

Fluorescence spectroscopy for wastewater monitoring: a review

Carstea, Elfrida; Bridgeman, Jonathan; Baker, Andrew; Reynolds, Darren

License:

Creative Commons: Attribution-NonCommercial-NoDerivs (CC BY-NC-ND)

Document Version
Peer reviewed version

Citation for published version (Harvard):

Carstea, E, Bridgeman, J, Baker, A & Reynolds, D 2016, 'Fluorescence spectroscopy for wastewater monitoring: a review', *Water Research*, vol. 95, pp. 205-219.

Link to publication on Research at Birmingham portal

Publisher Rights Statement: Checked for eligibility: 28/03/2017

General rights

Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes permitted by law.

•Users may freely distribute the URL that is used to identify this publication.

- •Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private study or non-commercial research.
- •User may use extracts from the document in line with the concept of 'fair dealing' under the Copyright, Designs and Patents Act 1988 (?)

•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy

While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to the work immediately and investigate.

Download date: 23. Apr. 2024

Accepted Manuscript

Fluorescence spectroscopy for wastewater monitoring: A review

Elfrida M. Carstea, John Bridgeman, Andy Baker, Darren M. Reynolds

PII: S0043-1354(16)30148-8

DOI: 10.1016/j.watres.2016.03.021

Reference: WR 11905

To appear in: Water Research

Received Date: 16 November 2015

Revised Date: 7 March 2016 Accepted Date: 8 March 2016

Please cite this article as: Carstea, E.M., Bridgeman, J., Baker, A., Reynolds, D.M., Fluorescence spectroscopy for wastewater monitoring: A review, *Water Research* (2016), doi: 10.1016/j.watres.2016.03.021.

This is a PDF file of an unedited manuscript that has been accepted for publication. As a service to our customers we are providing this early version of the manuscript. The manuscript will undergo copyediting, typesetting, and review of the resulting proof before it is published in its final form. Please note that during the production process errors may be discovered which could affect the content, and all legal disclaimers that apply to the journal pertain.

Fluorescence spectroscopy for wastewater

1

2	monitoring: a review
3	
4	Elfrida M. Carstea ^{1,2*} , John Bridgeman ¹ , Andy Baker ³ , Darren
5	M. Reynolds ⁴
6	
7	¹ School of Civil Engineering, University of Birmingham, B15 2TT, UK;
8	elfridap@gmail.com; j.bridgeman@bham.ac.uk
9	² National Institute of R&D for Optoelectronics, Atomistilor 409, 077125,
10	Magurele, Romania; elfrida.carstea@inoe.ro
11	³ Connected Waters Initiative Research Centre, UNSW Australia, Sydney,
12	NSW 2052, Australia; a.baker@unsw.edu.au
13	⁴ Biological, Biomedical and Analytical Sciences, University of the West of
14	England, Bristol, BS16 1QY, UK; Darren.Reynolds@uwe.ac.uk
15	
16	Abstract: Wastewater quality is usually assessed using
17	physical, chemical and microbiological tests, which are not
18	suitable for online monitoring, provide unreliable results, or use
19	hazardous chemicals. Hence, there is an urgent need to find a
20	rapid and effective method for the evaluation of water quality
21	in natural and engineered systems and for providing an early
22	warning of pollution events. Fluorescence spectroscopy has
23	been shown to be a valuable technique to characterize and
24	monitor wastewater in surface waters for tracking sources of
25	pollution, and in treatment works for process control and
26	optimization. This paper reviews the current progress in

	receli ied with toochii i
27	applying fluorescence to assess wastewater quality. Studies
28	have shown that, in general, wastewater presents higher
29	fluorescence intensity compared to natural waters for the
30	components associated with peak T (living and dead cellular
31	material and their exudates) and peak C (microbially
32	reprocessed organic matter). Furthermore, peak T fluorescence
33	is significantly reduced after the biological treatment process
34	and peak C is almost completely removed after the chlorination
35	and reverse osmosis stages. Thus, simple fluorometers with
36	appropriate wavelength selectivity, particularly for peaks T and
37	C could be used for online monitoring in wastewater treatment
38	works. This review also shows that care should be taken in any
39	attempt to identify wastewater pollution sources due to
40	potential overlapping fluorophores. Correlations between
41	fluorescence intensity and water quality parameters such as
42	biochemical oxygen demand (BOD) and total organic carbon
43	(TOC) have been developed and dilution of samples, typically
44	up to x10, has been shown to be useful to limit inner filter
45	effect. It has been concluded that the following research gaps
46	need to be filled: lack of studies on the on-line application of
47	fluorescence spectroscopy in wastewater treatment works and
48	lack of data processing tools suitable for rapid correction and
49	extraction of data contained in fluorescence excitation-emission
50	matrices (EEMs) for real-time studies.

52	Key words: fluorescence spectroscopy, wastewater, organic	
53	matter, monitoring	
54		
55	* corresponding author: Elfrida M. Carstea, School of	Civil
56	Engineering, University of Birmingham, B15 2TT,	UK;
57	elfridap@gmail.com	
58	1 Introduction	4
59	2 Fluorescence assessment of wastewater components'	7
60	2.1 Assessment methods	Error! Bookmark not defined.
61	2.2 Region Em < 380 nm	11
62	2.3 Region Em > 380 nm	Error! Bookmark not defined.
63	3 Correlation of the fluorescence peaks with BOD, CO	DD
64	and TOC	16
65	4 Fluorescence detection of wastewater pollution	20
66	4.1 Sources of wastewater	21
67	4.1.1 Domestic wastewater	21
68	4.1.2 Animal wastewater	24
69	4.1.3 Industrial sources of wastewater	26
70	4.2 Wastewater tracking in aquatic systems	31
71	5 Control of wastewater treatment processes using	
72	fluorescence spectroscopy	33
73	5.1 Monitoring of treatment processes with fluorescence	e
74	spectroscopy	35
75	5.2 Removal of fluorescence components along the	
76	treatment works	42
77	5.3 Fluorescence control and optimisation of treatment	
78	processes	47

79	6 Conclusions and future considerations	49
80	Acknowledgements	50
81	References	51
82		
83	1 Introduction	
84	Environmental monitoring is applied to determine the	
85	compliance with ambient and discharge standards and to	
86	identify areas with persistent issues for timely and effective	
87	remediation (Cahoon and Mallin 2013). Wastewater quality	
88	assessment is an essential part of environmental monitoring due	
89	to the high anthropogenic impact of treated and untreated	
90	discharges on water bodies (Suthar et al. 2010). There are two	
91	important aspects of wastewater quality monitoring: the first	
92	concerns the detection of pollution events for early warning and	
93	rapid remedial responses of water bodies, while the second	
94	aspect relates to wastewater treatment works where quality	
95	monitoring is required for process control and compliance with	
96	regulations at the effluent discharge point (Bourgeois et al.	
97	2001, Michael et al. 2015, Rehman et al. 2015).	
98	The quality of wastewater is generally assessed using	
99	physical, chemical and microbiological tests. Among these	
100	techniques, reliance is often placed on biological oxygen	
101	demand (BOD), chemical oxygen demand (COD) and total	
102	organic carbon (TOC) (Bourgeois et al. 2001, Bridgeman et al.	
103	2013). However, these global parameters depend on expensive	

104	or time-consuming methods, offering only snapshots of
105	moments in time (Bourgeois et al. 2001, Chong et al. 2013,
106	Yang et al. 2015a), which makes them unsuitable for online
107	monitoring. Research conducted almost two decades ago
108	(Ahmad and Reynolds 1995, Tartakovsky et al. 1996, Reynolds
109	and Ahmad 1997, Ahmad and Reynolds 1999) has shown that
110	fluorescence spectroscopy could be used for wastewater quality
111	assessment as a tool for discharge detection in natural water
112	systems and for process control in wastewater treatment plants
113	(WwTPs). Fluorescence is the release of energy in the form of
114	light when molecules or moieties, named fluorophores, are
115	excited with a high-energy light source (Lakowicz 2006,
116	Reynolds 2014). The technique has been suggested for its
117	multiple advantages: it is fast, inexpensive, reagentless,
118	requires little sample preparation, is highly sensitive and non-
119	invasive (Reynolds 2003, Hudson et al. 2007, Cao et al. 2009,
120	Henderson et al. 2009, Hambly et al. 2010, Murphy et al. 2011,
121	Chong et al. 2013, Yang et al. 2015a). According to Reynolds
122	(2002) fluorescence monitoring could provide rapid feedback,
123	allowing dynamic, high spatial and temporal resolution studies.
124	In the past decades, more studies have proved the
125	potential of fluorescence spectroscopy as a monitoring and
126	detection tool in natural and engineered systems. This
127	technique has been used successfully to characterize organic
128	matter in seawater (Coble et al. 1990, Coble 1996, Conmy et al.

129	2004, Drozdowska 2007), freshwater (Baker 2001, McKnight
130	et al. 2001, Spencer et al. 2007b, Carstea et al. 2009) or
131	estuarine water (Huguet et al. 2009). Also, it has been used to
132	monitor riverine organic matter and diesel pollution (Downing
133	et al. 2009, Carstea et al. 2010), evaluate drinking water
134	treatment processes (Bieroza et al. 2009, Cumberland et al.
135	2012, Shutova et al. 2014) or detect pesticides (Ferretto et al.
136	2014). Fluorescence spectroscopy has been used to assess the
137	quality of raw sewage and effluents (Baker 2001, Boving et al.
138	2004, Pfeiffer et al. 2008), industrial (Santos et al. 2001,
139	Borisover et al. 2011, Li et al. 2015), or farm (Baker 2002b,
140	Old et al. 2012) discharges into natural systems. Moreover,
141	recent studies on short and long-term fluorescence monitoring
142	along the WwTPs process train have been undertaken, to
143	determine the potential of the technique for treatment processes
144	control (for example, (Murphy et al. 2011, Bridgeman et al.
145	2013, Cohen et al. 2014, Ou et al. 2014, Singh et al. 2015).
146	Although considerable work has been done so far in this field,
147	there are still issues with regard to the "matrix effects", as
148	reviewed by <u>Henderson et al. (2009)</u> , or with fouling (<u>Reynolds</u>
149	2002) that must be overcome to allow application of the
150	technique in WwTPs.
151	Other reviews proved the potential of applying
152	fluorescence spectroscopy to water quality monitoring (<u>Hudson</u>
153	et al. 2007, Henderson et al. 2009, Fellman et al. 2010, Ishii

and Boyer 2012, Yang et al. 2015b). However, none of them focused only on wastewater, which requires a specific discussion due to its complexity in composition and impact on the environment. Moreover, a growing number of studies are published each year on the application of fluorescence spectroscopy to wastewater quality evaluation, proving its scientific and industrial importance. In this paper, we review the current progress in applying fluorescence spectroscopy to assess wastewater quality. The technique's capabilities as a detection and early warning tool of pollution with treated or raw wastewater from different sources are discussed. Also, its potential for process control in WwTPs is presented.

Fluorescence assessment of wastewater components

168 2.1 Organic matter fluorescence assessment

The most common methods of recording fluorescence spectra for wastewater are excitation – emission matrices (EEM) and synchronous fluorescence spectra (SFS). EEMs represent fluorescence contour maps, which comprise a series of repeated emission scans recorded in a range of excitation wavelengths (Coble 1996). SFS are obtained by scanning simultaneously both excitation and emission monochromators at a fixed wavelength interval between them (Patra and Mishra 2002, Reynolds 2003). For many years, since the mid-1970s, SFS were preferred as a multidimensional technique for the

179	analysis of complex solutions, because it provided better peak
180	resolution, compared to emission spectra, and faster recording
181	time than EEMs (Ryder 2005). However, the improvement of
182	instrumentation allowed researchers to obtain fast, high-
183	resolution EEM collection, which increased the method
184	popularity in the research community. In addition, EEMs offer
185	varied possibilities of data interpretation, from simple peak-
186	picking and Fluorescence Regional Integration to the more
187	complex Parallel Factor Analysis (PARAFAC) and Self-
188	Organizing Maps. Among these methods, peak-picking and
189	PARAFAC are the most popular in the research community
190	and therefore only these two methods will be discussed in the
191	following sections.
191	following sections.
191 192	following sections. The peak-picking method is a very simple tool to identify
191 192 193	following sections. The peak-picking method is a very simple tool to identify components based on their maximum intensity and
191 192 193 194	following sections. The peak-picking method is a very simple tool to identify components based on their maximum intensity and corresponding excitation and emission wavelength pairs (Coble
191 192 193 194 195	following sections. The peak-picking method is a very simple tool to identify components based on their maximum intensity and corresponding excitation and emission wavelength pairs (Coble 1996). An example of peak-picking analysis is shown in Figure
191 192 193 194 195	following sections. The peak-picking method is a very simple tool to identify components based on their maximum intensity and corresponding excitation and emission wavelength pairs (Coble 1996). An example of peak-picking analysis is shown in Figure 1 (a). According to Goldman et al. (2012), peak-picking is a
191 192 193 194 195 196	The peak-picking method is a very simple tool to identify components based on their maximum intensity and corresponding excitation and emission wavelength pairs (Coble 1996). An example of peak-picking analysis is shown in Figure 1 (a). According to Goldman et al. (2012), peak-picking is a viable analysis technique and can be employed for the
191 192 193 194 195 196 197	The peak-picking method is a very simple tool to identify components based on their maximum intensity and corresponding excitation and emission wavelength pairs (Coble 1996). An example of peak-picking analysis is shown in Figure 1 (a). According to Goldman et al. (2012), peak-picking is a viable analysis technique and can be employed for the development and use of a real-time tool and may be related to
191 192 193 194 195 196 197 198	The peak-picking method is a very simple tool to identify components based on their maximum intensity and corresponding excitation and emission wavelength pairs (Coble 1996). An example of peak-picking analysis is shown in Figure 1 (a). According to Goldman et al. (2012), peak-picking is a viable analysis technique and can be employed for the development and use of a real-time tool and may be related to custom sensors available today. However, its applicability may

203	with a specific fluorophore, when two excitation wavelengths
204	are seen at fluorescent components (Fig. 1).

205	PARAFAC is a mathematical tri-liniar model that
206	deconvolutes EEMs into chemically meaningful components
207	(Fig. 1b). It separates the contribution of different fluorophores
208	without additional assumptions about their excitation and
209	emission spectra (Cohen et al. 2014). A thorough description of
210	PARAFAC method and components in wastewater is given by
211	Yang et al. (2015b). PARAFAC has become common practice
212	in water quality studies, over the past 10 years (Murphy et al.
213	2014). Yang et al. (2015b) proposed that PARAFAC be
214	developed into a surrogate method for conventional water
215	quality parameters, treatability of organic matter (OM) and
216	performance of treatment processes. Yu et al. (2014) suggested
217	that the PARAFAC tool, the EEMizer, developed by Bro and
218	Vidal (2011), could be implemented to monitor on-line the
219	WwTPs performance. The studies of Yu et al. (2015a) implied
220	that PARAFAC is able to identify contamination events and
221	can be used for early warning, but the component that indicates
222	contamination must be spectrally different from the existing
223	components, without major spectral overlap, which may
224	undermine the online monitoring strategy. Similarly, Murphy et
225	al. (2011) showed that at times PARAFAC had difficulties
226	distinguishing between components, returning hybridized
227	spectra. Also, in a comparison between chromatographic

228	fluorescence fingerprints and EEM-PARAFAC, Li et al. (2014)
229	showed that the latter method could not reflect the variety of
230	organic matter species with similar fluorescence, but different
231	physico-chemical properties. In addition, PARAFAC is
232	currently applied only as post-processing technique, making it
233	unsuitable for continuous monitoring. Also, there is no
234	consensus regarding the optimum model in terms of sample
235	size and variability (Yu et al. 2015a).
236	All these techniques have been employed successfully to
237	analyse OM from various natural to engineered sources. A
238	thorough review on OM fluorescence is provided by <u>Hudson et</u>
239	al. (2007) and Fellman et al. (2010). Crude sewage is a
240	combination of domestic waste, industrial discharges, surface
241	runoff and storm flow. Its composition varies depending on the
242	age and type of sewerage, time of day, weather conditions and
243	type of incoming sewer (Ahmad and Reynolds 1995, Hudson et
244	al. 2007). Ellis (2004) showed that the general organic
245	composition of wastewater is 50 % proteins, 14 %
246	carbohydrates, 10 % fats and oils and trace amounts of priority
247	pollutants and surfactants, which are present in detergents,
248	soaps, shampoo and similar consumer products. More recently,
249	Huang et al. (2010) found that fibres, proteins and sugars are
250	the largest groups of OM in wastewaters, accounting for 20.64
251	%, 12.38 % and 10.65 %, respectively, of the total TOC.
252	According to the researchers, food related substances are the

253 main source of OM in wastewaters (Huang et al. 2010). Using 254 gas chromatography/mass spectrometry, Huang et al. (2010) detected 90 compounds from the groups of alkyls and aromatic 255 256 hydrocarbons, alkenes, alcohols, organic acids, ketones, 257 phenols, nitrogenous compounds, ethers, amines and esters. In addition, they found lipids, volatile fatty acids, humic acids, 258 259 DNA + RNA, tannic acids and linear alkylbenzene sulfonates. 260 Within the organic composition, there numerous 261 overlapping fluorophores that contribute to the EEMs (Aiken 2014). Due to the difficulty of assigning specific fluorophores 262 263 to the peaks identified in EEMs, the fluorescence of wastewater 264 will be discussed as two regions based on the classification 265 provided by Li et al. (2014): the region Em < 380 nm is associated with fluorophores containing a limited number of 266 267 aromatic rings and the indole moiety of free tryptophan whilst the region > 380 nm is associated with polycyclic aromatic 268 fluorophores. 269

2.2 **Region Em < 380 nm**

270

Based on the peak-picking method, fluorescence in this region is represented by peak T ($\lambda_{excitation}/\lambda_{emission} \sim 225 \ (\sim 280)/$ $\sim 350 \ nm$) and peak B ($\lambda_{excitation}/\lambda_{emission} \sim 225 \ (\sim 280)/ \sim 305$ nm) (Fig. 1a). Peaks T and B have been observed in all studies that used the peak-picking method for EEM processing, irrespective of the wastewater source (Table SM1). These peaks have been associated with living and dead cellular

2/8	material and their exudates and indicate microbial activity
279	(Bridgeman et al. 2013) and material derived from
280	anthropogenic activities (Yu et al. 2014). In PARAFAC, the
281	region Em < 380 nm is generally identified as components with
282	2 excitation wavelengths and 1 emission wavelength (Fig. 1b)
283	in the same wavelength ranges as peaks T and B in the peak-
284	picking method. These components are identified in both
285	municipal and industrial wastewater samples; however, the
286	component similar to peak T is more common in wastewater
287	compared to other components in this region (Table SM2).
288	By examining the list of wastewater organic components
289	(Dignac et al. 2000, Huang et al. 2010, Navalon et al. 2011),
290	and the literature review of Aiken (2014), Stedmon and Cory
291	(2014) and Baker et al. (2014), the following components were
292	considered as contributors to the fluorescence in the region Em
293	< 380 nm: phenols (for example cresols), indoles, mono and
294	polyaromatic hydrocarbons, DNA, aromatic amino acids
295	(phenylalanine, tyrosine), degradation products of lignin (lignin
296	phenols, vanillic acid, syringic acid etc.). These compounds are
297	derived from domestic waste, chemical, pharmaceutical,
298	plastic, petrochemical, paper, leather or textile industries (del
299	Olmo et al. 1996, Pokhrel and Viraraghavan 2004, He et al.
300	2007, Tchaikovskaya et al. 2007, Tertuliani et al. 2008). The
301	potential contributing fluorophores to this region are presented
302	in Table 1.

303

304

2.3 **Region Em > 380 nm**

305	The peak-picking method classifies this region as
306	follows: Peak A ($\lambda_{excitation}/\lambda_{emission} \sim 225/400 - 500 nm$), peak C
307	$(\lambda_{excitation} \ / \ \lambda_{emission} \ 300$ - 350 / 400 - 500 nm) and peak M
308	$(\lambda_{excitation} / \lambda_{emission} \ 310 \ - \ 320 \ / \ 380 \ - \ 420 \ nm)$ (Fig. 1a). All
309	studies done so far on wastewater OM have identified peak C
310	and most studies found peak A (Table 1); however, peak M
311	was analysed only by Yu et al. (2014) at municipal wastewater.
312	Most of the studies that employed PARAFAC for EEM
313	analysis identified a maximum of 4 components associated and
314	microbially and terrestrially derived DOM (example of two
315	components in Fig 1b). However, Ishii and Boyer (2012) have
316	identified the PARAFAC components common in natural and
317	engineered water systems: Component 1 similar to peak A with
318	excitation in the region $< 230 - 260 nm$ and emission between
319	400 and 500 nm; Component 2 similar to peaks A + C found in
320	excitation region $< 240 - 275 (339 - 420 nm)$ and emission
321	within $434 - 520 \text{ nm}$; and Component 3 similar to peak A + M
322	appearing in the excitation domain <240 - 260 nm (295 - 380
323	nm) and within the $374 - 450 \ nm$ emission range. According to
324	Ishii and Boyer (2012), component 1 is found mostly in OM
325	sources dominated by terrestrial precursor material. Component
326	2 was defined as reduced quinone-like and was identified in
327	OM from a wide variety of aquatic systems, including those

328	dominated by terrestrial and microbial inputs. While,
329	component 3 fluorophores were defined as oxidised quinone-
330	like and were similar to those with terrestrial and marine
331	precursors. Component 1 has not been reported in wastewater
332	studies, but components 2 and 3 were seen at studies made on
333	municipal and industrial wastewater (Table SM2). Additional
334	components were observed in wastewater (Table SM2), but
335	they vary depending on source.
336	As shown in Table 1, there are several fluorophores that
337	could contribute to the fluorescence of region Em > 380 nm:
338	lignins, PAHs, flavonoids, humic acids, quinones, aromatic
339	ketones, fluorescent whitening agents (FWAs),
340	pharmaceutically active compounds (Dignac et al. 2000, Huang
341	et al. 2010, Aiken 2014, Baker et al. 2014, Stedmon and Cory
342	2014). Among these components, FWAs have been proposed
343	as an indicator of human faecal contamination (Assaad et al.
344	2014), sewer misconnections (Chandler and Lerner 2015) and
345	presence of landfill leachates (Graham et al. 2015). FWAs are
346	highly soluble and poorly biodegraded, and therefore likely to
347	pass through biological treatment in WwTPs (Kramer et al.
348	1996, Poiger et al. 1998, Assaad et al. 2014). Research has
349	shown that these components can be detected with handheld
350	fluorometers, which enhances the capability for in situ water
351	monitoring (Hartel et al. 2007). Nevertheless, issues with
352	detecting FWAs in waters have been reported: the fluorescence

353	of other peak C fluorophores overlap the peaks of FWAs, these
354	components are easily photodegraded and DOM hinders the
355	reaction of FWAs (Kramer et al. 1996, Baker 2002a, Hartel et
356	al. 2007, Assaad et al. 2014). Solutions to overcome
357	fluorescence overlap have been proposed, yet the other issues
358	identified may limit the method's applicability in detecting
359	sewage. The following solutions have been proposed: a) to use
360	the photodegradation rate to separate FWAs from organic
361	matter (<u>Hartel et al. (2007)</u> ; b) to_take into account the
362	differences in shape of the photodecay curve between FWAs
363	and natural organic matter (Cao et al. (2009)); c) to use a
364	baseline correction method to compare the differences in
365	fluorescence intensity of FWA, between the regions 320 nm -
366	345 nm and 345 nm $-$ 360 nm, with the same values for the
367	water samples (Takahashi and Kawamura (2006)); and d) to
368	apply three-way analysis of EEMs assisted by second-order
369	chemometric analyses (Gholami et al. 2015). Discrimination
370	between humic substances and FWAs was achieved by Boving
371	et al. (2004), who analysed FWAs in solution with humic acid
372	and tannic acid. FWAs were recorded at 344 nm and 422 nm
373	emission wavelength, and 250 nm excitation wavelength. The
374	authors found that the second peak of the FWAs was separated
375	from humic acids by 22 nm, but there was a 4 nm separation
376	from tannic acid. Therefore, the $\lambda_{excitation}$ / $\lambda_{emission}$ = 250 / 422

377	nm	peak	could	be	used	for	FWAs	detection	without
378	inte	rferenc	e from l	numi	c acid.				

As shown above, there are several fluorophores that contribute to the < 380 nm > Em regions, but the list is not exhaustive. More studies are needed to identify new fluorescent components and especially those specific to source with the highest contribution to EEMs. Since the regions exhibit the fluorescence of xenobiotic compounds, both can be used for wastewater quality assessment. In particular, peaks T and C, and the PARAFAC analogous components, are present in all wastewater studies (Tables SM1 and SM2) and may be applied to the control of wastewater treatment processes. However, it may be difficult to identify the source and type of sewage pollution in receiving water bodies. In this sense, <u>Baker et al.</u> (2014) advise caution and stress the importance of using a good framework combined sampling with appropriate multivariate analysis of data for successful investigation of water pollution.

395

396

397

398

399

400

401

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

3 Correlation of the fluorescence peaks with BOD, COD and TOC

In order to assess the capability of fluorescence spectroscopy to act as a monitoring tool it is important to consider the correlations between fluorescence peaks and BOD, COD and TOC, commonly used indicators of OM

102	concentration in natural waters and wastewater. As reviewed by
103	Bourgeois et al. (2001) and (Jouanneau et al. 2014), BOD is a
104	desirable measurement in treatment processes, it presents
105	several disadvantages, which make this technique unsuitable
106	for on-line monitoring and process control: it is slow to yield
107	information, it is labour intensive, toxic substances affect
108	bacteria, it may not reflect conditions in the treatment
109	processes, it is insensitive and imprecise at low concentrations
110	and has an uncertainty of 15-20% in the results. COD takes less
111	time to give a result than BOD (2-4 h) and is not affected by
112	toxic substances. However, it is still not suitable for on-line
113	monitoring and process control due to the measuring time and
114	because it requires hazardous chemicals. Also, COD is able to
115	discriminate between biodegradable and biologically inert
116	organic matter only in conjunction with BOD and not on its
117	own (Bourgeois et al. 2001, Chen et al. 2014). TOC is very
118	fast, as triplicates can be analyzed in minutes. However, it
119	cannot differentiate between biodegradable and
120	nonbiodegradable OM (Orhon et al. 2009). Also, conflicting
121	results have been reported between different techniques of
122	measuring TOC (Bourgeois et al. 2001).
123	Correlation between fluorescence and standard
124	parameters revealed that peaks T and C relate to BOD, COD
125	and TOC, as reviewed by (Henderson et al. 2009). Slightly
126	better correlation with BOD is seen at peak T compared to peak

427 C. An exception to the above observation is found at the study 428 of Wang et al. (2007) who obtained better correlation with the 429 PARAFAC component exhibiting fluorescence in the peak C 430 region, compared to the peak T component (Table 2). They 431 observed the best correlation with BOD at the component similar to peak M (0.73). The researchers concluded that this 432 433 component contributed the most to BOD for wastewater-434 impacted lakes. Nevertheless, these results highlight the 435 complexity of the source and that there are potentially several 436 fluorophores, which display fluorescence in the peak T/C 437 regions. It also shows that both regions could contribute to 438 BOD. The difference in correlation coefficients could also be 439 determined by the low sample sizes in some studies, which might under or overestimate the relationship between 440 441 fluorescence and BOD, COD and TOC (Table 2). Another cause of the difference could be the method used for data 442 processing, as PARAFAC offers better separation of 443 444 overlapping components compared to peak-picking. 445 Based on the correlation between BOD and peak T fluorescence, Hur and Kong (2008) tried to estimate, using SFS 446 and first derivative spectra, the concentration of BOD of 447 samples from urban rivers affected by treated sewage. They 448 449 found that the relative fluorescence intensity, at 283 nm to 245 450 nm from SFS, is the optimum estimation index as it has the best positive correlation with BOD values (0.91). It has been 451

452 reported that the multiple regression method, using the light 453 scattering intensity at 633 nm or turbidity, greatly enhances the 454 correlation between measured and predicted BOD values. Hur 455 and Kong (2008) also observed that filtered samples presented 456 enhanced correlation; however, <u>Bridgeman et al.</u> (2013) reported slightly higher correlation coefficient between BOD 457 458 and fluorescence at unfiltered samples compared to filtered with 0.45 or 0.2 µm. These differences could be site specific 459 460 and may depend on the sizes of OM components. As reviewed by Baker et al. (2014), the correlation 461 462 between BOD and peak T fluorescence suggests a direct link 463 with microbiological activity in this region of fluorescence, 464 although the source of peak T fluorescence is generally unknown. It was also implied that handheld instruments could 465 466 be used in the future to investigate the temporal variability of 467 BOD (Baker et al. 2014). Due to the relation with microbiological activity, peak T fluorescence was suggested as 468 indicator of the presence / absence faecal coliforms (Sorensen 469 470 et al. 2015, Sorensen et al. 2016). Pfeiffer et al. (2008) obtained 471 excellent correlation (0.90 - 0.95) with faecal coliforms on 472 samples from a wastewater polluted river and (Tedetti et al. 473 2012) found a good correlation (0.78) between the PARAFAC 474 component and Escherichia Coli + enterococci on wastewater 475 impacted coastal water samples. More recently, (Baker et al. 476 2015) obtained a log correlation of 0.74 between fluorescence

and E. Coli measurements. These findings are encouraging, but more work should be done to explore the link between fluorescent components and faecal coliforms and its potential use in on-line monitoring applications. In a comparison with flow cytometer measurements, peak T intensity correlated with an increase of total live and dead bacteria numbers (Bridgeman et al. 2015). The researchers found that four bacteria isolated from a potable water tap sample showed different responses in the fluorescence signal, although the intensity of peak T fluorescence did not correlate with the bacteria counts. Nevertheless, peak T fluorescence could be used to assess the microbiological activity in a water system.

4 Fluorescence detection of wastewater pollution

Fluorescence spectroscopy has shown its capabilities as a real-time assessment tool for wastewater quality due to its advantages and correlation with standard parameters. This technique could be very effective in detecting raw wastewater contamination in water bodies. Also, the impact of wastewater effluents on natural waters could be evaluated, since effluent organic matter has different composition and characteristics from naturally occurring OM (Wang et al. 2015). Therefore it is important to look at the different types of wastewater for particular characteristics that may facilitate identification in the receiving water bodies.

503

4.1 Sources of wastewater

Studies published so far on fluorescence spectroscopy
have focused on domestic, farm and industrial wastewater,
which includes textile, pulp mill, coke or brewery industries.

More studies are needed on wastewater from oil refineries,
metal processing, fermentation factories, pharmaceutical
industry, chemical plants, meatpacking and processing etc.

510

511

4.1.1 Domestic wastewater

Wastewater is the flow of water used by a community 512 513 and includes household wastes, commercial and industrial 514 waste stream flows, and stormwater (Drinan and Spellman Domestic wastewater contains the solid and liquid 515 516 discharges of humans and animals, contributing with millions 517 of bacteria, virus, and non-pathogenic and pathogenic organisms. It may also contain sanitary products, cleaners and 518 detergents, trash, garbage and any other substances that are 519 520 poured or flushed into the sewer system (Drinan and Spellman 2012). Public treatment facilities may also collect industrial 521 effluents and thus chemicals, dyes, acids, alkalies, grit or 522 523 detergents can be found in municipal wastewater (Drinan and 524 Spellman 2012). Stormwater runoff, if collected by WwTPs, 525 may bring into the system large amounts of sand, gravel, roadsalt and other grit (Drinan and Spellman 2012). 526

527	As discussed in the previous sections, there are numerous
528	compounds that may contribute to the fluorescence peaks.
529	Generally, fluorescence spectra of untreated and treated
530	domestic wastewater are characterized by intense peaks in the
531	region Em < 380 nm, especially peak T, associated with high
532	microbial abundance, and by significantly lower intensity peaks
533	A and C fluorescence (Baker 2001, Hudson et al. 2007, Hur
534	and Cho 2012, Bridgeman et al. 2013). In some studies, the
535	fluorescence spectra of effluents showed a higher prevalence of
536	peaks A and C, compared to peaks T and B (Ghervase et al.
537	2010a, Riopel et al. 2014). Among peaks, T and C seem to be
538	present at most municipal wastewater samples (Tables SM1
539	and SM2) and may serve as indicators of wastewater
540	contamination. Peak B is rarely analysed at wastewater EEMs
541	due to the potential interferences from scattering; however, this
542	fraction could indicate the proximity of the measurement point
543	to the discharge point or freshness of the contamination.
544	According to Pfeiffer et al. (2008), the fluorescence of both
545	peak T and peak B decreases in intensity with increasing
546	distance from the release point, but peak B is completely
547	removed at longer distances, due to dilution or breakdown of
548	the organic fraction. For peak B removal, seasonal shifts should
549	also be taken into account as rainfall could contribute to
550	dilution, sunlight irradiation could cause photodegradation or
551	increase microbial uptake during summer (Meng et al. 2013).

552	From the myriad of fluorophores, FWAs may display
553	distinctive features in the EEMs for municipal wastewater
554	samples (Bridgeman et al. 2013). However, this fraction is not
555	specific to domestic wastewater, as it has been detected at
556	paper mill effluents (Baker 2002a, Ciputra et al. 2010,
557	Bassandeh et al. 2013) or landfill leachates (Graham et al.
558	2015). Therefore, peaks T and C seem to be the best tools of
559	monitoring domestic wastewater quality.
560	In addition to fluorescence intensity increase, it has been
561	shown that discharge of domestic sewage may change the
562	properties of OM from the receiving water bodies. For
563	example, Xue et al. (2011) found that sewage effluents change
564	the capacity of OM to form disinfection by-products and
565	decrease its sensitivity to UV light. Also, changes in
566	aromaticity and hydrophobicity of OM have been reported.
567	These OM characteristics have been assessed after discharge,
568	using the emission wavelength of peak C. In two studies
569	undertaken by Goldman et al. (2012) on OM wastewater
570	effluent and by Ghervase et al. (2010b) on untreated sewage
571	discharge, it was found that the fluorescence signal of the two
572	types of samples presented lower peak C emission wavelength,
573	indicating lower aromaticity compared to natural OM. While,
574	Spencer et al. (2007a) reported higher aromaticity of the OM
575	from an estuarine sample with anthropogenic impact from
576	domestic wastewater effluents, compared to the estuarine OM.

Goldman et al. (2012) found that the mixture of effluent and river waters produce midrange values and, therefore, a potential increase in aromaticity with distance from discharge could be expected. In marine environments, fluorescence measurements on wastewater discharges showed great complexity of the mixing properties. Petrenko et al. (1997) observed 4 layers in the seawater column, 2 layers being affected by sewage representing the "old" and "new" plume waters and 2 layers unaffected by effluent. According to the researchers, the release of wastewater increased 2 fold to the concentration of ammonium, silicate and phosphate in sewage affected plumes and could stimulate the growth of phytoplankton. Baker and Inverarity (2004) also found an increase in nitrate and phosphate concentrations downstream of discharge into urban rivers.

4.1.2 Animal wastewater

Animal wastes represent an important source of water pollution, through the release of untreated wastewater or surface runoff from farms. This type of wastewater produces BOD values that are 1 to 3 times higher than sewage BOD (Baker 2002b). Most meat processing units treat the wastewater prior to release, however animal wastewater varies temporally in composition, requiring continuous monitoring for effective detection and removal of pollutants. Relatively few studies

602	have looked at the potential of using fluorescence spectroscopy
603	to monitor the quality of animal wastewater. However, data
604	gathered so far can help define particular characteristics of
605	animal wastewater OM. The fluorescence of animal wastewater
606	is generally dominated by the region Em < 380 nm. In
607	particular, peak T fluorescence seems to be common to all
608	samples, as it has been detected at farmyard runoff (Old et al.
609	2012), pig and cattle slurry, silage liquor, sheep barn waste
610	(<u>Baker 2002b</u>), poultry processing unit (<u>Ghervase et al. 2010b</u>)
611	and cattle slaughter house (Louvet et al. 2013). The researchers
612	also observed a low peak C fluorescence relative to peak T.
613	Baker (2002b) calculated the ratio between the fluorescence
614	intensity of these two peaks and found that peak T intensity
615	was 2 to 25 times higher than that of peak C, the highest ratio
616	being obtained for silage liquor, while the lowest was seen at
617	the sheep barn waste. A similar peak T/C ratio was obtained by
618	Old et al. (2012) at farmyard runoff samples. The ratio of peaks
619	T and C fluorescence intensity shows that farm waste pollution
620	events could leave a signature in river waters (Baker 2002b)
621	and confirm the potential of using fluorescence as a low cost
622	and rapid technique for tracing animal derived pollutants (Old
623	et al. 2012). Interestingly, pig and cattle slurry presented peak
624	B fluorescence at a similar intensity to that of peak T. Peak B
625	was also detected at poultry wastewater (Ghervase et al.
626	2010b), having even higher fluorescence than that of peak T.

Ghervase et al. (2010b) suggested using the ratio of peak T and

627

528	peak B to detect poultry wastewater pollution in rivers.
529	However, this ratio applicability could be limited only to
530	certain types of animal wastewaters.
531	Cattle slaughterhouse wastewater may contain albumin
532	and haemoglobin that would contribute to the $Em < 380 \text{ nm}$
533	fluorescence region (Louvet et al. 2013). Also, bovine serum
534	albumin may contribute to the fluorescence region of $Em > 380$
535	nm. Louvet et al. (2013) found another fluorescence peak that
536	could belong to metalloporphyrins ($\lambda_{excitation} / \lambda_{emission} = 400$ -
537	440 nm / 450 - 510 nm). These components are attributed to red
538	blood, which is a major pollutant in slaughterhouse wastewater.
539	Again, the ratio of peaks T and C fluorescence intensity was
540	found to be an effective indicator of biodegradation of
541	slaughter house wastewater (<u>Louvet et al. 2013</u>). Nevertheless,
542	the composition of animal derived pollutants is highly variable
543	in time and depends on the animal species, physiological state
544	and diet (Baker 2002b, Louvet et al. 2013). Therefore, more
545	studies are needed to better understand the properties of OM
546	from animal derived wastewater and set clear characteristics for
547	enhanced detection of pollution events.
548	
549	4.1.3 Industrial sources of wastewater
550	Industrial wastewater is primarily derived from the
551	manufacturing and processing of chemicals, textiles, wood,

652	pulp mill or paper. The composition of effluents varies
653	depending on the raw materials used, the type of process and
654	the efficiency of material removal (Sánchez Rojas and Bosch
655	Ojeda 2005). Studies on continuous monitoring and evaluation
656	of industrial wastewater using fluorescence spectroscopy are
657	scarce, limiting identification of particular features of
658	wastewater fluorescence spectra. Few studies focussed on
659	wastewater from petrochemical, chemical and biochemical
660	industry (Borisover et al. 2011), brewery (Janhom et al. 2009,
661	Janhom et al. 2011), textile (Li et al. 2015), pulp mill and paper
662	processing (Baker 2002a, Ciputra et al. 2010, Cawley et al.
663	2012, Bassandeh et al. 2013) computer components
664	manufacturing (Cohen et al. 2014) and coke industry (Ou et al.
665	2014). In one short-term monitoring study, Yang et al. (2015a)
666	analysed and compared the fluorescence spectra of samples
667	from the effluents of 57 facilities belonging to 12 industrial
668	categories (non-alcoholic drinks, electronic devices, food,
669	leather and fur, meat, organic chemicals, pulp and paper,
670	petrochemical, resin and plastic, steel, steam-power and textile
671	dyeing) aiming to evaluate the potential of fluorescence
672	spectroscopy to identify wastewater sources. The researchers
673	were able to characterise and differentiate industrial effluents
674	using cluster analysis, EEM-PARAFAC and FT-IR.
675	Components from both < 380 nm > regions were observed, but
676	no component dominated over all samples. For instance, the

677 peak T component presented the highest fluorescence intensity 678 at leather and fur wastewater, while peak C components 679 dominated the EEMs of food wastewater samples. Therefore, 680 Yang et al. (2015a) concluded that, without additional analyses it may be difficult to identify an industrial source with 681 fluorescence spectroscopy. However, Borisover et al. (2011) 682 683 observed a bathochromic shift of the peak T component induced by polarity and composition of local environment. 684 685 They studied samples collected from rivers impacted by 686 industrial effluents of oil refineries, petroleum and chemical and biochemical plants. The researchers recommended using 687 688 this component as fluorescent tracer of non-specific industrial 689 pollution. 690 **Studies** that evaluated wastewater samples 691 particular industries have identified specific fluorophores. For 692 example, at pulp mill wastewater effluents, Cawley et al. (2012) found a component that was attributed to lignosulfonic 693 acid or to a mixture of fluorophores from the many lignin 694 695 degradation products. However, the authors highlighted that 696 this component may exhibit different emission maxima 697 depending on variations in the actual chemical moieties present in each sample. A similar component was found by <u>Bassandeh</u> 698 699 et al. (2013) at samples collected from the biologically treated 700 effluent of a newsprint mill and the authors attributed it to 701 lignins or chemicals involved in the paper making process.

/02	Cawley et al. (2012) and Bassanden et al. (2013) both
703	identified distinctive PARAFAC peaks for the lignin derived
704	components. However, Santos et al. (2001) observed very
705	intense peaks and additional shoulders at the peak C for
706	samples collected from rivers downstream of pulp mill effluent
707	discharge. Also, compared to samples upstream, the researchers
708	detected an additional peak at $\lambda_{excitation}/\lambda_{emission} \sim 290/\sim 340$ nm,
709	which coincides with the peak T fluorescence. Baker (2002a)
710	suggested that peak T fluorescence results from the lignin and
711	sugars produced by the pulping process, which are likely to be
712	rich in aromatic proteins. This component correlated with TOC
713	(r=0.62, N=18), indicating that peak T fluorescence was a
714	significant contributor to the TOC at paper mill effluents, as
715	this correlation was not seen at the river samples. In addition to
716	lignin derived components, <u>Baker (2002a)</u> identified a peak
717	associated with FWAs, which are commonly used in papers.
718	The differences in results, found by these studies, could be
719	attributed to variations in chemical moieties or to the fact that
720	Cawley et al. (2012) and Bassandeh et al. (2013) used
721	PARAFAC for data processing to provide better separation
722	between lignin and other peak T or peak C fluorophores.
723	A distinctive feature was also detected at textile industry
724	effluents by Li et al. (2015), who found a triple excitation
725	component with emission wavelength at 460 nm. They
726	considered this feature as specific to textile-derived

727	components, because most fluorophores in region Em > 380
728	nm present dual excitation peaks at emission wavelength
729	between 400 and 500 nm. The triple excitation peaks were
730	associated with 1-amino-2-naphtol structure, based on a
731	spectral comparison with the standard solution and were
732	suggested to be used as specific indicators in textile effluents.
733	Li et al. (2015) also found that for peak T fluorescence there
734	were much more species with varying emission wavelengths,
735	which could relate to azo dyes as these substances emit similar
736	fluorescence in this region.
737	As shown in section 2.2 and Table 1, peak B fluorescence
738	could represent phenol-like matter, hydrocarbons or cresols as
739	found by Ou et al. (2014) at coke wastewater samples. In
740	addition to peak B and peak C fluorophores, Ou et al. (2014)
741	identified a component associated with heterocyclic
742	components and polycyclic aromatic hydrocabons (PAHs),
743	such as fluoranthene or naphtol. PAHs were also detected by
744	Cohen et al. (2014) at samples collected from a WwTPs that
745	receives 50% of its crude wastewater from a computer
746	component factory. Based on spectral similarities, Cohen et al.
747	(2014) suggested that this component contains a pyrene-like
748	moiety.
749	While for textile, pulp mill or coke wastewater,
750	distinctive components have been identified, brewery
751	wastewater has been shown to contain only the typical peaks T

752	A and C (Janhom et al. 2009, Janhom et al. 2011), generated by
753	the cleaning and washing of raw materials. They also showed
754	that the fluorescence of brewery wastewater samples belonged
755	primarily to hydrophobic acids and hydrophilic bases OM
756	fractions.

4.2 Wastewater tracking in aquatic systems

Discrimination between sources using fluorescence spectroscopy may be challenging since domestic wastewater can be mixed with industrial effluents and agricultural runoffs (Andersen et al. 2014). Industrial wastewater could also contain domestic discharges from the toilets and kitchens within factories (Reynolds and Ahmad 1995). Moreover, organic pollutants like optical brighteners, PAHs or lignins have widespread application and thus can be found in any type of wastewater.

In particular for industrial wastewater it may be more difficult to separate sources due to the varied composition of the solution. The release of industrial effluents in water bodies may lead to the production of fluorescent fractions formed of a mixture of proteinaceous and non-proteinaceous substances, which generates a bathchromic shift in the typical peak T fluorescence emission wavelength. According to Borisover et al. (2011) this component may be used as a tracer of non-specific industrial pollution. However, various industrial

777	wastewaters produce high quantities of particular fluorophores
778	like PAHs or heterocyclic compounds, differentiating them
779	from domestic wastewater. As shown by Cohen et al. (2014)
780	the pyrene-like components separated the wastewater with 50%
781	industrial input from the more domestic wastewater sources.
782	Also, the devices, developed by Tedetti et al. (2013) and Puiu
783	et al. (2015), that separate PAHs from other peak T
784	fluorophores, hold great promise in detecting both domestic
785	and industrial sources of pollution. Additionally, chemical
786	separation can be undertaken by the use of time resolved laser
787	induced fluorescence, which is capable to identify components
788	based on their lifetimes. PAHs have a relatively long
789	fluorescence lifetimes and great quantum efficiency, which
790	help at distinguishing PAHs from the OM background
791	(<u>McGowin 2005</u>).
792	However, the question remains as to how to differentiate
793	between wastewater from domestic, animal farms and industry
794	sources, which are characterized by intense Em < 380 nm
795	region. Domestic wastewater contains PAHs (Huang et al.
796	2010), which have a distinctive fluorescence signal; however,
797	the quantities could be too low in comparison to other
798	fluorophores and therefore the fluorescence of PAHs could be
799	exceeded by other compounds.
800	Component distinction can also be undertaken by
801	PARAFAC, which may be able to separate overlapping

components or identify specific pollutant indicators (Cohen et al. 2014, Yang et al. 2015b). However, in case of low concentrated pollutants, such as detergents, peak picking has been shown to be more effective than PARAFAC (Mostofa et al. 2010). Therefore, a combination of these techniques could better provide a thorough view of the sample composition and OM interaction with pollutants. Fluorescence spectroscopy could be used as an early warning system in case of accidental pollution and could serve as a quick method in initial identification of the source of wastewater, before more complex and expensive analyses would be employed.

5 Control of wastewater treatment processes using fluorescence spectroscopy

Two decades ago, the studies of Reynolds and Ahmad (1995) and Tartakovsky et al. (1996) demonstrated the potential of using fluorescence spectroscopy for both off- and on-line monitoring in wastewater treatment. Recent studies have suggested that this technique could be applied to process control and optimization (Bridgeman et al. 2013). With increasingly stringent regulation it will be more difficult to control treatment efficiency with current techniques, (BOD, COD and TOC), which are expensive, time-consuming and unreliable (Bridgeman et al. 2013, Rehman et al. 2015). More pressure is put on WwTPs when other environmental

827	implications, such as energy and chemical consumption or
828	greenhouse gases emissions are considered (Wang et al. 2015).
829	Fluorescence spectroscopy offers a robust technique available
830	for a rapid and low cost estimation of effluent quality.
831	However, studies on fluorescence monitoring of WwTPs
832	processes are scarce and only one long-term study at 5
833	municipal WwTPs has been achieved (Cohen et al. 2014).
834	Also, only one real-time monitoring study has been published
835	on two recycled water systems (Singh et al. 2015). According
836	to Reynolds (2002), WwTPs are hostile environments, making
837	continuous and dynamic monitoring of wastewater quality
838	difficult due to problems associated with fouling. This would
839	require regular cleaning, which is time consuming. In addition,
840	the fluorescence signal could be affected by pH, IFE,
841	temperature and metal ions, requiring subsequent corrections.
842	However, recent development of devices, already on market,
843	show great promise since they convert the on-line peak T
844	fluorescence signal into BOD equivalent values, using an
845	internal calibration factor or a multispectral approach
846	(ChelseaInstruments 2015, ModernWater 2015,
847	ZAPSTechnologies 2015). This type of instruments could
848	provide an immediate estimation of changes in wastewater
849	quality, displaying capabilities of effective process control.

5.1 Monitoring of fluorescent OM

Fluorescence real-time monitoring of wastewater quality
is difficult to implement due to multiple potential factors that
may interfere with the signal. The only real-time monitoring
study was undertaken by (Galinha et al. 2011a) on a pilot scale
membrane bioreactor system to predict performance
parameters. EEMs were recorded for 10 months and processed
with multivariate techniques. They concluded that although
fluorescence was able to describe total COD for influent and
effluent, it could not accurately predict other performance
parameters and hence, fluorescence cannot totally replace
conventional monitoring of membrane bioreactors (Galinha et
al. 2011a). Nevertheless, real-time monitoring studies at full-
scale WwTPs should be undertaken in order to assess the
feasibility of the method and the issues that can arise from its
implementation. The studies done on the monitoring of surface
waters identified major issues and offered solutions, which
could be used to build a strategy for wastewater on-line
monitoring. The issues reported so far include: biofilm
formation, temperature, turbidity, inner filter effect, calibration
procedure, presence of quenching elements. Most of these
problems are thoroughly reviewed by <u>Henderson et al. (2009)</u> .
Therefore, only the recent studies will be discussed. Before the
study of Carstea et al. (2010) no long-term, real-time
monitoring experiments were done due to fouling issues.

876	Carstea et al. (2010) showed that over a period of 11 days of
877	continuous EEM recordings on an urban river, biofilm
878	formation on the water extraction system had no influence on
879	the fluorescence signal. However, higher rates of biofilm
880	formation are expected in wastewater, compared to surface
881	water, due to the large quantities of extracellular polymeric
882	substances that enhance cell adhesion to solid surfaces
883	(<u>Tsuneda et al. 2003</u>).
884	Regarding temperature, Chen et al. (2015) tested a newly
885	developed, portable laser induced fluorescence system, for its
886	monitoring capabilities, on estuarine water and found that
887	temperature changes affected the fluorescence results.
888	Yamashita et al. (2015) and Khamis et al. (2015) also reported
889	the impact of temperature on the fluorescence of OM, at
890	monitoring studies on open ocean and urban river. Carstea et al.
891	(2014) have shown that peak T fluorescence suffers more
892	thermal quenching at samples with higher urban anthropogenic
893	impact compared to natural sources. Therefore, temperature
894	could have a major impact on OM fluorescence from
895	wastewater. However, a temperature-compensating tool has
896	been proposed and tested by Watras et al. (2011). Khamis et al.
897	(2015) also proposed a compensating tool for turbidity, which
898	can have a great impact on the fluorescence signal when large
899	particles are present. It is yet to be tested on wastewater
900	samples.

901	The inner filter effect (IFE) is another major issue at
902	wastewater samples. The IFE is the apparent decrease in the
903	emitted fluorescence intensity or a distortion of the band-shape
904	resulting from the absorption of the excited and emitted
905	radiation (Henderson et al. 2009). Kothawala et al. (2013)
906	found that the best correction tool for the IFE is the absorbance
907	based approach, proposed by Lakowicz (2006). This approach
908	can be applied to samples with absorbance values of up to 1.5
909	cm ⁻¹ ; at samples above this value a dilution of 2x is
910	recommended (Kothawala et al. 2013). However, the study of
911	Kothawala et al. (2013) was undertaken on lake water samples
912	and it is not known if these rules apply to wastewater
913	monitoring. As seen in Tables SM1 and SM2, for the
914	wastewater evaluation studies there are two preferred methods
915	for reducing the IFE: dilution and post-measurement
916	mathematical correction. A dilution factor of 10 was used in
917	some studies, while in others the samples were diluted until a
918	specific absorbance value was achieved. Most studies report the
919	absorbance values at wavelengths within the excitation region
920	of peak T. In specific studies, no dilution was used to analyse
921	samples as this procedure in not applied to on-line
922	measurements (for example, (Baker and Inversity 2004,
923	Louvet et al. 2013, Li et al. 2014). However, IFE could be a
924	serious issue for monitoring studies, as this factor might lead to
925	an underestimation of the degree of pollution and poor

926	prediction of BOD, COD or TOC. In this case, dilutions to a
927	certain absorbance value (< 0.05 cm ⁻¹ , as used in most studies,
928	Tables SM1 and SM2) or post-measurement IFE correction are
929	recommended. However, other solutions should be found to
930	counteract IFE, as the use of UV absorbance measurements, in
931	addition to fluorescence spectroscopy, reduces the practicality
932	of the method for on-line monitoring.
933	In addition, <u>Yamashita et al. (2015)</u> proposed
934	fluorescence sensors calibration for dark blanks and/or
935	sensitivity. Solutions of L-tryptophan (Tedetti et al. 2013,
936	Khamis et al. 2015, Sorensen et al. 2015) and quinine sulphate
937	(Conmy et al. 2004, Chen et al. 2015, Yamashita et al. 2015)
938	are generally used as calibration standards for the two
939	fluorescence regions. However, Khamis et al. (2015) mention
940	that uncalibrated systems may be used if qualitative data is
941	needed.
942	Finally regarding the presence of quenching components,
943	Wang et al. (2014) have proved that the presence of humic-like
944	components could reduce the fluorescence of peak T in effluent
945	organic matter. However, even more complex interactions
946	could occur in wastewater samples. Galinha et al. (2011b)
947	found that the addition of bovine serum albumin to domestic
948	wastewater samples determined a decrease with 31-58 % of
949	peak T fluorescence. They concluded that the complexity of
950	interferences on the fluorescence signal might not allow the

951	simple and direct quantitative measurement of specific
952	fluorophores in complex biological systems, such as
953	wastewater. Also, in a study aiming to identify the contribution
954	of extracellular polymeric substances to dye removal, Wei et al.
955	(2015) showed that methylene blue has a substantial quenching
956	effect on peaks T and C fluorescence. Several studies (Baker
957	2001, 2002b, Spencer et al. 2007a, Xue et al. 2011) have
958	stressed that, although peak T is dominant in fluorescence
959	spectra of wastewater, it is very likely that sewage generates
960	high quantities of other components, which may significantly
961	impact peak T fluorescence. Nevertheless, a study conducted
962	by Zhou et al. (2015) on a drinking water source contaminated
963	with domestic wastewater, showed that all peaks were sensitive
964	to pollutant concentration, especially peak T, which could be
965	used as an early warning tool for contamination. Moreover,
966	Goldman et al. (2012) were able to predict the percentage of
967	municipal wastewater in rivers with 80 % confidence, by the
968	use of multivariate linear regression and the fluorescence of
969	both peak T and peak C. They recommended applying this
970	model to develop in situ instruments, inform monitoring
971	progress and develop additional water quality indicators. Also,
972	Hur and Cho (2012) recommended the use of absorbance
973	values at 220 nm and 254 nm, and PARAFAC components
974	similar to peaks T and C, as estimation indices for BOD and
975	COD in wastewater effluent contaminated river.

976

977

998

999

1000

5.2 Monitoring of treatment processes with fluorescence

978 **spectroscopy**

979 Typical wastewater treatment begins with a series of 980 physical operations (pre-treatment and primary treatment), such 981 as screening and sedimentation to remove the floating and 982 settleable solids. These steps are followed by biological 983 processes, which are used to convert the finely divided and 984 dissolved OM from wastewater into flocculant settleable 985 biological solids (Tchobanoglous et al. 1991). Biological processes include the suspended growth activated sludge 986 987 process, anaerobic/anoxic/oxic, sequencing batch reactor, 988 membrane reactor, trickling filter, etc. Activated sludge is the most common process, involving the entrainment of air for 989 990 microbial degradation of OM. In the final steps of the 991 biological treatment, the sludge flocs are separated from the 992 treated effluent, through sedimentation, before the effluent is discharged to a water body. In some WwTPs, additional 993 994 treatment processes (tertiary and quaternary), such as filtration, 995 chlorination, UV disinfection or reverse osmosis are adopted 996 after the biological treatment and subsequent sedimentation 997 (Yang et al. 2015b).

Few studies have focused, so far, on wastewater quality monitoring in treatment works, using fluorescence spectroscopy, to understand the behavior of OM along the

1001	process train, the removal of components and the potential of
1002	applying fluorescence as a control tool. Among these studies,
1003	some looked into the treatment of specific domestic/industrial
1004	wastewater (Janhom et al. 2009, Janhom et al. 2011, Zhu et al.
1005	2011, Yu et al. 2013), the removal and behavior of refractory
1006	OM in treatment works (Hur et al. 2011), characterization of
1007	reverse osmosis permeates (Singh et al. 2009, Singh et al. 2012,
1008	2015) or compared fluorescence EEM-PARAFAC and
1009	HPLC/HPSEC techniques (Li et al. 2014). Fluorescence
1010	monitoring of wastewater quality was performed at time frames
1011	spanning from 1 month to 20 months, by collecting samples
1012	from the inlet and outlet (Reynolds 2002, Riopel et al. 2014) or
1013	along different treatment steps (Singh et al. 2009, Hambly et al.
1014	2010, Murphy et al. 2011, Singh et al. 2012, Bridgeman et al.
1015	2013, Cohen et al. 2014, Ou et al. 2014, Singh et al. 2015). The
1016	longest monitoring study was undertaken by Cohen et al.
1017	(2014), who analyzed the wastewater quality from municipal
1018	treatment plants during 20 months. <u>ENREF 23 ENREF 126 Most</u>
1019	of the monitoring studies involved WwTPs that employed
1020	activated sludge, as biological treatment process. Nevertheless,
1021	a few long-term and short-term monitoring studies have proven
1022	the capacity of fluorescence to evaluate the treatment
1023	performance in plants that used trickling filters (Bridgeman et
1024	al. 2013), anaerobic/anoxic/oxic (Yu et al. 2014), a novel
1025	anoxic/aerobic/aerobic system (Ou et al. 2014) or other

1026	advanced biological treatments, such as phase isolated ditches,
1027	bio-Denipho process, sequencing batch reactors (Hur et al.
1028	2011). Hur et al. (2011) found no difference in OM
1029	fluorescence characteristics between conventional and
1030	advanced biological treatment, while Bridgeman et al. (2013)
1031	were able to show, using fluorescence spectroscopy, that
1032	activated sludge was more effective than trickling filters, in
1033	removing the organic fraction. Variations in the fluorescence
1034	signal among WwTPs were also observed by Murphy et al.
1035	(2011). Nevertheless, the general consensus is that the behavior
1036	of certain fluorescence peaks can be followed along treatment
1037	plants to test performance. Cohen et al. (2014) suggested using
1038	both peak T and peak C components as indicators of total
1039	microbial activity in wastewater. Therefore, varied
1040	instrumentation available on market or under development
1041	(Bridgeman et al. 2015) that measure both components may be
1042	applied to monitor treatment efficiency.

5.3 Removal of fluorescence components along the treatment plant processes

Studies have shown that the OM, especially in the region Em < 380 nm is significantly removed after the biological treatment process (Fig. 2). This is to be expected since the biological treatment removes biodegradable material (Cohen et al. 2014). Riopel et al. (2014) reported a 60% reduction in the

1051	peak T fluorescence. Within the Em < 380 nm region, peak T
1052	component experiences a different degree of removal compared
1053	to peak B component. Yu et al. (2013) found that peak T
1054	fluorescence decreases with 60 % in the anaerobic/anoxic zone,
1055	almost 40 % in the oxic zone and 5% in the final clarification
1056	process, whilst peak B fluorescence is reduced by 55%, almost
1057	100% and 0% in the respective zones. Yu et al. (2014) reported
1058	slightly higher reduction percentages for peak B in the
1059	anaerobic/anoxic/oxic system. They also observed that peak T
1060	remained relatively consistent in the treatment process (41 - 48
1061	%), but peak B decreased dramatically (33 - 7 %). However,
1062	Murphy et al. (2011) and Janhom et al. (2009) found a poor
1063	removal of peak B fluorescence. Janhom et al. (2009) stated
1064	that peak B substances are not considered refractory and
1065	suggested that these substances could be related to some
1066	humic-bound proteinaceous constituents, which may be
1067	biologically resistant. Nevertheless, <u>Cohen et al. (2014)</u> advises
1068	caution when comparing the sensitivity of fluorescent
1069	components to wastewater treatment due to possible multiple
1070	differences in the treatment system. In addition to the
1071	biological treatment, Cohen et al. (2014) found that soil-aquifer
1072	treatment causes a further significant decrease in the
1073	concentration of the OM fluorescing in the Em < 380 nm
1074	region. Murphy et al. (2011) and Hambly et al. (2010) also
1075	observed that chlorination generated a high removal rate of the

peak T fraction at recycled treatment plants.

1077	Compared to peaks T and B components, peaks A and C
1078	are removed to a lower extent in the first stages of the treatment
1079	works (Fig. 2). Riopel et al. (2014) reported a reduction in the
1080	peak C component of 28 % and an increase in peak M with 4 %
1081	from influent to effluent. Cohen et al. (2014) found that one
1082	component in the Em > 380 nm region, sensitive to microbial
1083	activity, was removed, while other two components could not
1084	be removed by the biological treatment. Yu et al. (2013)
1085	observed a reduction in peak C - like component below 10 %.
1086	Later, Yu et al. (2014) showed that one component in the
1087	region Em > 380 nm increases from 6 % in the primary
1088	treatment to 19 % after the biological treatment. An increase in
1089	the fluorescence of this component was observed by Ou et al.
1090	(2014) in anoxic and aerobic treatments. Poor degradation of
1091	these components was also reported by Janhom et al. (2011) at
1092	an activated sludge treatment process. Yu et al. (2015b) found
1093	that with increasing retention times at sequencing batch reactor
1094	the peak C components increase in the soluble microbial
1095	products. These products are generated by substrate utilization
1096	or biomass decay and cell lysis, and are regarded as
1097	autochthonous matter. Cohen et al. (2014) and Riopel et al.
1098	(2014) suggest that these fluorescent components are either
1099	potentially produced during the process or are recalcitrant to
1100	decomposition. Riopel et al. (2014) mention that large

1101	molecules degrade into smaller molecules that have a fulvic-
1102	like behavior, based on the polyphenol postulate of humic
1103	susbtances formation. They explain that due to the high
1104	microbial activity in WwTPs, the secreted exocellular enzymes
1105	will oxidize the polyphenols into quinones. The quinones will
1106	agglomerate with metabolites like amino acids or peptides,
1107	leading to the formation of humic polymers, which could be
1108	fulvic acids because they are smaller in size. Another
1109	explanation for the poor removal of these components is
1110	provided by Hur et al. (2011) who studied the fate of refractory
1111	OM in WwTPs. Refractory OM is not easily removed by the
1112	biological treatment process due to its recalcitrant nature.
1113	Moreover, Hur et al. (2011) showed that in most WwTPs, the
1114	percentage distribution of refractory OM increases in the
1115	effluents.
1116	Tertiary and quaternary treatment stages are responsible
1117	for removing most of the fraction that fluoresces in the region
1118	Em > 380 nm (Fig. 2). Hambly et al. (2010) observed that
1119	chlorination generated a higher reduction in peak C compared
1120	to previous treatment steps. Singh et al. (2012) found a
1121	minimum of 97 % removal of peak C fluorophores after the
1122	reverse osmosis process. Murphy et al. (2011) also reported
1123	almost complete removal of components following reverse
1124	osmosis treatment step.

1125	Removal of fluorescent compounds, like FWAs and
1126	PAHs, was also analysed. Bridgeman et al. (2013) found
1127	FWAs only in crude wastewater and not after other treatment
1128	steps, concluding that this fluorescent fraction associates with
1129	particulate matter, which is removed by the primary treatment
1130	stage. In addition, <u>Tavares et al. (2008)</u> stated that subsequent
1131	disinfection processes may further remove FWAs from
1132	wastewater. According to Hayashi et al. (2002), up to 80 % of
1133	FWAs are removed after the biological treatment, and thus
1134	these compounds could be used as molecular markers of less
1135	effective treatment processes. Ou et al. (2014) found that, for
1136	coke wastewater, the novel anoxic/aerobic/aerobic system
1137	successfully removed PAHs. While, Cohen et al. (2014)
1138	observed no reduction in the pyrene-like component along the
1139	treatment steps.
1140	In most monitoring studies, other changes in the
1141	fluorescence spectra with regard to peak shape and position
1142	were observed. However, the findings regarding peak position
1143	are not consistent across studies, potentially due to differences
1144	in the treatment process or source of wastewater. For example,
1145	Zhu et al. (2011) observed that peak C presented a blue shift of
1146	5 nm for the excitation wavelength and of 21 nm for the
1147	emission wavelength, from influent to effluent, at membrane
1148	bioreactor treated supermarket wastewater. Hur et al. (2011)
1149	reported a 20 nm excitation wavelength red shift between

1150	influent and effluent, at refractory OM from municipal
1151	wastewater. Yet, Riopel et al. (2014), using PARAFAC, found
1152	no change in the peak C position or shape between sample
1153	locations. Riopel et al. (2014) observed that the PARAFAC
1154	component similar to peak T was elongated to longer
1155	wavelengths at influent samples compared to effluent. They
1156	attributed this elongation to the free or bound nature of the
1157	components. In the study of Zhu et al. (2011), peak T
1158	fluorescence displayed a red shift of 5 nm in the emission
1159	wavelength, from influent to effluent (Zhu et al. 2011).
1160	According to Zhu et al. (2011), the red shift is associated with
1161	the presence of carbonyl containing substances, hydroxyl,
1162	alkoxyl, amino groups and carboxyl constituents, while a blue
1163	shift is linked to a decomposition of condensed aromatic
1164	moieties and the break-up of the large molecules into small
1165	molecules.

5.4 Fluorescence control and optimisation of treatment

1168 processes

Increasingly stringent regulation has put major pressure on water utilities to find new technologies and implement control concepts that would improve the overall performance of WwTPs (Rehman et al. 2015). As discussed in previous sections, fluorescence spectroscopy has the potential to be used as a highly effective monitoring technique of treatment quality.

175 This could be achieved through the use of peak T fluorescence
which could replace the out-dated and inaccurate BOD
177 (<u>Bridgeman et al. 2013</u>). Consequently, fluorescence
spectroscopy could provide the WwTPs with the optimum too
for real-time control and remediation of plant performance
failures (<u>Chong et al. 2013</u>).
Additionally, <u>Bridgeman et al. (2013)</u> and <u>Ahmad and</u>
Reynolds (1995) suggested that fluorescence could improve the
process control in activated sludge process. The bacteria and
microorganisms that form the activated sludge are fed with
wastewater containing organic waste. In order to sustain the
biological activities into the activated sludge process for BOD
reduction, air is pumped into the tanks to provide sufficien
quantities of dissolved oxygen. Aeration is one of the mos
energy intensive operations from the WwTPs, almost 65 % or
energy being consumed for the activated sludge process
.191 (<u>Rehman et al. 2015</u>). Water utilities often over aerate to
ensure meeting discharge regulations (<u>Bridgeman et al. 2013</u>)
It is estimated that, by monitoring OM in WwTPs, 40 % of the
energy costs could be saved (Ahmad and Reynolds 1995)
Thus, fluorescence may be used to optimize process control in
treatment works and eliminate the unnecessary costs associated
with overtreatment (<u>Bridgeman et al. 2013</u>).
Promising results regarding online monitoring and
process control were obtained by <u>Singh et al. (2015)</u> , who

published the first real-time study on two municipal recycled treatment plants. The researchers used a peak C sensor to prove the robustness of the technique in detecting reverse osmosis membrane fouling and integrity. They showed that the sensor was sufficiently sensitive to detect subtle differences between membrane permeates and identify underperformance issues. Also, no indication of fouling on probe and no deviation of probe performance were observed, during the experimental period. This study demonstrated the potential of using fluorescence for treatment process assessment and control.

Conclusions and future considerations

The use of real-time fluorescence could lead to a positive change in the water industry, as operators would be able to start immediate remedial actions in case of accidental pollution events, cut costs associated with complex analytical approaches and comply with discharge regulation. Wastewater treatment processes reduce peak T fluorescence primarily by biological treatment, and peak C through chlorination and reverse osmosis. There are several simple probes or fluorometers available on market that measure these two components or more complex systems that convert the peak T fluorescence signal into BOD values.

However, in case of monitoring surface waters contaminated with wastewater, the use of simple fluorometers

1225	may not be the best solution to identify the exact source and
1226	take the appropriate remedial actions. Several fluorophores,
1227	with varied origins, were shown to contribute to peaks T and C,
1228	hindering the identification of the source of wastewater
1229	pollution in natural water systems. Single or double wavelength
1230	instruments could only be used as a time and cost effective first
1231	measure for early warning.
1232	Implementation of fluorescence instrumentation for on-line
1233	monitoring is relatively slow due to several factors, such as
1234	high quantities of suspended solids, temperature, fouling etc. Ir
1235	order to counteract these issues, dilution of samples is
1236	recommended: to a factor of 10 or to an absorbance value of <
1237	0.05 cm ⁻¹ , in the peak T absorbance region. However
1238	wastewaters are highly variable in concentration and
1239	composition and therefore a general dilution factor may not be
1240	recommended. In addition, post-measurement mathematical
1241	correction could be applied to reduce the impact produced by
1242	external factors.
1243	
1244	Acknowledgements
1245	The work of E.M. Carstea was supported by the
1246	European Commission Framework Programme 7, through a
1247	Marie Curie Intra-European Fellowship (PIEF-GA-2012-
12/12	329962)

1250	References
1251	Ahmad, S.R. and Reynolds, D.M. (1995) Synchronous
1251	fluorescence spectroscopy of wastewater and some potential
	constituents. Water Res 29(6), 1599-1602.
1253 1254	Ahmad, S.R. and Reynolds, D.M. (1999) Monitoring of water
	·
1255	quality using fluorescence technique: prospect of on-line process
1256	control. Water Res 33(9), 2069-2074.
1257	Aiken, G.R. (2014) Aquatic Organic Matter Fluorescence.
1258	Coble, P.G., Lead, J., Baker, A., Reynolds, D.M. and Spencer, R.G.M. (eds), pp. 35-75, Cambridge University Press, NY, USA.
1259	
1260	Andersen, C.B., Lewis, G., Hart, M. and Pugh, J. (2014) The
1261 1262	Impact of Wastewater Treatment Effluent on the Biogeochemistry of
1262	the Enoree River, South Carolina, During Drought Conditions. Water, Air, & Soil Pollution 225(5), 1-21.
1264	Assaad, A., Pontvianne, S. and Pons, M.N. (2014) Photodegradation-based detection of fluorescent whitening agents in
1265	
1266 1267	a mountain river. Chemosphere 100, 27-33. Baker, A. (2001) Fluorescence Excitation–Emission Matrix
1267	
1269	Characterization of Some Sewage-Impacted Rivers. Environ Sci Technol 35(5), 948-953.
1209	Baker, A. (2002a) Fluorescence Excitation–Emission Matrix
1270	Characterization of River Waters Impacted by a Tissue Mill Effluent.
1271	Environ Sci Technol 36(7), 1377-1382.
1272	Baker, A. (2002b) Fluorescence properties of some farm
1273	wastes: implications for water quality monitoring. Water Res 36(1),
1275	189-195.
1276	Baker, A. and Inversity, R. (2004) Protein-like fluorescence
1277	intensity as a possible tool for determining river water quality.
1278	Hydrological Processes 18(15), 2927-2945.
1279	Baker, A., Andersen, M.S., Marjo, C.E., Zainuddin, N.S.,
1280	Rutlidge, H., Graham, P.W. and Henderson, R.K. (2014)
1281	Investigation of Pollution in Rivers and Groundwater by
1282	Fluorescence. 1-14.
1283	Baker, A., Cumberland, S.A., Bradley, C., Buckley, C. and
1284	Bridgeman, J. (2015) To what extent can portable fluorescence
1285	spectroscopy be used in the real-time assessment of microbial water
1286	quality? Sci Total Environ 532, 14-19.
1287	Bassandeh, M., Antony, A., Le-Clech, P., Richardson, D. and
1288	Leslie, G. (2013) Evaluation of ion exchange resins for the removal
1289	of dissolved organic matter from biologically treated paper mill
1290	effluent. Chemosphere 90(4), 1461-1469.
1291	Bieroza, M., Baker, A. and Bridgeman, J. (2009) Exploratory
1292	analysis of excitation-emission matrix fluorescence spectra with self-
1293	organizing maps as a basis for determination of organic matter
1294	removal efficiency at water treatment works. Journal of Geophysical
1295	Research: Biogeosciences 114(G4), G00F07.
1296	Borisover, M., Laor, Y., Saadi, I., Lado, M. and Bukhanovsky,
1297	N. (2011) Tracing Organic Footprints from Industrial Effluent
1298	Discharge in Recalcitrant Riverine Chromophoric Dissolved Organic
1299	Matter. Water, Air, & Soil Pollution 222(1-4), 255-269.
1300	Bourgeois, W., Burgess, J.E. and Stuetz, R.M. (2001) On-line
1301	monitoring of wastewater quality: a review. Journal of Chemical
1302	Technology & Biotechnology 76(4), 337-348.

1303 Boving, T., Meritt, D. and Boothroyd, J. (2004) Fingerprinting 1304 sources of bacterial input into small residential watersheds: fate of 1305 fluorescent whitening agents. Environmental Geology 46(2). 1306 Bridgeman, J., Baker, A., Carliell-Marquet, C. and Carstea, E. 1307 (2013) Determination of changes in wastewater quality through a 1308 treatment works using fluorescence spectroscopy. Environ Technol 34(21-24), 3069-3077. 1309 1310 Bridgeman, J., Baker, A., Brown, D. and Boxall, J.B. (2015) 1311 Portable LED fluorescence instrumentation for the rapid assessment 1312 of potable water quality. Science of The Total Environment 524-1313 525C, 338-346. 1314 Bro, R. and Vidal, M. (2011) EEMizer: Automated modeling of fluorescence EEM data. Chemometrics and Intelligent Laboratory 1315 1316 Systems 106(1), 86-92. 1317 Cahoon, L.B. and Mallin, M.A. (2013) Monitoring Water 1318 Quality. Ahuja, S. (ed), pp. 149-169, Elsevier, Amsterdam. 1319 Cao, Y., Griffith, J.F. and Weisberg, S.B. (2009) Evaluation of 1320 optical brightener photodecay characteristics for detection of human 1321 fecal contamination. Water Res 43(8), 2273-2279. 1322 Carstea, E.M., Baker, A., Pavelescu, G. and Boomer, I. (2009) 1323 Continuous fluorescence assessment of organic matter variability on the Bournbrook River, Birmingham, UK. Hydrological Processes 1324 1325 23(13), 1937-1946. 1326 Carstea, E.M., Baker, A., Bieroza, M. and Reynolds, D. (2010) 1327 Continuous fluorescence excitation–emission matrix monitoring of 1328 river organic matter. Water Res 44(18), 5356-5366. 1329 Carstea, E.M., Baker, A., Bieroza, M., Reynolds, D.M. and 1330 Bridgeman, J. (2014) Characterisation of dissolved organic matter fluorescence properties by PARAFAC analysis and thermal 1331 1332 quenching. Water Res 61(0), 152-161. 1333 Cawley, K.M., Butler, K.D., Aiken, G.R., Larsen, L.G., Huntington, T.G. and McKnight, D.M. (2012) Identifying fluorescent 1334 1335 pulp mill effluent in the Gulf of Maine and its watershed. Marine 1336 Pollution Bulletin 64(8), 1678-1687. Chandler, D.M. and Lerner, D.N. (2015) A low cost method to 1337 1338 detect polluted surface water outfalls and misconnected drainage. 1339 Water and Environment Journal 29(2), 202-206. 1340 ChelseaInstruments (2015) UviLux BOD Indicator, Chelsea 1341 Instruments, http://www.chelsea.co.uk/marine/fluorometers/uvilux-bod-1342 indicator. 1343 1344 Chen, B., Wu, H. and Li, S.F.Y. (2014) Development of 1345 variable pathlength UV-vis spectroscopy combined with partial-1346 least-squares regression for wastewater chemical oxygen demand 1347 (COD) monitoring. Talanta 120, 325-330. 1348 Chen, P., Pan, D., Mao, Z. and Tao, B. (2015) Detection of 1349 water quality parameters in Hangzhou Bay using a portable laser 1350 fluorometer. Marine Pollution Bulletin 93(1-2), 163-171. 1351 Chong, S., Aziz, A. and Harun, S. (2013) Fibre Optic Sensors for Selected Wastewater Characteristics. Sensors (Basel) 13(7), 1352 1353 8640-8668. 1354 Ciputra, S., Antony, A., Phillips, R., Richardson, D. and 1355 Leslie, G. (2010) Comparison of treatment options for removal of recalcitrant dissolved organic matter from paper mill effluent. 1356

1357

Chemosphere 81(1), 86-91.

```
1358
               Coble, P.G., Green, S.A., Blough, N.V. and Gagosian, R.B.
        (1990) Characterization of dissolved organic matter in the Black Sea
1359
1360
        by fluorescence spectroscopy. Nature 348(6300), 432-435.
               Coble, P.G. (1996) Characterization of marine and terrestrial
1361
1362
        DOM in seawater using excitation-emission matrix spectroscopy.
1363
        Marine Chemistry 51(4), 325-346.
1364
               Cohen, E., Levy, G.J. and Borisover, M. (2014) Fluorescent
        components of organic matter in wastewater: Efficacy and selectivity
1365
1366
        of the water treatment. Water Res 55(0), 323-334.
1367
               Conmy, R.N., Coble, P.G. and Castillo, C.E.D. (2004)
1368
        Calibration and performance of a new in situ multi-channel
1369
        fluorometer for measurement of colored dissolved organic matter in
1370
        the ocean. Continental Shelf Research 24(3), 431-442.
1371
               Cumberland, S., Bridgeman, J., Baker, A., Sterling, M. and
1372
         Ward, D. (2012) Fluorescence spectroscopy as a tool for determining
1373
        microbial quality in potable water applications. Environ Technol
1374
        33(4-6), 687-693.
1375
               del Olmo, M., Díez, C., Molina, A., de Orbe, I. and Vílchez,
1376
        J.L. (1996) Resolution of phenol, o-cresol, m-cresol and p-cresol
1377
        mixtures by excitation fluorescence using partial least-squares (PLS)
1378
        multivariate calibration. Analytica Chimica Acta 335(1–2), 23-33.
               Dignac, M.F., Ginestet, P., Rybacki, D., Bruchet, A., Urbain,
1379
1380
         V. and Scribe, P. (2000) Fate of wastewater organic pollution during
1381
        activated sludge treatment: nature of residual organic matter. Water
1382
        Res 34(17), 4185-4194.
1383
              Downing, B.D., Boss, E., Bergamaschi, B.A., Fleck, J.A.,
1384
        Lionberger, M.A., Ganju, N.K., Schoellhamer, D.H. and Fujii, R.
1385
        (2009) Quantifying fluxes and characterizing compositional changes
1386
        of dissolved organic matter in aquatic systems in situ using combined
1387
        acoustic and optical measurements. Limnology and Oceanography:
1388
        Methods 7(1), 119-131.
               Drinan, J.E. and Spellman, F. (2012) Water and Wastewater
1389
1390
        Treatment: A Guide for the Nonengineering Professional, CRC
1391
        Press, FL, USA.
               Drozdowska, V. (2007) The lidar investigation of the upper
1392
1393
         water layer fluorescence spectra of the Baltic Sea. The European
1394
        Physical Journal Special Topics 144(1), 141-145.
1395
               Ellis, T.G. (2004) Encyclopedia of Life Support System, Eolss
1396
        Publishers, Oxford, UK
              Fellman, J.B., Hood, E. and Spencer, R.G.M. (2010)
1397
1398
        Fluorescence spectroscopy opens a new windows into dissolved
1399
        organic matter dynamics in freshwater ecosystems: A review.
1400
        Limnology and Oceanography 55(6), 2452-2462.
1401
               Ferretto, N., Tedetti, M., Guigue, C., Mounier, S., Redon, R.
1402
         and Goutx, M. (2014) Identification and quantification of known
1403
        polycyclic aromatic hydrocarbons and pesticides in complex
1404
        mixtures using fluorescence excitation-emission matrices and parallel
1405
        factor analysis. Chemosphere 107, 344-353.
1406
               Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G.,
1407
        Oliveira, R., Crespo, J.G. and Reis, M.A.M. (2011a) Real-time
1408
        monitoring of membrane bioreactors with 2D-fluorescence data and
1409
        statistically based models. Water Science and Technology 63(7),
1410
         1381-1388.
```

Galinha, C.F., Carvalho, G., Portugal, C.A.M., Guglielmi, G.,

Reis, M.A.M. and Crespo, J.G. (2011b) Two-dimensional

1411

1412

1413 fluorescence as a fingerprinting tool for monitoring wastewater treatment systems. Journal of Chemical Technology & 1414 1415 Biotechnology 86(7), 985-992. 1416 Ghervase, L., Carstea, E.M., Pavelescu, G., Borisova, E. and 1417 Daskalova, A. (2010a) Fluorescence evaluation of anthropogenic 1418 influence on rivers crossing Sofia Romanian Reports in Physics 1419 62(1), 193-201. 1420 Ghervase, L., Carstea, E.M., Pavelescu, G. and Savastru, D. 1421 (2010b) Laser Induced Fluorescence efficiency in water quality 1422 assessment Romanian Reports in Physics 62(3), 652-659. 1423 Gholami, A., Masoum, S., Mohsenikia, A. and Abbasi, S. 1424 (2015) Chemometrics-assisted excitation-emission fluorescence 1425 analytical data for rapid and selective determination of optical 1426 brighteners in the presence of uncalibrated interferences. 1427 Spectrochim Acta A Mol Biomol Spectrosc 153, 108-117. 1428 Goldman, J.H., Rounds, S.A. and Needoba, J.A. (2012) 1429 Applications of fluorescence spectroscopy for predicting percent 1430 wastewater in an urban stream. Environ Sci Technol 46(8), 4374-1431 1432 Graham, P.W., Baker, A., Andersen, M.S. and Acworth, I. 1433 (2015) Field Measurement of Fluorescent Dissolved Organic 1434 Material as a Means of Early Detection of Leachate Plumes. Water, 1435 Air, & Soil Pollution 226(7). 1436 Hambly, A.C., Henderson, R.K., Storey, M.V., Baker, A., 1437 Stuetz, R.M. and Khan, S.J. (2010) Fluorescence monitoring at a 1438 recycled water treatment plant and associated dual distribution system--implications for cross-connection detection. Water Res 1439 1440 44(18), 5323-5333. 1441 Hartel, P.G., Hagedorn, C., McDonald, J.L., Fisher, J.A., 1442 Saluta, M.A., Dickerson, J.W., Jr., Gentit, L.C., Smith, S.L., Mantripragada, N.S., Ritter, K.J. and Belcher, C.N. (2007) Exposing 1443 1444 water samples to ultraviolet light improves fluorometry for detecting 1445 human fecal contamination. Water Res 41(16), 3629-3642. 1446 Hayashi, Y., Managaki, S. and Takada, H. (2002) Fluorescent 1447 Whitening Agents in Tokyo Bay and Adjacent Rivers: Their 1448 Application as Anthropogenic Molecular Markers in Coastal 1449 Environments. Environ Sci Technol 36(16), 3556-3563. 1450 He, Q., Yao, K., Sun, D. and Shi, B. (2007) Biodegradability 1451 of tannin-containing wastewater from leather industry. 1452 Biodegradation 18(4), 465-472. 1453 Henderson, R.K., Baker, A., Murphy, K.R., Hambly, A., 1454 Stuetz, R.M. and Khan, S.J. (2009) Fluorescence as a potential 1455 monitoring tool for recycled water systems: a review. Water Res 1456 43(4), 863-881. Huang, M.-h., Li, Y.-m. and Gu, G.-w. (2010) Chemical 1457 composition of organic matters in domestic wastewater. Desalination 1458 1459 262(1-3), 36-42.1460 Hudson, N., Baker, A. and Reynolds, D. (2007) Fluorescence 1461 analysis of dissolved organic matter in natural, waste and polluted 1462 waters—a review. River Research and Applications 23(6), 631-649. Huguet, A., Vacher, L., Relexans, S., Saubusse, S., Froidefond, 1463 J.M. and Parlanti, E. (2009) Properties of fluorescent dissolved 1464 1465 organic matter in the Gironde Estuary. Organic Geochemistry 40(6),

1466

706-719.

1467 Hur, J. and Kong, D.S. (2008) Use of synchronous 1468 fluorescence spectra to estimate biochemical oxygen demand (BOD) 1469 of urban rivers affected by treated sewage. Environ Technol 29(4), 1470 435-444. 1471 Hur, J., Lee, T.-H. and Lee, B.-M. (2011) Estimating the 1472 removal efficiency of refractory dissolved organic matter in 1473 wastewater treatment plants using a fluorescence technique. Environ 1474 Technol 32(16), 1843-1850. 1475 Hur, J. and Cho, J. (2012) Prediction of BOD, COD, and Total 1476 Nitrogen Concentrations in a Typical Urban River Using a 1477 Fluorescence Excitation-Emission Matrix with PARAFAC and UV 1478 Absorption Indices. Sensors (Basel) 12(1), 972-986. 1479 Ishii, S.K.L. and Boyer, T.H. (2012) Behavior of Reoccurring 1480 PARAFAC Components in Fluorescent Dissolved Organic Matter in 1481 Natural and Engineered Systems: A Critical Review. Environ Sci Technol 46(4), 2006-2017. 1482 1483 Janhom, T., Wattanachira, S. and Pavasant, P. (2009) 1484 Characterization of brewery wastewater with spectrofluorometry 1485 analysis. J Environ Manage 90(2), 1184-1190. 1486 Janhom, T., Pavasant, P. and Wattanachira, S. (2011) Profiling 1487 and monitoring of DOM in brewery wastewater and treated wastewater. Environ Monit Assess 176(1-4), 403-418. 1488 1489 Jouanneau, S., Recoules, L., Durand, M.J., Boukabache, A., Picot, V., Primault, Y., Lakel, A., Sengelin, M., Barillon, B. and 1490 1491 Thouand, G. (2014) Methods for assessing biochemical oxygen 1492 demand (BOD): A review. Water Res 49, 62-82. Khamis, K., Sorensen, J.P.R., Bradley, C., Hannah, D.M., 1493 1494 Lapworth, D.J. and Stevens, R. (2015) In situ tryptophan-like 1495 fluorometers: assessing turbidity and temperature effects for 1496 freshwater applications. Environmental Science: Processes & 1497 Impacts. Kothawala, D.N., Murphy, K.R., Stedmon, C.A., 1498 1499 Weyhenmeyer, G.A. and Tranvik, L.J. (2013) Inner filter correction 1500 of dissolved organic matter fluorescence. Limnology and 1501 Oceanography: Methods 11(12), 616-630. 1502 Kramer, J.B., Canonica, S., Hoigné, J. and Kaschig, J. (1996) Degradation of Fluorescent Whitening Agents in Sunlit Natural 1503 1504 Waters. Environ Sci Technol 30(7), 2227-2234. 1505 Lakowicz, J. (2006) Principles of Fluorescence Spectroscopy, Springer US, NY, USA. 1506 1507 Li, W., Xu, Z., Wu, Q., Li, Y., Shuang, C. and Li, A. (2015) Characterization of fluorescent-dissolved organic matter and 1508 1509 identification of specific fluorophores in textile effluents. Environmental Science and Pollution Research 22(6), 4183-4189. 1510 1511 Li, W.T., Chen, S.Y., Xu, Z.X., Li, Y., Shuang, C.D. and Li, 1512 A.M. (2014) Characterization of dissolved organic matter in 1513 municipal wastewater using fluorescence PARAFAC analysis and 1514 chromatography multi-excitation/emission scan: a comparative study. 1515 Environ Sci Technol 48(5), 2603-2609. Louvet, J.N., Homeky, B., Casellas, M., Pons, M.N. and 1516 1517 Dagot, C. (2013) Monitoring of slaughterhouse wastewater 1518 biodegradation in a SBR using fluorescence and UV-Visible 1519 absorbance. Chemosphere 91(5), 648-655. 1520 McGowin, A.E. (2005) Chromatographic Science Series. 1521 Nollet, L.M.L. (ed), p. 599, CRC Press, Boca Raton, FL.

1522 McKnight, D.M., Boyer, E.W., Westerhoff, P.K., Doran, P.T., Kulbe, T. and Andersen, D.T. (2001) Spectrofluorometric 1523 1524 characterization of dissolved organic matter for indication of 1525 precursor organic material and aromaticity. Limnology and 1526 Oceanography 46(1), 38-48. 1527 Meng, F., Huang, G., Yang, X., Li, Z., Li, J., Cao, J., Wang, Z. 1528 and Sun, L. (2013) Identifying the sources and fate of 1529 anthropogenically impacted dissolved organic matter (DOM) in 1530 urbanized rivers. Water Res 47(14), 5027-5039. 1531 Michael, I., Michael, C., Duan, X., He, X., Dionysiou, D.D., 1532 Mills, M.A. and Fatta-Kassinos, D. (2015) Dissolved effluent organic 1533 matter: Characteristics and potential implications in wastewater 1534 treatment and reuse applications. Water Res 77, 213-248. 1535 ModernWater (2015) BODCheck Modern Water, 1536 http://www.modernwater.com/assets/downloads/Factsheets/MW 1537 Factsheet BODChek highres.pdf. 1538 Mostofa, K.G., Wu, F., Liu, C.-Q., Fang, W., Yuan, J., Ying, 1539 W., Wen, L. and Yi, M. (2010) Characterization of Nanming River 1540 (southwestern China) sewerage-impacted pollution using an 1541 excitation-emission matrix and PARAFAC. Limnology 11(3), 217-1542 231. 1543 Murphy, K.R., Hambly, A., Singh, S., Henderson, R.K., Baker, 1544 A., Stuetz, R. and Khan, S.J. (2011) Organic matter fluorescence in 1545 municipal water recycling schemes: toward a unified PARAFAC model. Environ Sci Technol 45(7), 2909-2916. 1546 Murphy, K.R., Stedmon, C.A., Wenig, P. and Bro, R. (2014) 1547 1548 OpenFluor- an online spectral library of auto-fluorescence by organic 1549 compounds in the environment. Analytical Methods 6(3), 658-661. 1550 Navalon, S., Alvaro, M. and Garcia, H. (2011) Analysis of 1551 organic compounds in an urban wastewater treatment plant effluent. 1552 Environ Technol 32(3), 295-306. 1553 Old, G.H., Naden, P.S., Granger, S.J., Bilotta, G.S., Brazier, 1554 R.E., Macleod, C.J.A., Krueger, T., Bol, R., Hawkins, J.M.B., 1555 Haygarth, P. and Freer, J. (2012) A novel application of natural 1556 fluorescence to understand the sources and transport pathways of 1557 pollutants from livestock farming in small headwater catchments. 1558 Science of The Total Environment 417–418(0), 169-182. 1559 Orhon, D., Babuna, F.G. and Karahan, O. (2009) Industrial 1560 Wastewater Treatment by Activated Sludge, IWA Publishing, 1561 London. 1562 Ou, H.S., Wei, C.H., Mo, C.H., Wu, H.Z., Ren, Y. and Feng, 1563 C.H. (2014) Novel insights into anoxic/aerobic(1)/aerobic(2) 1564 biological fluidized-bed system for coke wastewater treatment by 1565 fluorescence excitation-emission matrix spectra coupled with parallel 1566 factor analysis. Chemosphere 113, 158-164. 1567 Patra, D. and Mishra, A.K. (2002) Recent developments in 1568 multi-component synchronous fluorescence scan analysis. TrAC 1569 Trends in Analytical Chemistry 21(12), 787-798. 1570 Petrenko, A.A., Jones, B.H., Dickey, T.D., LeHaitre, M. and Moore, C. (1997) Effects of a sewage plume on the biology, optical 1571 1572 characteristics, and particle size distributions of coastal waters. Journal of Geophysical Research 102(C11), 25061. 1573 1574 Pfeiffer, E., Pavelescu, G., Baker, A., Roman, C., Ioja, C. and 1575 Savastru, D. (2008) Pollution analysis on the Arges River using

- fluorescence spectroscopy. Journal of optoelectronics and advanced materials 10(6), 1489-1494.
- Poiger, T., Field, J.A., Field, T.M., Siegrist, H. and Giger, W. (1998) Behavior of fluorescent whitening agents during sewage treatment. Water Res 32(6), 1939-1947.
- Pokhrel, D. and Viraraghavan, T. (2004) Treatment of pulp and paper mill wastewater--a review. Sci Total Environ 333(1-3), 37-58.
 - Rehman, U., Vesvikar, M., Maere, T., Guo, L., Vanrolleghem, P.A. and Nopens, I. (2015) Effect of sensor location on controller performance in a wastewater treatment plant. Water Science & Technology 71(5), 700-708.
- Reynolds, D. (2014) Aquatic Organic Matter Fluorescence.

 Coble, P.G., Lead, J., Baker, A., Reynolds, D.M. and Spencer,

 R.G.M. (eds), pp. 3-35, Cambridge University Press, NY, USA.
 - Reynolds, D.M. and Ahmad, S.R. (1995) The effect of metal ions on the fluorescence of sewage wastewater. Water Res 29(9), 2214-2216.
 - Reynolds, D.M. and Ahmad, S.R. (1997) Rapid and direct determination of wastewater BOD values using a fluorescence technique. Water Res 31(8), 2012-2018.
 - Reynolds, D.M. (2002) The differentiation of biodegradable and non-biodegradable dissolved organic matter in wastewaters using fluorescence spectroscopy. Journal of Chemical Technology & Biotechnology 77(8), 965-972.
 - Reynolds, D.M. (2003) Rapid and direct determination of tryptophan in water using synchronous fluorescence spectroscopy. Water Res 37(13), 3055-3060.
 - Riopel, R., Caron, F. and Siemann, S. (2014) Fluorescence Characterization of Natural Organic Matter at a Northern Ontario Wastewater Treatment Plant. Water, Air, & Soil Pollution 225(9), 1-17.
 - Ryder, A. (2005) Reviews in Fluorescence 2005. Geddes, C. and Lakowicz, J. (eds), pp. 169-198, Springer US.
 - Sánchez Rojas, F. and Bosch Ojeda, C. (2005) Effluent analysis in analytical chemistry: an overview. Anal Bioanal Chem 382(4), 978-991.
 - Santos, E.B.H., Filipe, O.M.S., Duarte, R.M.B.O., Pinto, H. and Duarte, A.C. (2001) Fluorescence as a Tool for Tracing the Organic Contamination from Pulp Mill Effluents in Surface Waters. Acta hydrochimica et hydrobiologica 28(7), 364-371.
 - Shutova, Y., Baker, A., Bridgeman, J. and Henderson, R.K. (2014) Spectroscopic characterisation of dissolved organic matter changes in drinking water treatment: From PARAFAC analysis to online monitoring wavelengths. Water Res 54, 159-169.
- Singh, S., Henderson, R.K., Baker, A., Stuetz, R.M. and Khan, S.J. (2009) Distinguishing Stage 1 and 2 reverse osmosis permeates using fluorescence spectroscopy. Water Sci Technol 60(8), 2017-2023.
- Singh, S., Henderson, R.K., Baker, A., Stuetz, R.M. and Khan,
 S.J. (2012) Characterisation of reverse osmosis permeates from
- municipal recycled water systems using fluorescence spectroscopy:
- 1628 Implications for integrity monitoring. Journal of Membrane Science
- 1629 421-422, 180-189.

1584

1585

1586

1587

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604 1605

1606 1607

1608

1609

1610

1611

1612

1613

1614

1615 1616

1617

1618

1619

1620

Singh, S., Henderson, R.K., Baker, A., Stuetz, R.M. and Khan, S.J. (2015) Online fluorescence monitoring of RO fouling and integrity: analysis of two contrasting recycled water schemes. Environ. Sci.: Water Res. Technol. 1(5), 689-698. Sorensen, J.P., Lapworth, D.J., Marchant, B.P., Nkhuwa, D.C., Pedley, S., Stuart, M.E., Bell, R.A., Chirwa, M., Kabika, J., Liemisa, M. and Chibesa, M. (2015) In-situ tryptophan-like fluorescence: A real-time indicator of faecal contamination in drinking water supplies. Water Res 81, 38-46. Sorensen, J.P.R., Sadhu, A., Sampath, G., Sugden, S., Dutta Gupta, S., Lapworth, D.J., Marchant, B.P. and Pedley, S. (2016) Are sanitation interventions a threat to drinking water supplies in rural

 923-932.
Spencer, R.G., Baker, A., Ahad, J.M., Cowie, G.L.,
Ganeshram, R., Upstill-Goddard, R.C. and Uher, G. (2007a)
Discriminatory classification of natural and anthropogenic waters in two U.K. estuaries. Science of The Total Environment 373(1), 305-

India? An application of tryptophan-like fluorescence. Water Res 88,

- Spencer, R.G.M., Pellerin, B.A., Bergamaschi, B.A., Downing, B.D., Kraus, T.E.C., Smart, D.R., Dahlgren, R.A. and Hernes, P.J. (2007b) Diurnal variability in riverine dissolved organic matter composition determined byin situ optical measurement in the San Joaquin River (California, USA). Hydrological Processes 21(23), 3181-3189.
 - Stedmon, C.A. and Cory, R.M. (2014) Aquatic Organic Matter Fluorescence. Coble, P.G., Lead, J., Baker, A., Reynolds, D.M. and Spencer, R.G.M. (eds), pp. 278-303, Cambridge University Press, NY, USA.
 - Suthar, S., Sharma, J., Chabukdhara, M. and Nema, A. (2010) Water quality assessment of river Hindon at Ghaziabad, India: impact of industrial and urban wastewater. Environ Monit Assess 165(1-4), 103-112.
 - Takahashi, M. and Kawamura, K. (2006) Simple Measurement of 4,4'-bis(2-sulfostyryl)-biphenyl in River Water by Fluorescence Analysis and Its Application as an Indicator of Domestic Wastewater Contamination. Water, Air, and Soil Pollution 180(1-4), 39-49.
 - Tartakovsky, B., Lishman, L.A. and Legge, R.L. (1996) Application of multi-wavelength fluorometry for monitoring wastewater treatment process dynamics. Water Res 30(12), 2941-2948.
 - Tavares, M.E., Spivey, M.I.H., McIver, M.R. and Mallin, M.A. (2008) Testing for optical brighteners and fecal bacteria to detect sewage leaks in tidal creeks. Journal of the North Carolina Academy of Science 124(3), 91-97.
 - Tchaikovskaya, O., Sokolova, I., Svetlichnyi, V., Karetnikova, E., Fedorova, E. and Kudryasheva, N. (2007) Fluorescence and bioluminescence analysis of sequential UV-biological degradation of p-cresol in water. Luminescence 22(1), 29-34.
- Tchobanoglous, G., Burton, F.L., Metcalf and Eddy (1991)
 Wastewater engineering: treatment, disposal, and reuse, McGraw Hill, New York.
- Tedetti, M., Longhitano, R., Garcia, N., Guigue, C., Ferretto,
 N. and Goutx, M. (2012) Fluorescence properties of dissolved
 organic matter in coastal Mediterranean waters influenced by a

1685 municipal sewage effluent (Bay of Marseilles, France). Environmental Chemistry 9(5), 438-449. 1686 1687 Tedetti, M., Joffre, P. and Goutx, M. (2013) Development of a 1688 field-portable fluorometer based on deep ultraviolet LEDs for the 1689 detection of phenanthrene- and tryptophan-like compounds in natural waters. Sensors and Actuators B: Chemical 182(0), 416-423. 1690 1691 Tertuliani, J.S., Alvarez, D.A., Furlong, E.T., Meyer, M.T., 1692 Zaugg, S.D. and Koltun, G.F. (2008) Occurrence of organic 1693 wastewater compounds in the Tinkers Creek watershed and two other 1694 tributaries to the Cuyahoga River, Northeast Ohio, p. 60, U.S. 1695 Geological Survey. 1696 Tsuneda, S., Aikawa, H., Hayashi, H., Yuasa, A. and Hirata, 1697 A. (2003) Extracellular polymeric substances responsible for 1698 bacterial adhesion onto solid surface. FEMS Microbiology Letters 1699 223(2), 287-292. 1700 Wang, X.-H., Wang, X., Huppes, G., Heijungs, R. and Ren, 1701 N.-O. (2015) Environmental implications of increasingly stringent 1702 sewage discharge standards in municipal wastewater treatment 1703 plants: case study of a cool area of China. Journal of Cleaner 1704 Production 94, 278-283. 1705 Wang, Z., Cao, J. and Meng, F. (2014) Interactions between 1706 protein-like and humic-like components in dissolved organic matter 1707 revealed by fluorescence quenching. Water Res 68C, 404-413. Wang, Z.-g., Liu, W.-q., Zhao, N.-j., Li, H.-b., Zhang, Y.-j., 1708 1709 Si-Ma, W.-c. and Liu, J.-g. (2007) Composition analysis of colored dissolved organic matter in Taihu Lake based on three dimension 1710 1711 excitation-emission fluorescence matrix and PARAFAC model, and 1712 the potential application in water quality monitoring. Journal of 1713 Environmental Sciences 19(7), 787-791. Watras, C.J., Hanson, P.C., Stacy, T.L., Morrison, K.M., 1714 Mather, J., Hu, Y.H. and Milewski, P. (2011) A temperature 1715 1716 compensation method for CDOM fluorescence sensors in freshwater. 1717 Limnology and Oceanography: Methods 9(7), 296-301. 1718 Wei, D., Wang, B., Ngo, H.H., Guo, W., Han, F., Wang, X., Du, B. and Wei, Q. (2015) Role of extracellular polymeric 1719 1720 substances in biosorption of dye wastewater using aerobic granular sludge. Bioresour Technol 185, 14-20. 1721 1722 Xue, S., Zhao, Q., Ma, X., Li, F., Wang, J. and Wei, L. (2011) 1723 Comparison of dissolved organic matter fractions in a secondary 1724 effluent and a natural water. Environ Monit Assess 180(1-4), 371-1725 383. 1726 Yamashita, Y., Lu, C.J., Ogawa, H., Nishioka, J., Obata, H. 1727 and Saito, H. (2015) Application of an in situ fluorometer to 1728 determine the distribution of fluorescent organic matter in the open 1729 ocean. Marine Chemistry 177, Part 2, 298-305. 1730 Yang, L., Han, D.H., Lee, B.-M. and Hur, J. (2015a) 1731 Characterizing treated wastewaters of different industries using 1732 clustered fluorescence EEM-PARAFAC and FT-IR spectroscopy: 1733 Implications for downstream impact and source identification. 1734 Chemosphere 127(0), 222-228. 1735 Yang, L., Hur, J. and Zhuang, W. (2015b) Occurrence and 1736 behaviors of fluorescence EEM-PARAFAC components in drinking 1737 water and wastewater treatment systems and their applications: a

review. Environmental Science and Pollution Research, 1-11.

1738

1739	Yu, H., Song, Y., Tu, X., Du, E., Liu, R. and Peng, J. (2013)
1740	Assessing removal efficiency of dissolved organic matter in
1741	wastewater treatment using fluorescence excitation emission matrices
1742	with parallel factor analysis and second derivative synchronous
1743	fluorescence. Bioresour Technol 144, 595-601.
1744	Yu, H., Song, Y., Liu, R., Pan, H., Xiang, L. and Qian, F.
1745	(2014) Identifying changes in dissolved organic matter content and
1746	characteristics by fluorescence spectroscopy coupled with self-
1747	organizing map and classification and regression tree analysis during
1748	wastewater treatment. Chemosphere 113, 79-86.
1749	Yu, H., Liang, H., Qu, F., Han, Zs., Shao, S., Chang, H. and
1750	Li, G. (2015a) Impact of dataset diversity on accuracy and sensitivity
1751	of parallel factor analysis model of dissolved organic matter
1752	fluorescence excitation-emission matrix. Scientific Reports 5, 10207.
1753	Yu, H., Qu, F., Sun, L., Liang, H., Han, Z., Chang, H., Shao, S
1754	and Li, G. (2015b) Relationship between soluble microbial products
1755	(SMP) and effluent organic matter (EfOM): Characterized by
1756	fluorescence excitation emission matrix coupled with parallel factor
1757	analysis. Chemosphere 121, 101-109.
1758	ZAPSTechnologies (2015) LiquID Station, ZAPS
1759	Technologies, http://www.zapstechnologies.com/the-liquid-
1760	station/.
1761	Zhou, Y., Jeppesen, E., Zhang, Y., Shi, K., Liu, X. and Zhu, G.
1762	(2015) Dissolved organic matter fluorescence at wavelength 275/342
1763	nm as a key indicator for detection of point-source contamination in a
1764	large Chinese drinking water lake. Chemosphere 144, 503-509.
1765	Zhu, X., Wang, Z. and Wu, Z. (2011) Characterization of
1766	membrane foulants in a full-scale membrane bioreactor for
1767	supermarket wastewater treatment. Process Biochemistry 46(4),
1768	1001-1009.
1760	
1769	

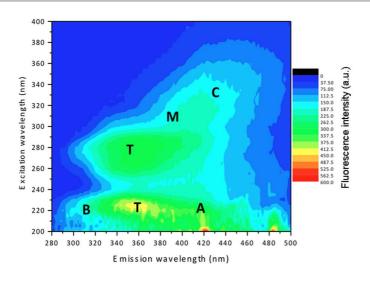
60

Figure 1. Main techniques of processing fluorescence EEMs. Examples of a) peaks identified with the peak picking method, and b) components identified with PARAFAC, for samples of water systems impacted by domestic wastewater.

Figure 2. Removal of fluorescent components during treatment; the removal percentages represent collective values from several studies (<u>Tchobanoglous and Burton 1991</u>, <u>Reynolds 2002</u>, <u>Hambly et al. 2010</u>, <u>Janhom et al. 2011</u>, <u>Murphy et al. 2011</u>, <u>Singh et al. 2012</u>, <u>Cohen et al. 2014</u>, <u>Ou et al. 2014</u>, <u>Riopel et al. 2014</u>, <u>Yu et al. 2014</u>) and unpublished data. Blue arrow – low decrease, Orange arrow – moderate removal, red arrow – high removal.

Table 1. Fluorophores contributing to regions Em < 380 nm >.

Potential fluorophores	Component	Region	Peak position (nm)	Reference	Potential sources in Ww			
	Lignin phenols		~ 245 (295) / 302 270-290 / 300-	Walker et al. (2009) (Hernes et al.	Partially degraded food waste, undigested dietary fibre, toilet paper			
		Em < 380 nm	350	2009) (Stedmon and	etc. Wastewater of paper and pulp industry (Pokhrel and Viraraghavan			
	Vanilic acid		/ 326	Cory 2014) (Stedmon and	2004) fibres from food (<u>Huang et al.</u> 2010)			
Lignins	Syringic acid		/ 338	Cory 2014) (Baker 2002b,				
	Breakdown products	Em > 380 nm	230-275 (300- 390) / 400-520	Ciputra et al. 2010, Osburn and Stedmon 2011, Cawley et al. 2012, Bassandeh et al. 2013)	Paper mill effluents (<u>Baker 2002b</u> , <u>Ciputra et al. 2010</u> , <u>Cawley et al. 2012</u> , <u>Bassandeh et al. 2013</u>)			
Aromatic hydrocarbon	Toluene		266 / 300 - 400	Persichetti et al. (2013)	Municipal Ww (<u>Huang et al. 2010</u> , <u>Mrowiec 2014</u>); Ww with petrol derivatives (<u>Mehdizadeh et al. 2011</u>)			
Phenols	Cresols		210-285 / 290- 310	del Olmo et al. (1996)	Pharmaceutical, fossil fuel or pesticide industries (<u>Tchaikovskaya et al. 2007</u>); Domestic Ww from disinfectants (<u>Tertuliani et al. 2008</u>)			
Aromatic amino acids	Tyrosine	Em < 380 nm	275 / 304	Lakowicz (2006)	Proteins and peptides (<u>Lakowicz</u> 2006); Domestic Ww(<u>Burleson et al.</u> 1980, <u>Dignac et al.</u> 2000, <u>Huang et al.</u> 2010)			
	Tryptophan		295 / 353	Lakowicz (2006)	Proteins and peptides (<u>Lakowicz</u> 2006); Livestock Ww (<u>Choi et al.</u> 2013)			
Indole	8		230 / 330-350	Determann et al. (1998)	Municipal Ww (<u>Dignac et al. 2000</u> , <u>Tertuliani et al. 2008</u> , <u>Huang et al. 2010</u>); Coal tar, oil shale, personal care products, pesticides and pharmaceuticals (<u>Gu and Berry 1991</u> , <u>Tertuliani et al. 2008</u> , <u>Aiken 2014</u>)			
DNA			267 / 327	Vayá et al. (2010)	Proteins (<u>Lakowicz 2006</u>); Municipal Ww (<u>Huang et al. 2010</u>)			
		Em < 380 nm	Short UV	Baker et al. (2014)	Municipal Ww (Guo et al. 2010, Huang et al. 2010); Landfill leachate (Baker and Curry 2004)			
Polyaromatic hydrocarbons	Phenanthrene, anthracene, pyrene, fluoranthene, benzo[a]pyrene	Em > 380 nm	220-300 / 370- 430	(Schwarz and Wasik 1976, Patra and Mishra 2001, Yang et al. 2016)	Industrial Ww (Cohen et al. 2014, Ou et al. 2014); Municipal Ww (Huang et al. 2010)			
Quinones		Em >			Microbes, fungi, plants (<u>Aiken</u> 2014); Activated sludge (<u>Hu et al.</u> 2000)			
Flavonoids		380 nm			Plants (<u>Aiken 2014</u>); food (<u>Egert and Rimbach 2011</u>); olive oil mill Ww (Leouifoudi et al. 2014)			
Humic acids			220-320 (400-	<u>IHSS (2015)</u>				


		500) / 400-550		Municipal Ww (Huang et al. 2010)
Pharmaceutical ly active compounds	Carbamazepine Fluorquinolone Piroxican	308 / 410 (in 2 mol L ⁻¹ HCl, and 20 min irradiation time) 290 / 500 294 / 372 (in media with pH < 2)	Hurtado-Sanchez Mdel et al. (2015)	Faeces, urine (Zhang et al. 2008)
Fluorescent whitening agents		360-365 / 400 - 440	(Takahashi and Kawamura 2006, Tavares et al. 2008)	Laundry detergents, sanitary products, toilet paper and tissues; Papermaking industry (<u>Takahashi and Kawamura 2006</u> , <u>Assaad et al. 2014</u>)

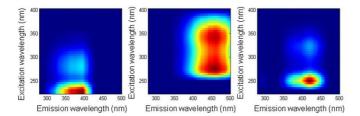
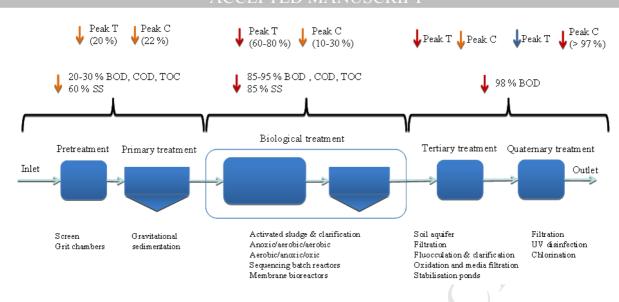

Ww – wastewater

Table 2. Correlation coefficients for peaks T and C (or PARAFAC analogous components) with BOD, COD and TOC.


components) with BOD, COD and TOC.								
Reference	Samples	Sample size	Sample pH	Analysis temperature	Fluorescence Peak	BOD	COD	TOC
Reynolds and Ahmad (1997)	Raw, settled and treated Ww	129	N/A	Room temperature	280 / 340	0.94- 0.97	N/A	N/A
Ahmad and Reynolds (1999)	Raw Ww	25	3 - 7	10-80 ⁰ C	248 / 350	0.97	N/A	N/A
Reynolds (2002)	Raw Ww	56	6.8 ± 0.4	26 ±10 ⁰ C	280 / 350	0.93	0.94	0.93
Baker and Inverarity (2004)	Ww effluents and effluent impacted rivers	434	N/A	N/A	220 / 350	0.85	N/A	N/A
Wang et al. (2007)	Ww impacted lake	26	NT/A	Room	294 / 320	0.54	0.16	N/A
		20	N/A	temperature	360 / 425	0.65	0.03	N/A
Hudson et al. (2008)	Ww effluents				280 / 350	0.71	N/A	0.77
		141	N/A	20 ⁰ C	300-370 / 400-500-	0.34	N/A	0.75
Bridgeman et al. (2013)	Domestic Ww, raw and treated	48	NI/A	20° C	275-285 / 340-360	0.92	0.56	N/A
		40	N/A	20 C	320-355 / 410-470	0.88	0.78	N/A
<u>Cohen et al. (2014)</u>	Domestic and industrial Ww, raw	25-34	7.8 – 8.5	Room	<240 (275) / 346	0.82	0.82- 0.99	0.85- 0.99
	and treated	25-34	temperature		<240 (305) / 422	0.72	0.91	0.99
Ou et al. (2014)	Industrial Ww, raw and treated	120	7 - 9	Room temperature	280 / 320	N/A	0.92	N/A

Ww - wastewater; N/A - not available

- Several fluorophores contribute to common peaks hindering pollution source tracking
- Previous on-line studies may help build a strategy for wastewater analysis
- Dilution of samples, typically up to x10, useful to limit inner filter effect
- Calibration may not be needed for qualitative data
- Research gaps: online application of fluorescence and rapid data processing tools