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Abstract

We extend Abadi-Fournet’s applied pi calculus with state cells, which are used to rea-
son about protocols that store persistent information. Examples are protocols involv-
ing databases or hardware modules with internal state. We distinguish between private
state cells, which are not available to the attacker, and public state cells, which arise
when a private state cell is compromised by the attacker. For processes involving only
private state cells we define observational equivalence and labelled bisimilarity in the
same way as in the original applied pi calculus, and show that they coincide. Our result
implies Abadi-Fournet’s theorem – the coincidence of observational equivalence and
labelled bisimilarity – in a revised version of the applied pi calculus. For processes
involving public state cells, we can essentially keep the definition of observational
equivalence, but need to strengthen the definition of labelled bisimulation in order to
show that observational equivalence and labelled bisimilarity coincide in this case as
well.

1. Introduction

Security protocols are small distributed programs that use cryptography in order to
achieve multiple security goals like confidentiality, authentication. The complexity that
arises from their distributed nature motivates formal analysis in order to prove logical
properties of their behaviour; fortunately, they are often small enough to make this
kind of analysis feasible. Various logical methods have been used to model security
protocols; process calculi have been particularly successful [3, 5, 34]. For example, the
TLS protocol used by billions of users every day was analysed using ProVerif [12].

More recently, protocol analysis methods have been applied to stateful protocols
– that is, protocols which involve persistent state information that can affect and be
changed by protocol runs. Hardware devices that have some internal memory can be
described by such protocols. For example, Yubikey is a USB device which gener-
ates one-time passwords based on encryptions of a secret ID, a running counter and
some random values using a unique AES-128 key contained in the device. The trusted
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platform module (TPM) is another hardware chip that has a variety of registers which
represent its state, and protocols for updating them. Radio-frequency identification
(RFID) is a wireless technology for automatic identification and is currently deployed
in electronic passports, tags for consumer goods, livestock and pets tracking, etc. An
RFID-tag has a small area for storing secrets, which may be modified.

A process calculus can be made to work with such stateful protocols either by
extension or by encoding. Extension means adding to the calculus explicit constructs
for working with the stateful aspects, while encoding means using combinations of the
primitives that already exist. Encodings have the advantage that they keep the calculus
simple and elegant, but (as argued in [3]) there may not be encodings for all the aspects
we want, and in cases that encodings exist they may not be suitable for the analysis of
security properties.

In this paper we choose to extend the applied pi calculus rather than use the en-
coding for two reasons. Firstly, state and channels are conceptually different: states
store information whereas channels are used for communication. There is also a well-
established way of adding state to programming languages which will apply to add state
to the applied pi calculus. Secondly, automated protocol verification tools based on the
applied pi calculus like ProVerif often fail to prove security properties when using the
encoding via restricted channels. ProVerif also provides some built-in features, such
as tables and phases, which provide only limited ways for modelling states. In particu-
lar, tables are defined as predicates which allow processes to store data by extending a
predicate for the data. Hence there is no notion of the “current” state, and values cannot
be deleted from tables. Phases are used to model the protocols with several stages. But
there can be only finitely many phases, which can only be run in sequence, whereas
a state may have infinitely many arbitrary values. StatVerif [8] extends ProVerif with
explicit states, thereby implementing the extension of the applied pi calculus presented
in this paper. It has been successfully used in cases where ProVerif fails.

Our Contributions. We present an extension of the applied pi calculus by adding state
cells, which are used to reason about protocols that store persistent information. We
distinguish between private state cells, which are not available to the attacker, and pub-
lic state cells, which arise when a private state cell is compromised by the attacker.
In our stateful language, a private state cell is guarded by the scope restriction; its
access is limited to some designated processes. When a private state cell gets compro-
mised, the cell becomes public and this scenario is modelled by removing the scope
restriction of that cell. We first define observational equivalence and labelled bisim-
ilarity for processes having only private state cells, and we prove that two notions
coincide as expected. By encoding the private state cells with restricted channels while
keeping observational equivalence, our coincidence result can be seen to imply Abadi-
Fournet’s theorem [3, Theorem 1], in a revised version of applied pi calculus. As far as
we can see, the only available proof for this theorem is [31] which is an unpublished
manuscript. Despite having no published proof, this theorem has been widely used in
many publications, for example [21, 9, 4, 20, 22].

We also discuss an extension of our language with public state cells. The obvious
notion of labelled bisimilarity does not capture observational equivalence on public
state cells. Designing a labelled bisimilarity on public state cells turns out to be un-
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expectedly difficult. Public state cells introduce many special language features which
are significantly different from private state cells. Moreover, the addition of public state
cells increases the capabilities of the attacker significantly. Hence we strengthen the
definition of labelled bisimilarity to show that observational equivalence and labelled
bisimulation coincide.

As an illustration, we analyse the OSK protocol [28] for RFID tags. We model its
untraceability by private state cells and model its forward privacy by public state cells.

This paper is an extension of the conference version [7] with the complete proofs.

Related Work. StatVerif [8] is an extension of ProVerif process language [14] with pri-
vate state cells. The main contribution there is to extend the ProVerif compiler to a
compiler for StatVerif. So far, StatVerif can only handle secrecy properties, which are
modelled as reachability properties of traces. SAPIC [29] is a similar tool as StatVerif
except that SAPIC is based on Tamarin verifier [36] rather than ProVerif. Both StatVerif
and SAPIC are the compilers which translate a stateful language into a low-level lan-
guage that is directly supported by a tool, i.e., horn-clauses supported by ProVerif,
multiset rewriting rules (in which antecedents of applied rules are withdrawn from the
knowledge set in order to represent state changes) supported by Tamarin. However,
none of the existing works study the language feature of the stateful language and
the notions of process equivalences are never defined for a stateful language. Process
equivalences are important concepts which can be used to model the indistinguishabil-
ity properties in security protocols [5, 3].

This paper describes the process calculus on which StatVerif is based. More pre-
cisely, the focus in this paper is to build a stateful language based on applied pi calcu-
lus, explore its language features and discuss indistinguishability, which is modelled by
observational equivalence and analysed by labelled bisimilarity. This paper provides
therefore the basis to extend StatVerif to handle bisimilarity.

There are other languages that have been used to model protocols involving per-
sistent state, but they are lower-level languages that are further away than our process
language from the protocol design. Strand spaces have been generalised to work with
the global state required by a trusted party charged with enforcing fair exchange [27].

Tamarin has been used to analyse stateful protocols directly without going through
the stateful language of SAPIC, e.g. for the analysis of hardware password tokens [30].
Multi-set rewriting is also used in [33], where state changes are important to represent
revocation of cryptographic keys. Horn clauses rather than multiset rewriting are used
in [24], in order to represent state changes made to registers of the TPM hardware
module.

Reasoning about programming languages involving states has been extensively
studied (e.g. [37, 25]). There are very strong interactions between programming lan-
guage features and state, hence the reasoning principles are very specific to the precise
combination of features. In this work we build on the work on reasoning principles for
process calculi using bisimulation and show how to extend these principles to handle
global state.

Outline. The next section defines syntax and semantics for the stateful applied pi cal-
culus. Section 3 discusses the process equivalences and encoding for private state
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cells, and derives Abadi-Fournet’s theorem. Section 6 extends our stateful language
with public state cells. The paper concludes in Section 7.

2. Stateful Applied Pi Calculus

In this section, we extend the applied pi calculus [3] with constructs for states, and
define its operational semantics. In fact, we do not directly build the stateful language
on top of applied pi calculus, because we want to avoid working with the structural
equivalence relation. More precisely, reasoning about the equivalent classes induced
by structural equivalence turns out to be difficult and normally results in long tedious
proofs [23, 20, 32, 19]. Our language inherits constructs for scope restriction, com-
munication and active substitutions from applied pi calculus while having multisets of
processes and active substitutions makes it possible to specify an operational semantics
which does not involve any structural equivalence.

2.1. Syntax

We assume two disjoint, infinite setsN and V of names and variables, respectively.
We rely on a sort system including a universal base sort, a cell sort and a channel sort.
The sort system splits N into channel names Nch, base names Nb and cell names Ns;
similarly, V is split into channel variables Vch and base variables Vb. Unless otherwise
stated, we use a, b, c as channel names, s, t as cell names, and x, y, z as variables. Meta
variables u, v, w are used to range over both names and variables.

A signature Σ consists of a finite set of function symbols, each with an arity. A
function symbol with arity 0 is a constant. Function symbols are required to take
arguments and produce results of the base sort only. Terms, ranged over by M,N , are
built up from variables and names by function application:

M,N ::= terms
a, b, c, k,m, n, s names
x, y, z variables
f(M1, . . . ,M`) function application

We write var(M) and name(M) for the variables and names in M , respectively. Tu-
ples such as u1 · · ·u` and M1 · · ·M` will be denoted by ũ and M̃ , respectively. Terms
are equipped with an equational theory =Σ that is an equivalence relation closed under
substitutions of terms for variables, one-to-one renamings and function applications.

The grammar for the plain process is given below. The operators for nil process 0,
parallel composition |, replication !, scope restriction νn, conditional if - then - else ,
input u(x) and output u〈M〉 are the same as the ones in applied pi calculus [3]. The
process [s 7→ M ] represents that the current value stored in a cell s is M . The process
lock s.P locks the cell s for the subsequent process P . When the cell s is locked,
another process that intends to access the cell has to wait until the cell is unlocked by a
primitive unlock s. The process read s as x.P reads the value in the cell and stores
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it in x. The process s := M.P assigns the value M to the cell and continues as P .

P,Q,R ::= plain process
0 nil process
P | Q parallel composition
!P replication
νn.P name restriction
ifM = N then P else Q conditional
u(x).P input
u〈M〉.P output
[s 7→M ] cell s, containing term M
s := M.P writing a cell
read s as x.P reading a cell
lock s.P locking a cell
unlock s.P unlocking a cell

subject to the following requirements:

• x,M,N are not of cell sort; u ∈ Nch ∪ Vch and s ∈ Ns; additionally, M is of base
sort in both [s 7→M ] and s := M.P ;

• for every lock s. P , the part P of the process must not include parallel or replication
unless it is after an unlock s.

• for a given cell name s, the replication operator ! must not occur between νs and
[s 7→M ].

These side conditions rule out some nonsense processes, such as lock s. !P , lock s.
(P | Q), νs.![s 7→ M ] and νs.([s 7→ M ] | [s 7→ N ]), while keep some reasonable
processes, such as lock s.unlock s. !P , lock s.unlock s. (P | Q) and !νs.[s 7→M ].

An extended process, ranged over by A,B,C, is an expression of the form

νñ. (σ, S,P)

where

• νñ is a set of name restrictions;

• σ is a substitution {M1/x1, . . . ,Mn/xn} which replaces variables of base sort with
terms of base sort; we define dom(σ) := {x1, . . . , xn} and dom(νñ.(σ, S,P)) :=
dom(σ); we require that dom(σ) ∩ fv(M1, . . . ,Mn,P, S) = ∅;

• S = {s1 7→M1, . . . , sm 7→Mm} is a set of state cells such that s1, . . . , sm are
pairwise-distinct cell names and termsM1, . . . ,Mm are of base sort; we write dom(S)
for {s1, . . . , sm} and S(si) for Mi (1 ≤ i ≤ m);

• [s 7→M ] can only occur at most once for a given cell name s, and if a cell name s is
not restricted by any νs, a state cell s 7→M can only occur in S;
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• P = {(P1, L1), . . . , (Pk, Lk)} is a multiset of pairs where Pi is a plain process and
Li is a set of cell names; Li∩Lj = ∅ for any 1 ≤ i, j ≤ k and i 6= j; for each s ∈ Li,
the part of the process Pi must not include parallel or replication unless it is after a
unlock s; we write locks(P) for the set L1 ∪ · · · ∪Lk, namely the locked cells in P .

In an extended process νñ.(σ, S,P), the substitution σ is similar to the active sub-
stitutions in applied pi calculus [3] which denote the static knowledge that the process
exposes to the environment. A minor difference with [3] is that substitutions here are
only defined on terms of base sort which will be explained later. State cells are mutable
and the value of a cell may be changed during the running of processes. If a process
P locks a cell s, then this status information will be kept as (P, {s} ∪ L) in P . At any
time, the cell s can be locked at most once in P .

The variable x in “u(x)” and “read s as x” are bound, as well as the name n in
νn. This leads to the usual notions of bound and free names and variables. We shall
use fn(A) for free names, use fs(A) for free cell names, use fv(A) for free variables,
use bn(A) for bound names, and use bv(A) for bound variables of A. Let fnv(A) =
fn(A) ∪ fv(A) and bnv(A) = bn(A) ∪ bv(A). Following the conventions in [35],
we shall identify processes which are α-convertible. We write “=” for both syntactical
equality and equivalence under α-conversion. Captures of bound names and bound
variables are avoided by implicit α-conversion.

An extended process νñ.(σ, S,P) is called closed if the following conditions all
hold: 1) each variable is either defined by σ or bound; 2) each cell name s is defined
by exactly one “s 7→ M” (either in S or in P); 3) locks(P) ⊆ dom(S). Note that
a variable defined in σ will not occur in S or P because of the condition dom(σ) ∩
fv(M1, . . . ,Mn,P, S) = ∅ in the above definition of extended processes.

We may write (σ, S,P) for ν∅.(σ, S,P), and write νñ, m̃.(σ, S,P) for ν(ñ ∪
m̃).(σ, S,P).

When we write σ = σ1 ∪σ2 for some substitution σ or S = S1 ∪S2 for some state
cells S, we assume that dom(σ1)∩dom(σ2) = ∅ as well as dom(S1)∩dom(S2) = ∅.
For variables x̃, we define σ\x̃ to be the substitution { zσ/z | z ∈ dom(σ) and z /∈ x̃ }.
If A = νñ.(σ, S,P), we write A\x̃ for νñ.(σ\x̃, S,P).

An evaluation context νñ.(σ-, S-,P-) is an extended process with holes “-” for
substitution, state cells and plain processes. Let C = νñ.(σ-, S-,P-) be an evalua-
tion context and A = νm̃.(σa, Sa,Pa) be a closed extended process with m̃ ∩ (ñ ∪
fn(σ, S,P)) = dom(σ)∩dom(σa) = dom(S)∩dom(Sa) = ∅. The result of applying
C to A is an extended process defined by:

C[A] = νñ, m̃.(σσa ∪ σa, Sσa ∪ Sa,Pσa ∪ Pa)

An evaluation context C closes A when C[A] is a closed extended process.
The main differences between our language and the language in StatVerif [8] are:

1) In our language, terms are divided into three types: base type, channel type and cell
type, while StatVerif only has one universal type of terms. The active substitutions in
our language are only defined on the terms of base type and terms can only be input
and output on the terms of channel type, which is to fix the flaw of the coincidence
result between labelled bisimilarity and observational equivalence [3] and will be fur-
ther discussed in Section 5. Moreover, we don’t allow input and output terms of cell
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type which will be explained in the following Section 6.1. 2) Our language uses the
α-conversion to automatically change the bound names to avoid name collisions, while
StatVerif uses a fixed set to record the bound names.

2.2. Operational Semantics

The transition relation A α−→ A′ is the smallest relation on extended processes de-
fined by the rules in Figure 1. The action α is either an internal action τ , an input
a(x), an output of channel name a〈c〉, an output of bound channel name νc.a〈c〉, or an
output of terms of base sort νx.a〈x〉. The transitions for conditional branch, commu-
nication, sending and receiving channel names and complex messages are typical and
essentially the same as the ones in applied pi calculus. In particular, the output νx.a〈x〉
for term M generates an “alias” x for M which is kept in the substitution part of the
extended process. As mentioned before, state cells are used to model the hardware
or the database to which the access is usually mutually-exclusive. When a state cell
is locked, the other process that intends to access the cell must wait until the cell is
released.

2.3. Case study

In this section, we demonstrate the intelligibility of our stateful applied pi calcu-
lus by comparing the formalisation of Trusted Platform Module (TPM) in applied pi
calculus and its formalisation in stateful applied pi. Intelligibility of the translation
from English specification of security protocols to formal model is important since the
design of security protocols are error-prone and usually complicated.

State cells can be encoded by private channels which will be studied in the fol-
lowing Section 4. The exclusive access to the cell is modelled by the unique features
of private channels. For example, in process νc. (c | c.a1.a2c | c.b.c) 1, the actions a1

and a2 cannot be interrupted by b. However, encoding state cells with private chan-
nels is pretty incomprehensible and not intuitive. For example. an input c(x) on a
private channel could be an input action, could also be an encoding for a lock or read
primitive, or encoding for something else. We cannot be sure unless we analyse the
semantics of the whole process. In comparison, when using stateful primitives (such
as lock, read), the meaning can be interpreted immediately from their syntax, and it
reminds the reader here is an operation on state cells rather than an ordinary sending or
receiving a message on a channel. We illustrate this point by a case study on modelling
the Trusted Platform Module (TPM).

Overview of Trusted Platform Module (TPM). TPM is a hardware chip designed to
enable commodity computers to achieve greater levels of security. TPMs are man-
ufactured by chip producers, including Atmel, Broadcom, Infineon, Sinosun, STMi-
croelectronics, and Winbond. It is specified by the Trusted Computing Group (TCG)
industry consortium. The TPM offers an application program interface (API) providing
operations related to:

1We omit the objects in input u(x) and output u〈M〉 and write u and u instead when the objects do not
matter.
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νñ. (σ, S,P ∪ {( !P, ∅)}) τ−−→ νñ. (σ, S,P ∪ {( !P, ∅), (P, ∅)})
νñ.(σ, S,P ∪ {(P | Q, ∅)}) τ−−→ νñ.(σ, S,P ∪ {(P, ∅), (Q, ∅)})
νñ.(σ, S,P ∪ {(νm.P, L)}) τ−−→ νñ,m.(σ, S,P ∪ {(P,L)})

if m /∈ fn(ñ, σ, S,P, L)

νñ.(σ, S,P ∪ {([s 7→M ], ∅)}) τ−−→ νñ.(σ, S ∪ {s 7→M} ,P)
if s ∈ ñ and s /∈ dom(S)

νñ.(σ, S,P ∪ {(a(x).P, L1)} ∪ {(a〈M〉.Q, L2)}) τ−−→ νñ.(σ, S,P ∪ {(P {M/x} , L1), (Q,L2)}))
νñ.(σ, S,P ∪ {(ifM = N then P else Q,L)}) τ−−→ νñ.(σ, S,P ∪ {(P,L)})

if M =Σ N

νñ.(σ, S,P ∪ {(ifM = N then P else Q,L)}) τ−−→ νñ.(σ, S,P ∪ {(Q,L)})
if M 6=Σ N and var(M,N) = ∅

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(read s as x.P, L)}) τ−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P {M/x} , L)})
if s ∈ ñ ∪ L and s 6∈ locks(P)

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(s := N.P,L)}) τ−−→ νñ.(σ, S ∪ {s 7→ N} ,P ∪ {(P,L)})
if s ∈ ñ ∪ L and s 6∈ locks(P)

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(lock s.P, L)}) τ−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P,L ∪ {s})})
if s ∈ ñ and s 6∈ L ∪ locks(P)

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(unlock s.P, L)}) τ−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P,L \ {s})})
if s ∈ ñ ∩ L

νñ.(σ, S,P ∪ {(a(x).P, L)}) a(M)−−−−→ νñ.(σ, S,P ∪ {(P {Mσ/x} , L)})
if name(a,M) ∩ ñ = ∅

νñ.(σ, S,P ∪ {(a〈c〉.P, L)}) a〈c〉−−−→ νñ.(σ, S,P ∪ {(P,L)})
if a, c 6∈ ñ

νñ, c.(σ, S,P ∪ {(a〈c〉.P, L)}) νc.a〈c〉−−−−→ νñ.(σ, S,P ∪ {(P,L)})
if a, c 6∈ ñ and a 6= c

νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) νx.a〈x〉−−−−−→ νñ.(σ ∪ {M/x} , S,P ∪ {(P,L)})
if a 6∈ ñ and M is of base sort and x is fresh

Figure 1: Operational Semantics
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• Platform configuration registers (PCRs): the TPM contains at least 16 PCRs in its
shielded memory which store platform configuration measurements. The only oper-
ation for changing the value u of a PCR is to extend it by a value v, resulting in the
PCR value hash(u, v). A PCR can be either static or dynamic. For simplicity, in
our formal model, we assume TPM only has two PCRs: a static PCR and a dynamic
PCR. A system reboot will reset the value in the static PCRs and dynamic PCRs to
−1. Only an SKINIT instruction (described below) can reset a dynamic PCR to 0.
This enables a remote verifier to distinguish between a reboot and a dynamic reset.

• Secure key management and storage: the TPM can generate new keys, and impose
restrictions on their use. TPMs provide sealed storage, whereby data can be encrypted
using a 2048-bit RSA key whose private component never leaves the TPM in unen-
crypted form. For simplicity, in our formalisation, we assume the data is encrypted
directly under the storage root key (SRK). The SRK is a pair of RSA keys that is used
to encrypt other keys stored outside the TPM. SRK is embedded in the TPM. The
sealed data can be bound to a particular software state, as defined by the contents of
various PCRs. The TPM will only unseal (decrypt) the data when the PCRs contain
the values specified by the seal command.

Seal function encrypts a secret m with a public key pk(k), a specific PCR value v
and a secret tpmpf as aenc (pk(k), tpmpf , v,m). The decryption is modelled as an
equation adec (x, aenc (pk(x), y, z, u)) = 〈y, z, u〉.

• The SKINIT instruction creates an isolated execution environment in which security-
sensitive code can be protected from all other software and devices. The code to be
executed within this protected environment is called Secure Loader Block (SLB). The
SKINIT instruction takes the physical memory address of SLB as its only argument.
The SKINIT instruction resets the value of a dynamic PCR to 0, transmits a copy of
the SLB to the system’s TPM and extends the value of PCR with the measurement of
the SLB, and then begins to execute the SLB.

Each command (e.g., reboot, extend) on TPM is executed atomically without in-
terruption. To formalise TPM, we introduce three state cells: state cell tpm for access
control, state cell spcr for static PCR, and state cell dpcr for dynamic PCR. The oper-
ations on TPM include reboot, extend, skinit and we assume these commands are sent
on the corresponding public channels reboot, extend, skinit. These operations are mod-
elled as processes REBOOT, EXTEND, SKINIT correspondingly. The formalisation
of TPM in applied pi calculus is given in Figure 2 and the formalisation of TPM in
stateful applied pi calculus is given in Figure 3.

Syntax Sugar. We write “let 〈x, y〉 = M in P ” for “P {fst (M) /x, snd (M) /y}”,
and similarly “let 〈x, y, z〉 = M inP ” for “P {fst (M) /x, snd (M) /y, trd (M) /z}”.

3. Process Equivalences for Private State Cells

In this section, we discuss the language features of stateful applied pi with only
private state cells, that is, each cell name s occurring in the processes is within the scope
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TPM := ν tpm, spcr , dpcr , srk , tpmpf , secret .(
c〈pk(srk)〉 | c〈aenc (pk (srk) , tpmpf , hash(0, slb), secret)〉 |
tpm〈init〉 | spcr〈−1〉 | dpcr〈−1〉 | SKINIT | REBOOT | EXTEND

)

SKINIT := ! tpm (z) . skinit (xArgs) . dpcr (x) . (dpcr〈0〉 |
let 〈xSlb, xCom, xSBlob〉 = xArgs in

dpcr (y) .(dpcr〈hash(0, xSlb)〉 |
if xCom = unseal then

let 〈yProof , yPcr , ySecret〉 = adec(srk , xSBlob) in

dpcr (xPcr) .(dpcr〈xPcr〉 |
if 〈tpmpf , xPcr〉 = 〈yProof , yPcr〉

then c〈ySecret〉. dpcr (xPcr) .
(
dpcr〈hash(xPcr , end)〉 | tpm〈z〉

)
else dpcr (xPcr) .

(
dpcr〈hash(xPcr , end)〉 | tpm〈z〉

)
)

else tpm〈z〉
)

)

REBOOT := ! tpm (z) . reboot (xArgs) . spcr (x) . spcr〈−1〉. dpcr (y) . dpcr〈−1〉. tpm〈z〉

EXTEND := ! tpm (z) .

extend (xArgs) .

let 〈xCom, xHash〉 = xArgs in

if xCom = static

then spcr (xPcr) .
(
spcr〈hash(xPcr , xHash)〉 | tpm〈z〉

)
else if xCom = dynamic

then dpcr (yPcr) .
(
dpcr〈hash(yPcr , xHash)〉 | tpm〈z〉

)
else tpm〈z〉

Figure 2: Modelling TPM in applied pi calculus
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TPM := ν tpm, spcr , dpcr , srk , tpmpf , secret .∅,


tpm 7→ init

spcr 7→ −1
dpcr 7→ −1

 ,


(c〈pk(srk)〉, ∅)
(c〈aenc (pk (srk) , tpmpf , hash(0, slb), secret)〉, ∅)
(SKINIT | REBOOT | EXTEND , ∅)




SKINIT := ! lock tpm

skinit (xArgs)

dpcr := 0

let 〈xSlb, xCom, xSBlob〉 = xArgs in

dpcr := hash(0, xSlb)

if xCom = unseal then

let 〈yProof , yPcr , ySecret〉 = adec(srk , xSBlob) in

read dpcr as xPcr

if 〈tpmpf , xPcr〉 = 〈yProof , yPcr〉
then c〈ySecret〉. dpcr := hash(xPcr , end). unlock tpm

else dpcr := hash(xPcr , end). unlock tpm

else unlock tpm

REBOOT := ! lock tpm. reboot (xArgs) . spcr := −1. dpcr := −1. unlock tpm

EXTEND := ! lock tpm

extend (xArgs)

let 〈xCom, xHash〉 = xArgs in

if xCom = static

then read spcr as xPcr . spcr := hash(xPcr , xHash). unlock tpm

else if xCom = dynamic

then read dpcr as yPcr . dpcr := hash(yPcr , xHash). unlock tpm

else unlock tpm

Figure 3: Modelling TPM in stateful applied pi calculus
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of a restriction νs. We first present the coincidence between observational equivalence
and labelled bisimilarity on the extended processes with only private state cells. Then
we propose an encoding of private cells by using restricted channel names.

3.1. Observational Equivalence

For private state cells, we define observational equivalence in a similar way as in
[3]. Observational equivalence [3] has been widely used to model properties of security
protocols. It captures the intuition of indistinguishability from the attacker’s point of
view. Security properties such as anonymity [4], privacy [22, 6] and strong secrecy
[13] are usually formalised by observational equivalence.

We write =⇒ for the reflexive and transitive closure of τ−→; we define α
=⇒ to be

=⇒ α−→=⇒; we define α̂
=⇒ to be α

=⇒ if α is not τ and =⇒ if α = τ . We write A ⇓a
when A =⇒ νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) with a /∈ ñ.

Definition 1. Observational equivalence (≈) is the largest symmetric relation R on
pairs of closed extended processes with only private state cells, such that A R B
implies

(i) dom(A) = dom(B);

(ii) if A ⇓a then B ⇓a;

(iii) if A =⇒ A′ then B =⇒ B′ and A′ R B′ for some B′;

(iv) for all closing evaluation contexts C with only private cells, C[A] R C[B].

Observational equivalence is a contextual equivalence where the contexts model
the active attackers who can intercept and forge messages. In the following examples,
we illustrate the use of observational equivalence in the stateful language by analysing
the untraceability of the RFID tags.

Example 2. We start by analysing a naive protocol for RFID tag identification. The
tag simply reads its id and sends it to the reader. We assume the attacker can eavesdrop
on the radio frequency signals between the tag and the reader. In other words, all
the communications between the tag and the reader are visible to the attacker. The
operations on the tag can be modelled by: P (s) = read s as x. a〈x〉. One security
concern for RFID tags is to avoid third-party attacker tracking. The attacker is not
supposed to trace the tag according to its outputs. Using the definition in [6], the
untraceability can be modelled by observational equivalence:

(∅, ∅, {( ! νs, id .([s 7→ id ] | P (s)), ∅)}) ≈ (∅, ∅, {( ! νs, id .([s 7→ id ] | !P (s)), ∅)})

In the left process, each tag s can be used at most once. In the right process, each tag
s can be used an unbounded number of times. The above equivalence does not hold,
which means this protocol is traceable. By eavesdropping on channel a of the right
process, the attacker can get a data sequence: “id , id , id · · · ”, while a particular id
can occur at most once in the first process.
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Example 3. The OSK protocol [28] is a simple identification protocol for RFID tags
which aims to satisfy third-party untraceability. The tag can perform two independent
one-way functions g and h. An initial secret is stored in the tag and is known to the
back-end database. On each run of the protocol, the tag computes the hash g of its
current value and sends the result to the reader. The reader forwards the message to
the back-end database for identification. The tag then updates its value with the hash
h of its current value. The operations related to a tag s can be modelled by:

T (s) = lock s. read s as x. a〈g(x)〉. s := h(x). unlock s

Let RD be process modelling the reader and back-end database. Similar to Example 2,
the untraceability can be represented by

(∅, ∅, {( ! νs, k.([s 7→ k] | T (s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, k.([s 7→ k] | !T (s) | RD), ∅)})

In the second process, for a particular tag s which contains value k, the data sequence
observed by the attacker on channel a is “g(k), g(h(k)), g(h(h(k))) · · · ”. Without
knowing the secret k, these appear just random data to the attacker and so the attacker
cannot link these data to the same tag. The observational equivalence between these
two processes means the attacker cannot identify the multiple runnings of a particular
tag. The “lock s · · · unlock s” ensures exclusive access to the tag. After the reader
reads the tag, the tag must be renewed before the next access to the tag; otherwise the
tag would be traceable.

3.2. Labelled Bisimilarity
The universal quantifier over the contexts makes it difficult to prove observational

equivalence. Hence labelled bisimilarity is introduced in [3] to capture observational
equivalence. Labelled bisimilarity consists of static equivalence and behavioural equiv-
alence.

Definition 4. Two processes A and B are statically equivalent, written as A ≈s B,
if dom(A) = dom(B), and for any terms M and N with var(M,N) ⊆ dom(A),
Mσ1 =Σ Nσ1 iffMσ2 =Σ Nσ2 whereA = νñ1.(σ1, S1,P1) andB = νñ2.(σ2, S2,P2)
for some ñ1, ñ2 such that (ñ1 ∪ ñ2) ∩ name(M,N) = ∅.

Our definition of static equivalence is essentially the same as the one in [3], as
the definition in [3] is invariant under structural equivalence already. Although static
equivalence is in general undecidable, there are well established ways, including tools,
for verifying static equivalence [2, 17, 18, 10, 16]. Static equivalence defines the indis-
tinguishability between the environmental knowledge exposed by two processes. The
environmental knowledge is modelled by the substitutions in the extended processes.
For example, let A = νk,m.({k/x,m/y} , ∅, ∅) and B = νk.({k/x, h(k)/y} , ∅, ∅).
The test h(x) = y fails under the application of A’s substitution {k/x,m/y}, while
succeeds under the application of B’s substitution {k/x, h(k)/y}. Hence A 6≈s B.

Definition 5. Labelled bisimilarity (≈l) is the largest symmetric relation R between
pairs of closed extended processes with only private state cells such thatA R B implies
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1. A ≈s B;

2. if A α−→ A′ and fv(α) ⊆ dom(A) and bn(α) ∩ fn(B) = ∅, then B α̂
=⇒ B′ such

that A′ R B′ for some B′.

Instead of using arbitrary contexts, labelled bisimilarity relies on the direct com-
parison of the transitions.

3.3. Soundness and Completeness

In this section, we show that when there is only private state cells in the language,
labelled bisimilarity can fully capture observational equivalence. For an evaluation
context C, we write C[A]\x̃ for the process (C[A])\x̃. We write

∏
i∈I Pi for the parallel

composition P1 | P2 | · · · | P|I|.
The following Lemma 6 states that the labelled bisimilarity is closed under the

application of contexts:

Lemma 6. Let A be a closed extended process with only private state cells and C =
νñ.(σ-, S-,P-) be a closing evaluation context with only private state cells and x̃ ⊆
dom(A).

1. If A
c(Mσ)−−−−→ B with name(c,M) ∩ ñ = ∅ and var(M) ⊆ dom(C[A]\x̃), then

C[A]\x̃
c(M)−−−→ C[B]\x̃;

2. If A α−−→ B with name(α) ∩ ñ = ∅ and var(α) ∩ x̃ = ∅, then C[A]\x̃
α−−→ C[B]\x̃

when α is not an input.

Proof. Proof can be found in Appendix A.
Using Lemma 6 several times, we can obtain the following corollary:

Corollary 7. Let A be a closed extended process with only private state cells and
C = νñ.(σ-, S-,P-) be a closing evaluation context with only private state cells and
x̃ ⊆ dom(A).

1. If A
c(Mσ)
=⇒ B with name(c,M) ∩ ñ = ∅ and var(M) ⊆ dom(C[A]\x̃), then

C[A]\x̃
c(M)
=⇒ C[B]\x̃;

2. If A α
=⇒ B with name(α) ∩ ñ = ∅ and var(α) ∩ x̃ = ∅, then C[A]\x̃

α
=⇒ C[B]\x̃

when α is not an input.

We first prove that labelled bisimilarity is sound w.r.t. observational equivalence.
That is to say the labelled bisimilarity is closed under the application of arbitrary con-
text:

Proposition 8 (Soundness). On closed extended processes with only private state cells,
the labelled bisimilarity ≈l is a congruence.
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Proof. We prove that ≈l is a congruence by constructing the following set

R = { (C[A1], C[A2]) | A1 ≈l A2, C is a closing evaluation
context with only private state cells }

and prove thatR ⊆≈l.
Assume (C[A1], C[A2]) ∈ R because of A1 ≈l A2 where Ai = νñi.(σi, Si,Pi)

with i = 1, 2 and C = νñ.(σ-, S-,P-). Then C[Ai] = νñ, ñi.(σσi∪σi, Sσi∪Si,Pσi∪
Pi). To proveR ⊆≈l, we need to show C[A1] ≈s C[A2], and if C[A1]

α−→ B1 for some

B1 then there exists B2 such that C[A2]
α̂

=⇒ B2 and (B1, B2) ∈ R.
First we check the static equivalence C[A1] ≈s C[A2]. Let ϕi = σσi ∪ σi with

i = 1, 2. From dom(σ1) = dom(σ2), we have dom(ϕ1) = dom(ϕ2). Note that for
any term M with var(M) ⊆ dom(ϕi), we have Mϕi = (Mσ)σi and var(Mσ) ⊆
dom(σi) since dom(σ) ∩ dom(σi) = ∅ and C is a closing evaluation context to Ai.
Assume termsM,N with var(M,N) ⊆ dom(ϕi) andMϕ1 =Σ Nϕ1. We shall prove
that Mϕ2 =Σ Nϕ2. From the above analysis, we have (Mσ)σ1 = Mϕ1, (Nσ)σ1 =
Nϕ1, (Mσ)σ1 =Σ (Nσ)σ1 and var(Mσ,Nσ) ⊆ dom(σi). Since A1 ≈s A2, we
have (Mσ)σ2 =Σ (Nσ)σ2. From (Mσ)σ2 = Mϕ2 and (Nσ)σ2 = Nϕ2, we have
Mϕ2 =Σ Nϕ2. Hence we have C[A1] ≈s C[A2].

For the behavioural equivalence, we discuss the different cases of α. For each
transition C[A1]

α−→ B1, we need to find some matched transitions C[A2]
α̂

=⇒ B2 such
that (B1, B2) ∈ R.

1. Assume a transition is about reading a cell s and

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ P1)
τ−→ B1

The “read s as z” comes either from the context C or from the process A1.

(a) Assume read s as z is from the context C. Since A1, A2 only contain private
state cells, the context C cannot access any private state cells in A1, A2. Thus s can
only be a cell defined in S in context C. Assume C = νñ.(σ-, S′ ∪ {s 7→M} -,P ′ ∪
{(read s as z.Pσ1, L)} -), then

C[A1] =

νñ, ñ1. (σσ1 ∪ σ1, S
′σ1 ∪ {s 7→Mσ1} ∪ S1,P ′σ1 ∪ {(read s as z.Pσ1, L)} ∪ P1)

τ−−→ B1 =

νñ, ñ1. (σσ1 ∪ σ1, S
′σ1 ∪ {s 7→Mσ1} ∪ S1,P ′σ1 ∪ {((Pσ1){Mσ1/z} , L)} ∪ P1)

= νñ, ñ1. (σσ1 ∪ σ1, S
′σ1 ∪ {s 7→Mσ1} ∪ S1,P ′σ1 ∪ {((P {M/z})σ1, L)} ∪ P1)

From the structure of C, we can have the following transitions from C[A2]:

C[A2] = νñ, ñ2.(σσ2 ∪ σ2, S
′σ2 ∪ {s 7→Mσ2} ∪ S2,Pσ2 ∪ P2)

= νñ, ñ2.
(
σσ2 ∪ σ2, S

′σ2 ∪ {s 7→Mσ2} ∪ S2,P ′σ2 ∪ {(read s as z.Pσ2, L)} ∪ P2

)
τ−→ B2 =

νñ, ñ2. (σσ2 ∪ σ2, S
′σ2 ∪ {s 7→Mσ2} ∪ S2,P ′σ2 ∪ {((Pσ2){Mσ2/z} , L)} ∪ P2)

= νñ, ñ2. (σσ2 ∪ σ2, S
′σ2 ∪ {s 7→Mσ2} ∪ S2,P ′σ2 ∪ {((P {M/z})σ2, L)} ∪ P2)
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Let C′ = νñ.(σ-, S-,P ′2 ∪ {(P {M/z} , L)} -). Then we can verify that C′[Ai] = Bi
for i = 1, 2. Since A1 ≈l A2, we have (B1, B2) ∈ R.

(b) Assume read s as z is from the process and

A1 = νñ1.(σ1, S
′
1 ∪ {s 7→M} , {(read s as z.P, L)} ∪ P ′1)

Then

C[A1] = νñ, ñ1. (σσ1 ∪ σ1, Sσ1 ∪ S′1 ∪ {s 7→M} ,Pσ1 ∪ {(read s as z.P , L)} ∪ P ′1)
τ−−→ B1 = νñ, ñ1. ((σσ1 ∪ σ1, Sσ1 ∪ S′1 ∪ {s 7→M} ,Pσ1 ∪ {(P {M/z} , L)} ∪ P ′1))

Then A1 can perform the read action and

A1 = νñ1.(σ1, S1 ∪ S′1 ∪ {s 7→M} ,P ′1 ∪ {(read s as z.P , L)})
τ−−→ A′1 = νñ1.(σ1, S1 ∪ S′1 ∪ {s 7→M} ,P ′1 ∪ {(P {M/z}x, L)})

and C[A′1] = B1. From A1 ≈l A2, there exists A′2 such that A2 =⇒ A′2 ≈l A′1.
Using Corollary 7 we obtain C[A2] =⇒ C[A′2]. Let B2 = C[A′2]. Hence (B1, B2) ∈
R.

2. Assume a transition is about locking a cell s and

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ P1)
τ−→ B1

and s ∈ ñ ∪ ñ1 and s /∈ locks(P1,P). The lock s comes either from P in the context
part or from P1 in the process part.

(a) Assume lock s is from the context part and P = P ′ ∪ {(lock s.P, L)}.

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(lock s.Pσ1, L)} ∪ P1)
τ−→ B1 = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(Pσ1, L∪ {s})} ∪ P1)

Since A1, A2 only contain private state cells, the context C cannot access any private
state cells in A1, A2. Thus s is a state cell from context C. We can have the following
transitions from C[A2]:

C[A2] = νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,Pσ2 ∪ P2)

= νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,P ′σ2 ∪ {(lock s.Pσ2, L)} ∪ P2)
τ−→ B2 = νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,P ′σ2 ∪ {(Pσ2, L∪ {s})} ∪ P2)

Let C′ = νñ.(σ-, S-,P ′ ∪ {(P,L ∪ {s})} -). Then we can verify that C′[Ai] = Bi for
i = 1, 2. Since A1 ≈l A2, we have (B1, B2) ∈ R.

(b) Assume P1 = P ′1 ∪ {(lock s.P, L)} and

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(lock s.P,L)} ∪ P ′1)
τ−→ B1 = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(P,L∪ {s})} ∪ P ′1)
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Then A1 can perform the lock action and

A1 =νñ1.(σ1, S1,P ′1 ∪ {(lock s.P,L)})
τ−→ A′1 = νñ1.(σ1, S1,P ′1 ∪ {(P,L∪ {s})})

and C[A′1] = B1. From A1 ≈l A2, there exists A′2 such that A2 =⇒ A′2 ≈l A′1.
Using Corollary 7 we obtain C[A2] =⇒ C[A′2]. Let B2 = C[A′2]. We know that
(B1, B2) ∈ R.

3. The analysis for cases when the transition is caused by writing or unlocking is sim-
ilar as above.

4. Assume

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ P1)
a〈c〉−−→ B1

The output comes either from P in the context part or from P1 in the process part.

(a) Assume the output is from the context part and P = P ′ ∪ {(a〈c〉.P, L)}.

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(a〈c〉.Pσ1, L)} ∪ P1)

a〈c〉−−→ B1 = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(Pσ1, L)} ∪ P1)

Since the output comes from context, we can have the following transitions from
C[A2]:

C[A2] = νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,Pσ2 ∪ P2)

= νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,P ′σ2 ∪ {(a〈c〉.Pσ2, L)} ∪ P2)

a〈c〉−−→ B2 = νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,P ′σ2 ∪ {(Pσ2, L)} ∪ P2)

Let C′ = νñ.(σ-, S-,P ′2 ∪ {(P,L)} -). Then we can verify that C′[Ai] = Bi for
i = 1, 2. Since A1 ≈l A2, we have (B1, B2) ∈ R.

(b) Assume P1 = P ′1 ∪ {(a〈c〉.P, L)} and

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(a〈c〉.P , L)} ∪ P ′1)

a〈c〉−−→ B1 = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(P , L)} ∪ P ′1)

Then A1 can perform the output action and

A1 = νñ1.(σ1, S1,P ′1 ∪ {(a〈c〉.P , L)}) a〈c〉−−→ A′1 = νñ1.(σ1, S1,P ′1 ∪ {(P , L)})

and C[A′1] = B1. From A1 ≈l A2, there exists A′2 such that A2
a〈c〉
=⇒ A′2 ≈l A′1.

Using Corollary 7 we obtain C[A2]
a〈c〉
=⇒ C[A′2]. Let B2 = C[A′2]. We know that

(B1, B2) ∈ R.
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5. Assume

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ P1)
a(M)−−−→ B1

where name(a,M) ∩ (ñ ∪ ñ1) = ∅ and fv(M) ⊆ dom(σ, σ1).

The input action is defined either in P in the context part or in P1 in the process part.

(a) Assume the input action is defined in the context part, i.e.,P = P ′∪{(a(z).P, L)}
for some P ′, P, L and z /∈ fv(A1, A2, C).

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(a(z).Pσ1, L)} ∪ P1)

a(M)−−−→ B1

= νñ, ñ1. (σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(Pσ1 {M(σσ1 ∪ σ1)/z} , L)} ∪ P1))

= νñ, ñ1. (σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {((P {Mσ/z})σ1, L)} ∪ P1)

We construct a new evaluation context C′ = νñ.(σ, S,P ′ ∪ {(P {Mσ/z} , L)}). We

can easily verify that C′[A1] = B1 and C[A2]
a(M)−−−→ C′[A2]. Since (A1, A2) ∈ R, we

have (C′[A1], C′[A2]) ∈ R.

(b) Assume the input action is defined in the process part, i.e.,P1 = P ′1∪{(a(z).P, L)}
for some P ′1, P, L

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(a(z).P , L)} ∪ P ′1)

a(M)−−−→ B1 =

νñ, ñ1. (σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(P {M(σσ1 ∪ σ1)/z} , L)} ∪ P ′1))

Then let A1 input Mσ on channel a and we get

A1 = νñ1.(σ1, S1,P ′1 ∪ {(a(z).P , L)})
a(Mσ)−−−−→ A′1 = νñ1.(σ1, S1,P ′1 ∪ {(P {(Mσ)σ1/z} , L)})

Since fv(M) ⊆ dom(σ, σ1) and dom(σ) ∩ dom(σ1) = ∅, we have (Mσ)σ1 =
M(σσ1 ∪ σ1). We can further verify that C[A′1] = B1. From A1 ≈l A2, we know

that A2
a(Mσ)
=⇒ A′2 ≈l A′1. Using Corollary 7 we obtain C[A2]

a(M)
=⇒ C[A′2]. Let

B2 = C[A′2]. We know that (B1, B2) ∈ R.

6. Assume

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ P1)
νz.a〈z〉−−−−−→ B1

The output comes either from P in the context part or from P1 in the process part.

(a) Assume the output is from the context part and P = P ′ ∪ {(a〈M〉.P, L)}.

C[A1] = νñ, ñ1. (σσ1 ∪ σ1, Sσ1 ∪ S1,P ′σ1 ∪ {(a〈Mσ1〉.Pσ1, L)} ∪ P1)

νz.a〈z〉−−−−−→ B1 = νñ, ñ1. (σσ1 ∪ σ1 ∪ {Mσ1/z} , Sσ1 ∪ S1,P ′σ1 ∪ {(Pσ1, L)} ∪ P1)
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Since the output comes from context, we can have the following transitions from
C[A2]:

C[A2] = νñ, ñ2.(σσ2 ∪ σ2, Sσ2 ∪ S2,Pσ2 ∪ P2)

= νñ, ñ2. (σσ2 ∪ σ2, Sσ2 ∪ S2,P ′σ2 ∪ {(a〈Mσ2〉.Pσ2, L)} ∪ P2))

νz.a〈z〉−−−−−→ B2 = νñ, ñ2. (σσ2 ∪ σ2 ∪ {Mσ2/z} , Sσ2 ∪ S2,P ′σ2 ∪ {(Pσ2, L)} ∪ P2))

Let C′ = νñ.(σ∪{M/z} -, S-,P ′2 ∪{(P,L)} -). Then we can verify that C′[Ai] = Bi
for i = 1, 2. Since A1 ≈l A2, we have (B1, B2) ∈ R.

(b) Assume P1 = P ′1 ∪ {(a〈M〉.P, L)} and

C[A1] = νñ, ñ1.(σσ1 ∪ σ1, Sσ1 ∪ S1,Pσ1 ∪ {(a〈M〉.P , L)} ∪ P ′1)

νz.a〈z〉−−−−−→ B1 = νñ, ñ1.(σσ1 ∪ σ1 ∪ {M/z} , Sσ1 ∪ S1,Pσ1 ∪ {(P , L)} ∪ P ′1)

Then A1 can perform the output action and

A1 = νñ1.(σ1, S1,P ′1 ∪ {(a〈M〉.P , L)})
νz.a〈z〉−−−−−→ A′1 = νñ1.(σ1 ∪ {M/z} , S1,P ′1 ∪ {(P , L)})

and C[A′1] = B1. From A1 ≈l A2, there exists A′2 such that A2
νz.a〈z〉
=⇒ A′2 ≈l A′1.

Using Corollary 7 we obtain C[A2]
νz.a〈z〉
=⇒ C[A′2]. Let B2 = C[A′2]. Hence (B1, B2) ∈

R.

7. The other cases are similar.

Next, we shall prove the completeness of labelled bisimilarity:

Proposition 9 (Completeness). On closed extended processes with only private state
cells, observational equivalence ≈ implies labelled bisimilarity ≈l.

Proof. To show ≈ ⊆ ≈l, we construct the following setR and prove thatR ⊆≈l.

R = { (A1, A2) | ∃ ã, b̃, c̃, ỹ s.t. C[A1]\ỹ ≈ C[A2]\ỹ }

where C = νc̃.(-, -, {(ai〈yi〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J -) with

• ã, b̃, c̃ are pairwise-distinct channel names;

• (ã ∪ b̃) ∩ fn(A1, A2, c̃) = ∅;

• ã = {ai}i∈I and b̃ = {bj}j∈J and c̃ = {cj}j∈J ;

• ỹ ⊆ dom(A1) and ỹ = {yi}i∈I .
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We will proveR ⊆≈l. Note that this is sufficient for proving≈⊆≈l, since ifA1 ≈ A2

then (A1, A2) ∈ R (by letting ã = b̃ = c̃ = ỹ = ∅) and from R ⊆≈l we know
A1 ≈l A2. The reason we need to introduce the context C and remove variables ỹ

is that the labelled transition
νc.a〈c〉−−−−→ makes the bound name c become free and the

transition
νx.a〈x〉−−−−−→ generates a new substitution for term M . These cannot happen

in internal transitions τ−→ when considering observational equivalence. To simulate
outputting a bound name and a term, we store their values by output actions ai〈yi〉 and
bj〈cj〉 and remove the corresponding variables yi from the substitution. The attacker
can refer to these values by using a corresponding input action ai(x) and bj(z).

To show R ⊆≈l, assume (A1, A2) ∈ R because of C[A1]\ỹ ≈ C[A2]\ỹ where
C, ỹ are stated as above. We shall prove the static equivalence A1 ≈s A2, and if
A1

α−→ A′1 for some A′1 then there exists A′2 such that A2
α̂

=⇒ A′2 and (A′1, A
′
2) ∈ R.

1. First we prove that A1 and A2 are statically equivalent, i.e., A1 ≈s A2. Accord-
ing to the definition of static equivalence, consider two termsN1, N2 with var(N1, N2)
⊆ dom(A1) and let Ak = νñk.(σk, Sk,Pk) with k = 1, 2 for some ñ1, ñ2 which do
not occur in N1, N2. Assume N1σ1 =Σ N2σ1, we shall prove that N1σ2 =Σ N2σ2.
The idea of the proof is to construct a context C′ for testing whetherN1 = N2 and then
applying this context to C[A1]\ỹ and C[A2]\ỹ to see if they behave in the same way.
Although ỹ are removed in C[A1]\ỹ and C[A2]\ỹ , the values of ỹ are actually stored in
ai〈yi〉 for i ∈ I in the context C. Hence we can get these values by performing input
actions on channel ai with i ∈ I . Selecting a fresh channel name d, we first construct
the following plain process Pc:

Pc = a1(x1).a2(x2). · · · .a|I|(x|I|).if N1 {xi/yi}i∈I = N2 {xi/yi}i∈I then d

Then we construct an evaluation context C′ = (-, -, {(Pc, ∅)} -) and apply it to C[A1]\ỹ
and have

C′[C[A1]\ỹ] =

νc̃, ñ1.
(
σ1\ỹ, S1,P1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J ∪

{
(Pcσ1\ỹ, ∅)

}
)
)

=⇒ νc̃, ñ1.

σ1\ỹ, S1,

P1 ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{(
if (N1σ1\ỹ){yiσ1/yi}i∈I

= (N2σ1\ỹ){yiσ1/yi}i∈I then d
, ∅

)}
It is clear that (N1σ1\ỹ) {yiσ1/yi}i∈I = N1σ1 =Σ N2σ1 = (N2σ1\ỹ) {yiσ1/yi}i∈I ,
thus the conditional branch jumps to then and we can see that C′[C[A1]\ỹ] ⇓d. Since
C[A1]\ỹ ≈ C[A2]\ỹ and the equivalence should be closed under any closing evaluation
context, it should hold that C′[C[A2]\ỹ] ⇓d and that means

C′[C[A2]\ỹ] =

νc̃, ñ2.(σ2\ỹ, S2,P2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(Pcσ2\ỹ, ∅)

}
)
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=⇒

νc̃, ñ2, m̃
′.

σ2\ỹ, S
′
2,

P ′2 ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{(
if (N1σ2\ỹ){yiσ2/yi}i∈I

= (N2σ2\ỹ){yiσ2/yi}i∈I then d
, ∅

)}
=⇒ νc̃, ñ2, m̃

′′.(σ2\ỹ, S
′′
2 ,P ′′2 ∪

{
(bj〈cj〉, ∅)

}
j∈J ∪

{
(d,∅)

}
)

This requires (N1σ2\ỹ) {yiσ2/yi}i∈I =Σ (N2σ2\ỹ) {yiσ2/yi}i∈I . From Nkσ2 =
(Nkσ2\ỹ) {yiσ2/yi}i∈I for k = 1, 2, we have N1σ2 =Σ N2σ2. Hence A1 ≈s A2.

2. Now we proceed to show the behavioural equivalence between A1 and A2.
Assume A1

α−→ A′1 for some A′1 then there exists A′2 such that A2
α̂

=⇒ A′2 and
(A′1, A

′
2) ∈ R.

(a) AssumeA1 = νñ1.(σ1, S1,P1)
τ−−→ A′1 = νñ′1.(σ1, S

′
1,P ′1) for some ñ′1, S

′
1,P ′1.

Using Corollary 7, we have

C[A1]\ỹ = νc̃, ñ1.(σ1\ỹ, S1,P1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J)

τ−−→ C[A′1]\ỹ = νc̃, ñ′1.(σ1\ỹ, S
′
1,P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J)

Since C[A1]\ỹ ≈ C[A2]\ỹ , there exists B such that C[A2]\ỹ =⇒ B ≈ C[A′1]\ỹ . Since
C[A′1]\ỹ ⇓ai,bj , it has to beB ⇓ai,bj . Since ai, bj do not occur inA1, A2, these outputs
ai〈yi〉, bj〈cj〉 are not involved in the transitions C[A2]\ỹ =⇒ B. Thus the only possi-
bility for B is that B = νc̃, ñ′2.(σ2\ỹ, S

′
2,P ′2∪{(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J)

for some ñ′2, S
′
2,P ′2. Let A′2 = νñ2, ñ

′
2.(σ2, S

′
2,P ′2), then A2 =⇒ A′2 and C[A′2]\ỹ =

B. From C[A′1]\ỹ ≈ C[A′2]\ỹ , we have (A′1, A
′
2) ∈ R.

(b) Assume A1 = νñ1.(σ1, S1,P ′1 ∪ {(a〈e〉.P, L)}) a〈e〉−−−→ A′1 = νñ1.(σ1, S1,P ′1 ∪
{(P,L)}) when a, e 6∈ ñ. The proof is divided into four cases, according to whether
a, e occur in c̃. If a, e are free names, they can be used directly. But if a, e are bounded
by c̃, we cannot directly refer to them. But the names in c̃ are stored in the output
actions bj〈cj〉 for j ∈ J . Hence we can get these bound names by using an additional
input action on bj in the context.

i. We start by analysing the simplest case when a, e /∈ c̃. In this case, we can di-
rectly use a, e in the context. Let C′ = (-, -,

{
(d, ∅)

}
∪{(a(x).if x = e then d , ∅)} -),

where d is fresh. Applying C′ to C[A1]\ỹ , we can see that

C′[C[A1]\ỹ]

= νc̃, ñ1.

(
σ1, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(a〈e〉.P , L)} , (d, ∅), (a(x).if x = e then d, ∅)

)
τ−−→

νc̃, ñ1.

(
σ1, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I
∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(P,L), (d, ∅), (if e = e then d, ∅)

})
=⇒ B1 = νc̃, ñ1.

(
σ1, S1,P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J ∪ {(P,L)}

)
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Since C[A1]\ỹ ≈ C[A2]\ỹ and ≈ is closed under evaluation contexts, we know
that C′[C[A1]\ỹ] ≈ C′[C[A2]\ỹ]. Then there exists B2 such that

C′[C[A2]\ỹ] =⇒ B2 ≈ B1

For i ∈ I, j ∈ J , we know that B1 ⇓ai,bj and B1 6⇓d. Thus it should be B2 ⇓ai,bj
and B2 6⇓d. Since a is different from ai, bj and ai, bj do not occur in A1, A2, the
only possibility for the transitions C′[C[A2]\ỹ] =⇒ B2 is that

C′[C[A2]\ỹ] = νc̃, ñ2.

(
σ2,S2,

P2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪
{

(d, ∅), (a(x).if x = e then d, ∅)
} )

=⇒ νc̃, ñ2, m̃.

(
σ2,S

′
2,
P ′

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪
{

(d, ∅), (a(x).if x = e then d, ∅)
})

τ−−→ νc̃, ñ2, m̃.

(
σ2,S

′
2,
P ′′

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪
{

(d, ∅), (if e = e then d, ∅)
} )

=⇒ νc̃, ñ2, m̃
′.

(
σ2,S

′′
2 ,

P ′′′
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪
{

(d, ∅), (if e = e then d, ∅)
} )

τ−−→ νc̃, ñ2, m̃
′.

(
σ2, S

′′
2 ,

P ′′′
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪
{

(d, ∅), (d, ∅)
} )

=⇒ νc̃, ñ2, m̃
′′.

(
σ2, S

′′′
2 ,

P(4)
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪
{

(d, ∅), (d, ∅)
}

)
τ−−→ νc̃, ñ2, m̃

′′.
(
σ2,S

′′′
2 ,P

(4)
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J

)
=⇒ B2 = νc̃, ñ2, m̃

′′′.
(
σ2,S

(4)
2 ,P(5)

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

)
Let A′2 = νñ2, m̃

′′′.(σ2, S
(4)
2 ,P(5)

2 ). We can easily verify that C[A′2]\ỹ = B2.
Since the outputs ai〈yi〉, bj〈cj〉 are not involved in the transitions, we have

A2 =⇒ νñ2, m̃.(σ2, S
′
2,P ′2)

a〈e〉−−→ νñ2, m̃.(σ2, S
′
2,P ′′2 ) =⇒ νñ2, m̃

′.(σ2, S
′′
2 ,P

(3)
2 )

=⇒ νñ2, m̃
′′.(σ2, S

(3)
2 ,P(4)

2 ) =⇒ A′2 = νñ2, m̃
′′′.(σ2, S

(4)
2 ,P(5)

2 )

Hence A1
a〈e〉−−→ A′1, A2

a〈e〉
=⇒ A′2 and C[A′1]\ỹ ≈ C[A′2]\ỹ . Then (A′1, A

′
2) ∈ R.

ii. If a = ck for some k ∈ J and e /∈ c̃, let

C′ = (-, -,
{

(d, ∅), (bk(u).u(x).if x = e then d.bk〈u〉, ∅)
}

-)

where d is fresh. Note that each time we consume a bj〈u〉, we need to generate a

22



new one since we require each name in c̃ has an output action.

C′[C[A1]\ỹ] =

νc̃, ñ1.

(
σ1, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(a〈e〉.P, L), (d, ∅)

}
∪
{
(bk(u).u(x).if x = e then d.bk〈u〉, ∅)

} )
τ−−→

νc̃, ñ1.

(
σ1, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{
(bj〈cj〉,∅)

}
j∈J\k

∪
{

(a〈e〉.P , L), (d, ∅)
}
∪
{
(a(x).if x = e then d.bk〈a〉, ∅)

})
=⇒ B1 = νc̃, ñ1.

(
σ1, S1,P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪

{
(bj〈cj〉,∅)j∈J

}
∪ {(P,L)}

)
We can easily verify that B1 = C[A′1]\ỹ . Since C′[C[A1]\ỹ] ≈ C′[C[A2]\ỹ], there
exists B2 such that

C′[C[A2]\ỹ] =⇒ B2 ≈ B1

From B1 ⇓ai,bj and B1 6⇓d, we should also have B2 ⇓ai,bj and B2 6⇓d. Thus the
only possibility for the transitions C′[C[A2]\ỹ] =⇒ B2 are:

C′[C[A2]\ỹ]

= νc̃, ñ2.

(
σ2,S2,

P2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(d, ∅)

}
∪
{

(bk(u).u(x).if x = e then d.bk〈u〉, ∅)
} )

=⇒ νc̃, ñ2, m̃.

(
σ2,S

′
2,
P ′

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{
(bj〈cj〉,∅)

}
j∈J
∪
{

(d, ∅)
}

∪
{
(bk(u).u(x).if x = e then d.bk〈u〉, ∅)

} )
τ−−→ νc̃, ñ2, m̃.

(
σ2,S

′
2,
P ′

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{
(bj〈cj〉,∅)

}
j∈J\k

∪
{

(d, ∅), (a(x).if x = e then d.bk〈a〉, ∅)
})

=⇒ νc̃, ñ2, m̃
′.

(
σ2,S

′′
2 ,

P ′′
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J\k

∪
{

(d, ∅), (a(x).if x = e then d.bk〈a〉, ∅)
})

τ−−→ νc̃, ñ2, m̃
′.

(
σ2,S

′′
2 ,

P ′′′
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J\k

∪
{

(d, ∅), (if e = e then (d.bk〈a〉), ∅)
})

=⇒ νc̃, ñ2, m̃
′′.

(
σ2,S

′′′
2 ,

P(4)
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J\k

∪
{

(d, ∅), (if e = e then d.bk〈a〉, ∅)
}
)

τ−−→ νc̃, ñ2, m̃
′′.

(
σ2,S

′′′
2 ,

P(4)
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J\k

∪
{

(d, ∅), (d.bk〈a〉, ∅)
}

)

=⇒ νc̃, ñ2, m̃
′′′.

(
σ2,S

(4)
2 ,

P(5)
2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J\k

∪
{

(d, ∅), (d.bk〈a〉, ∅)
}

)
τ−−→ νc̃, ñ2, m̃

′′′.
(
σ2,S

(4)
2 ,P(5)

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{
(bj〈cj〉,∅)

}
j∈J

)
=⇒ B2 = νc̃, ñ2, m̃

(4).
(
σ2,S

(5)
2 ,P(6)

2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

)
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Let A′2 = νñ2, m̃
(4).(σ2, S

(5)
2 ,P(6)

2 ). We can easily verify that C[A′2]\ỹ = B2.
And we have the following transitions from A2 to A′2:

A2 =⇒ νñ2, m̃.(σ2, S
′
2,P ′2) =⇒ νñ2, m̃

′.(σ2, S
′′
2 ,P ′′2 )

a〈e〉−−→ νñ2, m̃
′.(σ2, S

′′
2 ,P ′′′2 ) =⇒ νñ2, m̃

′′.(σ2, S
′′′
2 ,P

(4)
2 )

=⇒ νñ2, m̃
′′′.(σ2, S

(4)
2 ,P(5)

2 ) =⇒ A′2 = νñ2, m̃
(4).(σ2, S

(5)
2 ,P(6)

2 )

Hence A1
a〈e〉−−→ A′1, A2

a〈e〉
=⇒ A′2 and C[A′1]\ỹ ≈ C[A′2]\ỹ . Then (A′1, A

′
2) ∈ R.

iii. If e = ck with k ∈ J and a /∈ c̃, let

C′ = (-, -,
{

(d, ∅), (bk(v).a(x).if x = v then d.bk〈v〉, ∅)
}

-)

where d is fresh. The rest of analysis is similar as above.
iv. If a = e = ck with k ∈ J , let

C′ = (-, -,
{

(d, ∅), (bk(u).u(x).if x = u then d.bk〈u〉, ∅)
}

-)

where d is fresh. The rest of analysis is similar as above.
v. If a = cj and e = ck with j 6= k and j, k ∈ J , let

C′ = (-, -,
{

(d, ∅), (bj(u).bk(v).u(x).if x = v then (d.bj〈u〉 | bk〈v〉), ∅)
}

-)

where d is fresh. The rest of analysis is similar as above.

(c) α is a base input a(M). Assume A1 = νñ1.(σ1, S1,P ′1 ∪{(a(x).P, L)}) a(M)−−−−→
A′1 = νñ1.(σ1, S1,P ′1 ∪ {(P {Mσ1/x} , L)}) and fv(M) ⊆ dom(σ1).

i. If a /∈ c̃, let π := a1(x1).a2(x2). · · · .a|I|(x|I|) and consider the evaluation
context

C′ =

(
-, -,

{(∏
i∈I

di, ∅

)
,

(
π.a〈M {xi/yi}i∈I〉.

(∏
i∈I

di.ai〈xi〉

)
, ∅

)}
-

)

where {di}i∈I are fresh. Note that the use of di is to make sure (
∏
i∈I di.ai〈xi〉, ∅)

will be split into {(ai〈xi〉, ∅)}i∈I . Applying C′ to C[A1]\ỹ , we can see that

C′[C[A1]\ỹ] =⇒

B1 := νc̃, ñ1.

(
σ1, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(P {Mσ1/x} , L)}

)

We can verify that C[A′1]\ỹ = B1. Similarly we have C′[C[A1]\ỹ] ≈ C′[C[A2]\ỹ].
Then there exists B2 such that

C′[C[A2]\ỹ] =⇒ B2 ≈ B1
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Since C′[C[A1]\ỹ] ⇓ai,bj ,di and B1 ⇓ai,bj but B1 6⇓di , it should be that B2 ⇓ai,bj
but B2 6⇓di . Hence the only possibility of C′[C[A2]\ỹ] =⇒ B2 is that

C′[C[A2]\ỹ]

= νc̃, ñ2.

σ2, S2,

P2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{
(
∏
i∈I

di, ∅), (π.a〈M {xi/yi}i∈I〉.
∏
i∈I

di.ai〈xi〉, ∅)

}
=⇒ B2 := νc̃, ñ′2.

(
σ2, S

′
2,P ′2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J

)
Let A′2 = νñ′2.(σ2, S

′
2,P ′2). We can easily verify that C[A′2]\ỹ = B2. Then we

have
A2 = νñ2.(σ2, S2,P2) =⇒ A′2 = νñ′2.(σ2, S

′
2,P ′2)

Since C[A′1]\ỹ ≈ C[A′2]\ỹ , we have (A′1, A
′
2) ∈ R.

ii. If a = cj for some j ∈ J , let π := a1(x1).a2(x2). · · · .a|I|(x|I|) and

C′ =

(
-, -,

{
(
∏
i∈I

di, ∅), (π.bj(u).u〈M {xi/yi}i∈I〉.(bj〈u〉 |
∏
i∈I

di.ai〈xi〉), ∅)

}
-

)

where {di}i∈I are fresh channel names. The analysis is similar as above.

(d) α is an input a(e) of channel name e. We require that ai, bj /∈ fn(ñ1, ñ2, c̃, A1, A2).
The arbitrary input value e may be one of ai, bj and thus may violate this condition
in the subsequent processes. In that case, we can choose a fresh name d to replace
e in C and obtain a new equivalence C {d/e} [A1]\ỹ ≈ C {d/e} [A2]\ỹ . Hence, for
simplicity, we can safely assume that no conflict is introduced by e. Note that we
treat the input of the channel name in a separate case because the channel names are
different from base terms. When the input is a base term M, M can contain variables
defined in σ, thus we need to use variables from σ when constructing context C. But
when the input is a channel name, we don’t need anything from σ. Assume A1 =

νñ1.(σ1, S1,P ′1 ∪ {(a(x).P, L)}) a(e)−−−→ A′1 = νñ1.(σ1, S1,P ′1 ∪ {(P {e/x} , L)}).
Similarly,

i. If a, e /∈ c̃, consider the evaluation context C′ = (-, -,
{

(d, ∅), (a〈e〉.d, ∅)
}

-)
where d is fresh. Applying C′ to C[A1]\ỹ , we can see that

C′[C[A1]\ỹ] =⇒

B1 := νc̃, ñ1.

(
σ1, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(P {e/x} , L)}

)

We can verify that C[A′1]\ỹ = B1. Similarly we have C′[C[A1]\ỹ] ≈ C′[C[A2]\ỹ].
Then there exists B2 such that

C′[C[A2]\ỹ] =⇒ B2 ≈ B1
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Since C′[C[A1]\ỹ] ⇓ai,bj ,d and B1 ⇓ai,bj but B1 6⇓d, it should be that B2 ⇓ai,bj
but B2 6⇓d. Hence the only possibility of C′[C[A2]\ỹ] =⇒ B2 is that

C′[C[A2]\ỹ] = νc̃, ñ2.

(
σ2, S2,

P2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪
{

(d, ∅), (a〈e〉.d, ∅)
} )

=⇒ B2 := νc̃, ñ′2.
(
σ2, S

′
2,P ′2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪

{
(bj〈cj〉, ∅)

}
j∈J

)
Let A′2 = νñ′2.(σ2, S

′
2,P ′2). We can easily verify that C[A′2]\ỹ = B2. Then we

have
A2 = νñ2.(σ2, S2,P2) =⇒ A′2 = νñ′2.(σ2, S

′
2,P ′2)

Since C[A′1]\ỹ ≈ C[A′2]\ỹ , we have (A′1, A
′
2) ∈ R.

ii. If a = cj for some j ∈ J and e /∈ c̃, consider the evaluation context

C′ = (-, -,
{

(d, ∅), (bj(u).u〈e〉.d.bj〈u〉, ∅)
}

-)

where d is fresh. The analysis is similar as above.
iii. If a = e = ck for some k ∈ J , let C′ = (-, -,

{
(d, ∅), (bk(u).u〈u〉.d.bk〈u〉, ∅)

}
-)

where d is fresh. The analysis is similar as above.
iv. If a = cj and e = ck for some j, k ∈ J with j 6= k, let

C′ = (-, -,
{

(d, ∅), (bj(u).bk(v).u〈v〉.(d.bj〈u〉 | bk〈v〉), ∅)
}

-)

where d is fresh. The analysis is similar as above.

(e) AssumeA1 = νñ′1, e.(σ1, S1,P ′1∪{(a〈e〉.P, L)}) νe.a〈e〉−−−−→ A′1 = νñ′1.(σ1, S1,P ′1∪
{(P,L)}) with e /∈ ñ′1. In observational equivalence, internal transitions can never
make the channel name e free. Thus, we need to construct an evaluation context that
is able to provide the information for the names that was output previously. For nota-
tional convenience, we write if x ∈ V then 0 else P , where V = {u1, u2, · · · , uk},
for

if x = u1 then 0

else if x = u2 then 0

· · · · · ·
else if x = uk then 0 else P

i. If a /∈ c̃, consider the evaluation context

C′ = (-, -,
{

(d, ∅), (a(x).if x ∈ fn(A1, A2) then 0 else d.bl〈x〉, ∅)
}

-)

with bl, d are fresh, then

C′[C[A1]\ỹ] =

νc̃, ñ′1, e.

σ1\ỹ, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(a〈e〉.P, L)} ∪
{

(d, ∅)
}

∪
{

(a(x).if x ∈ fn(A1, A2) then 0 else d.bl〈x〉, ∅)
}
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=⇒ B1 =

νc̃, ñ′1, e.

(
σ1\ỹ, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪
{

(P,L), (bl〈e〉, ∅)
} )

The output bl〈e〉 enables e to be accessed by environment through bl in future.
Similar to the above analysis, we have C′[C[A2]\ỹ] =⇒ B2 = νc̃, ñ′2, e, m̃.(σ2\ỹ,

S′2,P ′2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(bl〈e〉, ∅)

}
) and B1 ≈ B2.

And also A2
νe.a〈e〉
=⇒ A′2 = νñ′2, m̃.(σ2, S

′
2,P ′2). We construct a new context

C′′ = νc̃, e.(-, -, {(ai〈yi〉, ∅)}i∈I
∪
{

(bl〈e〉, ∅)
}
∪
{

(bj〈cj〉, ∅)
}
j∈J -). Then we can verify that Bk = C′′[A′k]\ỹ

with k = 1, 2. Hence we know that (A′1, A
′
2) ∈ R.

ii. if a = cj , j ∈ J , let C′ = (-, -,
{

(d, ∅), (bj(u).u(x).(d.bl〈x〉 | bj〈u〉), ∅)
}

-) with
bl, d are fresh. The analysis is similar as above.

(f) Assume A1 = νñ1.(σ1, S1,P ′1 ∪ {(a〈M1〉.P, L)}) νx.a〈x〉−−−−−→ A′1 = νñ1.(σ1 ∪
{M1/x} , S1,P ′1 ∪ {(P,L)}) with x /∈ fv(A1). In observational equivalence, internal
transitions can never make term M1 free or generate an substitution for M1. Thus, we
need to construct an evaluation context that is able to provide the information for the
terms that have already been output previously.

i. if a /∈ c̃, consider the evaluation context C′ = (-, -,
{

(d, ∅), (a(x).d.al〈x〉, ∅)
}

-)
with al, d are fresh, then

C′[C[A1]\ỹ] = νc̃, ñ1.

(
σ1\ỹ, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪
{

(a〈M1〉.P, L), (d, ∅), (a(x).d.al〈x〉, ∅)
})

=⇒ B1 = νc̃, ñ1.

(
σ1\ỹ, S1,

P ′1 ∪ {(ai〈yiσ1〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(P,L), (al〈M1〉, ∅)}

)
The output al〈M〉 makes M to be accessed by environment through al in future.
Similar to the above analysis, we have C′[C[A2]\ỹ] =⇒ B2 = νc̃, ñ2, m̃.(σ2\ỹ, S

′
2,

P ′2 ∪ {(ai〈yiσ2〉, ∅)}i∈I ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪ {(al〈M2〉, ∅)}) and B1 ≈ B2.

We can see that A2
νx.a〈x〉
=⇒ A′2 = νñ2, m̃.(σ2 ∪ {M2/x} , S′2,P ′2). Let C′′ =

νc̃.(-, -, {(ai〈yi〉, ∅)}i∈I ∪{(al〈x〉, ∅)}∪
{

(bj〈cj〉, ∅)
}
j∈J -). Then we can verify

that Bk = C′′[A′k]\ỹ,x with k = 1, 2. Hence we know that (A′1, A
′
2) ∈ R.

ii. if a = cj , j ∈ J , let C′ = (-, -,
{

(d, ∅), (bj(u).u(x).(d.al〈x〉 | bj〈u〉), ∅)
}

-) with
al, d are fresh. The analysis is similar as above.

Theorem 10 (Coincidence). On closed extended processes with only private state cells,
it holds that ≈=≈l.

Proof.

• For any A ≈l B, we can easily check dom(A) = dom(B) and A ⇓a then B ⇓a.
Using Proposition 8, we know C[A] ≈l C[B] for any context C. According to Defini-
tion 1, we know ≈l⊆≈.
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b0cS = 0 bP | QcS = bP cS | bQcS bνn.P cS = νn. bP cS if n /∈ Ns
b!P cS = ! bP cS bu(x).P cS = u(x). bP cS bu〈M〉.P cS = u〈M〉. bP cS
bifM = N then P else QcS = ifM = N then bP cS else bQcS
bs 7→McS = cs〈M〉 bνs.P cS = νcs. bP cS if s ∈ Ns

block s.P cS =

{
cs(x). bP cS∪{s7→x} if s /∈ dom(S) and x is fresh
0 otherwise

bunlock s.P cS =

{
cs〈M〉 | bP cT if S = T ∪ {s 7→M}
0 otherwise

bread s as x.P cS =

{
bP {M/x}cS if S = T ∪ {s 7→M}
cs(x).(cs〈x〉 | bP cS) otherwise

bs := M.P cS =

{
bP cT∪{s 7→M} if S = T ∪ {s 7→ N}
cs(x).(cs〈M〉 | bP cS) otherwise select fresh variable x

Figure 4: Encoding private state cells with restricted channels

• The other direction ≈⊆≈l is shown in Proposition 9.

4. Encoding Private State Cells with Restricted Channels

Private state cells can be encoded by restricted channels. This is an important obser-
vation; moreover, we will use this to prove Abadi-Fournet’s theorem in the following
Section 5. However, when modelling security protocols, the drawback of represent-
ing private state cells by restricted channels is that it may introduce false attacks when
using the automatic tool ProVerif as argued in [8]. The reason is that some features of
restricted channels are abstracted away when ProVerif translates process calculus into
Horn clauses [15]. To solve this problem, we introduce the primitives for lock, read,
write and unlock which will help us design better translations for stateful protocols in
ProVerif. This has been demonstrated by the verification of reachability [8], and will
be useful in future for verifying observational equivalence.

4.1. Encoding Private State Cells

We encode the extended processes with only private state cells into a subset of
the extended processes which do not contain any cell name. Since the target lan-
guage of the encoding does not have any cell name, we abbreviate extended processes
νñ.(σ, ∅, {(Pi, ∅)}i∈I) with no cell name to νñ.(σ, {Pi}i∈I).

First we define encoding bP cS in Figure 4 for the plain process P under a given set
of state cells S = {s1 7→M1, . . . , sn 7→Mn}. For each cell s, we select a fresh chan-
nel name cs. The encoding in Figure 4 only affects the part related to cell names, leav-
ing other parts like input and output unchanged. The state cell s 7→ M and unlock s
are both encoded by an output cs〈M〉 on the restricted channel cs. The lock s is
represented by an input cs(x) on the same channel cs. To read the cell read s as x,
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we use the input cs(x) to get the value from the cell and then put the value back cs〈x〉,
which enables the other operations on cell s in future. To write a new value into the cell
s := N , we need to first consume the existing cs〈M〉 by an input cs(x) and then gen-
erate a new output cs〈N〉. Our encoding ensures that there is only one output cs〈M〉
available on a specified restricted channel cs at each moment. When the cell is locked,
namely cs〈M〉 is consumed by some cs(x), the other processes that intend to access
the cell have to wait until an output cs〈N〉 is available.

LetA = νs̃, ñ.
(
σ, {si 7→Mi}i∈I , {(Pj , Lj)}j∈J

)
be an extended process 2 where

s̃ ⊂ Ns and ñ ∩Ns = ∅. We define the encoding bAc as:

bAc = νc̃s, ñ.

(
σ, {csi〈Mi〉}i∈U ∪

{
bPjcSj

}
j∈J

)
where U = { i | si /∈

⋃
j∈J Lj and i ∈ I } and Sj = { si 7→Mi | si ∈ Lj and i ∈ I }.

Intuitively, U is the set of indices of the unlocked state cells in {si 7→Mi}i∈I , and Sj
is the set of state cells locked by Lj .

Example 11. Let A = νs.(∅, {s 7→ 0} , {(T (s), ∅)}) where T (s) is defined in Exam-
ple 3. Then bAc = νcs.(∅,

{
cs〈0〉, bT (s)c∅

}
) with bT (s)c∅ = cs(z).a〈g(z)〉.cs〈h(z)〉

obtained by:

bT (s)c∅ = block s.read s as x.a〈g(x)〉.s := h(x).unlock sc∅
= cs(z). bread s as x.a〈g(x)〉.s := h(x).unlock sc{s7→z}
= cs(z). ba〈g(z)〉.s := h(z).unlock sc{s7→z}
= cs(z).a〈g(z)〉. bs := h(z).unlock sc{s7→z}
= cs(z).a〈g(z)〉. bunlock sc{s7→h(z)}

= cs(z).a〈g(z)〉.cs〈h(z)〉

4.2. Soundness and Completeness of the Encoding
We call the process νñ.(σ, {Pj}j∈J) described in Section 4 which does not contain

any cell name a pure extended process. The operational semantics for pure extended
process is still defined by Figure 1. On closed pure extended processes, the labelled
bisimilarity are defined exactly the same as in Definition 5, while the observational
equivalence≈e is defined exactly the same as in Definition 1 except that the evaluation
context does not contain any cell name.

We first define another equivalence ' on the pure extended process.

Definition 12. Let ' be the smallest equivalence relation on pure extended processes
closed under α-conversion such that

I. νñ,m.(σ,P) ' νñ.(σ,P) if m /∈ fn(ñ, σ,P)
II. νñ.(σ,P ∪ {νm.P}) ' νñ,m.(σ,P ∪ {P}) if m /∈ fn(ñ, σ,P)
III. νñ.(σ,P ∪ {P | Q}) ' νñ.(σ,P ∪ {P} ∪ {Q})
IV. νñ.(σ {M/x} ,P {M/x}) ' νñ.(σ {N/x} ,P {N/x}) if M =Σ N

2We abbreviate the set { si 7→Mi | i ∈ I } as {si 7→Mi}i∈I .
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We write A '1 B when the rewriting is just one step, i.e., by using one of the
above four rules. In the following discussion, when we consider the derivation se-
quence A '1 A1 '1 A2 · · · '1 An '1 B for the closed pure extended processes
A and B, we can safely assume that A1, A2, · · · , An are all closed pure extended
processes. The above rule IV may introduce some redundant variables, for example
(∅, {a〈m〉}) ' (∅, {a〈dec(enc(m,x), x)〉}) introduces a redundant variable x using a
symmetric decryption rule dec(enc(z, x), x) =Σ z. This kind of variables are meaning-
less and we can use an injective renaming % to substitute these redundant variables with
fresh names and get a new closed derivation sequence A '1 %(A1) '1 %(A2) · · · '1

%(An) '1 B. These redundant variables introduced by ' are all dummy varialbes
which are actually useless.

Lemma 13. Let A,B be two closed pure extended processes. If B '1 A
α−−→ A′ with

fv(α) ⊆ dom(A) then there exists a closed pure extended process B′ such that either

B
α̂

=⇒ A′ or B α−−→ B′ '1 A′.

Proof. See Appendix B.

Corollary 14. LetA,B be two closed pure extended processes. IfB ' A α−−→ A′ with
fv(α) ⊆ dom(A) then B α̂

=⇒ B′ ' A′ for some closed pure extended process B′.

Proof. Using Lemma 13 several times.

Corollary 15. Assume two closed pure extended processesA,B and fv(α) ⊆ dom(A).

If B ' A α
=⇒ A′ then B α̂

=⇒ B′ ' A′ for some closed pure extended process B′.

Proof. By repeated applications of Corollary 14.
Now we start to prove that encoding preserves observational equivalence. Given

a set of cells S = {s1 7→M1, · · · , sn 7→Mn} and a set of locks L, we define the
projection S|L of S under L to be the set { t 7→ N | {t 7→ N} ⊆ S and t ∈ L }.

Lemma 16. Let A be a closed extended process and fv(α) ⊆ dom(A). If A α−→ B

then bAc α̂
=⇒ bBc.

Proof. See Appendix B.

Corollary 17. Let A be a closed extended process and fv(α) ⊆ dom(A). If A α
=⇒ B

then bAc α̂
=⇒ bBc.

Proof. If A α−→ A′ and A is closed, we can verify that A′ is also closed. This enables
us to use Lemma 16 several times and get the conclusion.
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Lemma 18. Let A be a closed extended process and fv(α) ⊆ dom(A). If bAc α−→ B

then A α̂
=⇒ A′ and bA′c ' B for some A′.

Proof. We only detail the proof for the communication on channel cs which is obtained
by encoding the cell name s. The other cases are trivial. Assume bAc = νñ.(σ,P ∪
{cs〈M〉, cs(x).P}) τ−−→ B = νñ.(σ,P ∪ {P {M/x}}). The input cs(x) may be
encoded from lock s, read s as x or s := N where s is not locked, and the output
may come from {s 7→M} in plain process or in set of cells. We only detail the proof
for the case when {s 7→M} is already in cells part. The other case is similar.

1. Assume A = νk̃.(σ, S ∪ {s 7→M} ,Q ∪ {(lock s.Q, L)}) with s /∈ L. We have
that the encoding of k̃ is ñ while the encoding of Q and S under locks locks(Q) ∪ L
is P . And the encoding block s.QcS|L = cs(x). bQcS|L∪{s7→x} = cs(x).P . Thus we
have bQcS|L∪{s7→x} = P . Substitute x with M , we get bQcS|L∪{s7→M} = P {M/x}
since x /∈ fv(Q). Consider the transition A τ−→ A′ := νk̃.(σ, S ∪ {s 7→M} ,Q ∪
{(Q,L ∪ {s})}), then we have bA′c = νñ.(σ,P ∪

{
bQcS|L∪{s7→M}

}
) = νñ.(σ,P ∪

{P {M/x}}) = B.

2. Assume A = νk̃.(σ, S ∪ {s 7→M} ,Q ∪ {(read s as x.Q,L)}) with s /∈ L ∪
locks(Q). We have that the encoding of k̃ is ñ while the encoding of Q and S under
locks locks(Q) ∪ L is P . And the encoding bread s as x.QcS|L = cs(x).(cs〈x〉 |
bQcS|L) = cs(x).P . Thus we get cs〈x〉 | bQcS|L = P . Consider the transition

A
τ−→ A′ = νk̃.(σ, S ∪{s 7→M} ,Q∪{(Q {M/x} , L)}). Substituting x with M , we

get (cs〈M〉 | bQ {M/x}cS|L) = P {M/x} since x /∈ fv(S|L). Thus we have bA′c =

νñ.(σ,P ∪
{
cs〈M〉, bQ {M/x}cS|L

}
) ' νñ.(σ,P ∪

{
cs〈M〉 | bQ {M/x}cS|L

}
) =

B.

3. Assume A = νk̃.(σ, S ∪{s 7→M} ,Q∪{(s := N.Q,L)}) with s /∈ L∪ locks(Q).
We have that the encoding of k̃ is ñ while the encoding of Q and S under locked cells
locks(Q) ∪ L is P . And the encoding bs := N.QcS|L = cs(x).(cs〈N〉 | bQcS|L) =

cs(x).P . Thus we get cs〈N〉 | bQcS|L = P . Consider the transition A τ−→ A′ =

νk̃.(σ, S∪{s 7→M} ,Q∪{(Q,L)}).Thus we have bA′c = νñ.(σ,P∪
{
cs〈N〉, bQcS|L

}
)

' νñ.(σ,P ∪
{
cs〈N〉 | bQcS|L

}
) = B.

Corollary 19. Let A be a closed extended process and fv(α) ⊆ dom(A). If bAc α
=⇒

B then A α̂
=⇒ A′ and bA′c ' B for some A′.

Proof. Using Lemma 18 and Corollary 15 several times.
The following theorem states that encoding preserves the observational equiva-

lence:
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Theorem 20. For two closed extended processes A,B with only private state cells, we
have A ≈ B iff bAc ≈e bBc where ≈e is an equivalence defined exactly the same as
Definition 1 except the context C does not contain any cell names.

Proof.

1. We construct the following setR on pairs of closed extended processes:

R = { (A,B) | bAc ' D1 ≈e D2 ' bBc }

and prove thatR ⊆ ≈.

If A ⇓c, by Corollary 17, we have bAc ⇓c. Using Corollary 15 we have D1 ⇓c. Since
D1 ≈e D2, we have D2 ⇓c. Using Corollary 15, we have bBc ⇓c. By Corollary 19 we
know that B ⇓c.
If A =⇒ A′, by Corollary 17, we have bAc =⇒ bA′c. From Corollary 15, there
exists D′1 such that D1 =⇒ D′1 ' bA′c. Since D1 ≈e D2, there exists D′2 such that
D2 =⇒ D′2 ≈e D′1. By Corollary 15, there exists D′′2 such that bBc =⇒ D′′2 ' D′2.
By Corollary 19, there exists B′ such that B =⇒ B′ and bB′c ' D′′2 ' D′2. From
A =⇒ A′ and bA′c ' D′1 ≈e D′2, we know that (A′, B′) ∈ R.

For any evaluation context C = νñ.(σ-, S-,P-), we need to prove that (C[A], C[B]) ∈
R. We can use the same encoding to encode away all the cell names in the context C
and get a new evaluation context bCc = νl̃.(σ-,Q-). Assume A = νñ1.(σ1, S1,P1)
and bAc = νm̃1.(σ1,Q1). Then we can see that C[A] = νñ, m̃.(σσ1 ∪ σ1, Sσ1 ∪
S1,Pσ1 ∪ P1) and bCc [bAc] = νl̃, m̃1.(σσ1 ∪ σ1,Qσ1 ∪ Q1). Note that C and A do
not share any cell name. Applying encoding to C[A] we get bC[A]c = νl̃, m̃1.(σσ1 ∪
σ1,Qσ1 ∪Q1) = bCc [bAc]. Similarly we have bC[B]c = bCc [bBc]. From bAc ' D1

and D2 ' bBc, we can see that bCc [bAc] ' bCc [D1] and bCc [D2] ' bCc [bBc].
From D1 ≈e D2, applying context bCc, we can see that bCc [D1] ≈e bCc [D2]. In
brief, we have bC[A]c = bCc [bAc] ' bCc [D1] ≈e bCc [D2] ' bCc [bBc] = bC[B]c.
Thus we know (C[A], C[B]) ∈ R.

2. We construct the following set S on pairs of closed extended processes:

S = { (D1, D2) | D1 ' bAc , A ≈ B, bBc ' D2 }

and prove that S ⊆ ≈e.
If D1 ⇓c, by Corollary 15, we have bAc ⇓c. Using Corollary 19 we have A ⇓c. Since
A ≈ B, we have B ⇓c. By Corollary 17 we know that bBc ⇓c. Using Corollary 15,
we have D2 ⇓c.
If D1 =⇒ D′1, by Corollary 15, we have bAc =⇒ A1. From Corollary 19, there
exists A′ such that A =⇒ A′ and bA′c ' A1. Since A ≈ B, there exists B′ such that
B =⇒ B′ ≈ A′. By Corollary 17, we have bBc =⇒ bB′c. By Corollary 15, there
exists D′2 such that D2 =⇒ D′2 and bB′c ' D′2. From D1 =⇒ D′1 and D′1 ' bA′c,
we know that (D′1, D

′
2) ∈ R.

For any pure evaluation context C, we can easily see that C[D1] ' C[bAc] = bC[A]c
and C[D2] ' C[bBc] = bC[B]c and C[A] ≈ C[B], thus (C[D1], C[D2]) ∈ S.
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5. Proof of Abadi-Fournet’s Theorem

We shall use our Theorem 10 and Theorem 20 to derive Abadi-Fournet’s theorem,
namely Theorem 1 in [3]. We revise the original applied pi calculus [3] slightly: ac-
tive substitutions are only defined on terms of base sort; otherwise Theorem 1 in [3]
does not hold [11].3 Since the active substitutions in applied pi calculus float every-
where in the extended processes, in order to prove Abadi-Fournet’s theorem, we need
to normalise the extended processes first. We can transform the extended processes
in the applied pi calculus – denoted by Ar, Br, Cr to avoid confusion – into the ex-
tended processes in stateful applied pi calculus by function T (assume bound names
are pairwise-distinct and different from free names): 4

T (0) = (∅, ∅) T ({M/x}) = ({M/x} , ∅) T (νn.Ar) = νn.T (Ar)

T (νx.Ar) = νñ.(σ,P) if T (Ar) = νñ.(σ ∪ {M/x} ,P)

T (A1
r | A2

r) = νñ1, ñ2.((σ1 ∪ σ2)∗, (P1 ∪ P2)(σ1 ∪ σ2)∗)
if T (Air) = νñi.(σi,Pi) for i = 1, 2

T (Ar) = (∅, {Ar}) in all other cases of Ar

Intuitively, T pulls out name restrictions, applies active substitutions and sepa-
rates them from the plain processes, and eliminates variable restrictions. For instance,
T (a〈x〉.νn.a〈n〉 | νk. {k/x}) = νk.({k/x} , {a〈k〉.νn.a〈n〉}). This normalisation T
preserves both observational equivalence and labelled bisimilarity:

Theorem 21 (Soundness and Completeness of Stateful Applied Pi). For two closed
extended processes Ar and Br in applied pi calculus,

1. Ar and Br are labelled bisimilar in applied pi iff T (Ar) ≈l T (Br);

2. Ar and Br are observationally equivalent in applied pi iff T (Ar) ≈e T (Br);

Proof. See Appendix C.
With all the theorems ready, now we can prove Abadi-Fournet’s theorem:

Corollary 22 (Coincidence in Applied Pi). Observational equivalence coincides with
labelled bisimilarity in applied pi calculus.

3Here is a counter example: let Ar = νc.(c.a | {c/x}) and Br = νc.(0 | {c/x}). Obviously Ar and
Br are labelled bisimilar since their frames are the same and both have no transitions. However, they are not
observationally equivalent. Consider the context x(y), then Ar | x(y) ⇓a but Br | x(y) 6⇓a.

4We write σ∗ for the result of composing the substitution σ with itself repeatedly until an idempotent
substitution is reached.
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Proof. This is a direct corollary of Theorem 10, Theorem 20 and Theorem 21:

Ar and Br are observationally equivalent
iff T (Ar) ≈e T (Br) by Theorem 21 (2)

iff T (Ar) ≈ T (Br) by Theorem 20 and bT (Ar)c = T (Ar) and bT (Br)c = T (Br)

iff T (Ar) ≈l T (Br) by Theorem 10

iff Ar and Br are labelled bisimilar by Theorem 21 (1)

6. Extending the Language with Public State Cells

Hardware modules like TPMs and smart cards are intended to be secure, but an
attacker might succeed in finding ways of compromising their tamper-resistant features.
Similarly, attackers can potentially hack into databases [1]. We model these attacks by
considering that the attacker compromises the private state cells, after which they are
public. Protocols may provide some security properties that hold even under such
compromises of the hardware or database. A typical example is forward privacy [26]
which requires the past events remain secure even if the attacker compromises the
device. This will be further discussed in the following Example 28 and Example 29. A
cell s not in the scope of νs is public, which enables the attacker to lock the cell, read
its contents or overwrite it.

We now give the details of the syntactic additions for public cells and the definition
of observational equivalence. To let a private state cell become public, we extend the
plain processes in Section 2 with a new primitive open s.P Extended processes are
defined as before. We extend the transitions in Fig. 1 by a new transition relation
τ(s)−−→ defined in Fig. 5 for reasoning about public state cells. These internal transitions

specify on which public state cell the operations are performed. The label τ(s) is
necessary when we later define labelled bisimilarity. It is worth pointing out that τ(s)
is defined for the read, write and lock operations on a public cell s (the first three rules
in Fig. 5) only when the cell is unlocked. When a public cell is locked, the operations on
this cell become invisible to the other processes, thus the operations on a locked public
cell are defined by internal transitions τ in Fig. 1. When a public cell s is unlocked, the
operations on it are visible, thus are defined by τ(s) to indicate there is an operation on
the cell s.

Let A = νñ.(σ, S,P) and we write locks(A) for the set locks(P) \ ñ. We write
unlocks(A) for the set fs(A) \ locks(A), namely the unlocked public state cells. We

write ε
=⇒ for the reflexive and transitive closure of τ−−→ and

τ(s)−−→ for any cell s. We
write A ⇓a when A ε

=⇒ νñ.(σ, S,P ∪ {(a〈M〉.P, L)}) with a /∈ ñ.

6.1. Observational Equivalence

We first define observational equivalence for our stateful language in the presence
of public state cells. In principle, we stick to the original definition of observational
equivalence [3] as much as possible in order to capture the intuition of indistinguisha-
bility from the attacker’s point of view.
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νñ.(σ, S ∪ {s 7→M} ,P ∪ {(read s as x.P, L)}) τ(s)−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P {M/x} , L)})
if s 6∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(s := N.P,L)}) τ(s)−−→ νñ.(σ, S ∪ {s 7→ N} ,P ∪ {(P,L)})
if s 6∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(lock s.P, L)}) τ(s)−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P,L ∪ {s})})
if s 6∈ ñ ∪ L ∪ locks(P)

νñ.(σ, S ∪ {s 7→M} ,P ∪ {(unlock s.P, L)}) τ(s)−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P,L \ {s})})
if s 6∈ ñ ∪ locks(P) and s ∈ L

νñ, s.(σ, S ∪ {s 7→M} ,P ∪ {(open s.P, L)}) τ(s)−−→ νñ.(σ, S ∪ {s 7→M} ,P ∪ {(P,L)})
if s /∈ ñ

Figure 5: Internal transitions for public state cells.

Definition 23. Observational equivalence (≈) is the largest symmetric relation R on
pairs of closed extended processes (which may contain public state cells) such that
A R B implies

(i) locks(A) = locks(B), fs(A) = fs(B) and dom(A) = dom(B);

(ii) if A ⇓a then B ⇓a;

(iii) if A ε
=⇒ A′ then B ε

=⇒ B′ and A′ R B′ for some B′;

(iv) for all closing evaluation contexts C, C[A] R C[B].

The definition of observational equivalence on public state cells is similar to the one
for private state cells, but the language features of public state cells are significantly
different from private state cells. The addition of public state cells increases the power
of the attacker significantly, as without the name restriction νs for a state cell s, when s
is unlocked, the attacker can lock the cell, read its content and overwrite it. To illustrate
this point, we start by analysing several examples.

Example 24. The attacker can lock the unlocked public state cells. Assume

A = (∅, {s 7→ 0} , {(c〈b〉, ∅)}) B = (∅, {s 7→ 0} , {(read s as x. c〈b〉, ∅)})

A and B are not observationally equivalent. Let C = (-, -, {(0, {s})} -). The context C
does nothing but holds the lock on cell s and it will never release the lock. So we have
C[A] ⇓c but C[B] 6⇓c because reading cell s in B is blocked forever by context C.

In comparison, the following extended processes A,B are observationally equiva-
lent:

A = (∅, {s 7→ 0} , {(read s as x. c〈b〉, ∅)})
B = (∅, {s 7→ 0} , {(read s as x. read s as y. c〈b〉, ∅)})

When A performs the reading, B can match it by performing its two reading together.
When B performs one reading, A can match it by doing nothing.
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Example 25. The attacker can read an unlocked public state cell. Assume

A = (∅, {s 7→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅)})
B = (∅, {s 7→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅)})

Cell s is unlocked in both A and B. Both A and B can write 0 or 1 to the cell s
arbitrary number of times. The only difference between A and B is the initial values in
cell s. A and B are not observationally equivalent because the context

C = (-, -, {(read s as x. if x = 0 then c〈b〉, {s})} -)

can distinguish them. The context C holds the lock of cell s, thus no one can change
the value in s when C reads the value. We have C[A] ⇓c but C[B] 6⇓c.

In comparison, the following processes are observationally equivalent:

A′ = (∅, {s 7→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (unlock s, {s})})
B′ = (∅, {s 7→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), (unlock s, {s})})

Cell s is locked in both A′ and B′. When a cell is locked, the attacker cannot see its
value until it is unlocked. Both A′ and B′ can adjust the value of cell s after unlock s.
Assume

A′
τ(s)−−→ (∅, {s 7→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})

Then B′ can match this transition by first unlocking the cell s and then doing a writing
s := 0 and evolving to exactly the same process:

B′
τ(s)−−→ (∅, {s 7→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})
τ(s)
=⇒ (∅, {s 7→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), (0, ∅)})

Intuitively, the locked or unlocked status of a public state cell is observable by
the environment. Therefore, we require locks(A) = locks(B) and fs(A) = fs(B)
in the definition of observational equivalence. Furthermore, without this condition,
this definition would not yield an equivalence relation, as transitivity does not hold in
general. For example, consider the following extended processes,

A = (∅, {s 7→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅)})
B = (∅, {s 7→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅), (unlock s, {s})})
C = (∅, {s 7→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅), ( ! lock s.unlock s, ∅)})

Without the condition, then A and B would be equivalent, as well as B and C, because
the value in s can always be adjusted to be exactly the same after unlock s. But A and
C are not equivalent as analysed in Example 25.

Example 26. The value in an unlocked public state cell is a part of the attacker’s
knowledge. Assume

A = νk.(∅, {s 7→ k} , {(s := 0.a(x).if x = k then c〈b〉, ∅)})
B = νk.(∅, {s 7→ k} , {(s := 0.a(x), ∅)})
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A and B are not observationally equivalent. Let C = (-, -, {(read s as y. a〈y〉, ∅)} -).
Then C[A] ⇓c but C[B] 6⇓c because

C[A]
τ(s)−−→ νk. (∅, {s 7→ k} , {(a〈k〉, ∅), (s := 0.a(x).if x = k then c〈b〉, ∅)})
τ(s)−−→ νk. (∅, {s 7→ 0} , {(a〈k〉, ∅), (a(x).if x = k then c〈b〉, ∅)})
=⇒ νk. (∅, {s 7→ 0} , {(c〈b〉, ∅)})

But there is no output on channel c in C[B]. Hence A 6 ≈ B.

Example 27. The attacker can write an arbitrary value into an unlocked public cell.
Assume two extended processes

A = (∅, {s 7→ 0} , {(s := 0. s := 0, ∅)}) B = (∅, {s 7→ 0} , {(s := 0, ∅)})

A andB are not observationally equivalent. Applying C = (-, -, {(s := 1.s := 1, ∅)} -)
to both A and B, the interleaving of s := 0 and s := 1 can generate a sequence of
values 0, 1, 0, 1, 0 in cell s in C[A], while the closest sequence generated by C[B] should
be 0, 1, 0, 1, 1. So when the attacker keeps on reading the value in cell s, he would be
able to notice the difference.

Instead of using the primitive open s, an alternative way for making a private
state cell become public is to send cell name s on a free channel c〈s〉.P . The reason
we choose the primitive open s.P here is because sending and receiving cell names
through channels is too powerful, and will lead to soundness problems when we define
labelled bisimilarity later. For example, let

A = (∅, ∅, {(c(x).read x as z.a〈z〉, ∅)}) B = (∅, ∅, {(c(x), ∅)})

In the presence of input and output for cell names, A and B are not observationally
equivalent. Let C = (-, {t 7→ 0} -, {(c〈t〉, ∅)} -). The context C brings his own state
cell t 7→ 0 and we have C[A] ⇓a but C[B] 6⇓a. That is to say, in order to define a sound
labelled bisimilarity, we have to allow a process like (∅, ∅, {(read t as z. a〈z〉, ∅)}) to
perform the reading even without a state cell t 7→ 0. This requires a rather complex
definition of labelled bisimilarity, while what we want is to simply free a cell which
can be achieved by open s.P .

Now we give examples of the use of public state cells for modelling protocols and
security properties. Another security concern for RFID tags is forward privacy [28]. In
the following Example 28 and Example 29, we shall illustrate how to model forward
privacy by public state cells. Forward privacy requires that even the attacker breaks the
tag, the past events should still be untraceable. Public state cells enable us to model the
compromised tags.

Example 28. We consider an improved version of the naive protocol in Example 2.
Instead of simply outputting the tag’s id, the tag generates a random number r, hashes
its id concatenated with r and then sends both r and h(id, r) to the reader for identifi-
cation. This can be modelled by:

Q(s) = read s as x. νr. a〈(r, h(x, r))〉
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Upon receiving the value, the reader identifies the tag by performing a brute-force
search of its known ids. By observing on channel a, the attacker can get the data pairs
from a particular tag s: (r1, h(id , r1)), (r2, h(id , r2)), (r3, h(id , r3)) · · · . Since the
hash function is not invertible, without knowing the value of id, these data appear as
just random data to the attacker. Hence this improved version satisfies the untrace-
ability defined in Example 2. But it does not have the forward privacy. Let RD be
process modelling the reader and back-end database. The forward privacy can be
characterised by the observational equivalence

(∅, ∅, {( ! νs, id .([s 7→ id ] | Q(s) | open s. !Q(s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, id .([s 7→ id ] | !Q(s) | open s | RD), ∅)})

The primitive open s makes the private state cell s become public. Before the cell s
is broken, the attacker cannot decide how the system runs. In other words, whether
the tag s is used for only once, namely Q(s), or is used for arbitrary number of times,
namely !Q(s), it is out of the control of the attacker. But after the tag is broken, the
attacker fully controls the tag, so he knows when and where the tag is used. Despite
knowing the events that happen after the tag is broken, the attacker should still not be
able to trace the past events. Therefore, in the first process, we add !Q(s) after open s
to model this scenario. Intuitively, only the events before the tag is broken may be
different while the events after the tag is broken are exactly the same. Hence the above
observational equivalence can capture forward privacy.

However the above equivalence does not hold which means there is no forward
privacy in this protocol. The attacker can obtain the id from the broken tag and then
verify whether the previously gathered data (r1, h(id , r1)) and (r2, h(id , r2)) refer
to the same tag id by hashing id with r1 (or r2) and then comparing the result with
h(id , r1) (or h(id , r2)).

Example 29. Continuing with the OSK protocol in Example 3, we model the forward
privacy by the observational equivalence:

(∅, ∅, {( ! νs, k.([s 7→ k] | T (s) | open s. !T (s) | RD), ∅)})
≈ (∅, ∅, {( ! νs, k.([s 7→ k] | !T (s) | open s | RD), ∅)})

Before the tag is broken, the attacker can get a sequence g(k), g(h(k)), g(h(h(k))), · · ·
by eavesdropping on channel a. Right after each reading, the value in the tag will be
updated to the hash of previous value: h(k), h(h(k)), h(h(h(k))) · · · . When the tag is
broken, the attacker will get from the tag a value hi(k) for some integer i. This value
is not helpful for the attacker to infer whether the data g(k), g(h(k)), · · · , g(hi−1(k))
are from the same tag. Hence the OSK protocol can ensure the forward privacy.

6.2. Labelled Bisimilarity

In order to ease the verification of observational equivalence which is defined us-
ing the universal quantifier over contexts, we shall define labelled bisimilarity which
replaces quantification over contexts by suitably labelled transitions. The traditional
definition for labelled bisimilarity is neither sound nor complete w.r.t. observational
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equivalence in the presence of public state cells. We propose a novel definition for
labelled bisimilarity and show how it solves all the problems caused by public state
cells.

For a given cell s, we define
τ(s)
=⇒ to be the reflexive and transitive closure of τ−−→

and
τ(s)−−→. We still use α to range over τ, a(M), a〈c〉, νc.a〈c〉 and νx.a〈x〉, and use

=⇒ for the reflexive and transitive closure of τ−−→, and use α̂
=⇒ for α

=⇒ if α is not τ
and for =⇒ if α = τ . Note that α cannot be τ(s).

To define labelled bisimilarity, we need an auxiliary transition relation s:=N−−−→ for
setting the values of public state cells:

νñ.(σ, S ∪ {s 7→M} ,P)
s:=N−−−→ νñ.(σ, S ∪ {s 7→ Nσ} ,P)

if s 6∈ ñ ∪ locks(P) and name(N) ∩ ñ = ∅
νñ.(σ, S,P)

s:=N−−−→ νñ.(σ, S,P) if s ∈ ñ ∪ locks(P)

The first rule of s:=N−−−→ represents the attacker’s ability to overwrite the public state
cells. The second rule does not change the value of the cell s and is just for compati-

bility with unlock s and open s in Definition 31. We write A s:=N−−−→τ(s)
=⇒ A′ for the

combination of transitions A s:=N−−−→ B and B
τ(s)
=⇒ A′ for some B.

Definition 30. Given two extended processes Ai = νñi.(σi, Si,Pi)(i = 1, 2) such
that dom(σ1) = dom(σ2) and fs(A1) = fs(A2) and locks(A1) = locks(A2). We
define extensible state cells esc(A1, A2) of A1 and A2 as

esc(A1, A2) :=

{ s | s ∈ fs(A1) \ locks(A1),@x ∈ dom(σ1) s.t. S1(s) = xσ1 and S2(s) = xσ2 }

Intuitively, esc(A1, A2) is a chosen subset of unlocked public state cells ofA1, A2 such
that the values of those cells haven’t been extended into the substitutions of A1, A2.

Definition 31. Labelled bisimilarity (≈l) is the largest symmetric relation R between
pairs of closed extended processes Ai = νñi.(σi, Si,Pi) with i = 1, 2 such that
A1RA2 implies

1. locks(A1) = locks(A2), fs(A1) = fs(A2) and dom(A1) = dom(A2);

2. Select a fresh base variable xs for each s ∈ esc(A1, A2). Let

Aei = νñi.(σi ∪ {Si(s)/xs}s∈esc(A1,A2) , Si,Pi) for i = 1, 2

Then

(a) Ae1 ≈s Ae2;

(b) if Ae1
s:=N−−−→ τ(s)−−→ B1 with var(N) ⊆ dom(Ae1), then there exists B2 such that

Ae2
s:=N−−−→τ(s)

=⇒ B2 and B1RB2;
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(c) if Ae1
α−−→ B1 and fv(α) ⊆ dom(Ae1) and bnv(α) ∩ fnv(Ae2) = ∅, then there

exists B2 such that Ae2
α̂

=⇒ B2 and B1 R B2.

The static equivalence Ae1 ≈s Ae2 in Definition 31 is exactly the same as the one
defined in Definition 4. Before we compare the static equivalence and the transitions in
labelled bisimilarity, we extend Ai to Aei with values from unlocked public state cells.
This is to reflect the fact that attacker’s ability to read values from these cells.

Example 32. Consider the extended processes A and B in Example 25. As we have
already shown, A and B are not observationally equivalent. Hence they are not sup-
posed to be labelled bisimilar. We first extend A and B to Ae and Be respectively:

Ae = ({0/z} , {s 7→ 0} , {( ! s := 0, ∅), ( ! s := 1, ∅)})
Be = ({1/z} , {s 7→ 1} , {( ! s := 0, ∅), ( ! s := 1, ∅)})

Clearly the static equivalence between Ae and Be does not hold, namely Ae 6≈s Be,
because the test z = 0 can distinguish them. Thus we have A 6 ≈l B.

The extension is not only for comparing the static equivalence, but also for com-
paring the transitions. In labelled bisimilarity, we compare the transitions starting from
the extensions Ae and Be, rather than the original processes A and B. The reason is
that we need to keep a copy of the cell values, otherwise we would lose the values when
someone overwrites the cells.

Example 33. Consider the extended processes A and B in Example 26. The extension
Ae of A can perform the following transition:

Ae = νk.({k/z} , {s 7→ k} , {(s := 0.a(x).if x = k then c〈b〉, ∅)})
τ(s)−−→ νk.({k/z} , {s 7→ 0} , {(a(x).if x = k then c〈b〉, ∅)})
a(z)
=⇒ νk.({k/z} , {s 7→ 0} , {(c〈b〉, ∅)})
c〈b〉−−→ νk.({k/z} , {s 7→ 0} , {(0, ∅)})

But it is impossible forB’s extensionBe = νk.({k/z} , {s 7→ k} , {(s := 0. a(x), ∅)})
to perform an output on channel c. Hence A 6 ≈l B.

We use s:=N−−−→ τ(s)−−→ rather than
τ(s)−−→ in labelled bisimilarity because the attacker

can set any unlocked public state cell to an arbitrary value. We shall illustrate this point
by the following two examples.

Example 34. Assume

A = ({0/y, 1/z} , {s 7→ 0} , {(read s as x. if x = 1 then c〈0〉, ∅)})
B = ({0/y, 1/z} , {s 7→ 0} , ∅)

A andB are not observationally equivalent. Applying context C = (∅, ∅, {(s := 1, ∅)})
to A and B, we can see that C[A] ⇓c but C[B] 6⇓c.
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Now we shall distinguish them in labelled bisimilarity. Since the current value in
cell s is 0 which has already been stored in variable y, we don’t need to extend A and
B. Then A can perform the following transition

A
s:=1−−−→ τ(s)−−→ ({0/y, 1/z} , {s 7→ 1} , {(if 1 = 1 then c〈a〉, ∅)})

c〈a〉−−→ ({0/y, 1/z} , {s 7→ 1} , {0, ∅})

But there is no way for B to perform an output action. Hence A 6 ≈l B.

Example 35. As illustrated in Example 27, A and B are not observationally equiva-
lent. In labelled bisimilarity, we first extend A and B to Ae1 and Be1:

Ae1 = ({0/x} , {s 7→ 0} , {(s := 0.s := 0, ∅)})
Be1 = ({0/x} , {s 7→ 0} , {(s := 0, ∅)})

Then let Ae1 perform actions s:=1−−−→ τ(s)−−→,

Ae1
s:=1−−−→ τ(s)−−→ Ae2 = ({0/x} , {s 7→ 0} , {(s := 0, ∅)})

Note that action s:=1−−−→ sets the value of cell s to 1. Hence,Be1 can only match the above
transition by resetting the value of cell s to 0:

Be1
s:=1−−−→ τ(s)−−→ Be2 = ({0/x} , {s 7→ 0} , {(0, ∅)})

Since the values of cell s in Ae2 and Be2 are still 0 which have already been stored
in variable x, we don’t need to extend them again. Then let Ae2 perform the actions
s:=1−−−→ τ(s)−−→:

Ae2
s:=1−−−→ τ(s)−−→ Ae3 = ({0/x} , {s 7→ 0} , {(0, ∅)})

But now what Be2 can do is just

Be2
s:=1−−−→=⇒ Be3 = ({0/x} , {s 7→ 1} , {(0, ∅)})

Extending Ae2 and Be2 to the following A′ and B′:

A′ = ({0/x, 0/z} , {s 7→ 0} , {(0, ∅)})
B′ = ({0/x, 1/z} , {s 7→ 1} , {(0, ∅)})

We can see that A′ 6≈s B′ because the test z = 0 can distinguish them. Thus A and B
are not labelled bisimilar, i.e. A 6 ≈l B.

Note that the transition s:=N−−−→ is not included in α−→. We only need to use s:=N−−−→
to change the value of the unlocked public state cell s when the processes perform
some actions related to s. Comparing the combination of two transitions together

( s:=N−−−→ τ(s)−−→) in Definition 31 optimises the definition to be better suited as an assisted
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tool for analysing observational equivalence. Otherwise, if we follow the traditional

way to define labelled bisimilarity, i.e. comparing Ae1
s:=N−−−→ Be1 and Ae1

τ(s)−−→ Be1 sep-
arately, the action s:=N−−−→would generate infinitely many unnecessary branches. For ex-
ample, let A = (∅, {s 7→ 0} , ∅). Even there is no action, A could keep on performing
s:=N−−−→ and would never stop: A s:=1−−−→ (∅, {s 7→ 1} , ∅) s:=2−−−→ (∅, {s 7→ 2} , ∅) s:=3−−−→
(∅, {s 7→ 3} , ∅) · · ·

We require Ae1
s:=N−−−→ τ(s)−−→ B1 to be matched by Ae2

s:=N−−−→τ(s)
=⇒ B2 with the same s

in the action in labelled bisimilarity. In other words, Ae2 can only match the transition
of Ae1 by at most operating on the same cell s. This is equal to say the attacker holds
the locks of all the unlocked public cell except cell s in Ae1. If Ae1 does not do act on
cell s, then Ae2 are not allowed to match Ae1 by operating on s.

Example 36. Extend A and B in Example 24 to Ae = ({0/z} , {s 7→ 0} , {(c〈b〉, ∅)})
and Be = ({0/z} , {s 7→ 0} , {(read s as x. c〈b〉, ∅)}). We can see that Ae

c〈b〉−−→
(∅, {s 7→ 0} , {(0, ∅)}), but there is no way for Be to do the same output action c〈b〉
without going through the reading on cell s. Hence A 6≈l B.

6.3. Soundness and Completeness

In this section, we will show our labelled bisimilarity given in Definition 31 can
fully capture the observational equivalence given in Definition 23.

The following lemma states that labelled bisimilarity is closed when adding substi-
tutions for terms stored in extensible state cells:

Lemma 37. Assume A1 ≈l A2 where Ai = νñi.(σi, Si,Pi) for i = 1, 2. Assume
esc(A1, A2) = {sk}k∈I and

{
sk 7→M i

k

}
k∈I ⊆ Si for some terms M i

k. Select fresh
variables {zk}k∈I , then

νñ1.(σ1 ∪
{
M1
k/zk

}
k∈I , S1,P1) ≈l νñ2.(σ2 ∪

{
M2
k/zk

}
k∈I , S2,P2)

Proof. We construct the following setR:

R :=

{ (νñ1.(σ1 ∪
{
M1
k/zk

}
k∈I , S1,P1), νñ2.(σ2 ∪

{
M2
k/zk

}
k∈I , S2,P2)) |

A1 ≈l A2 where Ai = νñi.(σi, Si,Pi) for i = 1, 2, {sk}k∈I = esc(A1, A2),{
sk 7→M i

k

}
k∈I ⊆ Si for i = 1, 2, {zk}k∈I are fresh variables }

⋃
≈l

We shall prove R ⊆≈l. Let Bi = νñi.(σi ∪
{
M i
k/zk

}
k∈I , Si,Pi) for i = 1, 2. Ac-

cording to the definition of extensible state cells, we can easily see that esc(B1, B2) =
∅. Hence we do not need to extendB1, B2 when comparing them for labelled bisimilar-
ity. In other words,B1, B2 are both extensions ofA1, A2 andB1, B2. SinceA1 ≈l A2,
we have B1 ≈s B2 by Definition 31.

Now we proceed to check the behaviour equivalence between B1 and B2.
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1. Assume B1
s:=N−−−→ τ(s)−−→ B′1 with var(N) ⊆ dom(B1) and s public and unlocked.

Since A1 ≈l A2 and their extensions are B1, B2, we know there exists B′2 such that

B2
s:=N−−−→τ(s)

=⇒ B′2 ≈l B′1. By the construction ofR, we know (B′1, B
′
2) ∈ R.

2. Assume B1
α−→ B′1 with fv(α) ⊆ dom(A1) and bnv(α) ∩ fnv(B2) = ∅. Since

A1 ≈l A2 and their extensions are B1, B2, we know there exists B′2 such that B2
α̂

=⇒
B′2 ≈l B′1. According to the construction ofR, we know (B′1, B

′
2) ∈ R.

Now we proceed to prove the soundness of our labelled bisimilarity for public state
cells:

Proposition 38 (Soundness). If A ≈l B then A ≈ B.

Proof. It is sufficient to prove that ≈l is a congruence. We construct the following set:

R = { (C[A1]\x̃, C[A2]\x̃) | A1 ≈l A2, a closing evaluation context C, x̃ ⊆ dom(A1) }

and prove that R ⊆≈l. Note that this is sufficient for proving ≈l⊆≈. For any ARB,
because R ⊆≈l, we have A ≈l B. Then we can easily check the conditions (i), (ii),
(iii) in Definition 23 hold. For the condition (iv), since A ≈l B, by the construction of
R, we can see (C[A], C[B]) ∈ R by letting x̃ = ∅. ThereforeR ⊆≈.

Assume (C[A1]\x̃, C[A2]\x̃) ∈ R because ofA1 ≈l A2 where C = νñ.(σ-, S-,P-)
and Ai = νñi.(σi, Si,Pi) with i = 1, 2. By Definition 31, we will first extend
C[A1]\x̃, C[A2]\x̃ with substitutions for their extensible state cells, and then show the
static equivalence and behavior equivalence between the extensions.

Assume the extensible state cells

esc(C[A1]\x̃, C[A2]\x̃) = {rk}k∈Ir ∪ {sk}k∈Is ∪ {δk}k∈∆

esc(A1, A2) = {sk}k∈Is ∪ {tk}k∈It
where {rk}k∈Ir ⊆ dom(S), {δk}k∈∆ ⊆ dom(Si) and {sk}k∈Is ⊆ dom(Si) for
i = 1, 2. Intuitively, {tk}k∈It are the extensible state cells forA1, A2 but become inex-
tensible because of the application of context C (for example, the context C may have a
restriction νswhich makes an extensible public cell s private, or C may introduce a sub-
stitution which has the value of the cell s). {δk}k∈∆ are the public cells from dom(Si),
and are not extensible in Ai because of the substitutions on x̃, but they become exten-
sible in C[Ai]\x̃ because the substitutions on x̃ are removed. By Definition 30 of exten-
sible cells, there exists {xjk}k∈∆ with xjk ∈ x̃ and Si(δk) = xjkσi for k ∈ ∆ and i =
1, 2. Select pairwise-distinct fresh variables {zrk}k∈Ir , {zsk}k∈Is , {ztk}k∈It , {zδk}k∈∆

and let σr = {S(rk)/zrk}k∈Ir and σis = {Si(sk)/zsk}k∈Is and σit = {Si(tk)/ztk}k∈It
and σ̂ = {xjk/zδk}k∈∆. Let

ϕi = σi ∪ σis ∪ σit ϕei = σσi ∪ σrσi ∪ σ̂σi ∪ σi\x̃ ∪ σis

Then we extend process Ai by adding substitutions for extensible state cells, i.e., σis
and σit, with i = 1, 2:

Bi := νñi.(ϕi, Si,Pi)
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SinceA1 ≈l A2, using Lemma 37, we getB1 ≈l B2. Also we extend process C[Ai]\x̃
by adding substitutions for extensible state cells, i.e., σrσi ∪ σ̂σi ∪ σis, for i = 1, 2:

Di := νñ, ñi.(ϕ
e
i , Sσi ∪ Si,Pσi ∪ Pi)

We first prove the static equivalence D1 ≈s D2. Assume terms N1, N2 with
var(N1, N2) ⊆ dom(ϕe1) and N1ϕ

e
1 =Σ N2ϕ

e
1, we will show that N1ϕ

e
2 =Σ N2ϕ

e
2.

We can see thatNkϕei = Nk(σσi∪σrσi∪σ̂σi∪σi\x̃∪σis) = (Nk(σ∪σr∪σ̂))(σi∪σis)
for k = 1, 2 and i = 1, 2. Since C closes Ai, we can see that var(Nk(σ ∪ σr ∪ σ̂)) ⊆
dom(ϕi) for k = 1, 2. Thus we have Nkϕei = (Nk(σ ∪ σr ∪ σ̂))ϕi. From the hy-
pothesis N1ϕ

e
1 =Σ N2ϕ

e
1, we know (N1(σ ∪ σr ∪ σ̂))ϕ1 =Σ (N2(σ ∪ σr ∪ σ̂))ϕ1.

From B1 ≈s B2, we know that (N1(σ ∪ σr ∪ σ̂))ϕ2 =Σ (N2(σ ∪ σr ∪ σ̂))ϕ2. From
Nkϕ

e
i = (Nk(σ ∪ σr ∪ σ̂))ϕi, we know that N1ϕ

e
2 =Σ N2ϕ

e
2. Hence D1 ≈s D2.

Now we proceed to prove the behavioural equivalence between D1 and D2.

1. Assume D1
s:=N−−−→ τ(s)−−→ D′1 with var(N) ⊆ dom(D1). We only detail the proof

for the case that s is an unlocked public cell in D1. The analysis for the case when s is
locked or bound is similar. Cell name s comes either from context, i.e. s ∈ dom(S),
or from process A1, i.e. s ∈ dom(S1).

(a) Assume s comes from the context, i.e., S = S′ ∪ {s 7→M}.Then

D1 = νñ, ñ1.(ϕ
e
1, S
′σ1 ∪ {s 7→Mσ1} ∪ S1,Pσ1 ∪ P1)

s:=N−−−→ νñ, ñ1.(ϕ
e
1, S
′σ1 ∪ {s 7→ Nϕe1} ∪ S1,Pσ1 ∪ P1)

τ(s)−−→ D′1

We shall discuss the different cases of τ(s). Because s is a unlocked public cell, τ(s)
can be locking the cell s, or reading the cell s, or writing a term to the cell s. Since s
is from the context, these actions should also come from the processes in the context,
i.e., from P .

i. if P = P ′ ∪ {(lock s.P, L)}, then D′1 = νñ, ñ1.(ϕ
e
1, S
′σ1 ∪ {s 7→ Nϕe1} ∪

S1,P ′σ1 ∪{(Pσ1, L ∪ {s})}∪P1). We construct a new evaluation context C′ =
νñ.(σ ∪ σr ∪ σ̂-, S′ ∪ {s 7→ N(σ ∪ σr ∪ σ̂)} -,P ′ ∪ {(P,L ∪ {s})} -). Since
var(N) ⊆ dom(ϕe1), we have var(N(σ ∪ σr ∪ σ̂)) ⊆ dom(σi, σ

i
s). We can

see that Nϕei = (N(σ ∪ σr ∪ σ̂))(σi ∪ σis) for i = 1, 2. We can verify that
D′1 = C′[B1]\x̃,z̃t and

D2 = νñ, ñ2.(ϕ
e
2, S
′σ2 ∪ {s 7→Mσ2} ∪ S2,Pσ2 ∪ P2)

s:=N−−−→ νñ, ñ2.(ϕ
e
2, S
′σ2 ∪ {s 7→ Nϕe2} ∪ S2,Pσ2 ∪ P2)

τ(s)−−→ D′2 = C′[B2]\x̃,z̃t

From B1 ≈l B2 and the construction ofR, we have (D′1, D
′
2) ∈ R.

ii. if P = P ′∪{(read s as y.P, L)}, thenD′1 = νñ, ñ1.(ϕ
e
1, S
′σ1∪{s 7→ Nϕe1}∪

S1,P ′σ1 ∪ {((Pσ1) {Nϕe1/y} , L)} ∪ P1). We construct a context C′ = νñ.(σ ∪
σr∪ σ̂-, S′∪{s 7→ N(σ ∪ σr ∪ σ̂)} -,P ′∪{(P {N(σ ∪ σr ∪ σ̂)/y} , L)} -). The
rest of analysis is similar to case i.
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iii. if P = P ′ ∪ {(s := N ′.P, L)}, then D′1 = νñ, ñ1.(ϕ
e
1, S
′σ1 ∪ {s 7→ N ′σ1} ∪

S1,P ′σ1 ∪ {(Pσ1, L)} ∪ P1). Let C′ = νñ.(σ ∪ σr ∪ σ̂-, S′ ∪ {s 7→ N ′} -,P ′ ∪
{(P,L)} -). The rest of analysis is similar to case i.

(b) Assume s comes from Ai and Si = S′i ∪ {s 7→Mi} with i = 1, 2. Then

D1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S′1 ∪ {s 7→M1} ,Pσ1 ∪ P1)

s:=N−−−→ D′1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S′1 ∪ {s 7→Nϕe

1} ,Pσ1 ∪P1)

τ(s)−−→ D′′1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S′1 ∪ {s 7→N1} ,Pσ1 ∪P ′

1)

The transition D′1
τ(s)−−→ D′′1 operates on the cell s which has nothing to do with the

context part. So we can have that

B1 = νñ1.(ϕ1, S
′
1 ∪ {s 7→M1} ,P1)

s:=N(σ∪σr∪σ̂)−−−−−−−−−−→ C ′1 = νñ1.(ϕ1, S
′
1 ∪ {s 7→Nϕe

1} ,P1)

since (N(σ ∪ σr ∪ σ̂))ϕ1 = Nϕe1
τ(s)−−→ C ′′1 = νñ1.(ϕ1, S

′
1 ∪ {s 7→M ′

1} ,P
′
1)

Let C′ = νñ.(σ ∪ σr ∪ σ̂-, S-,P-). We can verify that D′′1 = C′[C ′′1 ]\x̃,z̃t . Since
A1 ≈l A2, there exists C ′′2 such that

B2 = νñ2.(ϕ2, S
′
2 ∪ {s 7→M2} ,P2)

s:=N(σ∪σr∪σ̂)−−−−−−−−−−→ C ′2 = νñ2.(ϕ2,S
′
2 ∪ {s 7→Nϕe

2} ,P2)

since (N(σ ∪ σr ∪ σ̂))ϕ2 = Nϕe2
τ(s)
=⇒ C ′′2 = νñ′.(ϕ2,S

′′
2 ,P

′
2)

and C ′′1 ≈l C ′′2 . Applying the context C′ and removing variables x̃, z̃t,

D2 = C′[B2]\x̃,z̃t = νñ, ñ2.(ϕ
e
2, Sσ2 ∪ S′2 ∪ {s 7→M2} ,Pσ2 ∪ P2)

s:=N−−−→ C′[C ′2]\x̃,z̃t = νñ, ñ2.(ϕ
e
2, Sσ2 ∪ S′

2 ∪ {s 7→Nϕe
2} ,Pσ2 ∪P2)

τ(s)
=⇒ D′′2 = C′[C ′′2 ]\x̃,z̃t = νñ,νñ′.(ϕe2, Sσ2 ∪ S′′

2 ,Pσ2 ∪P ′
2)

Since C ′′1 ≈l C ′′2 , D′′1 = C′[C ′′1 ]\x̃,z̃t and D′′2 = C′[C ′′2 ]\x̃,z̃t , by the construction ofR,
we have (D′′1 , D

′′
2 ) ∈ R.

2. Assume D1
a(N)−−−→ D′1 with var(N) ⊆ dom(D1). The input action comes either

from context part or from the process part.

(a) Assume the input action is from the context part, i.e., P = P ′ ∪ {(a(x).P, L)}.

D1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S1,P ′σ1 ∪ {(a(x).Pσ1, L)} ∪ P1)

a(N)−−−−→ D′1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S1,P ′σ1 ∪ {(Pσ1 {Nϕe

1/x} , L)} ∪ P1)
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We construct a new evaluation context

C′ = νñ.(σ ∪ σr ∪ σ̂-, S-,P ′ ∪ {(P {N(σ ∪ σr ∪ σ̂)/x} , L)} -)

We can verify that C′[B1]\x̃,z̃t = D′1 andD2
a(N)−−−−→ D′2 = C′[B2]\x̃,z̃t . Thus we have

(D′1, D
′
2) ∈ R.

(b) Assume the input action is from the process part, i.e., P1 = P ′1 ∪ {(a(x).P1, L)}

D1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S1,Pσ1 ∪ P ′1 ∪ {(a(x).P1, L)})

a(N)−−−→ D′1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S1,Pσ1 ∪ P ′1 ∪ {(P1 {Nϕe

1/x} , L)})

And we have the input from B1:

B1 = νñ1.(ϕ1, S1,P ′1 ∪ {(a(x).P1, L1)})
a(N(σ∪σr∪σ̂))−−−−−−−−−→ C1 = νñ1.(ϕ1, S1,P ′1 ∪ {(P1 {Nϕe

1/x} , L1)})
since (N(σ ∪ σr ∪ σ̂)ϕ1 = Nϕe1

Let C′ = νñ.(σ ∪ σr ∪ σ̂-, S-,P-). We can verify that D1 = C′[B1]\x̃,z̃t and D′1 =
C′[C1]\x̃,z̃t . Since A1 ≈l A2, we should have the following transitions from A2’s
extension B2

B2 = νñ2.(ϕ2,S2,P2)

=⇒ C3 = νñ′2.(ϕ2,S
′
2,P

′
2 ∪ {a(x).P2, L2)})

a(N(σ∪σr∪σ̂))−−−−−−−−−→ C4 = νñ′
2, m̃.(ϕ2,S

′
2,P

′
2 ∪ {(P c

2 {Nϕe
2/x} , L2)})

since (N(σ ∪ σr ∪ σ̂)ϕ2 = Nϕe2

=⇒ C2 = νñ′′
2 .(ϕ2,S

′′
2 ,P

′′
2 )

and C1 ≈l C2. Applying C′ to the transitions B2 =⇒ C3 and C4 =⇒ C2 and remove
the variables x̃, z̃t, we will get

D2 = C′[B2]\x̃,z̃t = νñ, ñ2.(ϕ
e
2, Sσ2 ∪ S2,Pσ2 ∪P2)

=⇒ C′[C3]\x̃,z̃t = νñ, ñ′
2.(ϕ

e
2, Sσ2 ∪ S′

2,Pσ2 ∪P ′
2 ∪ {(a(x).P2, L2)})

a(N)−−−→ C′[C4]\x̃,z̃t = νñ, ñ′
2.(ϕ

e
2, Sσ2 ∪ S′

2,Pσ2 ∪P ′
2 ∪ {(P2 {Nϕe

2/x} , L2)})
=⇒ D′2 = C′[C2]\x̃,z̃t = νñ, ñ′′

2 , m̃.(ϕe2, Sσ2 ∪ S′′
2 ,Pσ2 ∪P ′′

2 )

SinceD′1 = C′[C1]\x̃,z̃t andD′2 = C′[C2]\x̃,z̃t andC1 ≈l C2, we have (D′1, D
′
2) ∈ R.

3. Assume D1
νy.a〈y〉−−−−−→ D′1. The output action comes either from context part or from

the process part.

(a) When the output comes from the context, assume P = P ′ ∪ {(a〈N〉.P, L)}.

D1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S1,P ′σ1 ∪ {(a〈Nσ1〉.Pσ1, L)} ∪ P1)

νy.a〈y〉−−−−−→ D′1 = νñ, ñ1.(ϕ
e
1 ∪ {Nσ1/y} , Sσ1 ∪ S1,P ′σ1 ∪ {(Pσ1, L)} ∪ P1)
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We construct a new evaluation context C′ = νñ.(σ ∪ σr ∪ σ̂ ∪ {N/y} -, S-,P ′ ∪
{(P,L)} -). We can verify that C′[B1]\x̃,z̃t = D′1 and D2

νy.a〈y〉−−−−−→ D′2 = C′[B2]\x̃,z̃t .
Thus we have (D′1, D

′
2) ∈ R.

(b) When the output comes from the process, assume P1 = P ′1 ∪ {(a〈N1〉.P1, L1)}

D1 = νñ, ñ1.(ϕ
e
1, Sσ1 ∪ S1,Pσ1 ∪ P ′1 ∪ {(a〈N1〉.P1, L)})

νy.a〈y〉−−−−−→ D′1 = νñ, ñ1.(ϕ
e
1 ∪ {N1/y} , Sσ1 ∪ S1,Pσ1 ∪ P ′1 ∪ {(P1, L1)})

And we have the output from B1:

B1 = νñ1.(ϕ1, S1,P ′1 ∪ {(a〈N1〉.P1, L1)})
νy.a〈y〉−−−−−→ C1 = νñ1.(ϕ1 ∪ {N1/y} , S1,P ′1 ∪ {(P1, L1)})

Let C′ = νñ.(σ ∪ σr ∪ σ̂-, S-,P-). We can verify that D1 = C′[B1]\x̃,z̃t and D′1 =
C′[C1]\x̃,z̃t . Since A1 ≈l A2, for the extension B2, we should have

B2 = νñ2.(ϕ2,S2,P2)

=⇒ C3 = νñ′
2.(ϕ2,S

′
2,P

′
2 ∪ {(a〈N2〉.P2, L2)})

νy.a〈y〉−−−−−→ C4 = νñ′
2.(ϕ2 ∪ {N2/y} ,S′

2,P
′
2 ∪ {(P2, L2)})

=⇒ C2 = νñ′′
2 .(ϕ2 ∪ {N2/y} ,S′′

2 ,P
′′
2 )

Applying context C′ to the transitions B2 =⇒ C3 and C4 =⇒ C2 and remove the
variables x̃, z̃t, we will get

D2 = C′[B2]\x̃,z̃t = νñ, ñ2.(ϕ
e
2, Sσ2 ∪ S2,Pσ2 ∪P2)

=⇒ C′[C3]\x̃,z̃t = νñ, ñ′
2.(ϕ

e
2, Sσ2 ∪ S′2,Pσ2 ∪P ′

2 ∪ {(a〈N2〉.P2, L2)})
νy.a〈y〉−−−−−→ C′[C4]\x̃,z̃t = νñ, ñ′

2.(ϕ
e
2 ∪ {N2/y} , Sσ2 ∪ S′

2,Pσ2 ∪P ′
2 ∪ {(P2, L2)})

=⇒ D′2 = C′[C2]\x̃,z̃t = νñ, ñ′′
2 .(ϕ

e
2 ∪ {N2/y} , Sσ2 ∪ S′′

2 ,Pσ2 ∪P ′′
2 )

Thus we have (D′1, D
′
2) ∈ R.

(c) The analysis for the other cases when α is a〈c〉 or νc.a〈c〉 is similar.

Now we proceed to show the completeness of our labelled bisimilarity. Although
A ⇓a is only defined for output action, we can easily test the existence of an input
action b(x) by using evaluation context C = (-, -,

{
(e, ∅), (b.e)

}
-) where e is fresh. It

is clear that:

Claim A can perform an input on channel b if and only if there exists B such that
C[A] =⇒ B and B 6⇓e.

Hence in the following proof, for notational convenience, we use the traditional nota-
tion A ⇓b when A ε

=⇒ νñ.(σ, S,P ∪ (b〈M〉.P, L)) with b /∈ ñ, and use A ⇓b when
A

ε
=⇒ νñ.(σ, S,P ∪ (b(x).P, L)) with b /∈ ñ.
We write A 6⇓γ1··· ,γi,···γn if A 6⇓γ1

· · · , A 6⇓γi , · · ·A 6⇓γn where γi is either ai or
ai for some channel name ai.
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Lemma 39. Assume A τ−−→ t:=N−−−→ A′ with t ∈ unlocks(A), then A t:=N−−−→ τ−−→ A′.

Proof. Since t is an unlocked public state cell in A, we can see that τ−→ defined in
Figure 1 is irrelevant to t. τ−→ is only related to locked or restricted cells in A. So the
conclusion holds obviously.

Corollary 40. Assume A =⇒ t:=N−−−→ A′ with t ∈ unlocks(A), then A t:=N−−−→=⇒ A′.

Proof. Recall that =⇒ is a reflexive and transitive closure of τ−→. We can get this
corollary by using Lemma 39 several times.

Proposition 41 (Completeness). If A ≈ B, then A ≈l B.

Proof. We define a relationR as follows:

R = { (A1, A2) | Ai = νñi.(σi, Si,Pi) for i = 1, 2,

there exist pairwise-distinct channel names

ã, b̃, c̃, r̃ead , w̃rite, t̃ag such that Â1 ≈ Â2 }

where

Âi := νc̃, ñi.

σi\W , Si,
Pi ∪ {(aw〈wσi〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪

{
(reads〈Si(s)〉, ∅), (tags, ∅),
(writes(x). s := x. tags.unlock s, {s})

}
s∈U


(1)

with i = 1, 2 and

• W ⊆ dom(A1) and U ⊆ fs(A1) \ locks(A1);

• ã, b̃, r̃ead , w̃rite, t̃ag are pairwise-distinct channel names and are different from
fn(A1, A2, c̃, ñ1, ñ2);

• c̃ ∩ (ñ1 ∪ ñ2) = ∅;

• ã = {aw}w∈W and b̃ = {bj}j∈J and c̃ = {cj}j∈J ;

• r̃ead = {reads}s∈U and w̃rite = {writes}s∈U and t̃ag = {tags}s∈U .

The channel name tags is used to mark the moment when the attacker has already
changed the value of cell s and before cell s is unlocked. As before, since the object
of input tags(x) is not important, we omit it and write tags for simplicity. Note that
(writes(x). s := x. tags.unlock s, {s}) locks the unlocked public state cells from U .
Although the cells in U are locked, the attacker can still read and write these cells via
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reads〈Si(s)〉 and writes(x) without unlocking the cells. As a result, all the operations
on these cells become visible when comparing transitions in observational equivalence.

We show thatR satisfies all the conditions of Definition 31, i.e.,R ⊆≈l. Note that
this is sufficient for proving ≈⊆≈l. Suppose A1 ≈ A2, then we let W = U = J = ∅
and we have (A1, A2) ∈ R. Therefore A1 ≈l A2.

AssumeA1 R A2 because of Â1 ≈ Â2 whereA1, A2, Â1, Â2 are defined in above
Equation (1). According to Definition 31, first of all, we should extend the extended
processes A1 and A2. Let

esc(A1, A2) = U1 ∪ U2

with U1 ⊆ U and U2 ∩U = ∅. Selecting fresh variables vs for each s ∈ U1 ∪U2, then
we shall do the following extensions:

Bi = νñi.(ϕi, Si,Pi) ϕi = σi ∪ {Si(s)/vs}s∈U1∪U2
for i = 1, 2

We shall prove that B1 ≈s B2, and if B1
α−→ B′1 (or B1

s:=N−−−→ τ(s)−−→ B′1) then there

exists B′2 such that B2
α̂

=⇒ B′2 (resp. B2
s:=N−−−→τ(s)

=⇒ B′2) and (B′1, B
′
2) ∈ R.

1. First we need to prove the static equivalenceB1≈sB2B1≈sB2B1≈sB2. Assume two terms M,N
with var(M,N) ⊆ dom(B1) andMϕ1 =Σ Nϕ1. We shall prove thatMϕ2 =Σ Nϕ2.
We can safely assume that name(M,N) ∩ (ñ1, ñ2) = ∅, otherwise we can use α-
equivalence to change ñ1, ñ2. Since some part of ϕi (i = 1, 2) are stored in the output
actions aw〈wσi〉, reads〈Si(s)〉 in Ãi, we need to use corresponding input actions to
get these terms. We construct the following evaluation context C:

C = (-, -, {(e, ∅), (P, V )} -)
P = aw1

(xw1
) · · · awk

(xwk
). reads1(zs1) · · · readsn(zsn).

read sn+1 as zsn+1
· · · read sn+l as zsn+l

.ifMρ = Nρ then e

where {w1, · · · , wk} = W , and {s1, · · · , sn} = U1, and {sn+1, · · · , sn+l} = U2,
and V := unlocks(A1) \ U and ρ = {xw/w}w∈W ∪ {zs/vs}s∈U1∪U2

and e is a fresh
channel name.

Apply C to Â1 and then we can do the following transitions:

C[Â1] = νc̃, ñ1.

σ1\W , S1,

P1 ∪ {(aw〈wσ1〉,∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{
(reads〈S1(s)〉, ∅), (tags, ∅),
(writes(x). s := x. tags.unlock s, {s})

}
s∈U

∪
{

(e, ∅), (Pσ1\W , V )
}


=⇒

νc̃, ñ1.

σ1\W , S1,

P1 ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪ {(e, ∅)}

∪
{

(tags, ∅), (writes(x). s := x. tags.unlock s, {s})
}
s∈U

∪
{

(if ((Mρ)σ1\W )ρ′ = ((Nρ)σ1\W )ρ′ then e, V )
}
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=⇒ D1 :=

νc̃, ñ1.

(
σ1\W , S1,

P1 ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪ {(0, V )}

∪
{

(tags, ∅), (writes(x). s := x. tags.unlock s, {s})
}
s∈U

)
where ρ′ = {wσ1/xw}w∈W ∪ {S1(s)/zs}s∈U1∪U2

. The last step is deduced from the
fact that ((Mρ)σ1\W )ρ′ = Mϕ1 and ((Nρ)σ1\W )ρ′ = Nϕ1 and Mϕ1 =Σ Nϕ1.
It is easy to see that C[Â1] ⇓aw,bj ,reads,writes,e

with w ∈ W, j ∈ J, s ∈ U , while
D1 ⇓bj ,writes

with j ∈ J, s ∈ U but D1 6⇓aw,reads,e
for any w ∈ W, s ∈ U . Since

Â1 ≈ Â2 and≈ is closed by application of evaluation context, we have C[Â1] ≈ C[Â2].
Hence there should exist D2 such that C[Â2]

ε
=⇒ D2 ≈ D1 and we should have

D2 ⇓bj ,writes
with j ∈ J, s ∈ U and D2 6⇓aw,reads,e

for any w ∈ W, s ∈ U . The only
possibility for D2 is that

C[Â2] =⇒

νc̃, ñ′2.

σ2\W , S
′
2,

P ′2 ∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(tags, ∅), (e, ∅)

}
∪ {(writes(x). s := x. tags.unlock s, {s})}s∈U
∪
{

(if ((Mρ)σ2\W )ρ′′ = ((Nρ)σ2\W )ρ′′ then e, V )
}


=⇒ D2 :=

νc̃, ñ′′2 .

(
σ2\W , S

′′
2 ,
P ′′2 ∪

{
(bj〈cj〉, ∅)

}
j∈J ∪

{
(tags, ∅), (0, V )

}
∪ {(writes(x). s := x. tags.unlock s, {s})}s∈U

)

where ρ′′ = {wσ2/xw}w∈W∪{S2(s)/zs}s∈U1∪U2
. We must have ((Mρ)σ2\W )ρ′′ =Σ

((Nρ)σ2\W )ρ′′, otherwise we wouldn’t be able to consume e. Similarly we know that
((Mρ)σ2\W )ρ′′ = Mϕ2 and ((Nρ)σ2\W )ρ′′ = Nϕ2. Hence Mϕ2 =Σ Nϕ2.

2. Now we proceed to prove the behavioural equivalence ofB1B1B1 andB2B2B2. Without loss

of generality, we assume B1
α−→ B′1 (resp. B1

s:=N−−−→ τ(s)−−→ B′1) and prove that there

exists B′2 such that B2
α̂

=⇒ B′2 (resp. B2
s:=N−−−→τ(s)

=⇒ B′2) and (B′1, B
′
2) ∈ R.

Before we start to analyse the transitions, we need to preprocess Â1 and Â2. Recall that
B1 and B2 are the extensions of A1 and A2. When B1 performs some operations on a
public cell s, then B2 is required to mimic these operations by transitions on the same
cell s in the definition of labelled bisimilarity. In other words, B2 is not allowed to
perform any operations on the other public cells which are different from s. Therefore,
when using observational equivalence between Â1 and Â2, we need to make sure the
transitions on the cell s from Â1 are matched with transitions on the same cell s. To do
this, we need to lock and mark these unlocked cells to prevent operations on them. We
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construct the following context Cext and apply it to Â1 and Â2:

Cext :=
-, -,

{
(es, ∅) ,

(
reads(z).

(
reads〈z〉 | es.avs〈z〉

)
, ∅
)}
s∈U1

∪

{
(es, ∅) ,

(
ds(z).

(
reads〈z〉 | es.avs〈z〉

)
, ∅
)
,
(
tags, ∅

)
,(

read s as y. ds〈y〉.writes(x). s := x. tags.unlock s, {s}
)}

s∈U2

∪

{(
ds(z).reads〈z〉, ∅

)
,
(
tags, ∅

)
,(

read s as y. ds〈y〉.writes(x). s := x. tags.unlock s, {s}
)}

s∈U3

-


where U3 := unlocks(A1) \ (U ∪U2), and {avs}s∈U1∪U2

and {ds, tags}s∈U2∪U3
and

{es}s∈unlocks(A1) are fresh pairwise-distinct channel names. Since the cells in s ∈ U1

are already locked and marked in Â1 and Â2, the context Cext reads their values and
store them in the output avs〈z〉. The cells in s ∈ U2 are not yet locked and their values
are not in the substitutions, so the context Cext locks these cells and store their values
in the output avs〈z〉. The values of cells s ∈ U3 are already stored in the substitutions,
so the context Cext only locks and marks these cells. The use of (es, ∅) for s ∈ U1∪U2

is to make sure the parallel composition
{

(reads〈z〉 | es.avs〈z〉, ∅)
}

will be split into{
(reads〈z〉, ∅), (avs〈z〉, ∅)

}
as a result of the communication between es and es.

Since ≈ is closed under the application of evaluation contexts, we have Cext [Â1] ≈
Cext [Â2]. Then we can have the following transitions:

Cext [Â1] =

νc̃, ñ1.

σ1\W , S1,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{
(reads〈S1(s)〉, ∅), (tags, ∅),
(writes(x). s := x. tags.unlock s, {s})

}
s∈U

∪
{

(es, ∅) ,
(
reads(z).

(
reads〈z〉 | es.avs〈z〉

)
, ∅
)}
s∈U1

∪

{
(es, ∅) ,

(
ds(z).

(
reads〈z〉 | es.avs〈z〉

)
, ∅
)
,
(
tags, ∅

)
,(

read s as y.ds〈y〉.writes(x).s := x. tags.unlock s, {s}
)}

s∈U2

∪

{(
ds(z).reads〈z〉, ∅

)
,
(
tags, ∅

)
,(

read s as y. ds〈y〉.writes(x). s := x. tags.unlock s, {s}
)}

s∈U3
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=

νc̃, ñ1.

σ1\W , S1,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{
(reads〈S1(s)〉, ∅), (tags, ∅),
(writes(x). s := x. tags.unlock s, {s})

}
s∈U\U1

∪


(
reads〈S1(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x). s := x. tags.unlock s, {s}) ,
(es, ∅) ,

(
reads(z).

(
reads〈z〉 | es.avs〈z〉

)
, ∅
)


s∈U1

∪

{
(es, ∅) ,

(
ds(z).

(
reads〈z〉 | es.avs〈z〉

)
, ∅
)
,
(
tags, ∅

)
,(

read s as y. ds〈y〉.writes(x). s := x. tags.unlock s, {s}
)}

s∈U2

∪

{(
ds(z).reads〈z〉, ∅

)
,
(
tags, ∅

)
,(

read s as y. ds〈y〉.writes(x). s := x. tags.unlock s, {s}
)}

s∈U3


=⇒ D1 :=

νc̃, ñ1.

σ1\W , S1,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


We can see that D1 ⇓aw,aws ,bj ,readt,writet,tagt

for w ∈ W, j ∈ J, s ∈ U1 ∪ U2, t ∈
unlocks(A1), while D1 6⇓es,dt for s ∈ U1 ∪ U2, t ∈ U3. Since Cext [Â1] ≈ Cext [Â2],
there exists D2 such that Cext [Â2]

ε
=⇒ D2 ≈ D1. The only possibility for D2 is that:

Cext [Â2] =⇒ D2 :=

νc̃, ñ′2.

σ2\W , S
′
2,

P ′2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


for some S′2,P ′2. Since reads,writes, es, tags in Cext are fresh names, they will not
interact with Â2. Moreover all the unlocked public state cells in Â2 are locked by Cext ,
hence the values of these cells won’t be changed during the transitions. Thus, we can
deduce that

B2 =⇒ E := νñ′2.(σ2\W , S
′
2,P ′2)

From B1 = νñ1.(ϕ1, S1,P1) and E = νñ′2.(ϕ2, S
′
2,P ′2) and D1 ≈ D2, we can verify

that (B1, E) ∈ R.
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Now we are ready to analyse each possible transition from B1.

(a) Assume

B1 = νñ1. (ϕ1, S1,P1)
τ−→ B′1 := νñ′1. (ϕ1, S

′
1,P ′1)

This internal transition can only involve ñ1, S1,P1, thus we can get the following
transition from D1:

D1 =

νc̃, ñ1.

σ1\W ,S1,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


τ−−→ D′1 :=

νc̃, ñ′1.

σ1\W ,S
′
1,

P ′
1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


We can see that D′1 ⇓aw,avt ,bj ,reads,tags,writes

for w ∈ W, t ∈ U1 ∪ U2, j ∈ J, s ∈
unlocks(A1). From D1 ≈ D2, there should exist D′2 such that D2 =⇒ D′2 ≈ D′1.
The only possibility for D′2 is that

D2 =

νc̃, ñ′2.

σ2\W ,S
′
2,

P ′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


=⇒ D′2 :=

νc̃, ñ′′2 .

σ2\W ,S
′′
2 ,

P ′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


The transitions D2 =⇒ D′2 can only involve ñ′2, S

′
2,P ′2. Thus we can see that

E = νñ′2.(ϕ2, S
′
2,P ′2) =⇒ B′2 := νñ′′2 .(ϕ2, S

′′
2 ,P ′′2 )

Since B2 =⇒ E and E =⇒ B′2, we have B2 =⇒ B′2. Comparing the construction of
D′1 (resp. D′2) with B′1 (resp. B′2), we can see that (B′1, B

′
2) ∈ R.
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(b) Assume

B1 = νñ1. (ϕ1, T1 ∪ {t 7→M1} ,P1)
t:=N−−−→ νñ1. (ϕ1, T1 ∪ {t 7→ Nϕ1} ,P1)

τ(t)−−→ B′1 := νñ1. (ϕ1, T1 ∪ {t 7→M ′1} ,P ′1)

where t /∈ ñ1 ∪ locks(P1) and S1 = T1 ∪ {t 7→M1} and var(N) ⊆ dom(B1).

We need to show that there exists B′2 such that B2
t:=N−−−→ τ(t)

=⇒ B′2 and (B′1, B
′
2) ∈ R.

The idea is to find a B′2 from E such that E t:=N−−−→ τ(t)
=⇒ B′2 and then use Corollary 40

and B2 =⇒ E to get B2
t:=N−−−→=⇒ τ(t)

=⇒ B′2.
We construct an evaluation context Ct:

Ct =

-, -,


(

n∏
i=1

ei, ∅

)
,

 aw1
(x1). · · · .awn

(xn).

read t(x).writet〈Nρ〉.

(
n∏
i=1

ei.awi
〈xi〉

)
, ∅


 -


where e1 · · · en are pairwise distinct fresh channel names, {w1, · · · , wn} = W ∪
{vs}s∈U1∪U2

and ρ = {x1/w1, · · · , xn/wn}. Applying Ct to D1, we can get the
following transitions:

Ct[D1] =

νc̃, ñ1.

σ1\W , T1 ∪ {t 7→M1} ,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪

{(
n∏
i=1

ei, ∅

)}

∪


aw1(x1). · · · .awn(xn).

read t(x).writet〈Nρ〉.

(
n∏
i=1

ei.awi
〈xi〉

)
, ∅





=⇒ D′1 :=

νc̃, ñ1.
σ1\W , T1 ∪ {t 7→Nϕ1} ,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}s 6=t
s∈unlocks(A1)

∪ {(unlock t,{t})}
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τ(t)−−→
νc̃, ñ1.σ1\W , T1 ∪ {t 7→ Nϕ1} ,

P1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}s6=t
s∈unlocks(A1)


τ(t)−−→ D′′1 :=

νc̃, ñ1.σ1\W , T1 ∪ {t 7→M ′1} ,

P ′
1 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}s6=t
s∈unlocks(A1)


In the above transitions, all the public state cells in D1 are locked. We can see that
D′1 6⇓e1,··· ,en,tagt

. We apply Ct to D2. From Ct[D1] ≈ Ct[D2], there should exist

D′2 such that Ct[D2]
ε

=⇒ D′2
ε

=⇒ D′′2 and D′2 ≈ D′1 and D′′2 ≈ D′′1 . Let S′2 =
T2 ∪ {t 7→M2}. The only possibility for D′2 and D′′2 is that:

Ct[D2] =

νc̃, ñ′2.

σ2\W ,T2 ∪ {t 7→M2} ,

P ′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪

{(
n∏
i=1

ei, ∅

)}

∪


aw1

(x1). · · · .awn
(xn).

read t(x).writet〈Nρ〉.

(
n∏
i=1

ei.awi
〈xi〉

)
, ∅
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=⇒ D′2 :=

νc̃, ñ′′2 .
σ2\W , T

′
2 ∪ {t 7→Nϕ2} ,

P ′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}s6=t
s∈unlocks(A1)

∪ {(unlock t,{t})}


τ(t)−−→
νc̃, ñ′′2 .σ2\W ,T

′
2 ∪ {t 7→Nϕ2} ,

P ′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}s 6=t
s∈unlocks(A1)


τ(t)
=⇒ D′′2 :=

νc̃, ñ′′′2 .

σ2\W ,S
′′
2 ,

P ′′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}s6=t
s∈unlocks(A1)


We can see that

E =⇒ t:=N−−−→=⇒ νñ′′2 . (ϕ2, T
′
2 ∪ {t 7→ Nϕ2} ,P ′′2 )

τ(t)
=⇒ B′2 := νñ′′′2 . (ϕ2, S

′′
2 ,P ′′′2 )

From B2 =⇒ E, we have B2 =⇒ t:=N−−−→=⇒ τ(t)
=⇒ B′2. Using Corollary 40, we know

that B2
t:=N−−−→ τ(t)

=⇒ B′2. Comparing the constructions of B′1 (resp. B′2) with D′′1 (resp.
D′′2 ), we know that (B′1, B

′
2) ∈ R.

(c) Assume B1 = νñ1, r.(ϕ1, T1 ∪ {r 7→M} ,Q1 ∪ {(open r.P, L)}) τ(r)−−→ B′1 :=
νñ1.(σ, S ∪ {r 7→M} ,P ∪ {(P,L)}) if r /∈ ñ1.
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We can get the following transition from D1:

D1 =

νc̃, ñ1, r.
σ1\W , T1 ∪ {r 7→M} ,

Q1 ∪ {(open r.P,L)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


τ(r)−−−→ D′1 :=

νc̃, ñ1.
σ1\W , T1 ∪ {r 7→M} ,

Q1 ∪ {(P,L)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


We can see that D′1 ⇓aw,avt ,bj ,reads,tags,writes

for w ∈ W, t ∈ U1 ∪ U2, j ∈ J, s ∈
unlocks(A1). We can also see that fs(D′1) = fs(D1) ∪ {r}. From D1 ≈ D2, there
should exist D′2 such that D2 =⇒ D′2 ≈ D′1 which requires fs(D′2) = fs(D2) ∪ {r}.
The only possibility for D′2 is that

D2 =

νc̃, ñ′
2.

σ2\W ,S
′
2,

P ′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


τ(r)
=⇒ D′2 :=

νc̃, ñ′′
2 .

σ2\W ,S
′′
2 ,

P ′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
,
(
tags, ∅

)
,

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


The transitions D2 =⇒ D′2 can only involve ñ′2, S

′
2,P ′2. Thus we can see that

E = νñ′2.(ϕ2, S
′
2,P ′2)

τ(r)
=⇒ B′2 := νñ′′2 .(ϕ2, S

′′
2 ,P ′′2 )
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Since lock (D′1) = lock (D′2) and fs(D′2) = fs(D2) ∪ {r} and all the unlocked
public state cells in A1 are locked in both D2 and D′2, we can see that lock (B′1) =
lock (B′2) and fs(B′2) = fs(E)∪{r} = fs(B′1). Since B2 =⇒ E and E =⇒ B′2, we
have B2 =⇒ B′2. Comparing the construction of D′1 (resp. D′2) with B′1 (resp. B′2),
we can see that (B′1, B

′
2) ∈ R.

(d) Assume B1 = νñ1.(ϕ1, T1 ∪ {r 7→M} ,Q1 ∪ {(unlock r.P, L ∪ {r})})
τ(r)−−→

B′1 := νñ1.(σ, S∪{r 7→M} ,P∪{(P,L)}) if r /∈ ñ1∪lock (Q1)∪L. The analysis
is similar as above case.

(e) AssumeB1 = νñ1.(ϕ1, S1,Q1∪{(a(x).P1, L1)}) a(M)−−−−→ B′1 := νñ1.(ϕ1, S1,Q1∪
{(P1 {Mϕ1/x} , L1)}) with name(a,M) ∩ ñ1 = ∅ and var(M) ⊆ dom(ϕ1) and
P1 = Q1 ∪ {(a(x).P1, L1)}.

i. when a 6∈ c̃, we construct an evaluation context C:

C =

-, -,


(

n∏
i=1

ei, ∅

)
,

 aw1
(x1). · · · .awn

(xn).

a〈Mρ〉.

(
n∏
i=1

ei.awi
〈xi〉

)
, ∅


 -


where e1 · · · en are pairwise distinct fresh channel names, {w1, · · · , wn} = W ∪
{vs}s∈U1∪U2

and ρ = {x1/w1, · · · , xn/wn}. Applying C to D1, we can get the
following transitions:

C[D1] =

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(a(x).P1, L1)} ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(aw〈wσ1〉, ∅)}w∈W ∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪

{(
n∏
i=1

ei, ∅

)}

∪

{(
aw1

(x1). · · · .awn
(xn).a〈Mρ〉.

(
n∏
i=1

ei.awi
〈xi〉

)
, ∅

)}


=⇒

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(a(x).P1, L1)} ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪

{(
n∏
i=1

ei, ∅

)}

∪

{(
a〈Mϕ1〉.

(
n∏
i=1

ei.awi
〈wiϕ1〉

)
, ∅

)}
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=⇒ D′1 :=

νc̃, ñ1.

σ1\W , S1,

Q1 ∪ {(P1 {Mϕ1/x} , L1)} ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(aw〈wσ1〉, ∅)}w∈W ∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


Then we apply C to D2, and from C[D1] ≈ C[D2]. There should exist D′2 such
that C[D2]

ε
=⇒ D′2 and D′2 ≈ D′1. Since D′1 ⇓aw,avs ,bj ,readt,tagt,writet

for w ∈
W, s ∈ U1 ∪ U2, j ∈ J, t ∈ unlocks(A1) and D′1 6⇓ei for i = 1, · · · , n, the only
possibility for D′2 is that

C[D2] =

νc̃, ñ′
2.


σ2\W ,S

′
2,

P ′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪
{

(bj〈cj〉, ∅)
}
j∈J

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪

{(
n∏
i=1

ei, ∅

)}

∪

{(
aw1

(x1). · · · .awn
(xn).a〈Mρ〉.

(
n∏
i=1

ei.awi
〈xi〉

)
, ∅

)}


=⇒

νc̃, ñ′′
2 .


σ2\W ,S

′′
2 ,

P ′′
2 ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪

{(
n∏
i=1

ei, ∅

)
,

(
a〈Mϕ2〉.

(
n∏
i=1

ei.awi〈wiϕ2〉

)
, ∅

)}


=⇒ D′2 :=

νc̃, ñ′′′
2 .

σ2\W ,S
′′′
2 ,

P ′′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


In the transitions C[D2] =⇒ D′2, there is no operation on public state cells in
unlocks(A1) because these cells are all locked. So we can deduce that

E = νñ′2. (ϕ2, S
′
2,P ′2) =⇒ νñ′′2 . (ϕ2, S

′′
2 ,P ′′2 )

a(M)
=⇒ B′2 := νñ′′′2 . (ϕ2, S

′′′
2 ,P ′′′2 )

From D′′1 ≈ D′′2 , we have that (B′1, B
′
2) ∈ R.
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ii. when a = ck for some k ∈ J , we construct an evaluation context C:

C =

-, -,


(

n∏
i=1

ei, ∅

)
,

 aw1
(x1). · · · .awn

(xn).bk(u).

u〈Mρ〉.

(
bk〈u〉 |

n∏
i=1

ei.awi
〈xi〉

)
, ∅


 -


where e1 · · · en are pairwise distinct fresh channel names, {w1, · · · , wn} = W ∪
{vs}s∈U1∪U2

and ρ = {x1/w1, · · · , xn/wn}.
(f) Assume

B1 = νñ1.(ϕ1, S1,Q1∪{(a(x).P1, L1)}) a(d)−−−→ B′1 := νñ1.(ϕ1, S1,Q1∪{(P1 {d/x} , L1)})

with a, d /∈ ñ1 = ∅ and P1 = Q1 ∪ {(a(x).P1, L1)}.
i. when a, d 6∈ c̃, we construct an evaluation context C:

C = (-, -, {(e, ∅) , (a〈d〉.e, ∅)} -)

where e is a fresh channel name. Applying C to D1, we can get the following
transitions:

C[D1] =

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(a(x).P1, L1)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(e, ∅) , (a〈d〉.e, ∅)}


=⇒ D′1 :=

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(P1 {d/x} , L1)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


Then we apply C to D2, and from C[D1] ≈ C[D2]. There should exist D′2 such
that C[D2]

ε
=⇒ D′2 and D′2 ≈ D′1. Since D′1 ⇓aw,avs ,bj ,readt,tagt,writet

for w ∈
W, s ∈ U1 ∪ U2, j ∈ J, t ∈ unlocks(A1) and D′1 6⇓e, the only possibility for D′2
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is that

C[D2] =

νc̃, ñ′
2.


σ2\W ,S

′
2,

P ′
2 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(e, ∅) , (a〈d〉.e, ∅)}


=⇒ D′2 :=

νc̃, ñ′′
2 .

σ2\W ,S
′′
2 ,

P ′′
2 ∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


In the transitions C[D2] =⇒ D′2, there is no operation on public state cells in
unlocks(A1) because these cells are all locked. So we can deduce that

E = νñ′2. (ϕ2, S
′
2,P ′2)

a(d)
=⇒ B′2 := νñ′′2 . (ϕ2, S

′′
2 ,P ′′2 )

From B2 =⇒ E, we have B2
a(d)
=⇒ B′2. From D′′1 ≈ D′′2 , we have that (B′1, B

′
2) ∈

R.
ii. when a = ck for some k ∈ J and d /∈ c̃, we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).u〈d〉.e.bk〈u〉, ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
iii. when a /∈ c̃ and d = ck for some k ∈ J , we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).a〈u〉.e.bk〈u〉, ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
iv. when a = d = ck for some k ∈ J , we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).u〈u〉.e.bk〈u〉, ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
v. when a = ck and d = cm for some k,m ∈ J and k 6= m, we construct an

evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).bm(v).u〈v〉.(e.bk〈u〉 | bm〈v〉), ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
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(g) AssumeB1 = νñ1.(ϕ1, S1,Q1∪{(a〈d〉.P1, L1)}) a〈d〉−−−→ B′1 := νñ1.(ϕ1, S1,Q1∪
{(P1, L1)}) with a, d /∈ ñ1 and P1 = Q1 ∪ {(a〈d〉.P1, L1)}.

i. when a, d 6∈ c̃, we construct an evaluation context C:

C = (-, -, {(e, ∅) , (a(x).if x = d then e, ∅)} -)

where e is a fresh channel name. Applying C to D1, we can get the following
transitions:

C[D1] =

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(a〈d〉.P1, L1)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(e, ∅) , (a(x).if x = d then e, ∅)}


=⇒ D′1 :=

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(P1, L1)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


Then we apply C to D2. Since C[D1] ≈ C[D2], there should exist D′2 such that
C[D2]

ε
=⇒ D′2 ≈ D′1.

From D′1 ⇓aw,avs ,bj ,readt,tagt,writet
for w ∈ W, s ∈ U1 ∪ U2, j ∈ J, t ∈

unlocks(A1) and D′1 6⇓e, the only possibility of D′2 is that:

C[D2] =

νc̃, ñ′
2.


σ2\W ,S

′
2,

P ′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(e, ∅) , (a(x).if x = d then e, ∅)}
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=⇒ D′2 :=

νc̃, ñ′′
2 .

σ2\W ,S
′′
2 ,

Q′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


In the transitions C[D2] =⇒ D′2, there is no operation on public state cells in
unlocks(A1) because these cells are all locked. So we can deduce that

E = νñ′2. (ϕ2, S
′
2,P ′2)

a〈d〉
=⇒ B′2 := νñ′′2 . (ϕ2, S

′′
2 ,P ′′2 )

From B2 =⇒ E, we have B2
a〈d〉
=⇒ B′2. From D′′1 ≈ D′′2 , we have that (B′1, B

′
2) ∈

R.
ii. when a = ck for some k ∈ J and d /∈ c̃, we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).u(x).if x = d then e.bk〈u〉, ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
iii. when a /∈ c̃ and d = ck for some k ∈ J , we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).a(x).if x = u then e.bk〈u〉, ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
iv. when a = d = ck for some k ∈ J , we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).u(x).if x = u then e.bk〈u〉, ∅

)}
-
)

where e is a fresh channel name. The analysis is similar as above.
v. when a = ck and d = cm for some k,m ∈ J and k 6= m, we construct an

evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).bm(v).u(x).if x = v then

(
bk〈u〉 | e.bm〈v〉

)
, ∅
)}

-
)

where e is a fresh channel name. The analysis is similar as above.

(h) AssumeB1 = νñ′1, d.(ϕ1, S1,Q1∪{(a〈d〉.P1, L1)}) νd.a〈d〉−−−−−→ B′1 := νñ′1.(ϕ1, S1,Q1∪
{(P1, L1)}) with a, d /∈ ñ′1 and P1 = Q1 ∪ {(a〈d〉.P1, L1)}.

i. when a 6∈ c̃, we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
a(x).if x ∈ fn(B1, B2) then 0 else e.bm〈x〉, ∅

)}
-
)

where e, bm are different fresh channel names. Applying C to D1, we can get the
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following transitions:

C[D1] =

νc̃, ñ′1, d.


σ1\W , S1,

Q1 ∪ {(a〈d〉.P1, L1), (e, ∅)}
∪
{ (
a(x).if x ∈ fn(B1,B2) then 0 else e.bm〈x〉, ∅

)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


=⇒ D′1 :=

νc̃, ñ′1, d.


σ1\W , S1,

Q1 ∪ {(P1, L1)} ∪ {(aw〈wσ1〉, ∅)}w∈W
∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪
{

(bj〈cj〉, ∅)
}
j∈J ∪

{
(bm〈d〉, ∅)

}
∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)


Then we apply C to D2. Since C[D1] ≈ C[D2], there should exist D′2 such that
C[D2]

ε
=⇒ D′2 ≈ D′1.

From D′1 ⇓aw,avs ,bj ,bm,readt,tagt,writet
for w ∈ W, s ∈ U1 ∪ U2, j ∈ J, t ∈

unlocks(A1) and D′1 6⇓e, the only possibility of D′2 is that:

C[D2] =

νc̃, ñ′2.


σ2\W , S

′
2,

P ′2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪
{

(e, ∅) ,
(
a(x).if x ∈ fn(B1, B2) then 0 else e.bm〈x〉, ∅

)}


=⇒ D′2 :=

νc̃, ñ′′2 , d.


σ2\W , S

′′
2 ,

P ′′2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪
{

(bj〈cj〉, ∅)
}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪
{(
bm〈d〉, ∅

)}


In the transitions C[D2] =⇒ D′2, there is no operation on public state cells in
unlocks(A1) because these cells are all locked. So we can deduce that

E = νñ′2. (ϕ2, S
′
2,P ′2)

νd.a〈d〉
=⇒ B′2 := νñ′′2 . (ϕ2, S

′′
2 ,P ′′2 )
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From B2 =⇒ E, we have B2
νd.a〈d〉
=⇒ B′2. From D′′1 ≈ D′′2 , we have that

(B′1, B
′
2) ∈ R.

ii. when a = ck for some k ∈ J and d /∈ c̃, we construct an evaluation context C:

C =
(
-, -,
{

(e, ∅) ,
(
bk(u).u(x).if x ∈ fn(B1, B2) then 0 else (e.bk〈u〉 | bm〈x〉), ∅

)}
-
)

where e, bm are different fresh channel names. The analysis is similar as above.

(i) AssumeB1 = νñ1.(ϕ1, S1,Q1∪{(a〈M1〉.P1, L1)}) νx.a〈x〉−−−−−→ νñ1.(ϕ1∪{M1/x} , S1,P∪
{(P1, L1)}) with a 6∈ ñ1 and M1 is of the base sort and x is fresh.

i. when a 6∈ c̃, selecting a fresh channel name ax, we construct an evaluation con-
text C:

C = (-, -, {(e, ∅) , (a(z).e.ax〈z〉, ∅)} -)

where e is a fresh channel name. Applying C to D1, we can get the following
transitions:

C[D1] =

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(a〈M1〉.P1, L1)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(e, ∅) , (a(z).e.ax〈z〉, ∅)}


=⇒ D′1 :=

νc̃, ñ1.


σ1\W , S1,

Q1 ∪ {(P1, L1)}
∪ {(aw〈wσ1〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S1(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S1(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(ax〈M1〉, ∅)}


Then we apply C to D2. Since C[D1] ≈ C[D2], there should exist D′2 such that
C[D2]

ε
=⇒ D′2 ≈ D′1.

From D′1 ⇓aw,avs ,ax,bj ,bm,readt,tagt,writet
for w ∈ W, s ∈ U1 ∪ U2, j ∈ J, t ∈
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unlocks(A1) and D′1 6⇓e, the only possibility of D′2 is that:

C[D2] =

νc̃, ñ′
2.


σ2\W ,S

′
2,

P ′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(e, ∅) , (a(z).e.ax〈z〉, ∅)}



=⇒ D′2 :=

νc̃, ñ′′
2 .


σ2\W ,S

′′
2 ,

P ′′
2 ∪ {(aw〈wσ2〉, ∅)}w∈W ∪

{
(bj〈cj〉, ∅)

}
j∈J

∪ {(avs〈S2(s)〉, ∅)}s∈U1∪U2

∪

{(
reads〈S2(s)〉, ∅

)
, (tags, ∅),

(writes(x).s := x. tags.unlock s, {s})

}
s∈unlocks(A1)

∪ {(ax〈M2〉, ∅)}


In the transitions C[D2] =⇒ D′2, there is no operation on public state cells in
unlocks(A1) because these cells are all locked. So we can deduce that

E = νñ′2. (ϕ2, S
′
2,P ′2)

νx.a〈x〉
=⇒ B′2 := νñ′′2 . (ϕ2 ∪ {M2/x} , S′′2 ,P ′′2 )

From B2 =⇒ E, we have B2
νx.a〈x〉
=⇒ B′2. From D′′1 ≈ D′′2 , we have that

(B′1, B
′
2) ∈ R.

ii. when a = ck for some k ∈ J , selecting a fresh channel name ax, we construct
an evaluation context C:

C = (-, -, {(e, ∅) , (bk(u).u(z).e.ax〈z〉, ∅)} -)

where e is a fresh channel name. The analysis is similar as above.

In the presence of public state cells, labelled bisimilarity is both sound and com-
plete with respect to observational equivalence.

Theorem 42 (Coincidence). In the presence of public state cells, ≈l =≈.

Proof. Using Proposition 38 and Proposition 41.

7. Conclusion

We present a stateful language which is a general extension of applied pi calculus
with state cells. We stick to the original definition of observational equivalence [3]

66



as much as possible to capture the intuition of indistinguishability from the attacker’s
point of view, while design the labelled bisimilarity to furthest abstract observational
equivalence. When all the state cells are private, we prove that observational equiva-
lence coincides with labelled bisimilarity, which implies Abadi-Fournet’s theorem in a
revised version of applied pi calculus. In the presence of public state cells, we devise
a labelled bisimilarity which is proved to coincide with observational equivalence. In
future, we plan to develop a compiler for bi-processes with state cells to automatically
verify the observational equivalence, extending the techniques of ProVerif.
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[30] R. Künnemann and G. Steel. YubiSecure? formal security analysis results for
the Yubikey and YubiHSM. In Preliminary Proceedings of the 8th Workshop on
Security and Trust Management (STM’12), 2012.

[31] J. Liu. A proof of coincidence of labeled bisimilarity and observational equiva-
lence in applied pi calculus. http://mail.ios.ac.cn/˜jliu/papers/
Proof.pdf, 2011. Technical Report, ISCAS-SKLCS-11-05.

[32] J. Liu and H. Lin. A complete symbolic bisimulation for full applied pi calculus.
Theoretical Computer Science, 458:76–112, 2012.
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Appendix A. Proofs in Section 3.2

Lemma 6. Let A be a closed extended process with only private state cells and C =
νñ.(σ-, S-,P-) be a closing evaluation context with only private state cells and x̃ ⊆
dom(A).

1. If A
c(Mσ)−−−−→ B with name(c,M) ∩ ñ = ∅ and var(M) ⊆ dom(C[A]\x̃), then

C[A]\x̃
c(M)−−−→ C[B]\x̃;

2. If A α−−→ B with name(α) ∩ ñ = ∅ and var(α) ∩ x̃ = ∅, then C[A]\x̃
α−−→ C[B]\x̃

when α is not an input.

Proof.

1. Assume A = νña.(σa, Sa,Pa ∪ {(c(z).P, L)}) c(Mσ)−−−−→ B = νña.(σa, Sa,Pa ∪
{(P {(Mσ)σa/z} , L)}) where ñ ∩ ña = ∅. Then

C[A]\x̃ = νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa,Pσa ∪ Pa ∪ {(c(z).P, L)})
c(M)−−−→ νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa,Pσa ∪ Pa ∪

{
(P
{
M(σσa ∪ σa\x̃)/z

}
, L)
}

)

= νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa,Pσa ∪ Pa ∪ {(P {(Mσ)σa/z} , L)}) = C[B]\x̃

since var(M) ⊆ dom(C[A]\x̃) and (Mσ)σa = M(σσa ∪ σa\x̃)

2. When α is not an input, we take lock s and channel output b〈c〉 as examples. The
other cases are quite similar.

(a) AssumeA = νña.(σa, Sa∪{s 7→M} ,Pa∪{(lock s.P, L)}) τ−−→ B = νña.(σa, Sa
∪{s 7→M} ,Pa∪{(P,L ∪ {s})}) where s ∈ ña, s 6∈ L∪ locks(Pa) and ñ∩ ña = ∅.

C[A]\x̃ = νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa ∪ {s 7→M} ,Pσa ∪ Pa ∪ {(lock s.P, L)})
τ−→ νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa ∪ {s 7→M} ,Pσa ∪ Pa ∪ {(P,L ∪ {s})}) = C[B]\x̃

because s ∈ ña and s /∈ locks(P,Pa) ∪ L.

(b) Assume A = νña.(σa, Sa,Pa ∪
{

(b〈c〉.P, L)
}

)
b〈c〉−−→ B = νña.(σa, Sa,Pa ∪

{(P,L)}) where b, c /∈ ña ∪ ñ and ñ ∩ ña = ∅.

C[A]\x̃ = νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa,Pσa ∪ Pa ∪
{

(b〈c〉.P, L)
}

)

b〈c〉−−→ νñ, ña.(σσa ∪ σa\x̃, Sσa ∪ Sa,Pσa ∪ Pa ∪ {(P,L)}) = C[B]\x̃
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Appendix B. Proofs in Section 4.2

Lemma 13. Let A,B be two closed pure extended processes. If B '1 A
α−−→ A′ with

fv(α) ⊆ dom(A) then there exists a closed pure extended process B′ such that either

B
α̂

=⇒ A′ or B α−−→ B′ '1 A′.

Proof. We discuss the eight different cases for B '1 A.

1. AssumeB = νñ,m.(σ,P) ' νñ.(σ,P) = A orB = νñ.(σ,P) ' νñ,m.(σ,P) =
A with m /∈ fn(ñ, σ,P). Since m is a redundant name, it will not affect any actions
from P . Hence B α−→ A′.

2. Assume B = νñ.(σ,P ∪ {νm.P}) ' νñ,m.(σ,P ∪ {P}) = A with m /∈
fn(ñ, σ,P). Then we have B τ−→ A

α−→ A′.

3. Assume B = νñ,m.(σ,P ∪ {P}) ' νñ.(σ,P ∪ {νm.P}) = A with m /∈
fn(ñ, σ,P). If A α−→ A′ is about pulling out name m, then B = A′. For the other
cases of A α−→ A′, we can easily see that A cannot perform any action from νm.P and
action α is from P , thus there exists B′ such that B α−→ B′ '1 A′.

4. Assume B = νñ.(σ,P ∪ {P | Q}) ' νñ.(σ,P ∪ {P} ∪ {Q}) = A. Then we have
B

τ−→ A
α−→ A′.

5. Assume B = νñ.(σ,P ∪ {P} ∪ {Q}) ' νñ.(σ,P ∪ {P | Q}) = A. If A α−→ A′ is
about splitting P | Q, then B = A′. For the other cases of A α−→ A′, we can easily see
that A cannot perform any action from P | Q and action α is from P , thus there exists
B′ such that B α−→ B′ '1 A′.

6. When the B '1 A replaces some terms, we take conditional branch as an example,
the other cases are trivial. AssumeB = νñ.(σ {M ′/z} ,P {M ′/z}∪{ifM {M ′/z} =
N {M ′/z} then P {M ′/z} else Q {M ′/z}}) ' νñ.(σ {N ′/z} ,P {N ′/z} ∪
{ifM {N ′/z} = N {N ′/z} then P {N ′/z} else Q {N ′/z}}) = A and M ′ =Σ

N ′. Since M {M ′/z} =Σ M {N ′/z} and N {M ′/z} =Σ N {N ′/z}, we can see
that M {M ′/z} =Σ N {M ′/z} iff M {N ′/z} =Σ N {N ′/z}. That is to say B and
A will jump to the same branch. We take then branch as an example here. Then
A′ = νñ.(σ {N ′/z} ,P {N ′/z}∪P {N ′/z}). LetB′ = νñ.(σ {M ′/z} ,P {M ′/z}∪
P {M ′/z}). Clearly we have B τ−→ B′ '1 A′.

Given a set of cells S = {s1 7→M1, · · · , sn 7→Mn} and a set of locksL, we define
the projection S|L of S under L to be the set { t 7→ N | {t 7→ N} ⊆ S and t ∈ L }.

Lemma 16. Let A be a closed extended process and fv(α) ⊆ dom(A). If A α−→ B

then bAc α̂
=⇒ bBc.

Proof. We only detail the proof for the transitions related to cell name here. The other
cases are trivial. The function bc only gathers together the name restrictions of the top
level.
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1. Assume A = νñ.(σ, S,P ∪ {(s 7→M, ∅)}) τ−−→ B = νñ.(σ, S ∪ {s 7→M} ,P).
Since A is closed, we have that s /∈ locks(P). We can easily see that bAc = bBc from
the definition of encoding in Section 4.

2. AssumeA = νñ.(σ, S∪{s 7→M} ,P∪{(read s as x.P, L)}) τ−−→ B = νñ.(σ, S∪
{s 7→M} ,P ∪{(P {M/x} , L)}). Since this transition only affects cell s, we assume
the encoding for the unlocked cells in S is Q1 and the encoding for P is Q2. We also
assume the encoding for names ñ is ñ′. The encoding for {s 7→M} and read s as x.P
are different regarding s is locked or not.

(a) if s ∈ L, let T = S|L∪{s 7→M}, then bAc = νñ′. (σ,Q1 ∪Q2 ∪ {bP {M/x}cT })
and bBc = νñ′. (σ,Q1 ∪Q2 ∪ {bP {M/x}cT }). Thus we have bAc =⇒ bBc.

(b) if s /∈ L, then we have bAc = νñ′.(σ,Q1∪Q2∪
{
cs〈M〉, cs(x).(cs〈x〉 | bP cS|L)

}
)

and bBc = νñ′.
(
σ,Q1 ∪Q2 ∪

{
cs〈M〉, bP {M/x}cS|L

})
. Thus bAc τ−→ νñ′.(σ,Q1∪

Q2 ∪
{
cs〈M〉 | bP {M/x}cS|L

}
)
τ−→ bBc.

3. Assume A = νñ.(σ, S ∪ {s 7→M} ,P ∪ {(s := N.P,L)}) τ−−→ B = νñ.(σ, S ∪
{s 7→ N} ,P∪{(P,L)}). Similar to the read case, we assume the encoding for ñ, S,P
are ñ′,Q1,Q2 respectively.

(a) if s ∈ L, then bAc = νñ′.(σ,Q1 ∪ Q2 ∪
{
bP cS|L∪{s7→N}

}
) and bBc =

νñ′.(σ,Q1 ∪Q2 ∪
{
bP cS|L∪{s7→N}

}
). This gives us bAc =⇒ bBc.

(b) if s /∈ L, then bAc = νñ′.
(
σ,Q1 ∪Q2 ∪

{
cs〈M〉, cs(x).(cs〈N〉 | bP cS|L)

})
where x is a fresh base sort variable and bBc = νñ′.

(
σ,Q1 ∪Q2 ∪

{
cs〈N〉, bP cS|L

})
.

Thus bAc τ−−→ νñ′.
(
σ,Q1 ∪Q2 ∪

{
cs〈N〉 | bP cS|L

})
τ−−→ bBc.

4. AssumeA = νñ. (σ, S ∪ {s 7→M} ,P ∪ {(lock s.P, L)}) τ−−→ νñ.(σ, S∪{s 7→M} ,
P ∪ {(P,L ∪ {s})}) and s 6∈ L ∪ locks(P). Similar to the read case, we assume
the encoding for unlocked cells in S is Q1 and encoding for ñ,P are ñ′,Q2 respec-
tively. Then bAc = νñ′.(σ,Q1 ∪ Q2 ∪

{
cs〈M〉, cs(x). bP cS|L∪{s7→x}

}
) and bBc =

νñ′.(σ,Q1 ∪ Q2 ∪
{
bP cS|L∪{s7→M}

}
). Since x /∈ fv(P ), bP cS|L∪{s7→x} {M/x} =

bP cS|L∪{s7→M}. Thus we have bAc τ−−→ bBc.

5. AssumeA = νñ. (σ, S ∪ {s 7→M} ,P ∪ {(unlock s.P, L)}) τ−−→ B = νñ.(σ, S∪
{s 7→M} ,P ∪ {(P,L \ {s})}) and s ∈ L. We assume the encoding for ñ, S,P are
ñ′,Q1,Q2 respectively. Then bAc = νñ′.

(
σ,Q1 ∪Q2 ∪

{
cs〈M〉 | bP cS|L

})
and

bBc = νñ′.
(
σ,Q1 ∪Q2 ∪

{
cs〈M〉, bP cS|L

})
. Thus bAc τ−−→ bBc.
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Appendix C. Proofs of Theorem 21 and Corollary 22 in Section 5

In this section, we discuss the relation between applied pi calculus and stateful
applied pi calculus.

To fix the flaw mentioned in Section 3.1, we revise the original applied pi calculus
[3] slightly that the active substitutions are only defined on terms of base sort. Since
the communication rule in [3] relies on the active substitutions, we need to replace it
with the new rule COMM a〈M〉.Pr | a(x).Qr

τ−→ Pr | Qr {M/x} accordingly.
To avoid confusion, we use Ar, Br, Cr to refer to the extended processes and use

Cr to refer to the evaluation context in applied pi calculus.

Appendix C.1. An Alternative Semantics for Applied Pi Calculus

To ease the proof, we use an alternative semantics in Figure C.6 of the revised ap-
plied pi calculus mentioned above. This semantics has been proved in Appendix A in
[32] to yield exactly the same set of observational equivalence (resp. labelled bisimi-
larity) as the one in [3]. For convenience of reading, we copy the proof in [32] here.

The operational semantics of the applied pi calculus relies heavily on structural
equivalence. This is because the analysis of complex data and “alias” mechanism in-
troduced in the calculus depends on structural equivalence rules such as SUBST and
REWRITE. Unfortunately such a structural equivalence makes the formal reasoning
very difficult. Thus, as a first step, we need to preprocess the original semantics in [3]
and rewrite it to a more convenient form while preserving the observational equiva-
lence.

Here in Figure C.6 we replace the two-directional rule !Pr ≡ Pr |!Pr in struc-
tural equivalence in [3] with the one-directional !Pr

τ−→ Pr |!Pr in the internal re-
duction, as well as replacing the THEN in internal reduction in [3] with if M =
N then Pr else Qr

τ−→ Pr if M =Σ N .
We shall show that the notions of the observational equivalence and the labelled

bisimilarity generated by the two sets of rules are exactly the same (Theorem 50
andTheorem 51). In other words, it is adequate to handle replications with !Pr

τ−→
Pr |!Pr only.

The observational equivalence and labelled bisimilarity in applied pi calculus are
defined by:

Definition 43. Observational equivalence (≈) is the largest symmetric relation R be-
tween closed extended processes with the same domain such that ArRBr implies:

1. if Ar ⇓a then Br ⇓a;

2. if Ar =⇒ A′r, then Br =⇒ B′r and A′r R B′r for some B′r;

3. Cr[Ar]RCr[Br] for all closing evaluation contexts Cr.

Definition 44. Two terms M and N are equal in the frame φ, written (M = N)φ,
iff φ ≡ νñ.σ, {ñ} ∩ name(M,N) = ∅, and Mσ =Σ Nσ, for some names ñ and
substitution σ.
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Ar ≡ Ar | 0
Ar | Br ≡ Br | Ar

Ar | (Br | Cr) ≡ (Ar | Br) | Cr
νx. {M/x} ≡ 0 νn.0 ≡ 0
{M/x} ≡ {N/x} whenM =Σ N νu.νv.Ar ≡ νv.νu.Ar

{M/x} | Ar ≡ {M/x} | Ar {M/x} Ar | νu.Br ≡ νu.(Ar | Br)
when u /∈ fnv(Ar)

COMM a〈M〉.Pr | a(x).Qr
τ−→ Pr | Qr {M/x}

THEN if M = N then Pr else Qr
τ−→ Pr if M =Σ N

ELSE if M = N then Pr else Qr
τ−→ Qr if var(M,N) = ∅ and M 6=Σ N

REP !Pr
τ−→ Pr |!Pr IN a(x).Pr

a(M)−−−→ Pr {M/x}

OUTCH a〈c〉.Pr
a〈c〉−−→ Pr OUTT a〈M〉.Pr

νx.a〈x〉−−−−−→ Pr | {M/x}
where x ∈ Vb and x /∈ fv(a〈M〉.Pr)

OPENCH
Ar

a〈c〉−−→ Br a 6= c

νc.Ar
νc.a〈c〉−−−−→ Br

SCOPE
Ar

α−→ Br u does not occur in α
νu.Ar

α−→ νu.Br

PAR
Ar

α−→ A′r, bnv(α) ∩ fnv(Br) = ∅
Ar | Br

α−→ A′r | Br

STRUCT
Ar ≡ Cr

α−→ Dr ≡ Br
Ar

α−→ Br

Figure C.6: Operational Semantics of Applied Pi
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Two closed frames φ1 and φ2 are statically equivalent, written φ1 ≈s φ2, if dom(φ1)
= dom(φ2), and for all terms M and N such that var(M,N) ⊆ dom(φ1) we have
(M = N)φ1 iff (M = N)φ2. Two closed extended processes Ar and Br are statically
equivalent, written Ar ≈s Br, if their frames are.

Definition 45. Labeled bisimilarity (≈l) is the largest symmetric relationR on closed
extended processes such that ArRBr implies:

1. Ar ≈s Br

2. if Ar
α−→ A′r and fv(α) ⊆ dom(Ar) and bn(α)∩ fn(Br) = ∅ then Br

α̂
=⇒ B′r and

A′rRB′r for some B′r.

In order to avoid confusion, in the following discussions we shall use ≡o,
τ−→o,

τ
=⇒o, ⇓oa, ≈o and ≈l,o to refer to original structural equivalence, (strong and weak)
transitions, etc defined in [3]; and use ≡, τ−→, =⇒, ⇓a, ≈ and ≈l for the corresponding
ones generated here. To prove that≈o(resp. ≈l,o) coincides with≈(resp. ≈l). We need
to explore the relationship between α−→o and α−→. Their relations are mainly formalised
in the following Lemma 47 and Lemma 48.

We write Ar �1 Br if Ar can be transformed to Br by applying to a subterm
(which is not under a replication, an input, a conditional, or an output) of Ar an axiom
of structural equivalence ≡o, except that !Pr ≡o Pr |!Pr can only be used from left
to right; we write � for the reflexive and transitive closure of �1. We say a sequence
A1
r �1 A2

r �1 · · · �1 A`r is a linear proof sequence of A1
r � A`r.

Since the use of evaluation context before the use of structural equivalence can be
swapped. Two applications of structural equivalence as well as evaluation contexts can
be condensed to one, we can always obtain a derivation for any transition in which the
use of structural equivalence occurs only once and at the last step. We shall call such a
derivation a normalised derivation.

For n ≥ 1, an n-hole evaluation context Cr is an extended process with n holes
which are not under a replication, an input, an output or a conditional. We write
Cr[A1

r, A
2
r, · · · , Anr ] for the extended process obtained by filling the holes with pro-

cesses.

Lemma 46. Assume Ar � Br and Ar = Cr[!Pr] with Cr an evaluation context. Then
there exist an evaluation context C′r and a plain process Qr such that Br = C′r[!Qr]
and Cr[Pr |!Pr] � C′r[Qr |!Qr].

Proof. By induction on the length of the linear proof sequence for�. If the length is 0,
the result holds immediately. Now assume Ar �1 A1

r �1 A2
r · · · �1 A`r �1 A`+1

r =
Br. By the induction hypothesis there exist a plain process Rr and an evaluation con-
text C′′r such that

A`r = C′′r [!Rr] Cr[Pr |!Pr] � C′′r [Rr |!Rr] (C.1)

We argue by case analysis on the axiom used in deriving A`r �1 A`+1
r . We give

the details only for two cases when �1 is REWRITE and SUBST. The other cases are
similar.
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1. A`o = C′′′r [{M/x}] �1 C′′′r [{N/x}] = A`+1
r with M =Σ N . Since there is no

way that active substitution {M/x} can occur inside replications, it is easy to see
that there exists a two-hole evaluation context D such that A`r = D[!Rr, {M/x}],
D[!Rr, ·] = C′′′r and D[·, {M/x}] = C′′r . Using the REWRITE axiom, we know that
D[Rr |!Rr, {M/x}] �1 D[Rr |!Rr, {N/x}]. Let C′r = D[·, {N/x}] and Qr = Rr.
Clearly A`+1

r = C′r[!Qr]. Hence Cr[Pr |!Pr] � C′′r [Rr |!Rr] �1 C′r[Qr |!Qr] and the
result holds.

2. (a) A`r = C′′′r [Er | {M/x}] �1 C′′′r [Er {M/x} | {M/x}] = A`+1
r . Since the

hole in any evaluation context has no chance to occur under any replication, !Rr in
(C.1) should occur in either Er or C′′′r . The analysis for the latter case is similar as
the above case. Now we consider the former case. Here there exists an evaluation
context D such that Er = D[!Rr] and C′′′r [D[·] | {M/x}] = C′′r . The substitution
{M/x} will apply to D and Rr while rewriting A`r to A`+1

r . Let D′ = D {M/x}
and Qr = Rr {M/x}. We can easily see that A`+1

r = C′′′r [D′[!Qr] | {M/x}] and
C′′′r [D[Rr |!Rr] | {M/x}] �1 C′′′r [D′[Qr |!Qr] | {M/x}]. Let C′r = C′′′r [D′[·] |
{M/x}]. Then A`+1

r = C′r[!Qr] and C[Pr |!Pr] � C′′r [Rr |!Rr] � C′r[Qr |!Qr].
(b) A`r = C′′′r [Er {M/x} | {M/x}] �1 C′′′r [Er | {M/x}] = A`+1

r . When !Rr in
(C.1) occurs in Er {M/x}, clearly there exist an evaluation context D and a plain
process Qr such that Er = D[!Qr] and Qr {M/x} = Rr. The rest is similar to the
above case.

3. A`r = C′′′r [!P ′r] �1 C′′′r [P ′r |!P ′r] = A`+1
r . When !P ′r is !Rr in (C.1), the result

holds trivially; otherwise !Rr in (C.1) should occur in C′′′r and the remaining analysis
is similar.

Lemma 47. Assume Ar
α−→o A′r where Ar, A′r are closed and α is not a〈x〉 and

fv(α) ⊆ dom(Ar). Then there exist closed Br, B′r such that Ar � Br
α−→ B′r ≡o A′r.

Proof. Consider the normalized derivation of transition Ar
α−→o A

′
r.

1. α is a(M). Then Ar ≡o Cr[a(x).Qr]
a(M)−−−→o Cr[Qr {M/x}] ≡o A′r with Cr an

evaluation context and Cr[a(x).Qr]
a(M)−−−→o Cr[Qr {M/x}] derived by the rules in [3]

without using ≡o.
We may assume Cr[a(x).Qr] and Cr[Qr {M/x}] are both closed; for otherwise we
can let fv(Cr[a(x).Qr]) − dom(Cr[a(x).Qr]) = {x1, · · · , xn} and choose n fresh
names c1, · · · , cn and let σ = {c1/x1, · · · , cn/xn}. From the hypothesis, we know
that Mσ = M,x /∈ var(σ), and dom(Ar) = dom(Cr[a(x).Pr]) = dom(A′r). It

is easy to see that Ar = Arσ ≡o Crσ[a(x).Qrσ]
a(M)−−−→o Crσ[(Qrσ) {M/x}] =

Crσ[(Qrσ) {Mσ/x}] ≡o A′rσ = A′r.

Since Cr[a(x).Qr]
a(M)−−−→o Cr[Qr {M/x}] can be derived without using≡o, Cr[a(x).Qr]

a(M)−−−→ Cr[Qr {M/x}] can also be derived by rules in Fig. C.6 without using ≡. Thus

Ar ≡o Cr[a(x).Qr]
a(M)−−−→ Cr[Qr {M/x}] ≡o A′r. Now we proceed to construct
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the required Br and B′r as stated in the lemma. The rest of the proof goes by induc-
tion on the number of applications of !Pr ≡o Pr |!Pr from right to left in deriving
Ar ≡o Cr[a(x).Qr]. If the number is 0, the result is immediate. So suppose the num-
ber is nonzero and consider the last application of !Pr ≡o Pr |!Pr from right to left
(we write ≡1

o for the application of an axiom of structural equivalence ≡o):

Ar ≡o C′r[Pr |!Pr] ≡1
o C′r[!Pr] � Cr[a(x).Qr]

where C′r is also an evaluation context. From Lemma A.1, we know there exists D′

such that C′r[Pr |!Pr] � D′[Rr |!Rr] and D′[!Rr] = Cr[a(x).Qr]. Then there exists
a two hole evaluation context D such that D[!Rr, ·] = Cr since a(x).Qr cannot occur

inside the replication. Moreover D[Rr |!Rr, a(x).Qr]
a(M)−−−→ D[Rr |!Rr, Qr {M/x}]

can be derived by the rules in Fig. C.6, and

Ar ≡o C′r[Pr |!Pr] � D[Rr |!Rr,a(x).Qr]
a(M)−−−→

D[Rr |!Rr, Qr {M/x}] ≡o Cr[Qr {M/x}] ≡o A′r

Replacing !Rr with Rr |!Rr does not introduce fresh variables. In other words D[Rr |
!Rr, a(x).Qr] and D[Rr |!Rr, Qr {M/x}] are also closed. By induction hypothesis,

there exist closed Br, B′r such that Ar � Br
a(M)−−−→ B′r ≡o A′r.

2. α is a〈c〉. Then Ar ≡o Cr[a〈c〉.Qr]
a〈c〉−−→o Cr[Qr] ≡o A′r with Cr an evaluation

context. Clearly Cr[a〈c〉.Qr]
a〈c〉−−→ Cr[Qr]. The rest of the proof is similar to the above

case.

3. α is νc.a〈c〉. Then Ar ≡o νc.Cr[a〈c〉.Qr]
νc.a〈c〉−−−−→o Cr[Qr] ≡o A′r with Cr an

evaluation context. Then we have νc.Cr[a〈c〉.Qr]
νc.a〈c〉−−−−→ Cr[Qr]. The rest of the

proof is similar.

4. α is νx.a〈x〉. Then Ar ≡o νx.Cr[a〈x〉.Qr]
νx.a〈x〉−−−−−→o Cr[Qr] ≡o A′r with Cr an

evaluation context. By the side-condition on extended process in Section 2.1, there is
exactly one {M/x} in Cr for the restricted variable x. Thus there exists a two-hole
evaluation context D such that Cr = D[{M/x} , ·]. Since the side-condition for rule
OUTT in Fig. C.6 requires x be fresh, we choose a fresh variable y and let % = {y/x}.
By α-conversion, and structural equivalence ≡, we can deduce that

νx.Cr[a〈x〉.Qr] = νx.D[{M/x} , a〈x〉.Qr] = νy.%(D)[{M/y} , a〈y〉.%(Qr)]

νx.a〈x〉−−−−−→ νy.%(D)[{M/y} , %(Qr) | {y/x}]
≡ νy.D[{M/y} , Qr | {y/x}] ≡ νy.D[{M/y} | {y/x} , Qr]
≡ νy.D[{M/y} | {M/x} , Qr] ≡ D[νy. {M/y} | {M/x} , Qr]
≡ D[{M/x} , Qr] = Cr[Qr] ≡o A′r

5. α is τ . There are three cases:
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(a) Ar ≡o Cr[ if M = M then Pr else Qr ]
τ−→o Cr [Pr ] ≡o A′r with Cr an evalua-

tion context.

(b) Ar ≡o Cr[ if M = N then Pr else Qr ]
τ−→o Cr [Qr ] ≡o A′r with M 6=Σ N ,

M,N are ground terms and Cr an evaluation context.

(c) Ar ≡o Cr[a〈M〉.Pr | a(x).Qr]
τ−→o Cr[Pr | Qr {M/x}] ≡o A′r with Cr an

evaluation context.

The rest of the proof is similar.

Lemma 48. Assume α is not a〈x〉 and Ar, A′r are closed.

1. If Ar
α−→o A

′
r then there is a closed A′′r such that Ar

α
=⇒ A′′r ≡o A′r.

2. If Ar
α−→ A′r then either Ar ≡o A′r(only possible when α is τ ) or Ar

α−→o A
′
r.

Proof.

1. Assume Ar
α−→o A

′
r. By Lemma 47, there exist closed Br and B′r such that Ar �

Br
α−→ B′r ≡o A′r. Replacing every left to right application of the rule !Pr ≡o Pr |!Pr

in Ar � Br with !Pr
τ−→ Pr |!Pr, we obtain Ar ⇒ Br

α−→ B′r ≡o A′r. Letting
A′′r = B′r gives the conclusion.

2. Assume Ar
α−→ A′r and apply transition induction.

(a) α is a(M). Then Ar ≡ Cr[a(x).P ]
a(M)−−−→ Cr[P {M/x}] ≡ A′r where Cr is an

evaluation context. Clearly we have Ar ≡ Cr[a(x).P ]
a(M)−−−→o Cr[P {M/x}] ≡ A′r.

Since ≡ is included in ≡o, we have Ar
a(M)−−−→o A

′
r.

(b) The cases for α is τ are similar. For replications, assumeAr ≡ Cr[!Pr]
τ−→ Cr[Pr |

!Pr] ≡ A′r, then we have Ar ≡o A′r.

(c) α is νx.a〈x〉. We have Ar ≡ Cr[a〈M〉.P ]
νx.a〈x〉−−−−−→ Cr[P | {M/x}] ≡ A′r. Then

we know that Ar ≡ νx.Cr[a〈x〉.P | {M/x}] νx.a〈x〉−−−−−→o Cr[P | {M/x}] ≡ A′r.

(d) α is a〈c〉. We have Ar ≡ Cr[a〈c〉.P ]
a〈c〉−−→ Cr[P ] ≡ A′r. Then we know that

Ar
a〈c〉−−→o A

′
r.

(e) α is νc.a〈c〉. We have Ar ≡ νc.Cr[a〈c〉.P ]
νc.a〈c〉−−−−→ Cr[P ] ≡ A′r. Then we know

that Ar
νc.a〈c〉−−−−→o A

′
r.

Corollary 49. Assume α is not a〈x〉 and Ar, A′r are closed.

1. If Ar
α

=⇒o A
′
r then there is a closed A′′r such that Ar

α
=⇒ A′′r ≡o A′r.

2. If Ar
α

=⇒ A′r then either Ar ≡o A′r(only possible when α is τ ) or Ar
α

=⇒o A
′
r.
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Proof. Using Lemma 48 several times.

Theorem 50. ≈o coincides with ≈.

Proof.

1. (=⇒) We construct a set S of pairs of closed extended processes such that

S = { (Ar, Br) | Ar ≡o≈o≡o Br }

and show S ⊆≈. Assume (Ar, Br) ∈ S because of Ar ≡o D1,r ≈o D2,r ≡o Br for
some closed extended processes D1,r and D2,r.

(a) Assume Ar =⇒ A′r. Using Corollary 49, we have Ar =⇒o A
′
r or Ar ≡o A′r.

When Ar =⇒o A
′
r, we have D1,r =⇒o A

′
r. By the definition of ≈o, there exists

D′2,r such that D2,r =⇒o D
′
2,r ≈o A′r. Using Corollary 49 again gives a B′r such that

Br =⇒ B′r ≡o D′2,r. Hence (A′r, B
′
r) ∈ S. When Ar ≡o A′r, let B′r = Br. Then

Br =⇒ B′r and A′r ≡o Ar ≡o≈o≡o Br = B′r. Hence (A′r, B
′
r) ∈ S.

(b) If Ar ⇓a, then by Corollary 49, we have Ar ⇓oa. From D1,r ≡o Ar, we have
D1,r ⇓oa. From D1,r ≈o D2,r, we have D2,r ⇓oa. From D2,r ≡o Br, we have Br ⇓oa.
Using Corollary 49 again, we have Br ⇓a.

(c) Since ≡o and ≈o are both closed by evaluation contexts, we have Cr[Ar] ≡o
Cr[D1,r] ≈o Cr[D2,r] ≡o Cr[Br], namely (Cr[Ar], Cr[Br]) ∈ S for any evaluation
context Cr.

2. (⇐=) We construct a set R of pairs of closed extended processes such that

R = { (Ar, Br) | Ar ≡o≈≡o Br }

and show that R ⊆≈o. Assume (Ar, Br) ∈ S because of Ar ≡o D1,r ≈ D2,r ≡o Br
for some closed extended processes D1,r and D2,r.

(a) Assume Ar
τ

=⇒o A
′
r. Then we have D1,r =⇒o A

′
r. Using Corollary 49, there

exists D′1,r such that D1,r =⇒ D′1,r ≡o A′r. By the definition of ≈, there exists D′2,r
such that D2,r =⇒ D′2,r ≈ D′1,r. Using Corollary 49, it gives D2,r =⇒o D

′
2,r or

D2,r ≡o D′2,r. Since Br ≡o D2,r, we have Br =⇒o D
′
2,r or Br ≡o D′2,r. In the

former case, letB′r = D′2,r and in the latter case letB′r = Br. We have (A′r, B
′
r) ∈ R.

(b) If Ar ⇓oa, then D1,r ⇓oa. Then by Corollary 49, we have D1,r ⇓a. From D1,r ≈
D2,r, we have D2,r ⇓a. Using Corollary 49 again, we have D2,r ⇓oa. From D2,r ≡o
Br, we have Br ⇓oa.

(c) Since ≡o and ≈ are both closed by evaluation contexts, we have Cr[Ar] ≡o
Cr[D1,r] ≈ Cr[D2,r] ≡o Cr[Br], namely (Cr[Ar], Cr[Br]) ∈ R for any evaluation
context Cr.

Theorem 51. ≈l,o coincides with ≈l.
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Proof.

1. (=⇒) We construct the set S of pairs of closed extended processes such that

S = { (Ar, Br) | Ar ≡o≈l,o≡o Br }

and show S ⊆≈l. Assume (Ar, Br) ∈ S because of Ar ≡o Cr ≈l,o Dr ≡o Br for
some closed extended processes Cr and Dr. For the static equivalence part, although
≡o has the rule REPL while ≡ does not, the rewriting C[!Pr] ≡o C[Pr |!Pr] does not
change the frames of processes, i.e. φ(C[!Pr]) = φ(C[Pr |!Pr]). Thus φ(Cr) ≡o νñ.σ
implies φ(Ar) ≡ νñ.σ, and similarly φ(Dr) ≡o νm̃.σ′ implies φ(Br) ≡ νm̃.σ′.
Hence Ar ∼ Br holds by the definition of ∼.

Now assume Ar
α−→ A′r with fv(α) ⊆ dom(Ar) and bn(α)∩ fn(Br) = ∅. By Lemma

48, we have Ar
α−→o A

′
r or Ar ≡o A′r.

When Ar
α−→o A

′
r, we have Cr

α−→o A
′
r. By the definition of≈l,o, there exists D′r such

that Dr
α̂

=⇒o D
′
r ≈l,o A′r. By Corollary 49, there exists B′r such that Br

α̂
=⇒ B′r ≡o

D′r. Hence (A′r, B
′
r) ∈ S.

When Ar ≡o A′r, from the proof of Lemma 48, we can know that this could hap-
pen only when α is τ . In this case, let B′r = Br. Then Br =⇒ B′r and A′r ≡o
Ar ≡o≈l,o≡o Br = B′r. Hence (A′r, B

′
r) ∈ S.

2. (⇐=) We construct the set R of pairs of closed extended processes such that

R = { (Ar, Br) | ∃ {z̃} ⊆ dom(Ar) : Ar | {z̃/ỹ} ≡o≈l≡o Br | {z̃/ỹ}
for any pairwise-distinct ỹ s.t. {ỹ} ∩ dom(Ar) = ∅ and | ỹ | = | z̃ | }

and show that R ⊆≈l,r. Note that whenAr ≈l Br, {z̃} is chosen to be empty. Assume
(Ar, Br) ∈ R. Then there exist closed extended processes Cr, Dr and variables z̃ such
that Ar | {z̃/ỹ} ≡o Cr ≈l Dr ≡o Br | {z̃/ỹ} for any pairwise-distinct ỹ.

(a) For the static equivalence part, assume (M = N)φ(Ar) with var(M,N) ⊆
dom(Ar). As argued in 1, φ(Cr) ≡ φ(Ar | {z̃/ỹ}) = φ(Ar) | {z̃/ỹ} and φ(Dr) ≡
φ(Br | {z̃/ỹ}) = φ(Br) | {z̃/ỹ}. Since {ỹ} ∩ var(M,N) = ∅, we have (M =
N)φ(Cr). From φ(Cr) ∼ φ(Dr), we obtain (M = N)φ(Dr). Now we show
(M = N)φ(Br). To this end, assume φ(Dr) ≡ νñ.σ and Mσ =Σ Nσ. Then
φ(Br) | {z̃/ỹ} ≡ νñ.σ ≡ νñ.σ∗ and Mσ∗ =Σ Nσ∗(=Σ is preserved by applica-
tion of σ). Let σ′ = σ∗|dom(Br). Since {ỹ} ∩ fv(Br) = ∅ and {z̃} ⊆ dom(Br),
we have φ(Br) ≡ νỹ.(φ(Br) | {z̃/ỹ}) ≡ νỹ.νñ.σ∗ ≡ νñ.σ′. Furthermore, since
Mσ′ = Mσ∗, Nσ∗ = Nσ′ and Mσ∗ =Σ Nσ∗, we have Mσ′ =Σ Nσ′. Thus
(M = N)φ(Br) holds, hence Ar ∼o Br.

(b) Assume Ar
α−→o A

′
r. We need to show that there exists B′r such that Br

α
=⇒o B

′
r

and (A′r, B
′
r) ∈ R. Consider the normalized derivation of transition of Ar

α−→o A
′
r.

We distinguish two cases depending on whether α is a〈x〉 or not.

i. α is not a〈x〉. We can safely assume {ỹ} ∩ bv(α) = ∅ since ỹ are arbitrary.
From Ar

α−→o A
′
r, by PAR in [3], we know that Cr ≡o Ar | {z̃/ỹ}

α−→o A
′
r |
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{z̃/ỹ} = C ′′r . Using Corollary 49, there exists C ′r such that Cr
α

=⇒ C ′r ≡o C ′′r .

By hypothesis Cr ≈l Dr, there exists D′r such that Dr
α̂

=⇒ D′r and C ′r ≈l D′r.
Using Corollary 49, we have Dr

α̂
=⇒o D

′
r or Dr ≡o D′r.

We first check the case Dr
α̂

=⇒o D
′
r. From C ′r ≡o C ′′r , we have (z̃ = ỹ)φ(C ′r),

hence also (z̃ = ỹ)φ(D′r). In other words, there exists B′r such that D′r ≡o
B′r | {z̃/ỹ} with {ỹ} ∩ fv(B′r) = ∅ (otherwise we can substitute them with the

corresponding variables in z̃). Adding restrictions νỹ to Br | {z̃/ỹ} ≡o Dr
α̂

=⇒o

D′r ≡o B′r | {z̃/ỹ}, we have Br
α̂

=⇒o B
′
r. From A′r | {z̃/ỹ} ≡o C ′r ≈l D′r ≡o

B′r | {z̃/ỹ}, we know that (A′r, B
′
r) ∈ R.

For the case when Dr ≡o D′r, from the proof of Lemma 48, we can know that
Dr ≡o D′r could happen only when α is τ . Let B′r = Br. Then we have
Br =⇒o B

′
r and A′r | {z̃/ỹ} ≡o C ′r ≈l D′r ≡o Dr ≡o B′r | {z̃/ỹ}. Thus

(A′r, B
′
r) ∈ R.

ii. α is a〈x〉. In this case Ar ≡o C[a〈x〉.Pr]
a〈x〉−−−→o C[Pr] ≡o A′r with x /∈

bv(C). Choose a fresh y′, then we have Cr ≡o νy′.C[a〈y′〉.Pr | {x/y′}] |
{z̃/ỹ} νy′.a〈y′〉−−−−−−→o C[Pr | {x/y′}] | {z̃/ỹ} ≡o C[Pr] | {z̃, x/ỹ, y′} ≡o A′r |
{z̃, x/ỹ, y′} since x is a free variable. From Lemma 48, there exists a closed C ′r
such that Cr

νy′.a〈y′〉
=⇒ C ′r ≡o A′r | {z̃, x/ỹ, y′}. By Cr ≈l Dr, there exists D′r

such that Dr
νy′.a〈y′〉

=⇒ D′r ≈l C ′r.
Assume φ(Ar) ≡o νm̃.σ. Then φ(Cr) ≡o νm̃.σ | {z̃, x/ỹ, y′} ≡o νm̃.(σ ∪
{z̃σ, xσ/ỹ, y′}). Hence (z̃, x = ỹ, y′)φ(C ′r).5 Since φ(C ′r) ∼ φ(D′r), we obtain
(z̃, x = ỹ, y′)φ(D′r). Thus there exists B′r such that D′r ≡o B′r | {z̃, x/ỹ, y′}
with fv(B′r) ∩ {ỹ, y′} = ∅. Moreover Br ≡o νỹ.(Br | {z̃/ỹ}) ≡ νỹ.Dr

νy′.a〈y′〉
=⇒

νỹ.D′r ≡o B′r | {x/y′}. Hence Br ⇒ νy′.C′[a〈y′〉.Qr]
νy′.a〈y′〉−−−−−−→ C′[Qr] ⇒

B′r | {x/y′} for some evaluation context C′. Since static equivalence is closed
under reduction (Lemma 1 in [3]), C′[Qr] ∼ B′r | {x/y′}. Moreover, since Qr
is a plain process which does not contain any active substitution, that is to say C′
can rewrite y′ with x. Hence we have C′[a〈x〉.Qr] ≡o C′[a〈y′〉.Qr] which im-

plies νy′.C′[a〈x〉.Qr] ≡o νy′.C′[a〈y′〉.Qr]. Hence Br ≡o νy′.C′[a〈x〉.Qr]
a〈x〉
=⇒o

νy′.C′[Qr] ⇒ νy′.(B′r | {x/y′}) ≡o B′r. Since A′r | {z̃, x/ỹ, y′} ≡o C ′r ≈l
D′r ≡o B′r | {z̃, x/ỹ, y′}, and ỹ and y′ are arbitrary, we have that (A′r, B

′
r) ∈ R.

Appendix C.2. Proofs of Theorem 21 and Corollary 22

In the previous Section 5, we define function T to transform an extended process
in applied pi to a pure extended process, namely a extended process with no cell name,
in stateful applied pi. In this section, we shall prove that this transformation function
T keeps both observational equivalence and labelled bisimilarity, i.e. Theorem 21 in

5(z̃ = ỹ)φ(C′r) abbreviates (z1 = y1)φ(Cr), · · · (zn = yn)φ(C′r)
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Section 5. For the sake of readability, we recall the definition for T here:

T (0) = (∅, ∅) T (νx.Ar) = νñ.(σ,P)
if T (Ar) = νñ.(σ ∪ {M/x} ,P)

T ({M/x}) = ({M/x} , ∅) T (νn.Ar) = νn.T (Ar)

T (A1
r | A2

r) = νñ1, ñ2.((σ1 ∪ σ2)∗, (P1 ∪ P2)(σ1 ∪ σ2)∗)
if T (Air) = νñi.(σi,Pi) for i = 1, 2

T (Ar) = (∅, {Ar}) in all other cases of Ar

Lemma 52. If Ar ≡ Br then T (Ar) ' T (Br).

Proof. Considering the normalised derivation of Ar ≡ Br. The proof goes by induc-
tion on the number of derivation. Assume Ar ≡ C[D1

r ] ≡1 C[D2
r ] = Br. By induction

hypothesis, we have T (Ar) ' T (C[D1
r ]). We can easily check the structural equiv-

alence D1
r ≡1 D2

r defined in Figure C.6 satisfies T (D1
r) ' T (D2

r). Thus we have
T (C[D1

r ]) ' T (C[D2
r ]). Finally we have T (Ar) ' T (Br).

Lemma 53. Let Cr be an evaluation context in which bound names and bound vari-
ables are pairwise-distinct and different from the free ones in Cr. Let x̃ be a tuple of
pairwise-distinct variables such that the hole is in the scope of an occurrence of νx in
Cr. Then T (Cr) = νñ.(σc\x̃-,Pc-) for some ñ, σc,Pc.

For any extended process Ar such that Cr[Ar] is an extended process, if T (Ar) =
νm̃.(σa,Pa) for some of names m̃ with {m̃} ∩ (ñ ∪ fn(Cr)) = ∅ and some Pa, then

T (Cr[Ar]) = νñ, m̃.((σc ∪ σa)∗\x̃, (Pc ∪ Pa)(σc ∪ σa)∗)

As a corollary, when Ar is closed, we have T (Cr) = νñ.(σc-,Pc-) for some ñ, σc,Pc
and.

T (Cr[Ar]) = νñ, m̃.(σcσa ∪ σa\x̃,Pcσa ∪ Pa).

Proof. The proof goes by induction on the structure of Cr.

1. In the base case Cr = -, we have ñ = ∅, σ1 = ∅ and P1 = ∅. The conclusion holds
trivially.

2. Assume Cr = νl.C′r, by induction hypothesis, we have

(a) T (C′r) = νñ1.(σ1\x̃-,P1-) for some ñ1, σ1,P1;

(b) for any Ar with T (Ar) = νm̃.(σa,Pa), we have T (C′r[Ar]) = νñ1, m̃.((σ1 ∪
σa)∗\x̃, (P1 ∪Pa)(σ1 ∪ σa)∗) where x̃ is the variables such that the hole in C′r is in the
scope of νx.

Then we have T (νl.C′r) = νl, ñ1.(σ1\x̃-,P1-) and T (νl.C′r[Ar]) = νl, ñ1, m̃.((σ1 ∪
σa)∗\x̃, (P1 ∪ Pa)(σ1 ∪ σa)∗).

3. Assume Cr = νz.C′r, By induction hypothesis, we have
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(a) T (C′r) = νñ.(σ1\x̃-,P1-) for some ñ, σ1,P1;

(b) for any Ar with T (Ar) = νm̃.(σa,Pa), we have T (C′r[Ar]) = νñ, m̃.((σ1 ∪
σa)∗\x̃,

(P1 ∪ Pa)(σ1 ∪ σa)∗) and x̃ is the variables such that the hole in C′r is in the scope of
νx.

Then we have T (νz.C′r) = νñ.(σ1\x̃,z-,P1-) and T (νz.C′r[Ar]) = νñ, m̃.((σ1 ∪
σa)∗\x̃,z, (P1 ∪ Pa)(σ1 ∪ σa)∗).

4. Assume Cr = C′r | Br, then T (Cr) = T (C′r | Br). By induction hypothesis, we
have

(a) T (C′r) = νñ1.(σ1\x̃-,P1-) for some ñ1, σ1,P1;

(b) for any Ar with T (Ar) = νm̃.(σa,Pa), we have T (C′r[Ar]) = νñ1, m̃.((σ1 ∪
σa)∗\x̃,

(P1 ∪ Pa)(σ1 ∪ σa)∗) where x̃ is the variables such that the hole in C′r is in the scope
of νx.

Let T (Br) = νñ2.(σ2,P2). Then T (Cr | Br) = νñ1, ñ2.((σ1\x̃ ∪ σ2)∗-, (P1 ∪
P2)(σ1\x̃ ∪ σ2)∗-). And T (C′r[Ar] | Br) = νñ1, ñ2, m̃.(((σ1 ∪ σa)∗\x̃ ∪ σ2)∗, ((P1 ∪
Pa)(σ1 ∪ σa)∗ ∪ P2)((σ1 ∪ σa)∗\x̃ ∪ σ2)∗). Since the variable restricted by νx̃ cannot
occur in Br and the domains of σ1, σ2, σa are pairwise disjoint and these substitutions
are all cycle-free, we can see that the order of iterating the substitutions σ1, σ2, σa does
not matter and we can derive that (σ1\x̃ ∪ σ2)∗ = (σ1 ∪ σ2)∗\x̃, ((σ1 ∪ σa)∗\x̃ ∪ σ2)∗ =

((σ1 ∪σa)∗ ∪σ2)∗\x̃, and ((σ1 ∪σa)∗ ∪σ2)∗ = ((σ1 ∪σ2)∗ ∪σa)∗ = (σ1 ∪σ2 ∪σa)∗.
Since x̃ do not occur in P1,P2, we have T (Cr | Br) = νñ1, ñ2.((σ1 ∪ σ2)∗\x̃-, (P1 ∪
P2)(σ1 ∪ σ2)∗-). And T (C′r[Ar] | Br) = νñ1, ñ2, m̃.(((σ1 ∪ σa)∗ ∪ σ2)∗\x̃, ((P1 ∪
Pa)(σ1 ∪σa)∗ ∪P2)((σ1 ∪σa)∗\x̃ ∪σ2)∗) = νñ1, ñ2, m̃.(((σ1 ∪σ2)∗ ∪σa)∗\x̃, ((P1 ∪
Pa)(σ1 ∪σ2 ∪σa)∗ ∪P2(σ1 ∪σ2 ∪σa)∗) = νñ1, ñ2, m̃.(((σ1 ∪σ2)∗ ∪σa)∗\x̃, ((P1 ∪
P2)(σ1 ∪ σ2)∗ ∪ Pa)((σ1 ∪ σ2)∗ ∪ σa)∗).

When Ar is closed, the active substititons in Cr will not be applied to Ar, the proof is
similar to the above general case.

Lemma 54. If Ar
α−→ A′r with fv(Ar) ∩ bv(α) = ∅, then T (Ar)

α
=⇒ B ' T (A′r) for

some B.

Proof. Consider the normalized derivation of transition of Ar
α−→ A′r. We only take

the case when α = a〈c〉 as an example here and the other cases are similar. Assume

Ar ≡ C[a〈c〉.Pr]
a〈c〉−−→ C[Pr] ≡ A′r and T (C) = νñ.(σ\x̃-,P-). By Lemma 52 and

Lemma 53, we have that

T (Ar) ' νñ.(σ\x̃, {a〈c〉.Prσ} ∪ P)
a〈c〉−−→ νñ.(σ\x̃, {Prσ} ∪ P)
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Let T (Pr) = νm̃.(∅,Q) for some m̃,Q. From C[Pr] ≡ A′r, using Lemma 52 and
Lemma 53, we have T (A′r) ' T (C[Pr]) = νñ, m̃.(σ,Qσ ∪ P). For a plain pro-
cess Pr, the function T only pulls the name binders to the top level and split the par-

allel composition, thus we can see that T (Ar) ' νñ.(σ\x̃, {a〈c〉.Prσ} ∪ P)
a〈c〉−−→

νñ.(σ\x̃, {Prσ}∪P) =⇒ νñ, m̃.(σ\x̃,Qσ∪P) = T (C[Pr]) ' T (A′r). That is to say

there exist A and A′ such that T (Ar) ' A
a〈c〉
=⇒ A′ ' T (A′r). By Corollary 15, there

exists B such that T (Ar)
a〈c〉
=⇒ B ' A′ ' T (A′r). This concludes the proof.

Corollary 55. If Ar
α

=⇒ A′r with fv(A) ∩ bv(α) = ∅, then T (Ar)
α

=⇒ B ' T (A′r)
for some B.

Proof. Using Corollary 15 and Lemma 54 several times.

Lemma 56. If T (Ar) = νñ(σ, {Pi}i) then Ar ≡ νñ.(σ |
∏
i Pi).

Proof. We proceed induction on the definition of T . The interesting cases are Ar | Br
and νx.Ar while the other cases are trivial. For parallel compositionAr | Br, by induc-
tion hypothesis, we know Ar ≡ νñ.(σ1 |

∏
i Pi) and Br ≡ νm̃.(σ2 |

∏
j Qj) where

T (Ar) = νñ.(σ1, {Pi}i) and T (Br) = νm̃.(σ2, {Qj}j). Let σ = (σ1 ∪ σ2)∗. From
the definition of T , we have T (Ar | Br) = νñ, m̃.(σ,P1σ∪P2σ). Note that applying
active substitutions until reaching idempotemce keeps structural equivalence. From
structural equivalence, we can deduce that Ar | Br ≡ νñ.(σ1 |

∏
i Pi) | νm̃.(σ2 |∏

j Qj) ≡ νñ.νm̃.(σ1 |
∏
i Pi | σ2 |

∏
j Qj) ≡ νñ.νm̃.(σ |

∏
i Piσ |

∏
j Qjσ).

The result holds for parallel composition. For the case T (νx.Ar) = νñ.(σ, {Pi}i)
where T (Ar) = νñ.(σ ∪ {M/x} , {Pi}i), by induction hypothesis we have Ar ≡
νñ.(σ | {M/x} |

∏
i Pi). Since Pi are applied, x will not occur in σ or Pi. Hence

we have νx.Ar ≡ νx.νñ.(σ | {M/x} |
∏
i Pi) ≡ νñ.(σ |

∏
i Pi) and T (νx.Ar) =

νñ.(σ, {Pi}i).

Lemma 57. If T (Ar) ' νñ(σ, {Pi}i) then Ar ≡ νñ.(σ |
∏
i Pi).

Proof. The proof goes by induction on the number of rewriting steps of '. When the
number is zero, it is Lemma 56. Assume T (Ar) ' νm̃(σ′, {P ′i}i) '1 νñ(σ, {Pi}i).
By induction hypothesis Ar ≡ νm̃.(σ′ |

∏
i P
′
i ). According to Definition 12, we can

easily see that νm̃.(σ′ |
∏
i P
′
i ) ≡ νñ.(σ |

∏
i Pi). Hence Ar ≡ νñ.(σ |

∏
i Pi).

Lemma 58. If Ar is closed and T (Ar)
α−→ A with fv(α) ⊆ dom(T (Ar)). Then there

exists a closed A′r such that Ar
α

=⇒ A′r and T (A′r) ' A.

Proof. We take the case for the expansion of replication as the example here. The other
cases are similar.
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Assume T (Ar) = νñ.(σ, {Qi}i ∪ {!Pr})
τ−→ νñ.(σ, {Qi}i ∪ {!Pr, Pr}) = A. By

Lemma 57, we have Ar ≡ νñ.(σ |!Pr |
∏
iQi). Hence Ar ≡ νñ.(σ |!Pr |

∏
iQi)

τ−→
νñ.(σ | Pr |!Pr |

∏
iQi) = A′r. Assume T (Pr) = νm̃.(∅,Q) for some m̃,Q. Since

T only pulls out name binders and split parallel compositions for Pr, we can see that
T (A′r) = νñ, m̃.(σ, {Qi}i ∪ {!Pr} ∪ Q) ' A. Since Ar is closed, we know that
T (Ar), A and A′r are also closed.

Corollary 59. If Ar is closed and T (Ar)
α

=⇒ A with fv(α) ⊆ dom(T (Ar)). Then
there exists a closed A′r such that Ar

α
=⇒ A′r and T (A′r) ' A.

Proof. By repeated applications of Lemma 58 and Corollary 15.

Lemma 60. Static equivalence ≈s on pure extended processes is closed under '.

Proof. Since ≈s is symmetric, it is sufficient to prove ≈s' ⊆ ≈s. The proof goes
by induction on the length of derivation sequence for '. When the length is 0, the
result holds trivially. For the inductive step, w.l.o.g., we may assume A ≈s A′ '
B '1 C. By the induction hypothesis, we have A ≈s B. Now we show A ≈s C.
We can easily check A ≈s C holds for the cases when the rewriting B '1 C is on
restricted names or parallel composition. For the term rewriting case, assume B =
νñ.(σ {M/z} ,P {M/z}) '1 νñ.(σ {N/z} ,P {N/z}) = C and M =Σ N . Then
for each x ∈ dom(A) we have σ {M/z} (x) =Σ σ {N/z} (x). Let A = νm̃.(σ′,P ′).
Since A ≈s B, for any N1, N2 with name(N1, N2) ∩ {ñ, m̃} = ∅, N1σ

′ =Σ N2σ
′

iff N1σ {M/z} =Σ N2σ {M/z}. Since M =Σ N , N1σ {M/z} =Σ N1σ {N/z} and
N2σ {M/z} =Σ N2σ {N/z}. Thus N1σ

′ =Σ N2σ
′ iff N1σ {N/z} =Σ N2σ {N/z}.

Therefore A ≈s C.
The transformation function ≈s preserves static equivalence.

Lemma 61. Let Ar and Br be two closed extended processes. Then Ar ≈s Br iff
T (Ar) ≈s T (Br).

Proof. Let T (Ar) = νñ1.(σ1,P1) and T (Br) = νñ2.(σ2,P2). According to the
definition of T , we can see that φ(Ar) ≡ νñ1.σ1. Whenever φ(Ar) ≡ νm̃.σ, we have
that νñ1.σ1 ≡ νm̃.σ. Using Lemma 52, we have νñ1.σ1 ' νm̃.σ∗.

1. (⇐=) Let M,N be two arbitrary terms with var(M,N) ⊆ dom(Ar) and Mσ =Σ

Nσ for some φ(Ar) ≡ νm̃.σ. Since =Σ is closed under the application of substitu-
tions, we have Mσ∗ =Σ Nσ∗. From νñ2.σ2 ≈s νñ1.σ1 ' νm̃.σ∗. By Lemma 60,
we have νñ2.σ2 ≈s νm̃.σ∗. That is to say Mσ2 =Σ Nσ2. From φ(Br) ≡ νñ2.σ2, we
know Ar ∼ Br.

2. (=⇒) Let M,N be two arbitrary terms. Assume Mσ1 =Σ Nσ1. We need to show
Mσ2 =Σ Nσ2. Since νñ1.σ1 ≡ φ(Ar). By the hypothesis Ar ∼ Br, there exist m̃, σ
such that φ(Br) ≡ νm̃.σ and Mσ =Σ Nσ. Since =Σ is closed under substitution,
it holds that Mσ∗ =Σ Nσ∗. From νm̃.σ∗ ' νñ2.σ2. By Lemma 60 we obtain
νm̃.σ∗ ≈s νñ2.σ2. Hence Mσ2 =Σ Nσ2. Thus T (Ar) ≈s T (Br).
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The following proposition states that transformation T keeps labelled bisimilarity.

Proposition 62. Ar ≈l Br if and only if T (Ar) ≈l T (Br).

Proof.

1. (⇐=) We construct a set R on closed extended processes thus

R = { (Ar, Br) | T (Ar) ' ≈l' T (Br) }.

We show R ⊆≈l. Suppose T (Ar) ' C ≈l D ' T (Br). In combination with Lemma
61 and Lemma 60 we obtain the static equivalence part Ar ≈s Br immediately. We
are left to show the agreement between transitions. Suppose Ar

α−→ A′r with fv(α) ⊆
dom(Ar). Clearly Ar, A′r, C,D are all closed. From Lemma 54 and Corollary 14,
there exists C ′ such that C α

=⇒ C ′ ' T (A′r), where C ′ is closed because C is closed

and fv(α) ⊆ dom(C) = dom(Ar). From D ≈l C, there exists D′ such that D α̂
=⇒

D′ ≈l C ′. By Corollary 15 and Corollary 59 we can deduce that there exists a closed
B′r such that Br

α̂
=⇒ B′r and T (B′r) ' D′. Hence (A′r, B

′
r) ∈ R.

2. (=⇒) This direction is proved by constructing a set S on closed processes thus

S = { (A,B) | A ' T (Ar), Ar ≈l Br, T (Br) ' B }.

We show S ⊆≈l. First, A ≈s B follows from Lemma 61 and Lemma 60. Suppose
A

α−→ A′. By Corollary 14 we have T (Ar)
α

=⇒ A1 ' A′. By Lemma 58 we have
Ar

α−→ A′r and T (A′r) ' A1 ' A′. Since Ar ≈l Br, there is some B′r such that
Br

α
=⇒ B′r ≈l A′r. By Corollary 55 and Corollary 15 we have B α

=⇒ B′ ' T (B′r).
Hence (A′, B′) ∈ S.

Now we start to prove that transformation T keeps observational equivalence. Re-
call that on closed pure extended processes, the observational equivalence≈e is defined
exactly the same as in Definition 1 except that the evaluation context is pure, that is,
the context does not contain any cell name.

Lemma 63. Assume two closed pure extended processes A,B. If A ≈e B then
A\z̃ ≈e B\z̃ for any variables z̃ ⊆ dom(A).

Proof. We construct a setR as follows

R = { (A\z̃, B\z̃) | A ≈e B, z̃ ⊆ dom(A) }

and we will prove that R ⊆≈ . For the part related to ⇓a and =⇒, we can easily
see that removing or adding any active substitutions does not affect ⇓a or =⇒. For
any evaluation context C, we can safely assume that fv(C) ∩ z̃ = ∅. Otherwise we
can choose fresh variables x̃ and let % = {x̃/z̃} and have A\z̃ = %(A)\x̃, B\z̃ =
%(B)\x̃, %(A) ≈e %(B). Thus we have C[A\z̃] = C[A]\z̃ , C[B\z̃] = C[B]\z̃ and
C[A] ≈e C[B]. Finally (C[A\z̃], C[B\z̃]) ∈ R.
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Lemma 64. If A ' B with A,B are closed pure extended processes. Then C[A]\z̃ '
C[B]\z̃ for any closing pure evaluation context C and z̃ ⊆ dom(A,B).

Proof. The proof goes by induction on the length of proof sequence for '. When
the length is 0, the result holds trivially. For the inductive step, w.l.o.g., we assume
A ' D '1 B. As stated before, we can safely assume that D is closed. By the in-
duction hypothesis, we have C[A]\z̃ ' C[D]\z̃ . Now we will show C[D]\z̃ ' C[B]\z̃ .
If the rewriting D '1 B is about restricted names or parallel composition, the con-
clusion clearly holds. Assume the rewriting is D = νm̃.(σ {M/x} ,P {M/x}) '
νm̃.(σ {N/x} ,P {N/x}) = B with M =Σ N . Let C = νñ.(σ′,P ′). We can
safely assume that x is fresh (otherwise we can use α-conversion). Then C[D]\z̃ =
νñ.νm̃.(σ′σ {M/x}∪σ\z̃ {M/x} ,P {M/x}∪P ′σ {M/x}) ' νñ.νm̃.(σ′σ {N/x}∪
σ\z̃ {N/x} ,P {N/x} ∪ P ′σ {N/x}) = C[B]\z̃ . By transition, we get C[A]\z̃ '
C[B]\z̃ .

Proposition 65. Ar ≈ Br implies T (Ar) ≈e T (Br).

Proof.
S = { (A,B) | A ' T (Ar), Ar ≈ Br, T (Br) ' B }

1. First we show that A ⇓a implies B ⇓a. By Corollary 15 and Corollary 59, we
can see that Ar ⇓a. From Ar ≈ Br, we have Br ⇓a. Then from Corollary 59 and
Corollary 15, we have that B ⇓a.

2. Assume A =⇒ A′ then we will show that there exists B′ such that B =⇒ B′ and
(A′, B′) ∈ S . By Corollary 15 and Corollary 59, we have Ar =⇒ A′r with T (A′r) '
A′. From Ar ≈ Br, there exists B′r such that Br =⇒ B′r ≈ A′r. By Corollary 55
and Corollary 15, we know that there exists B′ such that B =⇒ B′ ' T (B′r). Hence
(A′, B′) ∈ S.

3. For any C we need to show that (C[A], C[B]) ∈ S. Assume C = νl̃.(σ, {Pi}i). Let
Cr = νl̃.(σ |

∏
i Pi | [·]). Then we can easily see that T (Cr[Ar]) = C[T (Ar)] and

T (Cr[Br]) = C[T (Br)]. Since A ' T (Ar) and B ' T (Br), by Lemma 64, we have
C[A] ' C[T (Ar)] = T (Cr[Ar]) and C[B] ' C[T (Br)] = T (Cr[Br]). Since ≈ is
closed by evaluation context, namely Cr[Ar] ≈ Cr[Br], we know that (C[A], C[B]) ∈
S.

Proposition 66. For two closed extended processes Ar and Br in applied pi calculus
[3], T (Ar) ≈e T (Br) implies Ar ≈ Br.

Proof. We construct the following set

R = { (Ar, Br) | T (Ar) '≈e' T (Br) }.

and we will show thatR ⊆≈. Assume T (Ar) ' A ≈e B ' T (Br).
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1. First we prove that Ar ⇓a implies Br ⇓a. By Corollary 55 and Corollary 15, we
know that A ⇓a. Since A ≈e B, we have B ⇓a. By Corollary 15 and Corollary 59 we
have that Br ⇓a.

2. Assume Ar =⇒ A′r, we need to show there exists B′r such that Br =⇒ B′r and
(A′r, B

′
r) ∈ R. By Corollary 55 and Corollary 15, we know A =⇒ A′ such that

T (A′r) ' A′. Since A ≈e B, we have B =⇒ B′ ≈e A′. By Corollary 15 and
Corollary 59, there existsB′r such thatBr =⇒ B′r and T (B′r) ' B′. Thus (A′r, B

′
r) ∈

R.

3. For any evaluation context Cr, in case the bound names are not pairwise distinct or
different from the free ones, we can use α-conversion to Cr[Ar] = C′r[%(Ar)], Cr[Br] =
C′r[%(Br)]. Then we will have a new sequence T (%(Ar)) = %(T (Ar)) ' %(A) ≈e
%(B) ' %(T (Br)) = T (%(Br)). Hence we assume that the bound names of Cr are not
pairwise distinct or different from the free ones. Assume T (Ar) = νm̃1.(σ1,P1) and
T (Br) = νm̃2.(σ2,P2). By Lemma 53, we have T (Cr) = νl̃1, l̃2.(σ,P), T (Cr[Ar]) =

νl̃1, l̃2, m̃1.(σσ1 ∪ σ1\x̃,Pσ1 ∪P1) and T (Cr[Br]) = νl̃1, l̃2, m̃2.(σσ2 ∪ σ2\x̃,Pσ1 ∪
P2). Let C = νl̃1, l̃2.(σ,P). Hence T (Cr[Ar]) = C[T (Ar)]\x̃ and T (Cr[Br]) =
C[T (Br)]\x̃. Since C[T (Ar)] ≈e C[T (Br)], by Lemma 63, we have C[T (Ar)]\x̃ ≈e
C[T (Br)]\x̃. Hence (Cr[Ar], Cr[Br]) ∈ R.

Theorem 21. For two closed extended processes Ar and Br in applied pi calculus [3],

1. Ar and Br are labelled bisimilar iff T (Ar) ≈l T (Br).

2. Ar and Br are observationally equivalent iff T (Ar) ≈e T (Br);

Proof. This is a direct corollary of Proposition 62, Proposition 65 and Proposition 66.
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