ni3X compounds, as
a function of X element position in the peri-
odic table, predicted with and without spin-
polarized calculations is plotted in Fig. 1. Our
lattice constant predictions corresponding to
the compounds where L12 phase has been ex-
perimentally evidenced to exist, together with
the experimental findings and previous theoret-
ical works, are compared in Table I.
The spin-restricted (non-SP) lattice parameters
exhibit an ideal parabolic variation with min-
imum occuring around the column Fe/Ru/Os.
In fact, this minimum at the center of the d-
band series is attributed to the maximum co-
hesive energies51–55 of these half d-band filled
elements.
Comparatively, the SP lattice parameter vari-
ation deviates from the ideal parabolic shape
due to magnetism, especially compounds with
X belonging to the 3d series in general, and X
belonging to 4-5d series for Co3X compounds.
It is worth mentioning that our SP lattice pa-
rameters are actually very close to the room
temperature experimental values, as manifested
in Table I. For instance, the difference ranges
from 0.03 % for Ni3Fe to 0.38 % for Ni3Pt.
We have calculated the lattice parameter
temperature-dependence using a quasiharmonic
Debye model for the L12 stable compounds. In
Fig. 2(a,b), we present a comparison between
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TABLE I. Theoretical (0 K) and room temperature RT experimental lattice parameters of Co3X and Ni3X
L12 compounds. The unit is Angstrom (Å).

Compound Our Calculation (0 K) Other Calculations (0 K) Experiments (RT)
SP non-SP Method Value

Co3Ta 3.636 3.635 PAW-GGA-PW91 3.6374 3.64736

PAW-GGA 3.6437 3.6537

3.6738

Co3Ti 3.602 3.571 PAW-GGA-PW91 3.6014 3.61239

LMTO-ASA-LDA 3.5840 3.59741

Co3Va 3.505 3.505 PAW-GGA-PW91 3.5144 —
LMTO-ASA-LSDA 3.5442

LMTO-ASA-LDA 3.5143

Ni3Fe 3.544 3.492 LMTO-ASA-LSDA 3.5442 3.54544

3.55545

Ni3Mn 3.57 3.507 LMTO-ASA-LSDA 3.5542 3.5946

Ni3Pt 3.66 3.648 PP-PW-GGA-PBE 3.66747 3.64648

Ni3Al 3.5689 3.5687 3.563549

3.571850

a Metastable

our work and other theoretical calculations and
experimental findings. Let us mention here that
the Poisson ratios used in calculating the EOS
for the L12 compounds are 0.4 (Ni3Al,Ni3Mn),
0.301 (Ni3Pt), 0.38 (Ni3Fe) and 0.39 (Co3Ti).
Concerning Ni3Al it is a weak itinerant fer-
romagnet with very low Curie temperature
(Tc=41.5 K) and it retains an ordered struc-
ture until it melts (1660 K56). Our results
are in good agreement with the quasi harmonic
phonon calculations57. Between RT and 1000
K, the differences between our results and the
experimental data are 0.19 %56 and 0.47 %50,
not very different from the difference between
the experimental data themselves (0.26 %). At
1400 K the difference between our data (non-
SP) and the experimental data56 increases to
0.31 %. This relative increase, in spite of its
small magnitude, can be explained by the fact
that at high temperatures there is a dramatic
increment due to anharmonicity which is not
accounted for in Debye model. it’s worth not-
ing that at high temperatures our SP and non-
SP lattice parameters diverge, where the non-
SP data are closer to the available experimental
data56. We find the maximum increase (non-
SP) in the lattice parameter due to thermal ex-

pansion between RT and 1400 K to be 2 % com-
paring to 1.88 % experimental increase56.
Ni3Fe undergoes a second-order ferromagnetic-
to-paramagnetic transition at TC=870 K and
a first-order phase transition from an ordered
L12 to a disordered face centered cubic phase at
To=780 K. Thus L12 is ferromagnetic through
the whole stable temperature range. Unfortu-
nately, the available experimental data are lim-
ited in temperature-range58. The agreement be-
tween our results and the experiment is less pro-
nounced in comparison with Ni3Al case, where
the difference ranges from 0.46 % (at 375 K) to
0.89 % (at 740 K).
In Ni3Mn system, atomic ordering to L12 struc-
ture takes place around 753 K accompanied by
a ferromagnetic ordering at TC ∼ 700 K for
a perfectly ordered alloy59. Our prediction for
the temperature dependence of L12 Ni3Mn lat-
tice parameter agrees well (maximum difference
is 0.08 %) with the experiment60 as shown in
Fig. 2(b).
The system Ni3Pt remains ferromagnetic below
Tc=373 K61 and crystallizes in the L12 struc-
ture until about 850 K62. On the other hand,
Co3Ti is paramagnetic63 through whole its tem-
perature stability range (∼ 1400 K64). Unfortu-
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nately, for these two systems, there is no avail-
able experimental data to compare with.

B. Magnetic moment

While few 3d elements are ferromagnetic
(Fe, Co, Ni), 4d and 5d elements are all
bulk nonferromagnets71, they are paramag-
netic, however, Pd is very close to the Stoner
criterion for ferromagnetic ordering but remains
only paramagnetic – see Ref. 72 and references
therein. As shown in Fig. 4(e & f), many of
the 4 and 5d elements develop significant lo-
cal magnetic moments as they occupy the X
inequivalent sublattice and all have a strong
effect on cobalt or nickel local magnetic mo-
ments. However, among the 4-5d series only
Co3Ta and Ni3Pt appear as stable L12 phases
in the phase diagram. Table II shows our 0 K
determined magnetic moments, together with
calculations from literature and the experimen-
tal results. Our predictions are in reasonable
agreement with the experiment for the system
Ni3Fe, however we overestimate the local mag-
netic moment on Ni for the compounds Ni3Mn,
Ni3Pt, and Ni3Al, by 30-70%. This is due to the
fact that the GGA, as well as local density ap-
proximation LDA, of the exchange-correlation
potential cause the exaggerated increase in the
magnetism of these compounds69,73

C. Formation enthalpies

A3B and AB3 binary compounds can be crys-
tallized in, around, 20 different ordered struc-
tures: A15, Ae, D02, D03, D09, D011, D018,
D019, D020, D021, D022, D023, D024, D0a, D0b,
D0c, D0d, L12, L1a, and L60. L12 and D019 are
the most simple ones in comparison to the other
structures as they have small number of atoms
per unit cell. They can be easily formed, as
metastable phases, in non-equilibrium process-
ing techniques (solid-state interfacial reaction or
ion beam mixing) in contrast to the other rel-
atively larger complicated structures. In fact,
even if the formation of some of these compli-

cated structures are thermodynamically favor-
able i.e., they are characterized by low forma-
tion enthalpies relative to the other structures,
their experimental observation is not straight
forward, since they need long high-temperature
treatment to improve the atomic mobility in or-
der for the atoms to arrange themselves into an
ordered configuration80.
In this study we are concerned with the forma-
tion enthalpies exclusively of the L12 phase for
Co3X and Ni3X compounds. The enthalpies of
formation ∆H of Co3X compounds were calcu-
lated using

∆HCo3X
L12

= ECo3XL12
− 3

4
ECohcp −

1

4
EXφ , (19)

and those of Ni3X compounds,

∆HNi3X
L12

= ENi3XL12
− 3

4
ENifcc −

1

4
EXφ . (20)

where EXφ is the total energy of the X element
in its ground state structure φ.
As shown in Fig. 4, the compounds that
appear to be L12 phase-forming ones
are: Co3(X=Ti,Zr,Hf,V,Nb,Ta,W,Pt) and
Ni3(X=Ti,Zr,Hf,V,Nb,Ta,Cr,Mn,Fe,Zn,Pt),
as they have negative formation enthalpies.
However, in the absence of the enthalpies of the
aforementioned competent ordered phases and
the random solid solutions, the negative sign
here is not enough to make these compounds
stable i.e., to appear on the phase diagram.
Our purpose from plotting the L12 enthalpies
as a function of the X position in the periodic
table is to check a possible dependence of the
enthalpy on the d-band filling. Indeed, we
find the 3d (non-SP calculations) and 4-5d
band series to manifest a clear dependence on
the X position, where X situated to the left
of the column Cr/Mo/W results in negative
enthalpies, while X to the right produces
positive values, Pt and Zn stand out as an
exception to this observation. Furthermore
to be noted, SP calculation of the 3d series
changes substantially the enthalpies, making
L12 Ni3Mn and Ni3Fe phase-forming, also
Ni3Cr albeit has small negative enthalpy (−0.3
KJ/mol.atom).
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FIG. 3. (a,b) Total magnetization per atom, (c,d) Co/Ni local magnetic moment, and (e,f) local magnetic
moment on the element X, in Co3X and Ni3X compounds. The blue solid line in panels (c) and (d)
designates the local magnetic moment on Co and Ni in the fcc structure, respectively.

TABLE II. Theoretical and experimental total magnetization (per atom) and local magnetic moment on
Co, Ni and X element, in Bohr magneton (µB), for experimentally observed Co3X and Ni3X L12 phases.

Our calculation Other Calculations Experiments
Compound Tot Co/Ni X Tot Co/Ni X Tot Co/Ni X

Co3Ti 0.6875 1.1077 −0.572 — — — — — —
Ni3Fe 1.1905 0.6183 2.906 1.2365a 0.6665 2.9465 1.207566 0.6266 2.9766

Ni3Mn 1.2025 0.5247 3.236 1.2565b 0.5765 3.3165 1.0266 0.3066 3.1866

Ni3Pt 0.6335 0.7245 0.3625 0.6067c — — 0.42468† 0.4868† 0.25468†

Ni3Al 0.19 0.256 −0.008 0.23669d — — 0.057570 0.07770 —

†interpolated values
a FLAPW-GGA-PBE
b FLAPW-GGA-PBE
c PAW-GGA-PBE
d FLAPW-LDA
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FIG. 4. 0 K formation enthalpies of L12 phase in (a) Co3X and (b) Ni3X compounds

Experimentally, the L12 phase has
been observed only in these com-
pounds: Co3X(X=Ti39,41,75,Ta36,37) and
Ni3X(X=Mn77,Fe44,45,Pt48). It is worth men-
tioning that Ref. 67 has shown that L12 phase
of Ni3Pt is not the most stable phase at 0 K,
though it is stabilized around 413 K due to
vibrational entropy. Within the same context,
let us note that the Co3V L12 ordered-phase
was observed in the quenched alloys with a
composition around 25 at.%V81–83, moreover,
Refs. 81 and 82 claimed that there is a single
L12 ordered-phase region between (αCo) and
Co3V phase. Nevertheless, the phase with
L12 ordered-structure was confirmed to be
metastable, and the formation of L12 ordered-
phase was probably caused by quenching84.
The fact that the lowest formation enthalpies
of Co3X compounds correspond to X element
belonging to Ti/Zr/Hf and V/Nb/Ta columns
and the fact that these elements, except V,
strongly partition to the W sublattice85 in a
L12 Co3(W,X) alloy, indicate that these ele-
ments, with fine-tuning of their compositions,

can enhance the low stability of the extremely
important L12 Co3(Al,W) alloy86,87. Indeed,
Ref. 88 has shown that a small additions of
Hf stabilizes the L12 at a composition around
Co0.772Al0.102W0.123Hf0.003. Ref. 8 has aslo
shown that Ti and Ta additions are found to
strongly partition to the γ′ phase and greatly
increase its volume fraction.

L12 Ni3Zn

It is interesting to point out to the low for-
mation enthalpy (−11.5 KJ/mol.atom) of the
L12 Ni3Zn phase, using SP and non-SP schemes.
This phase is not known to appear in the actual
Ni-Zn phase diagram89. The solubility range of
Zn in Ni ranges from∼ 23 at.% Zn at∼ 250 K to
∼ 37 at.% Zn at ∼ 1250 K89. The stable phase
is fcc solid solution (α phase). The experimen-
tal formation enthalpy of the α phase at the
composition 25 at.% Zn is −8.5 KJ/mol.atom
measured at 1100 K89. In order to investi-
gate this issue, we perform calculations to de-
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TABLE III. Theoretical (0 K) and experimental formation enthalpies of L12 phase in Co3X and Ni3X
compounds. The unit is KJ/mol.atom.

Compound Our Calculation (0 K) Other Calculations (0 K) Experiments
SP non-SP Method Value

Co3Ta −21.56 −21.56 PAW-GGA −30.87537 —
PAW-GGA-PBE −2274

PAW-GGA-PW91 −24.8444

Co3Ti −22.51 −22.51 PAW-GGA-PW91 −25.8434 −26.1875 (298 K)
LMTO-ASA-LDA −26.540

PAW-GGA-PBE −24.974

Co3Va −15.20 −15.20 PAW-GGA-PW91 −18.384 —
Ni3Fe −8.2 17.32 FLAPW-GGA-PW91 −8.6576 —
Ni3Mn −10.35 14.74 — — −7.9377b

Ni3Pt −7.54 −4.6 PAW-LDA −6.3178 —
Ni3Al −42.1 −41.8 PAW-GGA −41.179 (300K) −4779 (300K)

−41.3179 (300K)
−40.5979 (300K)
−38.2479 (300K)

a Metastable
b Corresponds to 76.2 at. % Ni

termine the formation enthalpy of the fcc ran-
dom solid solution alloy at the composition 25
at.% Zn. The alloy was modeled by construct-
ing two different supercells: the first of 32 atoms
2×2×2(×4-atoms) and the second of 256 atoms
4× 4× 4(×4-atoms). To get a random distribu-
tion of atoms we minimize the Warren-Cowley
short-range order (SRO) parameters90,91 at sev-
eral nearest neighbor coordination shells. We
employ a calculating set-up identical to that
used in L12 Ni3Zn i.e, same energy cut-off (400
eV) and high number of k-points. Restricting
the relaxation to the supercells volume gives
-8.56 KJ/mol.atom for the 32-atom supercell
and −8.853 KJ/mol.atom for the 256-atom su-
percell. Allowing local atomic relaxations for
the 32-atom supercell reduces the formation en-
thalpy to −10.62 KJ/mol.atom. Hence, the for-
mation enthalpy of the ordered L12 phase is
still lower than the disordered fcc phase by ∼ 1
KJ/mol.atom. In fact, even if the L12 phase has
a lower formation enthalpy than the α phase,
that does not automatically mean it can be ob-
served at low temperature (if there are no ki-
netic restrictions). In principle, one needs to
study the Helmholtz energy difference ∆F be-

tween the two phases as a function of tempera-
ture. This includes the enthalpy and Helmholtz
energy due to thermal vibrations (phonons) and
to thermally excited electrons. The Helmholtz
energy of the fcc phase has an additional config-
urational entropy term due to atomic disorder
to be considered.

IV. SISF ENERGIES

Depending on the stability and energies of the
APB, CSF and SISF in the octahedral slip plane
in L12 alloys, the superdislocation can assume
this configuration: dissocciation into two super
Shockley partials bounded by a SISF, known as
SISF-type or type-II dissocciation

〈1̄10〉 −→ 1

3
〈121〉+ SISF +

1

3
〈211̄〉 . (21)

In fact Paidar et al.100, within the frame of the
linear theory of elasticity of an isotropic con-
tinuum, proposed that SISF-type dissocciation
(Eq. 21) occurs if the following condition is sat-
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FIG. 5. SISF energies on the (111) plane of stable Co3X and Ni3X L12 compounds variation as a function
of temperature. The curves of different compounds are delimited to the stability temperature of the ordered
L12 phase.

isfied – written conveniently as93,101

ln

(
8πγ111

SISF

C44a0

)
< 2 ln

(
4πγ111

APB

C44a0

)
+ 1 (22)

δ < 2πeC . (23)

where the defect energy ratio δ = γ111
SISF /γ

111
APB

and C = γ111
APB/(C44a0) are dimensionless quan-

tities; a0 is L12 lattice parameter. γ111
SISF and

γ111
APB are the SISF and APB formation energies

on the (111) plane, respectively. Eq. (23) gives
the condition for an (111) APB instability with
respect to the formation of an (111) SISF.

According to the condition present above
(Eq. 23), the knowledge of (111) SISF ener-
gies are of extreme importance to judge whether
SISF-type dissocciation would take place. As
a matter of fact, a special type of deforma-
tion behaviour has been observed, particularly
at low temperatures in some materials: a dra-
matic increase of flow stress with decreasing
temperature. This behaviour is characterstic of
compounds and alloys having low SISF ener-
gies, favouring thus the dissocciation into two
super Shockley partials bounded by a SISF.
For instance, the plastic flow of Co3Ti single
crystals102 at low temperatures (< 500 K) is due
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TABLE IV. A comparison of the SISF formation energies for the stable Co3X and Ni3X L12 compounds
between our work (0 K), other theoretical investigations done with supercell method (0 K), and available
experimental data. The unit is mJ/m2.

Compound Our Calculation (0 K) Other Calculations (0 K) Experiments
ANNNI ANNI Method Value

SP non-SP SP non-SP — — —
Co3Ti 144 208 197 196 TB-LMTO 17592 —

PP-PAW 21093 —
Ni3Fe 29 5 34 15 — — —
Ni3Mn 165 -194 169 -204 — — —
Ni3Pt 119 162 128 173 — — —
Ni3Al 117 114 55 49 TB-LMTO 14792 5-1594 (623 K)

FLAPW 4095 6±0.513 (673 K)a

FP-LMTO 6096

Empirical Potential 1197

PP-PAW 4393

FP-LMTO 8098

PP-PAW 66.8199

a The prepared alloy is non-stoichiometric: Ni0.78Al0.22.

to the dislocation movement of the superpar-
tials dissocciated on the (111) plane bounded
by a SISF.
We have calculated the (111) SISF energies of
the L12 phase for the compounds where L12 is
stable. The calculation was done by employing
the ANNI and ANNNI models, described ear-
lier in section II A, and using the spin-polarized
and spin-restricted schemes. We present in ta-
ble IV a comparison between our results, other
theoretical work, and the available experimental
data. It seems that there are very few exper-
imental efforts to determine the different pla-
nar fault energies in general and none to de-
termine the (111) SISF energies for the com-
pounds considered in this study, apart from
Ni3Al compound, of course. Let us note once
more that the transmision electron microscopy
technique used to determine the planar fault
energies is known to involve incorrect assump-
tions, and consequently produces sometimes in-
accurate values, particularly for the superlattice
intrinsic stacking fault energies – see Ref. 103
and references therein. Furthermore, the exper-
imental determination of fault energies depends
heavily on the type of elasticity theory applied.
Our predictions agree with some theoretical re-

ports and disagree with some others. This is
due to the fact that the different reported data
on SISF are calculated with different ab ini-
tio methods, as well as different methodologies
to get the SISF energies (supercell vs. AIM).
Concerning Co3Ti compound, we find the (111)
SISF formation energy, calculated using the
SP and nonSP ANNI model, to be 197 and
196 mJ/m2 respectively, close to the value re-
ported by Ref. 92 and 93. The low (111) SISF
value relative to the high (001) and (111) APB
experimental104 energies 210 and 270 mJ/m2 re-
spectively, and relative to the theoretical92 ener-
gies 280 and 301 mJ/m2 respectively, explains
the increase in the flow stress with decreasing
temperature in this compound105. In fact, low
SISF (relative to ABP energies) leads to sessile
SISF dissocciated superdislocations105,106. Fur-
thermore, the difference between SP and non-
SP calculations of the SISF formation energy
for Ni3Mn, shows the importance of magnetism
in determining correctly the SISF fault in this
compound. An improper treatment of this com-
pound discounting magnetism produces nega-
tive SISF formation energy. This observation is
in contrast to the other presently studied mag-
netic compounds, where both SP and non-SP
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calculations yield different values but same sign.
Theoretical investigations of the temperature
dependence of SISF energies for L12 Co3X and
Ni3X are almost absent in the literature. Hence,
we find it necessary to study the SISF energies
change as a function of temperature. To this
end, we use a quasistatic approach to calculate
SISF temperature dependence. It is based on
the assumption that the change in SISF upon
temperature increase is solely caused by ther-
mal expansion. This approach has been suc-
cessfully used to calculate the elastic constants
of Ni3Al107,108. There are plentiful experimen-
tal evidences109–111 supporting this approxima-
tion. It has been as well successfully used to cal-
culate SISF energies in unaries112 and alloys113

characterized by complex magnetic structures.
The SISF temperature dependence was estab-
lished using Eqs. 6&7, by determining the ener-
gies of L12, D019 and D024 phases at L12 equi-
librium volume V corresponding to a temper-
ature T . The volume temperature-dependence
V (T ) was already established in section III A.
As shown in Fig. 5, the tendency of SISF, us-
ing both approximations of the AIM model, is
to decrease with temperature for the all com-
pounds except for Ni3Fe where it shows a small
increase. The overall decrease in SISF as a func-
tion of temperature is ∼ 20 % (Ni3Al), ∼ 15
% (Co3Ti), ∼ 12 % (Ni3Mn), ∼ 4 % (Ni3Pt).
All the compounds don not exhibit a sharp or
abrupt decrease towards zero . This is under-
stood since according to the relevant phase di-
agrams, the present L12 compounds either un-
dergo a phase transition to fcc random phase or
remain stable and ordered until melting such as
Ni3Al and Co3Ti, but not to an hcp-like phase.
Note that there is a small difference between the
0 K results in Table IV and their counterparts
in Fig. 5, which is attributed to the zero point
thermal expansion.
The increase in SISF for the system Ni3Fe can
not be related to its ferromagnetic nature since
also Ni3Mn is ferromagnetic yet the SISF en-
ergy decreases with temperature. The SISF
increase in Ni3Fe is purely related to thermal
expansion. As the volume increases due to
temperature, the presence of Fe on the sec-

ond sublattice increases the stability of L12 lat-
tice with respect to hexagonal close packed like-
environment, thus SISF increases. This senario
is not similar when Al, Mn and Pt, occupy the
second sublattice, where a thermaly epanded
volume results in decreasing the 0 K SISF value.
The increasingly expanded volume improves the
bonding energy between Ni and Fe in the L12

structure in comparison with that in D019, while
it lowers the bonding energy between Ni and
Mn, also between Ni and Al.
For the system Ni3Al (Fig. 5(a)), our SP ANNI
results are in accordance with the SP quasihar-
monic phonon supercell method values57, while
the SP ANNNI results greatly disagree. We
have as well calculated the SISF at the experi-
mental volumes56, this technique has shown to
produce values close to the experiment113. Un-
fortunately, there is no experimental data to
compare with. The only available experimental
values are 5-1594 mJ/m2 (623 K) and 6±0.513

mJ/m2 (673 K), and they are closer to the
nonSP ANNI results.
On the other hand, there is a significant differ-
ence between ANNI and ANNNI results for the
systems Ni3Al and Co3Ti, which persists with
temperature. This can not be related to mag-
netism, as the difference is also present, in Ni3Al
compound, between nonSP ANNI and ANNNI
approximations. Considering the fact that the
ANNI results of Ni3Al are closer to a completely
different theoretical approach57 and relatively
closer to the available experimental data13,94,
we suggest that the current implementation23 of
the AIM model restricted to pair interaction is
not sufficient to reproduce the supercell method
values, at least for some systems, and thus a
triple interaction implementation is necessary
to converge the AIM to the supercell results.

V. CONCLUSIONS

We have performed first-principles calcula-
tions for the L12 phase in Co3X and Ni3X com-
pounds. We find the studied properties of sev-
eral compounds to show a strong dependence on
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magnetism. The different addressed properties
show a systematic dependence on the X element
position in the periodic table. Our results sug-
gest that the elements Ti, Zr, Hf, Nb and Ta are
potential stabilizers for the Co3Al0.5W0.5 alloy.
First-principles calculations are highly encour-
aged to be performed on Co3Al0.5−xW0.5−xX2x

alloy at a single low compostion x in order to
test this hypothesis. Our simulation sheds light
on the small energetic difference between the or-
dered L12 and the disordered fcc phase of Ni-25
at.%Zn alloy.
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