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GROUNDWATER–SURFACE-WATER INTERACTIONS

Identifying spatial and temporal dynamics
of proglacial groundwater–surface-water exchange
using combined temperature-tracing methods

Dominic A. Tristram1,3, Stefan Krause1,4, Amir Levy2,5, Zoe P. Robinson2,6, Richard I. Waller2,7,
and John J. Weatherill2,8

1School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT UK
2Research Institute for the Environment, Physical Sciences and Applied Mathematics (EPSAM). Keele University, Keele,

Staffordshire ST5 5BG UK

Abstract: The effect of proglacial groundwater systems on surface hydrology and ecology in cold regions often is
neglected when assessing the ecohydrological implications of climate change. We present a novel approach in
which we combined 2 temperature-tracing techniques to assess the spatial patterns and short-term temporal dy-
namics of groundwater–surface-water exchange in the proglacial zone of Skaftafellsjökull, a retreating glacier
in southeastern Iceland. Our study focuses on localized groundwater discharge to a surface-water environment,
where high temporal- and spatial-resolution mapping of sediment surface and subsurface temperatures (10–
15 cm depth) were obtained by Fiber-Optic Distributed Temperature Sensing (FO-DTS). The FO-DTS survey
identified temporally consistent locations of temperature anomalies at the sediment–water interface, indicating
distinct zones of cooler groundwater upwelling. The high-resolution FO-DTS surveys were combined with cal-
culations of 1-dimensional groundwater seepage fluxes based on 3 vertical sediment temperature profiles, cover-
ing depths of 10, 25, and 40 cm below the lake bed. The calculated groundwater seepage rates ranged between
1.02 to 6.10 m/d. We used the combined techniques successfully to identify substantial temporal and spatial
heterogeneities in groundwater–surface exchange fluxes that have relevance for the ecohydrological functioning
of the investigated system and its potential resilience to environmental change.
Key words: proglacial groundwater, groundwater–surface-water exchange, Fiber-Optic Distributed Temperature
Sensing, seepage flux, glacial retreat, ecohydrology, Iceland

Groundwater flow and storage influence the timing (Tague
and Grant 2009) and magnitude (Clow et al. 2003, Baraer
et al. 2009) of surface-water discharge in glaciated catch-
ments. Groundwater-fed proglacial rivers and lakes can af-
fect the wider catchment hydrology (Mellina et al. 2002,
Richards et al. 2012), biogeochemistry (Goodman et al.
2010, 2011), and ecology (Roy and Hayashi 2009), often
causing enhanced biodiversity in streams directly affected
by ground water (e.g., Milner and Petts 1994, Ward et al.
1999, Malard et al. 1999, Brown et al. 2007b, Crossman
et al. 2011, 2013, Roy et al. 2011, Jacobsen et al. 2012).
Climate change, including glacial retreat and changes in
precipitation patterns and melt timing, is projected to sig-
nificantly affect proglacial groundwater systems with, for
instance, expected increases in groundwater contributions

and changes to hydrochemical conditions and nutrient cy-
cling (Milner et al. 2009, Rutter et al. 2011, Blaen et al.
2013). These projected changes are expected to have sig-
nificant effects on ecosystem functioning and biodiversity
(e.g., Brown et al. 2007a, Milner et al. 2009). In contrast to
the well investigated effect of climate change on proglacial
surface-water systems (e.g., Singh and Bengtsson 2005,
Huss et al. 2008, Mark 2008, Casassa et al. 2009, Stewart
2009, Nolin et al. 2010), potential interactions with pro-
glacial groundwater systems have not been investigated in
similar detail (Piotrowski 2007). To understand the poten-
tial responses and resilience of proglacial groundwater sys-
tems to climate change, the processes controlling the spa-
tially and temporally dynamic interactions between ground
water and proglacial rivers and lakes have to be identified
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(Cooper et al. 2002, McClymont et al. 2012, Langston et al.
2013).

Regional hydrogeological conditions play a key role in
controlling the magnitude and spatial patterns of ground-
water–lake exchange (Hood et al. 2006), so the magni-
tude and patterns of groundwater–lake exchange can vary
substantially because of the heterogeneity of proglacial
hydrogeological properties. Previous studies in different
proglacial environments have identified both negligible
groundwater–lake exchange (e.g., Michel et al. 2002, Win-
ter 2003) and groundwater–lake exchange that signifi-
cantly affected lake water balance (Campbell et al. 2004,
Gurrieri and Furniss 2004, Hood et al. 2006, Roy and Ha-
yashi 2008, Kidmose et al. 2013, Meinikmann et al. 2013).

Spatial heterogeneity in proglacial groundwater–surface-
water interactions has been related to a variety of geomor-
phological and hydrogeological controls (Brown et al. 2006,
Robinson et al. 2008, Rutter et al. 2011), including the inter-
nal heterogeneities of moraine structures (Roy and Hayashi
2009, Langston et al. 2011). On the other hand, temporal
variability in groundwater–surface-water exchange in pro-
glacial systems frequently is controlled by the diurnal, sea-
sonal, and annual variability of melt and precipitation (e.g.,
Brown et al. 2006). Predicted long-term decrease of melt-
water discharge, as a result of glacial retreat, is projected
to affect proglacial groundwater–surface-water exchange
(Brown et al. 2007a).

Identification and understanding of the organizational
principles of spatial and temporal dynamics of proglacial
groundwater–surface-water exchange fluxes is paramount
for assessing potential effects of glacial retreat on progla-
cial rivers and lakes of high hydrological relevance (e.g.,
Milner et al. 2009). Methods for monitoring and quantify-
ing groundwater–surface-water exchange have improved
substantially (Kalbus et al. 2006, Fleckenstein et al. 2010,
Krause et al. 2011a, b, c), but the heterogeneity of hydro-
geological conditions (e.g., Roy and Hayashi 2008, 2009)
and logistic difficulties can impede the tracing of ground-
water–surface-water exchange using traditional hydrogeo-
logical methods, such as techniques based on Darcy’s Law
(Lautz 2010, Shaw et al. 2013).

However, the recent advances in the application of heat
as a tracer for the direction andmagnitude of groundwater–
surface-water exchange fluxes provide promising tools for
quantifying groundwater contributions to proglacial surface-
water systems (Westhoff et al. 2007, Constantz 2008, Anibas
et al. 2009, Hatch et al. 2010, Lautz 2010, Briggs et al.
2012). In particular the development of Fiber-Optic Distrib-
uted Temperature Sensing (FO-DTS) enables monitoring
of groundwater–surface-water exchanges at unprecedented
spatial and temporal scales (e.g., Selker et al. 2006a, b,
Tyler et al. 2009, Krause et al. 2012, Krause and Blume
2013, Rose et al. 2013). FO-DTS measures temperature by
analyzing the offset in the backscatter of Raman Stokes
and antiStokes signals from a 10-ns light pulse that is ap-

plied to a fiber-optic cable (Selker et al. 2006 a, b, Tyler
et al. 2009). The method provides high spatial- and temporal-
resolution thermal mapping at the sediment–surface-water
interface, where the identified temperature anomalies can
be used to locate groundwater upwelling (Lowry et al.
2007, Westhoff et al. 2011, Krause et al. 2012, Blume et al.
2013, Briggs et al. 2013, Krause and Blume 2013).

Our objectives were to identify groundwater–surface-
water exchange fluxes in a proglacial lake adjacent to a
retreating glacier in southeastern Iceland. We combined
different temperature-tracing methods to investigate orga-
nizational principles of exchange fluxes between the pro-
glacial lake and associated groundwater system. Our spe-
cific objectives were to: 1) map temperature patterns of
lake sediment pore water and the sediment–lake-water
interface in high spatial and temporal resolution using
Fiber-Optic Distributed Temperature Sensing (FO-DTS)
technology, 2) use temperature anomalies at the groundwater–
lake-bed interface to infer groundwater–lake exchange flow
patterns and to delineate groundwater discharge zones to
the proglacial lake, 3) calculate 1-dimensional vertical ground-
water seepage fluxes at selected upwelling zones using high-
resolution time series of sediment porewater temperature
profiles.

METHODS
Skaftafellsjökull proglacial zone

Skaftafellsjökull is a temperate valley glacier in south-
eastern Iceland. Most of its ice is sourced from the Vatna-
jökull ice cap (Tweed et al. 2005, Cook et al. 2010) (Fig. 1A).
The glacial margin is ∼3 km wide, 120 m asl, and bor-
ders a coastal plain. Skaftafellsjökull melt water feeds the
Skaftafellsá River (Marren and Toomath 2013) (Fig. 1B).
The glacier has retreated ∼1.5 km since monitoring began
in the 1940s (IGS 2013). Seismic surveys from the pro-
glacial zone of the glacier Svínafellsjökull (east of Skafta-
fellsjökull) suggest unconsolidated sediment depths of 80
to 150 m (Guðmundsson et al. 2002). As identified by sta-
ble isotope studies in nearby Skeiðarársandur, the domi-
nant sources of shallow groundwater recharge are preci-
pitation and glacial melt (Robinson et al. 2009a, b). The
same study revealed that the signature of ice melt dimin-
ishes with increasing distance from the glacier. The mean
annual precipitation (1995–2012) at the study area was
1595 mm/y, with average temperatures of 5.15°C (IMO
2013).

The field site is ∼1 km south of the current Skaftafell-
sjökull margin (Fig. 1C). Field work for our study focused
on Swan Lake (lat 64°00 42.84 N, long 16°54 20.77 W).
The lake was ∼30 × 50 m with a circumference of ∼150
to 160 m (Fig. 1C). The northern, southern, and eastern
boundaries of the lake are confined by moraines that are
∼3 m high. No outlet stream was associated with Swan
Lake. The deepest section of the lake is on its eastern side
(∼2.5 m depth) and is underlain by ∼0.5 m of clay and
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boulders. Substantial sediment heterogeneity was observed
around the lake. The eastern side is underlain by fine sed-
iment and the western side by coarse sand and gravel (Ta-
ble 1).

Monitoring of groundwater levels
We installed piezometers for monitoring groundwa-

ter levels in June 2012 and monitored between 18 and
29 June 2012. The piezometer network covered the lake
perimeter and locations between Swan Lake and the River
Skaftafellsá to assess groundwater–lake exchange (Fig. 1C).

Piezometers were designed from polyvinyl chloride (PVC)
tubes (12–22 mm internal diameter) with 500-mm-long
screened sections. We installed the piezometers to a depth
of ∼2 m below ground level with drive-point techniques
(Krause et al. 2011b) and measured piezometric heads
twice a day with a manual Solinst graduated electric con-
tact meter (dip meter; Solinst, Georgetown, Canada), with
an accuracy of ±3 mm (Krause et al. 2011b). We moni-
tored the T1–T3 transect between the river Skaftafellsá and
Swan Lake (Fig. 1C) with Solinst Levelogger Junior pres-
sure transducers at 5-min intervals. We set up a stilling

Figure 1. Map of the field site in Iceland (A), the proglacial zone of the Skaftafellsjökull glacier (B), and details of study area Swan
Lake (dashed box in B, C). Swan Lake has no outlet stream. Inverted triangles denote piezometers, and circles denote the location of
the Vertical Temperature Profiles (VTP). The location and deployment of the Fiber-Optic Distributed Temperature Sensor (FO-DTS)
cable is shown as a black curve. Clay nest (C.N.) and Sand Nest (S.N.) denote 12-mm diameter piezometer nests within the respec-
tive sediment. L1–7 denote piezometers with internal diameter of 12 mm. T1–3 denote shallow boreholes with internal diameter of
22 mm.

Table 1. Particle size distribution at each vertical temperature profile (VTP) location. VTP 2 contains data from only 10 cm depth.
D10, D50, and D90 = 10th, 50th, and 90th percentiles of particle size (mm).

Particle size (μm)
VTP 1
10 cm

VTP 1
25 cm

VTP 1
40 cm

VTP 2
10 cm

VTP 3
10 cm

VTP 3
25 cm

VTP 3
40 cm

D10 4.93 4.21 4.43 15.37 5.12 10.08 11.68

D50 21.91 19.16 20.00 175.70 22.43 42.47 50.63

D90 54.58 45.22 51.56 1021.00 57.28 155.40 145.90
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well equipped with the same device to record river levels.
The piezometers were surveyed with a Leica Total Station
(Leica, Milton Keynes, UK).

FO-DTS
We applied a Sensornet Halo FO-DTS, which measures

temperature at high precision (0.05°C) at 30-s intervals
with a sampling resolution of 2 m (http://www.sensornet
.co.uk/images/technology/halo/download8a2d.cfm.pdf).We
deployed a 500-m-long 2-channel fiber-optic cable (Bru-
Outdoor; Brugg/CH, Brugg, Switzerland) within ∼2 m of the
lake circumference (Fig. 1C).

In most previous FO-DTS studies (with the exception
of Lowry et al. 2007, Krause et al. 2012, Krause and Blume
2013) fiber-optic cables were deployed at the sediment
surface, effectively measuring surface water-column tem-
peratures. We installed the fiber-optic cable at 2 depths,
on top of the sediment and ∼10 cm within the lake-bed
sediment. This design allowed direct comparison of tem-
peratures in the lake-bed sediment and at the sediment–
water interface, where they are potentially more intensely
influenced by surface-water temperatures. We installed the
buried cable by hand, and spot checks indicated that the
deployment depth remained constant during the course
of the experiment. The FO-DTS set-up used alternating
single-ended measurements in clockwise and anticlock-
wise directions that we combined in 2-way single-ended
averaging mode as described by Krause and Blume (2013).
We did the dynamic temperature calibration in a calibra-
tion bath (containing meltwater from the river) where tem-
perature was monitored continuously. We synchronized the
time intervals of the calibration-bath measurements with
the FO-DTS monitoring intervals.

Estimation of seepage rates by vertical
temperature profiles

Themethod for calculating 1-dimensional vertical seep-
age fluxes is based on a continuous time series of verti-
cal lake-bed temperature profiles, assuming purely vertical
flow, sinusoidal temperature fluctuations, and no thermal
gradient at the lake bed (Hatch et al. 2006, Lautz 2010).
Violations of these assumptions were tested previously by
Lautz (2010), who found the model to be robust.

We monitored vertical temperature profiles (VTP) from
the lake-bed sediment with automatic HOBO thermistors
(U12-008 4 Ch Industrial Data Logger, Tempcon Instru-
mentation Ltd., West Sussex, UK) set to record at 5-min
intervals. Each VTP included depths of 10, 25, and 40 cm.
The thermistor profiles followed the design of Krause et al.
(2011a). Four-cm screened sections at the bottom of the
metal tube allowed groundwater infiltration and direct con-
tact with the temperature sensor at specified depths. We
installed VTP 1 in fine sediment, whereas we installed VTPs
2 and 3 in coarser sediment (Fig. 1C, Table 1). We calcu-

lated 1-dimensional heat transport, based on conduction,
advection, and dispersion as (Hatch et al. 2006, Keery et al.
2007, Lautz 2010):

∂T
∂t

¼ κe
∂2T
∂z2

−
q
γ
∂T
∂z

(Eq. 1)

where T is temperature (°C), which is a variant of time
(t; s) and depth (z; m), κe is effective thermal diffusivity
(m2/s), q is vertical seepage flux (m/s), and γ the ratio of
heat capacity of the sediment–water matrix in the lake bed
to the water heat capacity (Lautz 2010). Groundwater fluxes
(q) (m/s) (Lautz 2010) were calculated as:

q ¼ ρc
ρcw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
α−2

Δφ4πκ2e
PΔz

s
(Eq. 2)

where ρc and ρcw are heat capacity of sediment–water ma-
trix and water respectively (J m–3 °C–1), Δz = difference
in depth between 2 measurement points in the lake bed
(m), P = period of temperature signal (s), and Δφ = lag
time (h) between the maximum correlation of temperature
between the uppermost and lower temperature sensors.
We calculated the lag time from the Cross Correlation
Function (CCF) between the different temperature sensors
(Hannah et al. 2009, Krause et al. 2011a, b) with software
by Wessa (2012). We obtained ranges of parameter val-
ues for Eqs 1–4 from the literature (Table 2).

We calculated the α perimeter as:

α ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v4 þ

�
8πκe
P

�2
s

(Eq. 3)

where v is the velocity of the thermal front (m/s). We used
the equation ‘speed = distance/time’ to calculate speed,
where distance is the depth to the logger sensor and time
is the lag time obtained from the CCF data for that partic-
ular sensor. We calculated κe as:

κe ¼ λe
ρc

(Eq. 4)

where λe is the effective thermal conductivity (J s–1 m–1),
and ρc is the heat capacity of the saturated sediment–water
matrix (J m–3 °C–1) (Hatch et al. 2006). We obtained λe from
studies in streams with fine and coarse sediment (Lautz
2010) and ρc from data published by Lapham (1989).

Analysis of damping depths of diurnal
temperature oscillations

The damping depth (d ) represents the amplitude de-
crease in the strength of the temperature signal with increas-
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ing depth from the water–sediment interface. The damp-
ing depth is the depth at which temperature oscillation
will naturally attenuate without taking into account any ef-
fects from advective processes, such as water upwelling or
downwelling. We calculated the damping depth as (Hillel
1998):

d ¼ 0:5

�
Dhτ
π

�
(Eq. 5)

where Dh is thermal diffusivity and τ is the period of oscilla-
tion. Thermal diffusivity is calculated by multiplying ther-
mal conductivity and volumetric specific heat, by which the

parameters depend upon water content, porosity, and bulk
density (Hillel 2004, Krause et al. 2011a, b).

RESULTS AND DISCUSSION
Meteorological conditions

Air temperatures during the research period (1900 h
20 June–2300 h 31 July 2012) at the field site ranged be-
tween 1.10 and 22.80°C (average = 11.24°C) with diurnal
fluctuations from 5.90 to 18.50°C (IMO 2013) (Fig. 2).
During the 12-month period preceding the investigations,
mean monthly precipitation exceeded long-term averages
during the autumn and winter months by up to 150 mm.
In contrast, precipitation from April–August 2012 was sig-

Table 2. Parameters used in Eqs 1–4 (Hillel 2004, Lautz 2010) to calculate seepage fluxes based on parameters for fine
and coarse sediment.

Sediment property Sediment size Units Value used in the equation Reference(s)

Effective thermal conductivity (λe) Fine J/(s m °C) 0.84 Lautz 2010

Coarse 1.67

Heat capacity of saturated
sediment–fluid system (ρc) Fine J/(m3 °C) 3.6 × 106 Lapham 1989

Coarse 3.1 × 106

Heat capacity of water (ρcW) Fine J/(m3 °C) 4.2 × 106 Lautz 2010

Coarse

Effective thermal diffusivity (κe) Fine m2/s 2 × 10–7 Lapham 1989, Lautz 2010

Coarse 5 × 10–7

Figure 2. Hourly meltwater levels of river Skaftafellsá (meters above datum) and hydraulic heads at boreholes T1–3, and mean
hourly air temperature and total daily precipitation at the site during the study period. The vertical dashed lines during week 1
represent the duration of the Fiber-Optic Distributed Temperature Sensor study. Dates are formatted dd/mm/yy.
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nificantly below the long-term monthly average. Precip-
itation during the investigation occurred solely as rainfall
(total = 79.8 mm) with the highest daily rainfall on 23 July
2012 (33.3 mm) (Fig. 2).

Surface and groundwater levels
Low precipitation during spring and summer of 2012

coincided with declining lake water levels at Swan Lake
and other lakes at the field site. At the start of the study,
∼0.30-m-high exposures of dried lake banks illustrated
the rapid response of the lake–groundwater system to an-
tecedent dry conditions and showed that lake and ground-
water levels were sensitive to changes in local precipitation.

Diurnal oscillations of the River Skaftafellsá water lev-
els were recorded during the study (Fig. 2). These oscil-
lations suggested a probable relationship between diurnal
air-temperature oscillations and glacial meltwater volumes.
This relationship was supported by an increase in air tem-
perature and river water level between 7 and 9 July 2012.
Furthermore, a decrease in air temperature from 29 July
2012 onward resulted in a decrease in water level of∼0.23 m
(Fig. 2).

Spatial patterns of groundwater discharge
The 24-h FO-DTS monitoring revealed a clear diurnal

pattern of temperatures at both the sediment–water inter-
face and at ∼10 cm depth within the lake-bed sediment
(Fig. 3A, B). During the 24-h FO-DTS monitoring, average
temperatures at the sediment–water interface ranged be-
tween ∼11.5 and 21°C (range = 9.5°C), whereas averaged
spatial temperatures 10 cm within the sediment varied be-

tween ∼11 and 20°C (range = 9°C) (Fig. 3A, B). Tempera-
tures at the sediment–water interface generally were less
stable than at 10 cm within the sediment. This difference
was especially pronounced during the temperature reces-
sion between 2200 and 0800 h when average temperatures
at the sediment–water interface varied by up to 2.5°C in
contrast to <1°C 10 cm within the sediment. The differ-
ence between 5th and 95th percentiles of temperature was
∼2°C at the sediment–water interface and <1°C 10 cm
within the sediment (Fig. 3A, B). This damping of the spa-
tial temperature patterns at depth indicates that existing
surface-water signals were propagating into the sediment
where they were less pronounced than in the lake. FO-
DTS mapping of sediment–water-interface and subsur-
face temperatures highlighted distinct zones of colder-
than-average temperatures, which appeared consistently
in the northern, and most notably, eastern areas of the
lake (Fig. 4). Their locations at the sediment–water inter-
face and at 10 cm within the sediment were consistent
throughout the FO-DTS survey (Figs 4, 5). These observa-
tions were supported by a comparison of the deviation of
local temperatures from the spatial average (Fig. 6A, B).
Groundwater temperatures at the site generally were lower
than lake temperatures. Thus, spatial patterns of cold-spots
can be attributed to groundwater upwelling (Sebok et al.
2013).

The greater local deviations from the spatial mean in
the sediment than at the sediment–water interface) (Fig. 6A,
B) indicate a rapid dissipation of the colder ground water
within the surface water column and coincide with previ-
ous findings by Krause et al. (2012) and Krause and Blume
(2013). These results suggest that FO-DTS provides a use-

Figure 3. Mean and 5th and 95th percentile temperatures (T)
for lake-bed sediment (upper cable) (A) and 10 cm depth within
the lake-bed sediment (buried cable) (B) recorded during the
Fiber-Optic Distributed Temperature Sensor (FO-DTS) tem-
perature surveys.

Figure 4. Fiber-Optic Distributed Temperature Sensor (FO-
DTS) measurements (4-h means) at the lake-bed–surface-water
interface (upper cable). Locations of vertical temperature pro-
files (VTPs) are identified by numbered black circles.
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ful mean of identifying potential hotspots of groundwater
seepage into proglacial lakes.

Dynamics of VTPs
Sediment temperatures exhibited strong diurnal oscilla-

tions that attenuated with depth at all 3 locations, indicat-
ing an increase in porewater thermal stability with depth.
The strongest temperature oscillations were observed at
10 cm depth, whereas oscillations at 40 cm depth were
negligible (Fig. 7A–C). Lower air temperatures from 14 to
23 July 2012 (Fig. 2) corresponded with lower porewater
temperatures at all locations, whereas higher air temper-
atures corresponded with higher porewater temperatures
across the vertical profile (Fig. 7A–C). For example, the
average temperature difference between 10 and 25 cm at
VTP 1 was 1.06°C but increased to ∼2°C during warmer
periods (e.g., 25 June). Conversely, the temperature dif-
ference decreased to ∼0.2°C during cooler periods (e.g.,
4 July) (Fig. 7A–C).

The CCF values generally were high except that VTP 1
was 0.734 during week 3 (this value is not considered low;
Table 3). On several occasions (weeks 1, 3, and 4), the lag
time of signal propagation between 10 and 25 cm depth
was higher at VTP 1 than at VTP 2 and 3 (Table 3). The
strongest diurnal oscillations occurred at VTP 2, along
with the smallest differences in mean porewater temper-
ature between 10 and 25 cm (0.25°C) and between 25
and 40 cm depth (1.12°C) (Fig. 7B). At VTP 2, oscillating
porewater temperatures at 10 and 25 cm depth were simi-
lar throughout the study and temperatures were nearly
identical during the daily minimum (Fig. 7B). The similar-

ity of temperature dynamics observed at different depths
at VTP 2 probably arose from the coarser subsurface sed-
iment at this location than at VTP 1 and 3 (Table 1). Higher
thermal conductivity of the coarser sediment would sup-
port deeper propagation of diurnal oscillation into the sub-
surface. The smallest diurnal oscillations occurred at VTP 3
where absolute temperatures generally were higher than
at VTP 1 and 2. Porewater temperatures at VTP 3 showed
the smallest amplitude difference in mean daily oscilla-
tion between the different depths. Mean amplitudes were
0.83°C at 10 cm, 0.43°C at 25 cm, and 0.16°C at 40 cm
(Fig. 7C). At VTP 1, the mean amplitude of diurnal pore-
water temperature oscillations at 10 cm depth was 1.06°C.
It then attenuated with depth to ∼0.49°C at 25 cm depth
and ∼0.23°C at 40 cm depth (Fig. 7A). Greater attenuation
of absolute temperature and diurnal oscillations occurred
between 25 and 40 cm, indicating greater groundwater in-
fluence and reduction of atmospheric forcing with increas-
ing depth.

Field data comparison of damping depths
The calculated damping depths (Eq. 5) for sandy and

clayey sediment were 0.62 and 0.53 m, respectively. Thus,
temperature signals for sandy conditions (VTP 2) were
expected to be attenuated at 9 cm deeper than in clayey
conditions (VTP 1 and 3). Both calculated damping depths
exceeded the depth of the deepest temperature logger
(40 cm) in the lake bed. However, the negligible daily oscil-
lations recorded at 40 cm depth for each location (Fig. 7A,
C) indicate signal attenuation at depths shallower than cal-
culated, strongly suggesting additional attenuation of tem-
perature propagation by upwelling groundwater.

Quantification of groundwater seepage fluxes
The calculated 1-dimensional vertical seepage fluxes

ranged between 1.02 and 6.10 m/d (Table 3) and highlight
the importance of groundwater discharge to the lake. Seep-

Figure 5. Fiber-Optic Distributed Temperature Sensor (FO-
DTS) measurements (4-h means) at 10 cm depth within the
lakebed sediment (buried cable). Locations of vertical tempera-
ture profiles (VTPs) are identified by numbered black circles.

Figure 6. Local deviations (averaged over 24 h) of Fiber-Optic
Distributed Temperature Sensor (FO-DTS) measurements from
the spatial mean temperature (ΔT) at the lake-bed–surface-water
interface (upper cable) (A) and 10 cm within the lake-bed sediment
(buried cable) (B). Locations of vertical temperature profiles (VTPs)
are identified by numbered black circles.
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age fluxes for VTP 2 were calculated using both sand and
clay parameters (Eqs 2 and 4), but VTP 1 and 3 were cal-
culated for clay only. The lowest seepage flux was identi-
fied at VTP 1 (1.02 m/d during week 4) when fluxes at
VTP 2 and 3 were higher (Table 3). However, during weeks 2

and 5, fluxes at this location were the same as calculated for
VTP 2 and 3 (Table 3).

Seepage at VTP 1 significantly increased by 4.58 m/d
between weeks 1 and 2 (Table 3). A similar increase was
observed at VTP 3. This increase might have been the re-

Figure 7. Vertical porewater temperature profile (10, 25, 40 cm depth) recorded at vertical temperature profile (VTP) 1 (A), 2 (B),
and 3 (C). The location of each VTP is shown in Fig. 1C. The vertical dashed lines during week 1 represent the duration of the Fiber-
Optic Distributed Temperature Sensor (FO-DTS) study. Dates are formatted dd/mm/yy.

Table 3. Calculated lag times, cross-correlation function CCF), and seepage fluxes for the vertical temperature profiles (VTPs).

Variable
Week 1

(21–28 June)
Week 2

(29 June–6 July)
Week 3

(6–13 July)
Week 4

(13–19 July)
Week 5

(20–28 July)

Lag time (h)

V TP 1 (25 cm) 2 0.5 2 3 2

VTP 2 (25 cm) 0.5 0.5 1 2 2

VTP 3 (25 cm) 1 0.5 1 2 2

CCF

VTP 1 (25 cm) 0.969 0.923 0.734 0.948 0.926

VTP 2 (25 cm) 0.980 0.968 0.941 0.973 0.943

VTP 3 (25 cm) 0.969 0.969 0.912 0.946 0.926

Seepage flux (m/d)

VTP 1 1.52 6.10 1.52 1.02 1.52

VTP 2 (sand) 6.10 6.10 3.05 1.52 1.52

VTP 2 (clay) 6.10 6.10 3.05 1.52 1.52

VTP 3 3.05 6.10 3.05 1.52 1.52
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sult of higher rates of groundwater discharge subsequent
to increased rainfall. At VTP 1 and 3, temperature propa-
gation was slightly attenuated during week 2 (Fig. 7A, C),
a result supporting the assumption that cooler groundwa-
ter buffers heat conduction from the surface during peri-
ods of enhanced groundwater upwelling. However, cooler
air temperatures during this week also may have contrib-
uted to these patterns. Seepage fluxes at all locations de-
clined in weeks 2 to 5, with the greatest decrease (4.58 m/d)
occurring at VTP 1 (Table 3), possibly because low rainfall
during weeks 2 to 4 reduced groundwater recharge and sub-
sequent groundwater seepage into the lake.

FO-DTS-identified hotspots of groundwater upwelling
and quantified fluxes based on the 3 temperature profiles
did not match on all occasions. The FO-DTS survey iden-
tified a strong temperature anomaly in the northeastern
section of the lake shore (Figs. 4, 5), indicating discrete,
spatially confined hotspots of groundwater discharge, but
VTP 1 in the near vicinity did not detect increased ground-
water fluxes at this location. During several weeks (weeks 1,
3, 4), fluxes at VTP 1 were lower than at the 2 other VTP
locations (Table 3). This result might be further indica-
tion of the high spatial heterogeneity in sediment proper-
ties resulting in highly variable spatial patterns of ground-
water–surface-water exchange. The location of VTP 1 for
the temperature-profile-based flow calculations was sev-
eral meters from the FO-DTS-identified thermal anomaly
at the northeastern lake section. Thus, the interpretation
is plausible, given that temperature anomalies along the
fiber-optic cable occurred at similar spatial scales as the dis-
tance between the cable and VTP 1. However, uncertainties
in the data interpretations have to be considered. These
uncertainties include limited knowledge of spatial variabil-
ity in sediment characteristics and, as a result, low sensitiv-
ity of the temperature-based flow calculations to changes
in properties of the chosen thermal material.

Limitations and recommendations for future work
We combined FO-DTS and calculation of 1-dimensional

vertical seepage fluxes to assess groundwater–surface-water
exchange at different temporal and spatial scales. FO-DTS
identified spatial and temporal variability in groundwater–
surface-water interactions at high resolution. Calculation
of seepage fluxes allowed us to quantify exchange fluxes
over longer periods of several weeks/months. The under-
standing gained is important for further studies of the re-
sponse and resilience of groundwater-dependent environ-
ments to the projected changes of climate change and glacial
retreat.

The combination of applied methods helped to improve
mechanistic understanding of the process at different scales.
Our results show that the limitations of the methods must
be considered when interpreting results. Our interpretation
that groundwater was discharged to the proglacial lake was
based on the assumption of 1-dimensional vertical fluxes

(Hatch et al. 2006). We did not consider lateral fluxes, which
cannot be excluded in an environment with such high sed-
iment heterogeneity, in the analyses.

The fact that FO-DTS-identified upwelling hotspots in
the northeastern part of the lake could not be verified by
the nearby flow calculations at VTP 1 may indicate that
even though the applied methods improved the spatial rep-
resentation of groundwater–surface-water exchange in the
research area, the experimental design was not fully suc-
cessful in capturing the small-scale spatial variability of
groundwater upwelling into the lake. More detailed in-
vestigations of spatial heterogeneity in lake-sediment prop-
erties, associated with a denser network of vertical-flow es-
timations and a closer alignment of horizontal FO-DTS
and vertical temperature profiling methods have the po-
tential to further improve our knowledge of organiza-
tional principles of groundwater–lake exchange. Estima-
tion of seepage rates based on only 3 monitoring locations
limits detailed upscaling for the entire lake–groundwater
interface because sediment heterogeneities and variation
in thermal properties can have significant effects on seep-
age rates (e.g., Krause et al. 2011a, Blume et al. 2013). More-
over, the short period of FO-DTS surveying (24 h) com-
pared to 5 wk of vertical seepage flux monitoring may
have affected the comparability of the surveys. New devel-
opments in FO-DTS technologies with reduced power de-
mands and adjusted calibration options will enable longer
surveys in remote regions, and the combination of hori-
zontal and vertical profile FO-DTS surveys (Briggs et al.
2013) provide promising techniques for future temperature
tracing of groundwater–lake interfaces.

Conclusions
FO-DTS monitoring identified substantial spatial and

temporal heterogeneity in groundwater discharge into the
investigated proglacial lake, with discrete locations of cold
groundwater upwelling in the eastern and northern areas
of the lake. Calculated seepage fluxes, based on porewater
temperature profiles, varied between 1.02–6.10 m/d. Even
during the short observation period, substantial tempo-
ral variability in groundwater fluxes was observed. This
variability might be attributable to changes in groundwa-
ter recharge caused by precipitation and meltwater river–
aquifer exchange.

Our successful combination of FO-DTS and vertical
temperature profiling provided mechanistic understand-
ing of the spatial and temporal patterns of proglacial
groundwater–lake exchange. Integration of both heat-
tracing methods supported development of a conceptual
model of groundwater–surface-water exchange fluxes at
the field site and provided evidence of the capacity of the
application of both methods combined. Our study high-
lighted significant potential for ensuring a closer alignment
of both methods, which should lead to a better representa-
tion of the small-scale variability of groundwater–lake ex-
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change in the investigated system. The improved concep-
tual understanding and, in particular, the field validation
of the combined heat-tracing methods provide a valuable
tool for future investigations of proglacial lake systems that
could be used to examine long-term changes in glacial and
pluvial groundwater recharge.

ACKNOWLEDGEMENTS
We thank the anonymous referees, Alan Fryar (University of

Kentucky), and Associate Editor Steve Wondzell for construc-
tive reviews that helped to improve the paper. We gratefully
acknowledge the Royal Geographical Society with the Institute
of British Geographers (RGS-IBG) for the support for field work
through the 2012 Postgraduate Research Award, grant number
PRA 26.12. We thank the Research Institute for the Environment,
Physical Sciences and Applied Mathematics (EPSAM) at Keele
University for their support; the Icelandic Glaciological Society
and the Icelandic Meteorological Office (IMO) for their kind pro-
vision of data; Regina Hreinsdóttir, Gudmundur Ogmundsson,
and the rest of the staff at the Skaftafell Visitor Centre (Vatnajö-
kull National Park, Iceland) for their help with fieldwork logis-
tics; Gunnar Bjarki Rúnarsson (of Byko, Selfoss), Olafur Tryggvi
Magnusson, and Ian C. Wilshaw (Keele University) for their help
with the logistics for field work in Iceland.

LITERATURE CITED
Anibas, C., J. H. Fleckenstein, N. Volze, K. Buis, R. Verhoeven, P.

Meire, and O. Batelaan. 2009. Transient or steady-state? Using
vertical temperature profiles to quantify groundwater–surface
water exchange. Hydrological Processes 23:2165–2177.

Baraer, M., J. M. McKenzie, B. G. Mark, J. Bury, and S. Knox.
2009. Characterizing contributions of glacier melt and ground-
water during the dry season in a poorly gauged catchment of
the Cordillera Blanca (Peru). Advances in Geosciences 22:41–
49.

Blaen, P. J., D. M. Hannah, L. E. Brown, and A. M. Milner. 2013.
Water temperature dynamics in high Arctic river basins. Hy-
drological Processes 27:2958–2972.

Blume, T., S. Krause, K. Meinikmann, and J. Lewandowski. 2013.
Upscaling lacustrine groundwater discharge rates by fiber-
optic distributed temperature sensing. Water Resources Re-
search 49:7929–7944.

Briggs, M. A., L. K. Lautz, D. K. Hare, and R. González-Pinzón.
2013. Relating hyporheic fluxes, residence times, and redox-
sensitive biogeochemical processes upstream of beaver dams.
Freshwater Science 32:622–641.

Briggs, M. A., L. K. Lautz, J. M. McKenzie, R. P. Gordon, and
D. K. Hare. 2012. Using high-resolution distributed tem-
perature sensing to quantify spatial and temporal variability
in vertical hyporheic flux. Water Resources Research 48:
W02527.

Brown, L. E., D. M. Hannah, and A. M. Milner. 2007a. Vulnera-
bility of Alpine stream biodiversity to shrinking glaciers and
snowpacks. Global Change Biology 13:958–966.

Brown, L. E., A. M. Milner, and D. M. Hannah. 2007b. Ground-
water influence on alpine stream ecosystems. Freshwater Bi-
ology 52:878–890.

Brown, L. E., A. M. Milner, D. M. Hannah, C. Soulsby, A.
Hodson, and M. J. Brewer. 2006. Water source dynamics in
an alpine glacierized river basin (Taillon-Gabiétous, French
Pyrénées). Water Resources Research 42:W08404.

Campbell, D. H., E. Muths, J. T. Turk, and P. S. Corn. 2004. Sensi-
tivity to acidification of subalpine ponds and lakes in north-
western Colorado. Hydrological Processes 18:2817– 2834.

Casassa, G., P. López, B. Pouyaud, and F. Escobar. 2009. Detec-
tion of changes in glacial run-off in alpine basins: examples
from North America, the Alps, central Asia and the Andes.
Hydrological Processes 23:31–41.

Clow, D. W., L. Schrott, R. Webb, D. H. Campbell, A. Torizzo,
and M. Dornblaser. 2003. Ground water occurrence and con-
tributions to streamflow in an alpine catchment, Colorado
Front Range. Groundwater 41:937–950.

Constantz, J. 2008. Heat as a tracer to determine streambed wa-
ter exchanges. Water Resources Research 44:W00D10.

Cook, S. J., Z. P. Robinson, I. J. Fairchild, P. G. Knight, R. I.
Waller, and I. Boomer. 2010. Role of glaciohydraulic super-
cooling in the formation of stratified facies basal ice: Svína-
fellsjökull and Skaftafellsjökull, southeast Iceland. Boreas 39:
24–38.

Cooper, R. J., J. L. Wadham, M. Tranter, R. Hodgkins, and N. E.
Peters. 2002. Groundwater hydrochemistry in the active layer
of the proglacial zone, Finsterwalderbreen, Svalbard. Journal
of Hydrology 269:208–223.

Crossman, J., I. Boomer, C. Bradley, and A. M. Milner. 2011.
Water flow dynamics of groundwater-fed streams and their
ecological significance in a glacierized catchment. Arctic, Ant-
arctic, and Alpine Research 43:364–379.

Crossman, J., C. Bradley, A. M. Milner, and G. Pinay. 2013. Influ-
ence of environmental instability of groundwater-fed streams
on hyporheic fauna, on a glacial floodplain, Denali National
Park, Alaska. River Research and Applications 29:548–559.

Fleckenstein, J. H., S. Krause, D. M. Hannah, and F. Boano.
2010. Groundwater-surface water interactions: new methods
and models to improve understanding of processes and dy-
namics. Advances in Water Resources 33:1291–1295.

Goodman, K. J., M. A. Baker, and W. A. Wurtsbaugh. 2010.
Mountain lakes increase organic matter decomposition rates
in streams. Journal of the North American Benthological So-
ciety 29:521–529.

Goodman, K. J., M. A. Baker, andW. A. Wurtsbaugh. 2011. Lakes
as buffers of stream dissolved organic matter (DOM) variabil-
ity: temporal patterns of DOM characteristics in mountain
stream-lake systems. Journal of Geophysical Research: Bio-
geosciences 116:G00N02.

Guðmundsson, M. T., A. Bonnel, and K. Gunnarsson. 2002. Seis-
mic soundings of sediment thickness on Skeiðarársandur, SE-
Iceland. Jökull 51:53–64.

Gurrieri, J. T., and G. Furniss. 2004. Estimation of groundwater
exchange in alpine lakes using non-steadymass-balancemeth-
ods. Journal of Hydrology 297:187–208.

Hannah, D. M., I. A. Malcolm, and C. Bradley. 2009. Seasonal
hyporheic temperature dynamics over riffle bedforms. Hy-
drological Processes 23:2178–2194.

Hatch, C. E., A. T. Fisher, J. S. Revenaugh, J. Constantz, and C.
Ruehl. 2006. Quantifying surface water–groundwater inter-
actions using time series analysis of streambed thermal re-

108 | Heat tracing of proglacial groundwater–lake exchange D. A. Tristram et al.

This content downloaded from 147.188.108.081 on April 05, 2017 03:37:00 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2008WR006996
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7289
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Frra.1619
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2F2012WR013215
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2F2012WR013215
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.1496
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2486.2007.01341.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1502-3885.2009.00112.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7194
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0022-1694%2802%2900279-2
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2FS0022-1694%2802%2900279-2
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fadgeo-22-41-2009
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.advwatres.2010.09.011
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2427.2007.01739.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2427.2007.01739.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2004.04.021
http://www.journals.uchicago.edu/action/showLinks?system=10.1899%2F12-110.1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1745-6584.2003.tb02436.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1657%2F1938-4246-43.3.364
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1657%2F1938-4246-43.3.364
http://www.journals.uchicago.edu/action/showLinks?system=10.1899%2F09-070.1
http://www.journals.uchicago.edu/action/showLinks?system=10.1899%2F09-070.1
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7256
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2011WR011227
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7256


cords: method development. Water Resources Research 42:
W10410.

Hatch, C. E., A. T. Fisher, C. R. Ruehl, and G. Stemler. 2010.
Spatial and temporal variations in streambed hydraulic con-
ductivity quantified with time series thermal methods. Jour-
nal of Hydrology 389:276–288.

Hillel, D. 1998. Environmental soil physics. Academic Press, New
York.

Hillel, D. 2004. Introduction to environmental soil physics.
Pages 220–232 only. Elsevier, London, UK.

Hood, J. L., J. W. Roy, and M. Hayashi. 2006. Importance of
groundwater in the water balance of an alpine headwater
lake. Geophysical Research Letters 33:L13405.

Huss, M., D. Farinotti, A. Bauder, and M. Funk. 2008. Modelling
runoff from highly glacierized drainage basins in a changing
climate. Hydrological Processes 22:3888–3902.

IGS (Icelandic Glaciological Society). 2013. From the databases
of the Icelandic Glaciological Society. Icelandic Glaciological
Society, Reykjavik, Iceland.

IMO (Icelandic Meteorological Office). 2013. IMO Database.
Icelandic Meteorological Office, Veðurstofa ĺslands, Iceland.

Jacobsen, D., A. M. Milner, L. E. Brown, and O. Dangles. 2012.
Biodiversity under threat in glacier-fed river systems. Nature
Climate Change 2:361–364.

Kalbus, E., F. Reinstorf, and M. Schirmer. 2006. Measuring
methods for groundwater-surface water interactions: a re-
view. Hydrology and Earth System Sciences 10:873–887.

Keery, J., A. Binley, N. Crook, and J. W. N. Smith. 2007. Tempo-
ral and spatial variability of groundwater-surface water fluxes:
development and application of an analytical method using
temperature time series. Journal of Hydrology 336:1–16.

Kidmose, J., B. Nilsson, P. Engesgaard, M. Frandsen, S. Karan, F.
Landkildehus, M. Søndergaard, and E. Jeppesen. 2013. Fo-
cused groundwater discharge to a eutrophic seepage lake
(Lake Væng, Denmark): implications for lake ecological state
and restoration. Hydrogeology Journal 21:1787–1802.

Krause, S., and T. Blume. 2013. Impact of seasonal variability
and monitoring mode on the adequacy of fiber-optic distrib-
uted temperature sensing at aquifer-river interfaces. Water
Resources Research 49:2408–2423.

Krause, S., T. Blume, and N. J. Cassidy. 2012. Investigating pat-
terns and controls of groundwater up-welling in a lowland
river by combining fibre-optic distributed temperature sens-
ing with observations of vertical hydraulic gradients. Hydrol-
ogy and Earth System Sciences 16:1775–1792.

Krause, S., D. M. Hannah, and T. Blume. 2011a. Heat transport
patterns at pool-riffle sequences of an UK lowland stream.
Ecohydrology 4:549–563.

Krause, S., D. M. Hannah, and T. Blume. 2011b. Interstitial
pore-water temperature dynamics across a pool-riffle-pool
sequence. Ecohydrology 4:549–563.

Krause, S., D. M. Hannah, P. J. Wood, and J. Sadler. 2011c. Hy-
drology and ecology interfaces: processes and interactions in
wetland, riparian and groundwater-based ecosystems. Eco-
hydrology 4:476–480.

Langston, G., L. R. Bentley, M. Hayashi, A. McClymont, and A.
Pidlisecky. 2011. Internal structure and hydrological func-
tions of an alpine proglacial moraine. Hydrological Processes
25:2967–2982.

Langston, G., M. Hayashi, and J. W. Roy. 2013. Quantifying
groundwater-surface water interactions in a proglacial mo-
raine using heat and solute tracers. Water Resources Re-
search 49:5411– 5426.

Lapham, W. W. 1989. Use of temperature profiles beneath
streams to determine rates of vertical ground-water flow and
vertical hydraulic conductivity. US Geological Survey Water
Supply Paper 2337. US Geological Survey, Reston, Virginia.

Lautz, L. K. 2010. Impacts of nonideal field conditions on vertical
water velocity estimates from streambed temperature time
series. Water Resources Research 46:W01509.

Lowry, C. S., J. F. Walker, R. J. Hunt, and M. P. Anderson.
2007. Identifying spatial variability of groundwater discharge
in a wetland stream using a distributed temperature sensor.
Water Resources Research 43:W10408.

Malard, F., K. Tockner, and J. V. Ward. 1999. Shifting domi-
nance of subcatchment water sources and flow paths in a
glacial floodplain, Val Roseg, Switzerland. Arctic, Antarctic,
and Alpine Research 31:135–150.

Mark, B. G. 2008. Tracing tropical Andean glaciers over space
and time: some lessons and transdisciplinary implications.
Global and Planetary Change 60:101–114.

Marren, P. M., and S. C. Toomath. 2013. Fluvial adjustments in
response to glacier retreat: Skaftafellsjökull, Iceland. Boreas
42:57–70.

McClymont, A. F., M. Hayashi, L. R. Bentley, and J. Liard. 2012.
Locating and characterizing groundwater storage areas within
an alpine watershed using time-lapse gravity, GPR and seismic
refraction methods. Hydrological Processes 26:1792–1804.

Meinikmann, K., J. Lewandowski, and G. Nützmann. 2013. Lacus-
trine groundwater discharge: combined determination of vol-
umes and spatial patterns. Journal of Hydrology 502:202–211.

Mellina, E., R. D. Moore, S. G. Hinch, J. S. MacDonald, and G.
Pearson. 2002. Stream temperature responses to clearcut
logging in BC: the moderating influences of groundwater and
headwater lakes. Canadian Journal of Fisheries and Aquatic
Sciences 59:1886–1900.

Michel, R. L., J. T. Turk, D. H. Campbell, and M. A. Mast. 2002.
Use of natural 35S to trace sulphate cycling in small lakes,
Flattops Wilderness Area, Colorado, U.S.A. Water, Air and
Soil Pollution: Focus 2:5–18.

Milner, A. M., L. E. Brown, and D. M. Hannah. 2009. Hy-
droecological response of river systems to shrinking glaciers.
Hydrological Processes 23:62–77.

Milner, A. M., and G. E. Petts. 1994. Glacial rivers: physical
habitat and ecology. Freshwater Biology 32:295–307.

Nolin, A. W., J. Phillippe, A. Jefferson, and S. L. Lewis. 2010. Present-
day and future contributions of glacier runoff to summer-
time flows in a Pacific Northwest watershed: implications for
water resources. Water Resources Research 46:W12509.

Piotrowski, J. A. 2007. Groundwater under ice sheets and gla-
ciers, in glacier science and environmental change. Pages
50–60 in P. G. Knight (editor). Blackwell Publishing, Mal-
den, Massachusetts.

Richards, J., R. D. Moore, and A. L. Forrest. 2012. Late-summer
thermal regime of a small proglacial lake. Hydrological Pro-
cesses 26:2687–2695.

Robinson, Z. P0., I. J. Fairchild, and C. Arrowsmith. 2009a. Sta-
ble isotope tracers of shallow groundwater recharge dynam-

Volume 34 March 2015 | 109

This content downloaded from 147.188.108.081 on April 05, 2017 03:37:00 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1020177802927
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1023%2FA%3A1020177802927
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fwrcr.20372
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fwrcr.20372
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2007WR006145
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.9316
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1007%2Fs10040-013-1043-7
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Feco.199
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2005WR004787
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2006GL026611
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7197
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.8360
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.8360
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F1552602
http://www.journals.uchicago.edu/action/showLinks?crossref=10.2307%2F1552602
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1038%2Fnclimate1435
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1038%2Fnclimate1435
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2013.08.021
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fwrcr.20232
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fwrcr.20232
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2010.05.046
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2010.05.046
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7055
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1365-2427.1994.tb01127.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2009WR007917
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.gloplacha.2006.07.032
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fhess-10-873-2006
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fhess-16-1775-2012
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fhess-16-1775-2012
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1139%2Ff02-158
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1139%2Ff02-158
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2009WR008968
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1111%2Fj.1502-3885.2012.00275.x
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2006.12.003
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Feco.199


ics and mixing within an Icelandic sandur, Skeiðarársandur.
Pages 119–125 in D. Marks, R. Hock, M. Lehning, M. Haya-
shi, and R. Gurney (editors). Hydrology in mountain regions.
Publication 326. International Association of Hydrological
Sciences, Wallingford, UK.

Robinson, Z. P., I. J. Fairchild, and A. J. Russell. 2008. Hy-
drogeological implications of glacial landscape evolution at
Skeiðarársandur, SE Iceland. Geomorphology 97:218–236.

Robinson, Z. P., I. J. Fairchild, and B. Spiro. 2009b. The sulphur
isotope and hydrochemical characteristics of Skeiðarársandur,
Iceland: identification of solute sources and implications for
weathering processes. Hydrological Processes 23:2212–2224.

Rose, L., S. Krause, and N. J. Cassidy. 2013. Capabilities and lim-
itations of tracing spatial temperature patterns by fiber-optic
distributed temperature sensing. Water Resources Research
49:1741–1745.

Roy, J. W., and M. Hayashi. 2008. Groundwater exchange with
two small alpine lakes in the Canadian Rockies. Hydrologi-
cal Processes 22:2838–2846.

Roy, J. W., and M. Hayashi. 2009. Multiple, distinct groundwa-
ter flow systems of a single moraine-talus feature in an al-
pine watershed. Journal of Hydrology 373:139–150.

Roy, J. W., B. Zaitlin, M. Hayashi, and S. B. Watson. 2011. Influ-
ence of groundwater spring discharge on small-scale spatial var-
iation of an alpine stream ecosystem. Ecohydrology 4:661–670.

Rutter, N., A. Hodson, T. Irvine-Fynn, and M. Kristensen Solås.
2011. Hydrology and hydrochemistry of a deglaciating high-
Arctic catchment, Svalbard. Journal of Hydrology 410:39–50.

Sebok, E., C. Duque, J. Kazmierczak, P. Engesgaard, B. Nilsson, S.
Karan, and M. Frandsen. 2013. High-resolution distributed tem-
perature sensing to detect seasonal groundwater discharge into
Lake Væng, Denmark.Water Resources Research 49:5355–5368.

Selker, J. S., L. Thévenaz, H. Huwald, A. Mallet, W. Luxem-
burg, N. van de Giesen, M. Stejskal, J. Zeman, M. Westhoff,
and M. B. Parlange. 2006a. Distributed fiber-optic temperature
sensing for hydrologic systems. Water Resources Research 42:
W12202.

Selker, J., N. van de Giesen, M. Westhoff, W. Luxemburg, and
M. B. Parlange. 2006b. Fiber optics opens window on stream
dynamics. Geophysical Research Letters 33:L24401.

Shaw, G. D., E. S. White, and C. H. Gammons. 2013. Character-
izing groundwater-lake interactions and its impact on lake
water quality. Journal of Hydrology 492:69–78.

Singh, P., and L. Bengtsson. 2005. Impact of warmer climate on
melt and evaporation for the rainfed, snowfed and glacierfed
basins in the Himalayan region. Journal of Hydrology 300:
140–154.

Stewart, I. T. 2009. Changes in snowpack and snowmelt runoff
for key mountain regions. Hydrological Processes 23:78–94.

Tague, C., and G. E. Grant. 2009. Groundwater dynamics medi-
ate low-flow response to global warming in snow dominated
alpine regions. Water Resources Research 45:W07421.

Tweed, F. S., M. J. Roberts, and A. J. Russell. 2005. Hydrologic
monitoring of supercooled discharge from Icelandic glaciers.
Quaternary Science Reviews 24:2308–2318.

Tyler, S. W., J. S. Selker, M. B. Hausner, C. E. Hatch, T.
Torgersen, C. E. Thodal, and S. G. Schladow. 2009. Environ-
mental temperature sensing using Raman spectra DTS fiber-
optic methods. Water Resources Research 45:W00D23.

Ward, J. V., F. Malard, K. Tockner, and U. Uehlinger. 1999.
Influence of groundwater on water column conditions in a
glacial floodplain of the Swiss Alps. Hydrological Processes 13:
277–293.

Wessa, P. 2012. Cross Correlation Function (v1.0.8) in Free
Statistics Software (v1.1.23-r7). Office for Research Develop-
ment and Education. (Available from: http://www.wessa.net
/rwasp_cross.wasp/).

Westhoff, M. C., T. A. Bogaard, and H. H. G. Savenije. 2011.
Quantifying spatial and temporal discharge dynamics of an event
in a first order stream, using distributed temperature sensing.
Hydrology and Earth System Sciences 15:1945–1957.

Westhoff, M. C., H. H. G. Savenije, W. M. J. Luxemburg, G. S.
Stelling, N. C. van de Giesen, J. S. Selker, L. Pfister, and S.
Uhlenbrook. 2007. A distributed stream temperature model
using high resolution temperature observations. Hydrology and
Earth System Sciences 11:1469–1480.

Winter, T. C. 2003. The hydrology of lakes. Pages 61–78 in P. E.
O’Sullivan and C. S. Reynolds (editors). The lakes handbook.
Volume 1: limnology and limnetic ecology. Blackwell Science,
Oxford, UK.

110 | Heat tracing of proglacial groundwater–lake exchange D. A. Tristram et al.

This content downloaded from 147.188.108.081 on April 05, 2017 03:37:00 AM
All use subject to University of Chicago Press Terms and Conditions (http://www.journals.uchicago.edu/t-and-c).

http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fwrcr.20436
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2004.06.005
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7368
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2008WR007052
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fhess-11-1469-2007
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fhess-11-1469-2007
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Feco.156
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2006WR005326
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.7128
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2F%28SICI%291099-1085%2819990228%2913%3A3%3C277%3A%3AAID-HYP738%3E3.0.CO%3B2-N
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fwrcr.20144
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2006GL027979
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1029%2F2008WR007179
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.6995
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1002%2Fhyp.6995
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2011.09.001
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2013.04.018
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.geomorph.2007.02.044
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.quascirev.2004.11.020
http://www.journals.uchicago.edu/action/showLinks?crossref=10.5194%2Fhess-15-1945-2011
http://www.journals.uchicago.edu/action/showLinks?crossref=10.1016%2Fj.jhydrol.2009.04.018

