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UK dietary exposure to PCDD/Fs, PCBs, PBDD/Fs, PBBs and PBDEs: 

Comparison of results from a 24-hour duplicate diet and total diet studies 

Chemicals in food are monitored to check for compliance with regulatory limits and to 

evaluate trends in dietary exposures, among other reasons. This study compared two 

different methods for estimating human dietary exposure to lipophilic persistent 

organic pollutants (POPs) during the period 2011/12: (a) the 2012 Total Diet Study 

(TDS) conducted by the UK Food Standards Agency and (b) a 24- hour duplicate diet 

(DD) study of 20 adults from the North East of England. The equivalence of the two 

approaches was assessed, anything less than an order of magnitude could be considered 

reasonable and within 3-fold (equivalent to half a log) as good. Adult dietary exposure 

estimates derived from the DD study for both average and high level (97.5th percentile) 

consumers compared well with those from the TDS.  Estimates from the DD study 

when compared with those from the TDS were within 10% for P97.5 for total 

PCDD/F/PCB with divergence increasing to a factor of 3.4 for average BDE-209.  

Most estimates derived from the TDS were slightly higher than those derived from the 

DD. Comparison with earlier UK TDS data over the last 30 years or so, confirmed a 

gradual decline in levels of PCDD/F/PCBs in food.  Such comparisons also indicated 

peaks in dietary exposure to ∑PBDE (excluding BDE-209) between 2000 and 2005. 

Exposure estimates for all measured compounds using both TDS and DD data were 

found to be within recommended tolerable daily intake values where available or 

within acceptable margins of exposure.  

Keywords: duplicate diet study; total diet study; validation; risk characterisation; 

environmental contaminants 
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Introduction 

Chlorinated dioxins and furans (PCDD/Fs) and polychlorinated biphenyls (PCBs) are 

recognised persistent environmental contaminants that have been regulated within the EU 

since 2002 (Council Regulation 2375/2001).  These regulations were introduced following 

the ‘Belgian dioxins crisis’ in 1999 when PCDD/Fs and PCBs were introduced into the food 

chain via PCB contaminated animal feed.  This resulted in high levels of PCDD/Fs and PCBs 

in meat products and eggs from Belgian, French and Dutch farms (Bernard et al. 1999) where 

the feed had been used, and in foods that used products from these sources as ingredients. 

PCDD/Fs and PCBs accumulate in the food chain, concentrating in the fatty tissue of 

animals. Diet is the major route of human exposure to PCDD/Fs and PCBs for most 

individuals without specific occupational exposure. In 2004 an international environmental 

treaty, ‘The Stockholm Convention’, came into force with the aim of eliminating production, 

use and unintentional release of persistent organic pollutants  (POPs) in signatory countries 

(Stockholm Convention on POPs, 2001). PCBs and PCDD/Fs were included in the first 

ratification of the Convention, listed in the initial ‘dirty dozen’ of POPs.  In Europe PCDD/Fs 

and PCBs are regulated in food through Commission Regulation 1881/2006 which sets 

maximum levels for certain contaminants in foodstuffs. This regulation has been subject to a 

large number of amendments, some of which relate to limits for dioxins and PCBs 

(Commission Regulations 565/2008, 420/2011, 594/2012, 1067/2013 and 2015/704). A key 

amendment has been Commission Regulation 1259/2011 which introduced limits for non- 

dioxin-like PCBs and updated limits for PCDD/Fs and dioxin-like PCBs using 2005 WHO-

TEFs.  

Brominated dioxins and furans (PBDD/Fs) have similar physicochemical and toxicological 

properties to their chlorinated analogues (Van den Berg et al. 2013). They originate from 
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similar anthropogenic sources as PCDD/Fs, such as incineration, particularly of bromine-

containing waste, or chemical manufacture. PBDDs may also have biogenic origin such as 

photochemical formation from hydroxylated PBDEs (Arnoldsson et al. 2012).  

Polybrominated biphenyl (PBB) flame retardants are similar to PCBs in structure, 

manufacture, contamination pathways and toxicological impact on human health, and have 

some similarities in their use. The use of PBBs as textile flame retardants was phased out 

from the 1970s onwards and they have not been used or manufactured in the EU since 1996 

(D'Silva et al. 2004). PCDD/Fs and dioxin-like compounds bind to the Ah receptor and are 

widely understood to cause damage to the immune system, to affect the endocrine system, to 

give rise to reproductive and developmental problems, and may cause cancer (EFSA 2012). 

Polybrominated diphenyl ethers (PBDEs) are a class of flame retardant that have been 

used to meet fire safety regulations for fabrics, furnishings, electronics and vehicles since the 

1970s, when they were first used as a replacement for PBBs. During the use and lifetime of a 

product containing PBDEs, they can be released into indoor air and dusts (Sjödin et al. 2003) 

and into the wider environment where they are now ubiquitous (Harrad et al. 2010). PBDEs 

are persistent, undergo long range transportation and are found throughout environments and 

food chains across the globe (Harrad and Diamond 2006). Two commercial PBDE products, 

Penta-BDE and Octa-BDE, were added to the Stockholm Convention’s list of POPs for 

elimination in 2009 (Stockholm Convention on POPs, 2009).  

Governments and international organisations monitor chemicals in food to evaluate 

dietary exposures and to protect consumers by ensuring that products entering the food chain 

are compliant with any applicable regulatory limits (Rose 2015). Total Diet studies (TDS) 

can provide initial exposure estimates for food constituents, such as contaminants, which act 

as a baseline for any future measures aimed at reducing exposure at the population level. 

TDS allow exposure time trends to be monitored and in some cases can be used to determine 
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the effectiveness of regulatory controls for different food types e.g. to assess the impact of 

pollution control measures on levels of PCDD/Fs in food. An overview of  population and 

population subgroups’ exposures to contaminants can be gained using TDS data in which 

samples of a wide variety of food and beverage types are selected from various retailers 

across the target area (EFSA et al. 2011).  

Items are purchased, prepared as if for consumption and combined into groups of 

similar foods for analysis (EFSA et al. 2011, Rose 2015). The food group contaminant 

concentrations are combined with dietary consumption data to estimate exposure. There are 

limited historic examples of TDS across the globe, although the approach is gaining 

popularity. The long term use of TDS in the UK provides a valuable historic perspective.  

Duplicate diet (DD) or duplicate portion studies are useful to provide realistic 

estimates of an individual’s dietary intake over defined periods. Participants collect a 

duplicate of the food (and sometimes drink) that they consume throughout the defined period, 

providing a snapshot of their daily diet.  The food collected is used to form a composite 

sample that can be used for analysis.  A high degree of cooperation is required from 

participants.  Although the overall composition of the samples will be known, duplicate diets 

do not attribute exposures to different food groups. Duplicate diet contents may be influenced 

by the individual’s preferences during the period of collection and subject to anomalies 

arising where the participant consumes food that is not a regular part of their normal diet. 

Effects of local contamination and geology or food habits may be noticeable.  

The aims of this study were: (i) to investigate dietary exposure to PCDD/F, PCB, 

PBDD/F, PBB and PBDE for a group of volunteers in the North East of England; (ii) to 

compare the resulting estimates with those made using the UK Food Standard Agency (FSA) 

TDS 2012 (Fernandes et al. 2012, Mortimer 2013) and (iii) to consider risk to human health 

as a result of the estimated dietary exposures. 
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Materials and Methods 

Sample collection 

Total Diet Study (TDS) 

The TDS was carried out on  foods that represent the average UK diet as estimated by the 

UK’s Department of Environment, Food and Rural Affairs (Defra) Expenditure and Food 

Survey (2011) and trade statistics.  Between 1 November 2011 and 31 March 2012, a total of 

986 retail food samples were purchased from a range of national supermarkets (50%), symbol 

retailers (independent retailers that are members of a larger organisation e.g. Spar) (25%) and 

independent retailers (25%) in twelve locations around the UK. These samples were split into 

20 representative food groups (see Table 1) and each food group analysed for a range of 

contaminants (Henderson et al. 2002). All food groups were analysed except for beverages, 

which have negligible fat content and therefore have low importance for lipophilic POPs. A 

wider range of samples was obtained for the animal product food groups, because these are 

more important sources of POPs in the diet (Fernandes et al. 2012). Table 1 shows the sample 

numbers for each group. Each individual sample was prepared as though for consumption, 

using a variety of methods of cooking where appropriate. Samples were homogenized, put 

into their respective food groups in relative quantities, as determined by national 

consumption data (PHE 2014), and thoroughly re-homogenized. Aliquots were freeze dried 

prior to analysis. For intake estimations, total consumption for each food group was derived 

from four day food diaries kept by approximately 500 adult participants (78% aged 19-64 

years and 22% aged ≥ 65 years) in the Department of Health’s National Diet and Nutrition 

Survey 2011-2012 (PHE 2014). 

 

Duplicate Diet (DD) Study 
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24 hour DD samples were collected by 20 volunteers (10 males and 10 females, aged 26-43 

years, weight range 62-101 kg)  living in the North East of England as part of a wider in-

depth study into potential human exposure sources and uptake of PBDE and emerging 

brominated contaminants from food and indoor dusts (Bramwell et al. 2014). The wider study 

matched serum and human milk samples with the 24 hour DD samples as well as samples of 

dust from the volunteers’ indoor environments. Two of the volunteer couples subsequently 

repeated the study providing some validation for the method. The study aimed to recruit 

individuals with a range of diets to potentially reflect low, medium and high levels of 

exposure to PBDEs, by selecting participants who were oily fish eaters and vegetarians, and 

those with possible occupational exposure. A short pre-screening questionnaire identified 

volunteers who would provide a divergent range of exposures. One of the female participants 

was a vegetarian, one had a strong dairy intolerance, one was nursing an infant with a dairy 

intolerance, two participants ate mainly organic food, and one participant did not eat beef.   

The DD samples were collected between 1 April 2011 and 28 February 2012. 

Whatever food was eaten by volunteers throughout the day, an equal amount was placed into 

a contaminant free (this was verified by tests carried out prior to sampling) lidded 

polypropylene container. Water and water based drinks were not included. For teas and 

coffees, the equivalent portion of milk was added. Samples were collected at the end of the 

day, homogenized immediately and stored frozen in chemically clean (dichloromethane 

rinsed) glass jars until analysis. 

Volunteers gave written informed consent prior to participation. Ethical approval for 

the study was provided by the NHS National Research Ethics Committee North East, 

Durham and Tees Valley, the Newcastle upon Tyne Hospitals NHS Foundation Trust, 

Newcastle University’s Research Ethics Committee and the Food and Environment Research 

Agency’s Ethics Committee. 
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Laboratory Analysis 

Laboratory analysis for both the DD and TDS samples was undertaken by the Food and 

Environment Research Agency (Fera), Sand Hutton, York, UK, and details of the methods 

used for sample preparation, extraction, clean up and analysis of PBDEs, PBBs and PBDD/Fs 

by high resolution gas chromatography - high resolution mass spectroscopy analysis are 

described elsewhere (Fernandes et al. 2008, Fernandes 2004). Methods for the analysis of 

PCDD/Fs and PCBs have also been previously reported (Fernandes 2004). The performance 

characteristics of the methodology, including quality assurance parameters such as limits of 

detection (LODs), precision, linear range of measurement, recoveries etc. are included in the 

previous reports (Fernandes et al. 2008, Fernandes 2004).  Further confidence in the data is 

provided by regular and successful participation in laboratory proficiency testing and inter-

comparison schemes such as POPs in Food 2011 and 2012 (Bruun Bremnes et al. 2012).   

The following congeners were measured in both TDS and DD samples: the seventeen 

2,3,7,8-Cl substituted PCDD/Fs; dioxin-like (i.e. non-ortho substituted and mono-ortho) 

PCBs with IUPAC (Favre and Powell 2013) numbers 77, 81, 105, 114, 118, 123, 126, 156, 

157, 167, 169, and 189; non dioxin-like (i.e. ortho substituted) PCBs with IUPAC numbers 

18, 28, 31, 47, 49, 51, 52, 99, 101, 128, 138, 153, 180;  ten tetra- to hepta-, 2,3,7,8-Br 

substituted PBDD/Fs as well as 2,3,7-TriBDD, 2,3,8-TriBDF; dioxin-like PBBs with IUPAC 

numbers 77, 126 and 169; non-dioxin-like PBB-209 and PBDEs with IUPAC numbers 17, 

28, 47, 49, 66, 71, 77, 85, 99, 100, 119, 126, 138, 153, 154, 183 and 209. The congeners 

selected for analysis are those for which reference standards are available. LODs for all 

measured analytes were estimated dynamically during the specific period of analysis and 

were dependent on parameters such as sample weight, type of matrix and instrument 
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performance at the time of measurement. Typical LODs were 0.01 to 0.05 ng kg-1 lipid for 

PCDD/Fs and non-ortho substituted PCBs; 10 ng kg-1 lipid for ortho-PCBs; 0.02 to 0.08 ng 

kg-1 lipid for PBDD/Fs; and 1 to 20 ng kg-1 lipid for PBDEs and PBBs. 

Data treatment and statistics 

Dietary exposure assessments for the TDS were carried out using the Intake 2 Programme, 

bespoke software developed for the FSA. Dietary exposures for average and high-level 

(97.5th percentile, P97.5) consumers were estimated from the distribution of calculated 

exposures across all participants. TDS findings for adult average and high-level consumers 

are used here for comparison with the DD study. 

DD daily exposure estimates were calculated from the whole weight (ww) 

concentration of contaminants in an individual’s diet sample multiplied by the mass of 

sample collected. Individuals’ body weights were used to calculate their exposure on a body 

weight (bw) basis. Where participants repeated the study, only data from their first set of 

results were included in the statistical analysis. Data for the repeat 24 hour DD is included in 

the Supplementary Information Table 1. For comparison with the TDS exposure estimates the 

average and P97.5 are presented for DD exposure estimates, although the P97.5 is not robust 

for 20 individuals.   

Where the analytes are PCDD/Fs or are known to show dioxin-like toxicity, i.e. 

PCDD/F, PBDD/F, non-ortho and mono-ortho substituted PCBs and PBBs, the PCDD/F like 

toxicity of the samples has been reported as toxic equivalence (TEQ) using toxic equivalency 

factors (TEFs) which express the toxicity of each compound relative to 2,3,7,8-TCDD (where 

2,3,7,8-TCDD =1). The most recent, updated WHO 2005-TEQ (Van den Berg et al. 2006) as 

well as the WHO 1998-TEQ predecessors (Van den Berg et al. 1998) are both used here to 

allow for direct inter-study comparison. Although derived for PCDD/Fs and dioxin-like 
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compounds, the WHO 2005-TEQ are also used for their brominated analogues (Van den 

Berg et al. 2013). This is a commonly used (Fernandes et al. 2012, Pratt et al. 2013) interim 

measure until experimental TEF values for all of the brominated congeners that show dioxin-

like toxicity become available (COT 2006).  For monitoring and regulation of non-dioxin-like 

PCBs, the International Council for the Exploration of the Sea (ICES) selected six commonly 

measured ‘indicator’ non-dioxin-like (ortho) PCBs 28, 52, 101, 138, 153 and 180 (ICES-6 

PCBs) (Webster et al. 2013) and the sum of these is presented here. 

Lower bound (LB) results assume values at less than the limit of detection (<LOD) 

are zero whereas upper bound (UB) results assume values <LOD are equal to the LOD.  

Summary exposure estimates are presented as both LB and UB contaminant concentrations 

on a body weight basis. Improvements in measurement sensitivity have led to (i) an increase 

in LB estimates, (ii) a decrease in UB estimates based on lower limits of quantification and 

(iii) convergence of LB and UB estimates.  EU analytical regulations for foodstuffs require 

the difference between UB and LB values to be less than 20% for confirmations of regulatory 

maximum exceedances (Commission Regulation 589/2014). Summary analyte concentrations 

discussed in the text use UB values, and are thus precautionary, ‘worst case’ estimates.  

Findings are discussed for both lipid weight (lw) and whole weight (ww) contaminant 

concentrations. The laboratory results are presented as lw data so these values are relevant to 

the measured fat/lipid content of the sample. The measured fat/ lipid content is also provided 

for each sample for simple conversion to ww where required. Ww values reflect the sample 

as received whole or ‘wet’ and is the usual manner of expressing consumption and exposure 

data. Dietary exposure to POPs from the ‘fish and seafood’ group is monitored and regulated 

using ww measurements. Ww measurements provide a more realistic reflection of dietary 

exposure as the fish group contains many different species of both oily (high lipid content) 

and white fish (low lipid content). Liver (‘offal’ group) is also regulated using ww data (EEC 
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2013) as POPs in liver are also bound to proteins (Huwe 2012). In contrast, foods such as 

beef or lamb (‘carcass meat’ group) where different parts of the animal would contain 

different amounts of fat, and dairy items are monitored and regulated by their lw contaminant 

concentrations.   

 

Human health risk characterisation 

The sum of dietary exposure to PCDD/Fs and dioxin-like PCBs, PBDD/Fs, and dioxin-like 

PBBs from the TDS and DD was compared with the tolerable intake value of 2 pg WHO-

TEQ kg-1 bw day-1  (COT 2001) as set by the UK Committee on Toxicology of Chemicals in 

Food, Consumer Products and the Environment (COT) and in line with current tolerable 

intakes derived by the WHO Food and Agriculture Organisation of the United Nations  Joint 

Expert Committee on Food Additives (JEFCA 2001).  It should be noted that the COT TDI 

was set based on PCDD/Fs and dioxin-like PCBs only and did not include PBDD/Fs, and 

dioxin-like PBBs.  Health based guidance values are not available for non-dioxin-like PCBs 

and PBBs. 

Potential health risks from dietary intake of PBDEs were determined using the margin 

of exposure (MOE) approach applied by the European Food Safety Authority (EFSA).  The 

EFSA Panel on Contaminants in the food chain (EFSA 2011) identified effects on 

neurodevelopment as the critical endpoint. Chronic human intakes, associated with body 

burdens at the BMDL10 for BDEs-47, -99, -153 and -209, were estimated to be 172, 4.2, 9.6 

and 1,700,000 ng kg-1 bw day-1 respectively. Average and P97.5 human dietary intakes as 

estimated by the DD and TDS methods were compared with EFSA’s chronic human daily 

dietary intake estimations to determine the MOEs.  For PBDEs, EFSA consider that an MOE 
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above 2.5 indicates that a health concern is unlikely, with risk decreasing as the MOE 

increases (EFSA 2011).  

Results 

POPs concentrations in food samples 

Detailed results from the 2012 TDS for PCDD/Fs, PBDD/Fs, PCBs, PBBs and 

PBDEs are provided in Fernandes et al. (2012) and summarised in Table 1. Concentrations 

for individual congeners in each DD sample, lipid content in each sample and food items 

making up each sample are presented in Supplementary Information Tables 1-3. Lipid 

content in the DD samples was median 5% range 2-13%. The DD samples with low lipid % 

had cups of tea added rather than just the milk. A summary of exposure estimations for the 

DD samples is presented in Table 2.  

 

 

PCDD/F and PCB measurements 

The TDS food group ‘fish and seafood’ demonstrated the highest lw levels of all PCDD/F 

and PCB groups and also the highest ww levels except for sum PCDD/F and sum non-dioxin-

like PCBs where the ‘offal’ and ‘fats and oils’ groups respectively demonstrated the highest 

ww concentrations. Comparison of LB sum of PCDD/Fs, PBDD/Fs and dioxin-like 

compounds measured indicated that the chlorinated analogues were more abundant than the 

brominated analogues in the higher lipid content food groups containing meats, fish, dairy, 

eggs and oils (see Table 1). PCDD/Fs were measureable in all DD and TDS samples. The 

most abundant PCDD/F was OCDD although, due to the low TEF, this was not as important 

in terms of contribution to the TEQ. The most abundant non-dioxin-like PCB in the DD and 

TDS samples was CB-153. Of the four non-ortho substituted PCBs, CB-77 was the most 
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abundant in the DD samples and most of the TDS groups except  those containing milk 

where PCB-126 was the most abundant. Concentration ranges (pg kg-1 ww) and detection 

rates for the ICES 6 indicator PCBs in the DD samples were CB-28: <LOD-7.27 (85%); CB-

52: <LOD-16.28 (95%); CB-101: <LOD-23.36 (95%); CB-138: 4.98 – 29.03 (100%); CB-

153: 4.89-31.15 (100%); and CB-180: 1.51-9.67 (100%).  

 

PBDD/F and PBB measurements 

LB sum PBDD/Fs concentrations in lower lipid content TDS food groups including ‘bread’, 

‘cereal’, ‘potatoes’ and ‘fresh fruit’ were higher than concentrations in their chlorinated 

analogues (see Table 1). The PBDD/F analysis comprised only 12 congeners, including 2 tri-

substituted PBDD/Fs, due to the availability of reference standards. Measuring fewer 

brominated than chlorinated congeners may influence the relative sum pg WHO-2005 TEQ 

kg-1 ww reported, though the PBDD/Fs measured were mainly those with the higher TEFs. 

The most abundant PBDD/F in the DD samples was 1,2,3,4,6,7,8-HeptabromoBDF, 

measured above the LOD in all but one of the DD samples (median 2,400, range 810 – 

39,000 pg kg-1 lw; median 126, range 51-680 pg kg-1 ww). These concentrations were higher 

than those for OCDD, the most abundant PCDD/F in the DD samples. 1,2,3,4,7,8-HexaBDF 

was the next most abundant PBDD/F though at concentrations over 10 times less.  

Non-ortho substituted PBBs -77, -126 and -169 and the deca BB-209 were the only PBB 

congeners measured in the DD samples. These were all below the LOD (average <2.7 pg kg-1 

lw) except for BB-209, which was detected in only 15% of samples.  Concentrations and 

detection rates for PBBs were low and  measurable in a only a few of the TDS food groups.  

Ortho-PBBs -15, -49, -52, -80, -101 and -153 were analysed in the TDS samples only. The 

TDS food group ‘fish and seafood’ demonstrated some low but measureable concentrations. 
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BB-153 was identifiable in the ‘milk and dairy’, ‘poultry’, ‘meat products’ and ‘carcass meat’ 

groups. PBBs would not be expected to be found in UK diet samples as evidence indicates 

European environmental background levels to be low (EFSA 2010).  

 

PBDE measurements 

The food groups ‘sugar and preserves’, and then ‘fish and seafood’ demonstrated the 

highest lipid weight sum PBDE concentrations. An atypically high sum PBDE concentration 

in an individual sample in the composite ‘sugar and preserves’ group is the most likely 

explanation for the groups raised sum PBDE result. The raised PBDEs in the ‘sugar and 

preserves’ group  BDEs 47, 99, 100 and 153 were quantified in all DD samples and BDE-209 

in 90%. The highest TDS ww concentrations for BDEs-47, -153, and -99 and -209 were in 

the ‘fish and seafood’, ‘fats and oils’ and ‘sugar and preserves’ groups respectively.  

 

Dietary exposure estimates for contaminants 

TDS exposure estimates for the dioxin-like POP groups and individual PBDE 

congeners are summarised in Mortimer et al. (2013) and presented here in Table 1. A 

summary of daily adult dietary exposures estimated by the 24 hour DD method is provided in 

Table 2.  Results for PBDD/Fs and PBDE congeners are included only where they were 

measured above the LOD in 50% or more of the samples. Dietary exposure estimates to PBB 

are not included in Table 2 due to their low detection rate in the DD samples (max 15% for 

PBB-209). DD participants had average body mass 77 and 80 kg for females and males 

respectively, with an average daily food intake of 1.12 kg. Individual participants’ body mass 

measurements and mass of individual DD samples are provided in the Supplementary 

Information Table 1. Details of the DD matched internal exposure/body burden data (serum 
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and human milk) are reported elsewhere (Bramwell et al. 2014) and matched dust data will 

be reported subsequently.  

Adult dietary exposure estimates for average and high level (P97.5) consumers as 

determined by the TDS and DD studies are presented together in Table 3 for comparison. 

Ratios of average and P97.5 adult exposure estimates for TDS/DD are also provided in Table 

3.   

 

PCDD/F and PCB exposure estimates 

Agreement between TDS and DD estimates are good when considering the DD group 

was much narrower than the adult range used to estimate for TDS.  Neither method 

invalidates the other. The average adult dietary exposure to PCDD/Fs and dioxin-like 

compounds (PCDD/F/PCBs) was estimated to be 0.52 WHO-TEQ pg kg-1 bw d-1 when using 

data from the TDS and 0.27 WHO-TEQ pg kg-1 bw d-1 when using the DD data. The average 

adult dietary exposure to the non-dioxin-like ICES-6 PCBS was estimated to be 1.80 pg kg-1 

bw d-1 by the TDS and 0.58 by the DD, the estimate derived from the TDS being over three 

times that derived from the DD.  

 

PBDD/F and PBB exposure estimates 

The average adult dietary exposure to PBDD/F and brominated dioxin-like 

compounds (PBDD/F/PBBs) was estimated to be 0.2 TEQ kg-1 bw d-1 by both the TDS and 

the DD. The P97.5 adult dietary exposure to PBDD/F/PBBs was estimated to be 0.51 TEQ pg 

kg-1 bw d-1 by the DD and 0.56 TEQ pg kg-1 bw d-1 by the TDS, these can be regarded as 

equal given the uncertainties involved. The maximum non-dioxin-like DD PBB-209 exposure 

determined was 180 pg kg-1 bw d-1.  
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PBDE exposure estimates 

The average adult dietary exposure to sum PBDE (for all congeners measured except BDE-

209) was estimated to be 290 pg kg-1 bw d-1 using the data from the DD study and the P97.5 

was estimated to be 650 pg kg-1 bw d-1.  BDE-209 was detected above the LOD in 90% of the 

DD samples, with average daily exposure estimated to be 750 pg kg-1 bw d-1 and over three 

times more when using data from the TDS study (2600 pg kg-1 bw d-1). This difference 

probably reflects the large variation in PBDE concentrations in individual samples for the 

same food types. Where BDE-209 was detected in DD samples it made up a median of 73% 

of sum PBDE exposure.  Excluding BDE-209, BDE 99 and BDE 47 accounted for just over a 

third of the total for all congeners measured, at 37% and 36% respectively, followed by BDE-

153 (8%), BDE-100 (6%), and BDE-183 (4%). After BDE-209, BDE-47 exposure was found 

to be next greatest PBDE congener exposure by the TDS and BDE-99 by the DD. Average 

daily adult dietary exposure to BDE 47 was 92 pg kg-1 bw d-1 by DD and twice that by TDS 

at 200 pg kg-1 bw d-1.  Average daily adult dietary exposure to BDE-99 was 100 pg kg-1 bw d-

1 by DD and 1.4 times that by TDS at 140 pg kg-1 bw d-1. Health risk characterisation MOEs 

calculated for the DD and TDS exposure estimates are presented in Table 4 along with MOEs 

determined by EFSA (2011) summarising European dietary exposure for comparison.  

Food groups having the greatest contribution to PCDD/F and PCB dietary intake such 

as ‘fish and seafood’, ‘meat’ and ‘milk and dairy’ generally had either no or low difference 

between UB and LB sum values, the greatest difference being 7% for poultry, well within the 

required 20% (Commission Regulation 589/2014). Food groups with lower PCDD/F and 

PCBs concentrations had more PCDD/F and PCB congener concentrations below the LOD 

and therefore greater difference between UB and LB sum values. The difference between UB 

and LB sum WHO 2005-TEQ concentrations of PCDD/F and PCBs in the different TDS 

food groups ranged from 0% to 73% with a median of 2% and average of 18%.  The 
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differences between UB and LB sum WHO 2005-TEQ concentrations of PBDD/F and PBB 

ranged from 7% to 100% with median 36% and average 44%, consistent with the greater 

number of congener measurements below the LOD.  UB and LB sum PBDE concentrations 

were calculated for the duplicate diet samples. Differences of 6% and 1% were observed 

using sum average PBDE concentrations and sum P97.5 PBDE concentrations respectively. 

Discussion 

Evaluation and comparison of methods 

This 2011/12 study documents UK dietary exposure estimates for PCDD/Fs, PCBs, 

PBDD/Fs, PBBs and PBDEs and evaluates and compares the findings of two different 

methods of estimation. We provide estimates of adult dietary exposure for a range of UK and 

international TDS and DD studies to allow comparison between findings. TDS estimates 

were generally higher than the DD results for both average and P97.5 but the differences are 

not substantial considering that two very different approaches were used. With limited 

participant numbers and timeframes, DD studies measure a snapshot of individuals’ 

exposures and are unlikely to have the range required to represent a general population.  The 

small number of samples in this DD study also limited the statistical power. 

For this study, estimates for individual PBDE congeners show good agreement 

between the TDS and DD studies, providing an element of validation for both methods e.g. 

combined PCDD/F and dioxin-like-PCB exposures compare well with dietary exposure 

estimates average 0.52 and 0.27 and high 1.10 and 0.88 pg kg-1 bw d-1 for TDS and DD 

respectively and a TDS /DD ratio of 1.2. Some of the difference may be accounted for by the 

limited number of DD participants and possibly their lower meat and dairy consumption 

compared to average UK diets represented by the TDS.  In addition, there are known to be 
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behavioural changes for individuals involved with DD exercises (eat less, more health food) 

and these may also have an impact of reducing the DD exposure estimates (Rose 2015).  

Individual BDEs -47,-99 and -153 had an average TDS /DD ratio range 1.4 – 2.2 and 

range 1.0 – 2.0 for P97.5. ICES-6 were higher for the TDS with ratios 3.2 (average) and 2.8 

(P97.5). Variation between exposure estimates for BDE-209  (TDS/DD ratio average 3.4, 

P97.5 2.8) may be influenced by the high TDS result for the ‘sugars and preserves’ food 

group, accounting for 50% of total exposure, and ‘milk’, accounting for 25% of exposure 

(Mortimer 2013). The 2012 ‘sugar and preserves’ BDE-209 concentration (2.00 µg/kg ww) 

was notably higher than that for 2003 (0.39 µg/kg ww). This may be due to the inclusion of a 

highly-contaminated sample within the composite. BDE-209 usage has been particularly high 

in the UK and contamination of a sample during transport or processing cannot be excluded. 

With ‘sugar and preserves’ and ‘milk’ results excluded the exposure estimates for the TDS 

and DD are close (Mortimer 2013). Where numbers of samples making the food group 

composite for TDS are low, distortion of results may occur where one or more samples 

contained atypically high contamination.   

While the relative abundance of some individual PBDEs varied between diet types, 

e.g. BDE-47,-49, -100 and -153 were higher in the DDs containing fish, BDE-209 

concentrations were consistent across DD types (lactose free/ vegetarian/ omnivore/ high 

meat/ high fish). We hypothesise that this indicates BDE-209 contamination may be getting 

into the food subsequent to the primary production stage when most contamination is 

assumed to occur,  e.g. from food packaging, processing/preparation, contamination with 

airborne dust particles or dust via dermal contact. 

Temporal trends 

Concentrations of PCDD/F, PCB and PBB in our food supply have declined over the last 

decade (EFSA 2010, EFSA 2012). The reduction in dietary exposures to PCDD/F and PCB is 
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illustrated in Figure 1 with data from this study and other TDS and DD studies from across 

Europe. Exponential downward curves can be seen from 1982 to 2012 for both average and 

high consumers. It should be noted that sensitivity of analytical methods has improved over 

the time period depicted, allowing more congeners to be positively determined. These 

changes may affect comparability when assessing temporal trends.  In 2011/12 the estimated 

high level exposure WHO 2005 TEQ total kg-1 bw day-1 for total PCDD/F and PBDD/F and 

dioxin-like compounds was estimated to be 1.44 and 1.59 by DD and TDS respectively. In 

2001 and 1982 only PCDD/F and dioxin-like PCBS were measured so a direct comparison is 

not possible, but decreases are nonetheless apparent: 0.11- 0.33 WHO 2005 TEQ total kg-1 

bw day-1 since 2001 and 11 WHO 2005 TEQ total kg-1 bw day-1 since 1982. When compared 

with UK levels reported in food groups from 2003 (FSA 2006), the LB results have generally 

increased whilst the UB levels have generally decreased, although the changes are relatively 

small in absolute terms. This is again likely to reflect improvements in analytical sensitivity 

rather than a temporal effect. .  

Data in Table 3 indicate peaks in dietary exposure to BDEs-47 and -99 between 2000 

and 2005. BDE-153 has also reduced but not quite as quickly, in keeping with its longer half-

life in the environment. BDE-209 exposure may still be increasing, but usage was not phased 

out at the same time as the lower-substituted BDEs and was particularly high in the UK.  

No temporal influence on exposure estimates would be expected to be measurable 

between the DD and TDS samples as they were collected in 2011 and 2012 respectively. 

Comparison of two DD carried out in near identical conditions at different periods would be 

required to investigate such effects.   

 

Risk characterisation  

PCDD/F/PCBs and PBDD/F/PBBs 
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Estimated dietary exposure to PCDD/Fs, PBDD/Fs and dioxin-like compounds for both TDS 

and DD sample sets for this study, calculated on an UB basis, were within current 

international recommended tolerable intake values for PCDD/F with dioxin-like PCBs (COT 

2001, JEFCA 2001). The DD samples indicated an UB average dietary intake of 0.47 and 

P97.5 of 1.4 pg WHO 2005 TEQ kg-1 bw  d-1 for PCDD/F/PCB and PBDD/F/PBB. The TDS 

UB intake estimates indicated an average of 0.77 and P97.5 of 1.6 pg WHO 2005 TEQ kg-1 

bw d-1. A tolerable weekly intake of 14 pg WHO-TEQ kg-1 bw was derived in 2001 by the 

Scientific Committee on Food (SCF) and a provisional monthly intake  of 70 pg kg-1 bw was 

derived by JEFCA (JEFCA 2001). In November 2001, the UK Committee on Toxicology of 

Chemicals in Food, Consumer Products and the Environment recommended that the UK 

tolerable daily intake for mixtures of PCDD/Fs and dioxin-like PCBs be reduced from 10 pg 

WHO-TEQ kg-1 bw day-1 to 2 pg WHO-TEQ kg-1 bw day-1 (COT 2001).  

 

Non dioxin-like PCBs and PBBs 

For non-dioxin-like PCBs, EFSA were unable to derive any health-based guidance values 

(EFSA 2005). Their recommendation was that dietary exposure should be reduced and data 

from projects such as this provide a means to determine whether this is being achieved.  

To determine the potential for health effects from dietary exposure to sum ortho-

PBBs, EFSA use a worst case no-observed-effect level (NOEL) of 0.15 mg kg-1 bw for 

hepatocarcinogenesis in rats (EFSA 2011). This is six orders of magnitude above the 

maximum sum ortho PBB exposure determined by the DD study indicating no health 

concerns.  BB-77 was the only non-ortho PBB detected above LOD in DDs for this study 

(20% detection rate).   

PBDEs 
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No health concerns are expected from the levels of PBDEs measured in these adult DD and 

TDS studies as all had MOEs over 2.5 (EFSA 2011). BDE-99 exposures demonstrated the 

lowest MOEs; 16 and 17 for high UB dietary intake for DD and TDS. EFSA derived an MOE 

of 3.9 for adults for BDE-99 when reviewing the EU evidence (EFSA 2011).  BDE-209 

demonstrated the greatest MOE for dietary exposure, 2,260,000 and 664,000 for average UB 

dietary intake by DD and TDS respectively. These reported MOEs are for adults only, EFSA 

noted concern about exposure of young children (age 1-3 years) for whom EFSA derived 

MOEs of 1.4 and 0.7 for dietary exposure to BDE-99 for average and high consumption 

respectively (EFSA 2011). It should be also be observed that PBDE intake is not exclusively 

from the diet and inhalation of PBDEs in indoor dust and air, most notably for BDE-209, will 

add to total human exposure (Bramwell et al. 2016, EFSA 2011). For adults ingesting 50 mg 

dust per day this additional  BDE-209 source is estimated to be  in the range 0.045 to 7 ng kg-

1 bw day-1 (EFSA 2011, Fromme et al. 2009). Dust intake is greater for young children and 

their additional BDE-209 intake from dust estimated to be 0.5-80 ng kg-1 bw day-1 (Bramwell 

et al. 2016, EFSA 2011). Both the UK DD and TDS MOEs are well within the UB MOEs 

determined by EFSA in their review of EU evidence of dietary PBDE exposure (EFSA 

2011).  

Conclusions 

TDS and DD estimations for all measured compounds were found to be within recommended 

tolerable daily intake values where available or within acceptable margins of exposure.  To 

the authors’ knowledge, this study is the first to compare DD and TDS techniques for 

measuring human dietary exposure to PCDD/Fs, PCBs, PBDD/Fs, PBBs and PBDEs. TDS 

provide a versatile data set which can be used to estimate dietary exposure for a range of 

consumers. DD studies give distinct estimates of participating individual’s exposures, taking 

into account local food sources such as farms, fish or wild food. DD are particularly useful 
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for interpreting associations with internal POPs exposure measurements such as serum or 

human milk concentration.  DD studies are difficult to run on a large scale or over a 

prolonged period of time with issues of cost to individuals and management of sample 

collection and storage, and may not reflect an individual’s long term exposure. The TDS data 

provided information on the relative levels of contamination in different food groups. When 

used with food consumption information, the TDS can be used to provide dietary exposure 

estimates for a range of age groups and eating behaviours making it a more versatile data set. 

This is particularly useful for establishing baseline levels of population exposure to new 

contaminants or monitoring temporal changes. By comparing estimates using the two 

contrasting approaches, both receive an element of cross-validation. There is no doubt that 

the DD method is suitable for estimating an individual’s dietary intake for the period of the 

diet collection. It is reassuring to know that the UK National estimate can reasonably reflect 

individuals’ dietary exposure.  
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*from animal and vegetable origin 

Table 1. Total Diet Study (TDS) 2012: Food group compositions, PCDD/F/PCB and PBDD/F/PBB levels  and PBDE congener concentrations 

(Mortimer 2013)  LB= lower bound data, UB=upper bound data 

TDS 
group   Matrix  No. of sub‐

samples 
 Fat 

content % 

PCDD/F/PCBs  
(pg WHO 2005 TEQ kg‐1 ww) 

PBDD/F/PBBs 
(pg WHO 2005 TEQ kg‐1 ww) BDE‐47 

(pg kg‐1 ww)
BDE‐99 

(pg kg‐1 ww)
BDE‐153 

(pg kg‐1 ww)
BDE‐209 

(pg kg‐1 ww)
LB  UB  LB  UB 

1  Bread  29  4.14  7.0  11.5  8.2  20.7  5  6  2  <200 

2  Cereals   40  9.42  5.0  12.6  23.1  34.4  6  8  2  <190 

3  Carcass Meat   51  14.41 76.7 76.9 29.8 37.0 18 22 7 <130

4  Offal   85  9.92  191  191  42.0  45.9  7  9  3  <120 

5  Meat Products  123  14.86  29.9  30.2  12.0  16.0  18  19  4  <140 

6  Poultry  51  7.32 10.0 10.8 3.0 9.1 5 6 1 220

7  Fish & Seafood  140  9.31 326 326 10.5 16.4 134 23 7 170

8  Fats & Oils*   84  73.8  70.8  91.5  0.0  79.0  37  35  8  <390 

9  Eggs   34  9.55  43.9  44.2  8.4  16.8  13  16  5  90 

10  Sugar & Preserves  30  6.05 55.5 55.6 94.9 102 121 62 7 1950

11  Green Vegetables   23  0.29  4.5  4.6  3.6  6.0  2  1  0.2  50 

12  Potatoes   23  5.19  8.1  9.7  9.1  12.6  5  5  1  50 

13  Other Vegetables   40  5.46  52.6  52.7  4.6  10.1  5  8  1  50 

14  Canned 
Vegetables  

15  0.53  1.0  2.1  0.6  3.4  1  0  <1  20 

15  Fresh Fruit   23  0.21 1.4 3.2 4.0 7.3 1 1 0.2 140

16  Fruit Products   15  0.42  6.3  7.5  12.2  16.9  1  1  0.4  30 

18  Milk   44  1.97  8.2  8.3  3.5  5.1  2  2  0.5  120 

19  Milk & Dairy 
Products  

102  23.31  105  105  21.7  28.2  23  25  6  20 

20  Nuts   34  41.84  5.0  18.8  3.3  34.7  6  5  1  100 



 

LOD= limit of detection, NDL = non-dioxin like, LB= lower bound data, UB=upper bound data, a Sum of all PBDE 

congeners measured, b Sum of all PBDE congeners measured except BDE-209, c Sum of BDE-47, -99, -100, -153, -154 and -

183 d Sum of BDE-47, -99 and -153, P97.5 – 97.5th percentile 

  % Min. 
Max.

Median Mean P97.5 
  >LOD LB UB LB UB LB UB LB UB 
WHO-TEQ Summary                     
WHO 1998 TEQ pg kg-1 
bw day-1 

                    

PCDD/F   - 0.028 0.036 0.844 0.129 0.141 0.168 0.177 0.595 0.606 
non ortho-PCB - 0.026 0.028 0.456 0.070 0.069 0.102 0.102 0.329 0.33 
ortho-PCB - 0.007 0.011 0.084 0.019 0.026 0.021 0.03 0.057 0.071 
WHO 2005 TEQ pg kg-1 
bw day-1 

           

PCDD/F   - 0.023 0.036 0.76 0.110 0.122 0.147 0.154 0.530 0.537 
non ortho-PCB - 0.027 0.028 0.456 0.074 0.075 0.106 0.106 0.342 0.344 
ortho-PCB - 0.007 0.011 0.084 0.019 0.026 0.021 0.03 0.057 0.071 
PBDD/F - 0.004 0.007 0.615 0.060 0.141 0.121 0.199 0.477 0.558 
non ortho-PBB - <4x10-4 0.001 0.002 <7x10-4 0.001 1x10-6 0.001 7x10-6 0.002 
Sum of 2005 TEQs  - 0.061 0.083 1.92 0.263 0.265 0.395 0.49 1.41 1.51 
PBDD/F Results pg kg-1 bw 
day-1 

           

238-TriBDF 75 <0.013 0.013 0.129 0.037 0.042 0.045 0.057 0.128 0.128 
2378-TetraBDF 75 <0.009 0.009 0.144 0.034 0.039 0.042 0.05 0.125 0.125 
23478-PentaBDF 65 <0.017 0.017 0.339 0.078 0.078 0.087 0.105 0.3 0.3 
1234678-HeptabromoBDF 95 ND 0.746 14.2 1.58 1.93 3.14 3.31 12.1 12.0 
NDL PCBs pg kg-1 bw day-

1 
ICES-6a 

- 0.1 0.137 2.01 0.41 0.41 0.578 0.583 1.78 1.78 

PBDE Results pg kg-1 bw 
day-1 

           

BDE-28 75 <0.001 1.42 21.2 2.63 4.26 4.84 5.76 17.0 17.0 
BDE-47 100 23.4 23.4 208 73.4 73.4 91.9 91.9 204 204 
BDE-49 60 <0.002 1.85 53.7 2.75 5.1 7.3 9.02 42.9 42.9 
BDE-66 70 0 1.23 38.9 4.31 5.67 6.57 7.83 30.5 30.5 
BDE-99 100 24.2 24.2 274 73.1 73.1 99.6 99.6 263 263 
BDE-100 100 4.33 4.33 48.6 13.6 13.6 19.2 19.2 46.2 46.2 
BDE153 100 5.35 5.35 57.5 14.1 14.1 19.9 19.9 53.4 53.4 
BDE 154 90 <0.002 1.77 36.9 9.18 9.18 11.2 11.2 32.2 32.2 
BDE-183 95 <0.002 1.92 59.8 10.9 12.0 11.3 14.3 25.6 44.2 
Deca Results pg kg-1 bw 
day-1 

           

BDE-209 90 <0.059 58.6 1850 596 652 708 751 1770 1770 
BB-209 15 <0.018 17.7 185 <0.037 37 16.7 50.4 148 148 
PBDE Summary pg kg-1 bw 
day-1 

           

∑PBDEsa - 154 226 2320 774 966 982 1040 2290 2310 
∑PBDE(except 209)b - 63.3 82.5 677 226 247 274 292 635 646 
∑PBDE(6)c - 63.3 66.8 590 218 218 253 256 574 574 
∑PBDE(3)d - 54.5 54.5 514 182 182 211 211 494 494 



Table 2: Daily adult dietary exposure to PCDD/Fs, PCBs, PBDD/Fs, PBBs and PBDEs as 

determined by 24 hour duplicate diet (DD) 



 

NDL = non-dioxin like, PCDD/F, PBDD/F and dioxin-like concentrations are presented in WHO 2005 TEQ equivalencies unless 
indicated otherwise. *WHO 1998 TEQ (using 1998 TEFs results tend to be about 10% higher). o - omnivore, v - vegan diet 
 
Table 3. Adult dietary exposure to PBDEs, PBDD/F/PBBs,PCCD/F/PCBs and ICES 6 PCBs for this and 
previous studies.   
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UK  This 
study 

2011  DD              
(n=20, 24 hr)  Avg.   lower 

92  100 20 708 274 982 0.2 0.27 0.58 

2012 TDS  Avg.   upper  200  140  30  2560  ‐  ‐  0.2  0.52  1.84 

2011  DD              
(n=20, 24 hr)  Avg.   upper 

92  100  20  751  292  1040 0.2  0.27  0.58 

TDS/DD   Avg.  upper  2.2  1.4  1.5  3.4  ‐  -  1.0  1.9  3.2 

2011   DD             
(n=20, 24 hr)  P97.5   lower 

204  263 53 1770 634 2290 0.56 0.88 1.77 

2012 TDS  P97.5   upper  410  250  60  5030  ‐  ‐  0.51  1.08  4.88 

2011   DD             
(n=20, 24 hr)  P97.5   upper 

204  263  53  1770  646  2310 0.56  0.88  1.77 

TDS/DD   P97.5   upper  2.0  1.0  1.1  2.8  ‐  -  0.9  1.2  2.8 

UK (FSA 
2006)  

2003/4  TDS 
 

Avg.  lower  500  500  100  4500  ‐  5800 0.1  ‐  ‐ 

Avg.  upper  500  500  100  4500  ‐  5900  0.4  ‐  - 

High lower  1000  800  200  13000  ‐  15000  0.2  ‐  - 

High  upper  1000  800  200  13000  ‐  15000  0.8  ‐  - 

 UK (Harrad 
et al. 2003, 
2004)  

1999/2000  DD 
(n=10o, 5v, 14 
days) 
2005 DD             
(n=50, 7 days) 

Avg. o lower  651  683  45  ‐  ‐  ‐  ‐  ‐  ‐ 

Avg. o  upper  651  694  178  ‐  2200  ‐  ‐  0.73*  ‐ 

Avg. v  lower  ‐  ‐  ‐  ‐  ‐  ‐  ‐  1.09*  ‐ 

Avg. v  upper  ‐  ‐  ‐  ‐  ‐  ‐  ‐  0.14*  ‐ 

Max. o  upper  1150  2150  186  ‐  ‐  ‐  ‐  0.53*  ‐ 

Max. v  upper  ‐  ‐  ‐  ‐  ‐  ‐  ‐  2.22*  ‐ 

Median   medium  161  255  51  ‐  ‐  ‐  ‐  0.96*  ‐ 

Germany 
(Fromme et 
al. 2009)  

2005 DD             
(n=50, 7 days) 
2004/5 TDS 

P95   medium  340  501  140  ‐  ‐  ‐  ‐  ‐  ‐ 

Avg.   lower  ‐  ‐  ‐  ‐  1100  ‐  0  ‐  ‐ 

Japan 
(Ashizuka 
et al. 2007) 

2004/5 TDS 
2003/4 TDS 

Avg.   medium  ‐  ‐  ‐  ‐  ‐  ‐  1.58  ‐  ‐ 

Median   upper  400  110  ‐  ‐  ‐    ‐  ‐  ‐ 

Holland 
(Winter 
Sorkina et 
al. 2006) 

2003/4 TDS 
2004  DD              
(n=35, 24 hrs) 

P97.5   upper  1100  210  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

Avg.  
n/a  770  500  ‐  480  ‐  ‐  ‐  ‐  ‐ 

Holland  
(Zeilmaker 
et al.2008)  

2004  DD              
(n=35, 24 hrs) 
1994    DD            
(n=10,24 hrs) 

Max.  

n/a 

3500  2300  ‐  3300  ‐  ‐  ‐  ‐  ‐ 

Avg.  
140  610  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

1984    DD            
(n=10,24 hrs)  Avg.  

80  300  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 

1978    DD            
(n=10,24 hrs)  Avg.  

570  120  ‐  ‐  ‐  ‐  ‐  ‐  ‐ 



 

  

BDE‐47  BDE‐99  BDE‐153  BDE‐209 
DD   TDS   EFSA   DD   TDS   EFSA   DD   TDS   EFSA   DD   TDS   EFSA  

MOE for Average LB dietary intake  1,870  ‐  593  42  ‐  38  482  ‐  320  2,400,000  ‐  ‐ 

MOE for Average UB dietary intake  1,870 860 90 42 30 6.5 482  320 23 2,260,000 664,000 >97,000**
MOE for high  LB dietary intake  844  ‐  156  16  ‐  14  180  ‐  137  960,000  ‐  ‐ 

MOE for high UB DD dietary intake  844  420  38  16  17  3.9  180  160  14  960,000  338,00  >97,000**
EFSA estimated intake at BMDL10 
 (ng kg‐1 bw day‐1) 

172  4.2  9.6  1,700,000 

 
* EFSA data is P95, ** EFSA determined MOE of 97,000 was for children (age 1-3) which are considered the most sensitive receptor, and did not determine the adult MOE for BDE 209. The 
adult MOE for BDE 209 can be expected to be greater than that for children.   
 

Table 4. Comparison of margins of exposure (MOEs) for PBDEs as determined by the DD and TDS methods and European summary MOEs as determined by 
the EFSA review of EU evidence (2011)  



 

Figure 1. Decrease in adult high (95 and 97.5 percentiles) and average dietary PCCD/F/PCB exposure in Europe from 1982 to 2012. Data taken from UK TDS 
and DD 2011/12 (this study), UK TDS 1982, 1992 and 1997 (FSA 2003), Netherlands TDS 1999 (Baars et al. 2004), Sweden TDS 1999 and 2005 (Ankarberg et al. 
2007), UK DD 1999/2000 (Harrad et al. 2003), Spain TDS 2000 and 2006 (Llobet et al. 2008), France TDS 2001‐4 (Tard et al. 2006), Belgium 2008 (Windal et al. 
2010). Exponential curves are fitted to the data.   
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