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Human γδ T cells comprise a first line of defense through TCR recog-
nition of stressed cells. However, the molecular determinants and
stress pathways involved in this recognition are largely unknown.
Here we show that exposure of tumor cells to various situations
of stress induced tumor cell recognition by a Vγ8Vδ3 TCR. Using
a strategy that we previously developed to identify antigenic lig-
ands of γδ TCRs (Willcox et al, Nat Immunol, 2012, 13:872), Annexin
A2 was identified as the direct ligand of Vγ8Vδ3 TCR, and was
found to be expressed on tumor cells upon the stress situations
tested in a reactive-oxygen species-dependent manner. Moreover,
purified Annexin A2 was able to stimulate the proliferation of a
Vδ2neg γδ T cell subset within PBMC incubated with IL-2 and other
Annexin A2-specific Vδ2neg γδ T cell clones could be derived from
PBMC. We thus propose membrane exposure of Annexin A2 as an
oxidative stress signal for some Vδ2neg γδ T cells that could be
involved in an adaptive lymphoid stress surveillance.

gamma-delta T cells | innate-like lymphocytes | cell stress surveillance |
tumor immunity | transplantation

Introduction:
It is well established that one of the major roles of conventionalαβ
T lymphocytes is to protect the host against microorganisms. The
molecular cornerstone of this function is the recognition by their
antigen receptor of microbial moieties presented in the context
of classical MHC molecules (1). In contrast, γδ T lymphocytes
do not recognize peptides presented by classical MHC molecules
and are biased against self-reactive recognition. Consistent with
the Ig-like structure of γδ TCRs (2) and the diversity of their
repertoire, the self-antigens so far described to be directly recog-
nized by γδ TCRs are structurally highly diverse, including MHC-
related or unrelated molecules (for recent reviews see (3) and
(4)). Intriguingly, most of those self-antigens are constitutively
expressed on cells and healthy tissues, implying mechanisms to
control the γδ T cell response in appropriate situations and avoid
autoimmunity. Some of these mechanisms have been described
such as increased self-antigen expression upon cell activation (e.g
T10/T22 in mice, (5)), dependence of recognition on a multi-
molecular stress signature in CMV-infected cells and tumor cells
(EPCR (6)), presentation of, or conformational modification
by, metabolites (CD1d (7, 8) and BTN3A1 (9–11)), and ectopic
localization in tumor cells (F1-ATPase/ApoI (12)).

Although the pathophysiological contexts associated with the
expression of these self-antigens in the appropriate environment
or conformation leading to γδ T cell response remains elusive for
most of them, the contribution of γδ T cells to host protection
is thought to rely on recognition of cell dysregulation. The so-
called lymphoid stress surveillance response has been described
as rapid, weakly specific and resulting from activation of large
numbers of pre-activated or pre-programmed γδ T cells with-
out necessary clonal expansion (13). Stress surveillance by γδ T

cells is considered important for tissue repair (14), rapid local
containment of microbes or tumors (15–17), and activation of
downstream conventional immune responses (18).

Given their implication in the control of tumors and infec-
tions, understanding the molecular basis of stress surveillance
by γδ T cells could have important impacts on their use in
immunotherapy. Such understanding has been hindered by the
limited characterization of bona fide stress-induced antigens rec-
ognized by γδ TCRs and of the stress pathways leading to the
expression of these antigens. The objective of the present study
was to provide novel insights into these issues. We focused on
Vδ2neg γδ T cell clones isolated from healthy donors previously
shown to react against a broad panel of B cell lymphoma in an
ILT-2-dependent pathway (19). We elucidated here the antigenic
specificity of one of these clones as being Annexin A2, a molecule
expressed on the cell surface in response to oxidative stress and
able to activate a subset of Vδ2neg γδ T cells.

Results:
Expression of 73R9 ligand by U373MG glioblastoma cell line

We focused on the Vγ8Vδ3 T cell clone (73R9) that was
reactive against transformed B cells (19). HLA-I engagement
on 73R9 by ILT2 expressed on B cells was previously shown

Significance

Human γδ T lymphocytes have both innate-like and adaptive-
like functions and can circulate in blood or reside in tissues.
They are activated by specific antigens recognized by their TCR
and recognize infected and transformed cells, suggesting that
cellular stress is involved in specific antigen expression. How-
ever, molecular characterization of stress-induced antigens
remains elusive, hampering our understanding of γδ T cell role
cancer and infections. In the present study we identify Annexin
A2 as such stress-induced antigen known as a phospholipid-
binding protein involved in tumorigenesis, redox potential
regulation and wound healing. Stress-mediated membrane
exposure of Annexin A2 could thus constitute a novel danger
signal for γδ T cells to recognize various cell dysregulations and
protect the host against cancer and infections.
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Fig. 1. FMS-01 mAb inhibits 73R9 TCR-mediated
recognition of U373MG(A) CD69 expression by JRT3-
73R9 co-cultured 4h with different target cells. Results
shown are fold increase of CD69 MFI in the pres-
ence of target cells versus in medium alone (dotted
line). (B) CD69 expression by JRT3-73R9 (Vγ8Vδ3 TCR)
and JRT3-26 (Vγ9Vδ3 TCR) co-cultured 4h of with
glioblastoma cells or with anti-CD3 mAb. (C) CD69
expression by JRT3-73R9 incubated with U373MG and
with or without anti-Vγ8, anti-Vδ3 or anti-Vδ1 mAbs.
In (A) to (C) bars represent the mean+SEM of at
least 3 independent experiments and Mann Whit-
ney test was used to compare conditions (*=p<0.05,
***=p<0.0001). (D) CD69 expression by JRT3-73R9 in-
cubated with or without U373MG cells in the presence
or absence of a selection of hybridoma supernatants.
(E) CD69 expression by JRT3 reporter cells express-
ing no TCR (JRT3 WT) or indicated Vδ2neg γδ TCRs,
cultured in medium alone or with their own target
cells (U373MG, HT29, SKW6.4). Supernatant of FMS-01
or control hybridoma (25 % of culture volume) were
added in indicated conditions. Data are representa-
tive of at least 3 independent experiments.

Fig. 2. CMV infection of glioblastoma cells enhances
73R9 TCR reactivity and FMS-01 expression.Activation
of clone 73R9 (A) or JRT3-73R9 (B) by co-culture
with CMV-infected or uninfected glioblastoma cells.
(C) JRT3-73R9 activation by CMV-infected or unin-
fected U373MG with or without FMS-01 and/or con-
trol IgM. (D) Cell surface staining of CMV-infected
(black line) and uninfected (grey histogram) U373MG
with FMS-01, or with GAM IgM (dotted line). Results
are mean+SEM (A-C) or representative (D) of at least 3
experiments. Statistical significance was tested using
the Willcoxon test, * p<0.05 and ** p<0.005.

to stimulate clone cytolytic function (19). However, the role of
the TCR in 73R9 recognition of B cells remained unclear. To
address this issue we transduced the 73R9 TCR into the TCR-
deficient human JRT3 T cell, producing the JRT3-73R9 reporter
cell line. Unexpectedly, when assayed against transformed B cell
lines the activation of JRT3-73R9 was markedly low (Fig 1A),
except against the 721-221 cell line. Among forty-two other tumor
cell lines tested, only the U373MG glioblastoma cell line induced
a strong JRT3-73R9 cell activation, which was TCR-specific since
not observed with other Vδ3 TCRs and inhibited by blocking anti-
Vδ3 chain mAb (Fig. 1A-C). Two other glioblastoma cell lines
(U343MG and U251MG) also weakly induced JRT3-73R9 cell
activation (Fig. 1A). Altogether, our results suggested that, by
contrast to transformed B cells, the U373MG cell line expressed
an antigen specifically recognized by the 73R9 TCR.

Generation of a mAb specifically blocking 73R9 TCR reactiv-
ity

To characterize 73R9 TCR antigenic ligand, we generated a
specific blocking monoclonal antibody using the strategy we pre-
viously described (6). Mice were immunized with U373MG and B
cell hybridoma supernatants screened for their ability to decrease

JRT3-73R9 reactivity against U373MG. Such a hybridoma was
selected and cloned to produce a mAb called FMS-01 (Fig. 1D).
Inhibition by FMS-01 was specific for the Vγ8Vδ3 TCR as it was
not observed for other γδ TCRs (Fig 1E). Among glioblastoma,
U373MG was the cell line constitutively expressing the most
important level of antigen labelled by FMS-01 mAb (Fig. S1A),
in accordance with JRT3-73R9 reactivity (Fig. 1A). We concluded
that FMS-01 competed 73R9 TCR and most likely recognized the
same antigen.

In agreement with the discrepancy between the results ob-
tained with JRT3-73R9 versus clone 73R9 on B cell recognition,
B lymphoma cells were found to express very low levels of FMS-
01 antigen, except for 721.221 cells, compared to glioblastoma
and C91 T lymphoma cells (Fig. S1A). Conversely, B cell lines
expressed high level of ILT2 whereas C91 and glioblastoma cells
did not (Fig S1A). Accordingly, anti-ILT2 mAb, but not by FMS-
01 mAb, inhibited activation of 73R9 by B cells, and inversed
results were obtained when using C91 or U373MG cells (Fig.
S1B). A slight additive effect of combining both mAbs on B
cell recognition suggested a low-grade 73R9-TCR engagement
by B cells (Fig. S1B), which was consistent with upregulated B
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Submission PDFFig. 3. Stress stimulation of U343MG cells increases FMS-01 expression and 73R9 TCR reactivity(A-C) U343MG monolayers were cultured from 24h to 168h
in 0.1% O2 atmosphere, then detached, counted and stained or incubated with T cells in normoxia. (D) U343MG monolayers were harvested at 60% (low
confluence) or 100% (high confluence) of confluence prior to counting and incubation with JRT3-73R9. (E) U343MG cells were exposed to 42°C from 5 to 120
min prior to incubation with JRT3-73R9. CD69 expression by JRT3-73R9 (A, D, E) or CD107a expression by clone 73R9 (B) were evaluated after co-culture at 1:1
ratio for 4h with pre-treated U343MG cells, in the absence or presence of FMS-01 mAb. In (A) and (E) results are shown as fold increase of CD69 MFI when
compared to negative control MFI (JRT3 in medium alone, horizontal dotted line). In (B) numbers indicate the percentage of cells in the gate. (C) Staining of
stressed cells with FMS-01. Goat anti-mouse IgM-stained cells were used as controls (dotted line). Results represent the mean+SEM (A, E) or are representative
(B) of at least 3 independent experiments (*p <0.05). (F-H) U373MG, U343MG and U251MG cells were incubated for 5 days in hypoxia (F), at high confluence
(G) or for 120 min at 42°C heat (H). Cells were pre-incubated or not with 10 mM of NAC prior stress induction or cell detachment and FMS-01 surface expression
was evaluated. Results of different experiments are shown as FMS-01 MFI fold increase upon stress.

cell-mediated activation of JRT3-73R9 when increasing B cell:
JRT3-73R9 ratio (Fig. S1C). Altogether, these results indicated
that the same γδ T cell clone can use either TCR-dependent
or independent molecular pathways of activation to respond to
different target cells.

CMV-induced 73R9 TCR activation through up-regulation of
FMS-01 ligand expression

Our previous studies demonstrated that some Vδ2neg γδ T
cells exhibit dual TCR-dependent reactivity against tumour cell
lines and CMV-infected cells (20). In accordance with this, CMV
infection of U373MG and U343MG, but not that of U251MG,
significantly upregulated 73R9 activation (Fig. 2A). This effect
of CMV was TCR-dependent since observed also when using
JRT3-73R9 (Fig. 2B), since inhibited by FMS-01 mAb (Fig. 2C)
and since associated to increased FMS-01 ligand expression on
U373MG (Fig. 2D). These results supported the hypothesis that
CMV-induced stress in host cells increased antigenic ligand ex-
pression and subsequent TCR-mediated activation of γδ T cells.

Different cell stress conditions trigger 73R9 TCR reactivity
We then investigated other conditions of cellular stress that

could modulate target cell recognition by γδ T cells. First, pre-
incubation of U343MG in hypoxia (0.1% O2) induced both JRT3-
73R9 and 73R9 clone reactivity when compared to pre-incubation
in normoxia (Fig. 3A and 3B) (all activation assays were done at
21% O2, 37°C and with same number of target cells). JRT3 trans-
duced with other γδ TCRs did not respond to hypoxia treated
glioblastoma cells. Hypoxia-induced JRT3-73R9 and 73R9 clone
activation was inhibited by FMS-01 mAb (Fig. 3A and 3B) and
associated to increased FMS-01 ligand expression on U373MG
cells (Fig. 3C), suggesting γδ TCR-mediated stress sensing. Sim-
ilar results were obtained when U343MG were pre-exposed to
high confluence (Fig. 3D and Fig. S2A-B) or to heat shock (Fig.
3E and Fig. S2C-D), and when using U373MG or U251MG.

TCR 73R9 activation always consistently correlated with FMS-
01 staining on the target cell surface for each of these stress
conditions (Table S1). Oxydative burst could be a common trigger
to induce FMS-01 ligand expression because treating glioblas-
toma cells with the free radical scavenger N-Acetyl-L-Cysteine
(NAC) during stress exposure partially inhibited the increased
FMS-01 ligand expression by all stress conditions tested on the
three glioblastoma cell lines (Fig. 3F-H). In conclusion, different
cell stress conditions enhance γδ TCR-mediated sensing of target
cells through an increased expression of membrane ligand which
is at least partially dependent on ROS production.

Identification of Annexin A2 as the ligand for FMS-01 mAb
The nature of the membrane moiety bound by FMS-01 was

then identified through immunoprecipitation. FMS-01 specifi-
cally immunoprecipitated a protein of approximately 35 kDa
from all glioblastoma cell lysates but not from a FMS-01-negative
control cell line (Fig 4A). Proteins contained within the spe-
cific ∼35 kDa band were digested with trypsin and analysed by
Fourier transform-ion-cyclotron resonance mass spectrometry.
This identified Annexin A2, a 35 kDa intracellular protein known
to bind anionic phospholipids in a Ca2+-dependent manner, and
to translocate to the cell surface as a heterotetrameric complex
with the 11 kDa protein S100A10 (21). In line with this, FMS-01
staining strongly correlated with S100A10 expression in different
cell types (Fig. 4B). Moreover, proteins immunoprecipitated with
FMS-01 mAb were also detected with anti-Annexin A2 and anti-
S100A10 mAbs by western-blots (Fig S3A). Western blots using
recombinant forms of both proteins, or U373MG EGTA eluates
containing Annexin A2/S100A10 complex from the cell surface
as previously shown (21) Deora 2004, demonstrated that FMS-
01 bound Annexin A2 only (Fig 4C). Finally, downregulation
of Annexin A2 or S100A10 expression in glioblastoma cell lines
using specific sh-RNA showed that surface staining by FMS-01
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Fig. 4. FMS-01 recognizes Annexin A2(A) Colloidal blue stained SDS-PAGE
of proteins immunoprecipitated with control IgM (Ctrl) or FMS-01 mAb
(FMS) from glioblastoma or FMS-01 negative cells (Ctrl cells). Black arrow
indicates the specific band. Heavy (Ig HC) and light chains (Ig LC) of antibodies
used for immunoprecipitation are indicated. (B) Linear regression analysis of
S100A10 surface staining according to FMS-01 surface staining on different
cell lines individually represented as dots. (C) Immunoblot analysis of EGTA
eluates from U373MG, recombinant Annexin 2 (His-tagged) and recombi-
nant S100A10 (GST-tagged), detected with anti-Annexin 2 mAb (left), anti-
S100A10 mAb (center) or FMS-01 mAb (right). Data are representative of at
least 2 independent experiments. (D) Expression of FMS-01 ligand (left panel)
and S100A10 (right panel) by U373MG transduced with scramble, Annexin A2
(ANXA2) or S100A10 sh-RNAs and treated in normoxia or hypoxia. Data are
represented as mean+SEM and two-way ANOVA test was used to compare
conditions (* p<0.05, ** p<0.005, *** p<0.001).

was dependent on Annexin A2 expression but independent of
S100A10 expression (Fig 4D and Fig S3B).

Annexin A2 is recognized by the 73R9 TCR
FMS-01 ligand was expected to be 73R9 TCR ligand, it was

then important to ensure that 73R9 TCR recognized Annexin A2.
EGTA membrane eluates from U373MG cells cultured at high
confluence were able to activate JRT3-73R9, and not other TCR-
transductants, in an Annexin A2-dependent manner, in contrast
to eluates generated from cells cultured at low confluence (Fig.
5A and S4A). Annexin A2 was mandatory for recognition of
glioblastoma cells by JRT3-73R9 since down regulation of its
expression by RNA interference abrogated JRT3-73R9 activa-
tion while downregulation of S100A10 had no effect (Fig 5B).
Remarkably, recombinant soluble Annexin A2 alone, but not
recombinant S100A10, was able to activate very efficiently JRT3-
73R9 (Fig. 5C left panel). Activation was not observed when using

Annexin A6 (Fig 5C right panel) or another TCR-transductant
(Fig S4B), and was inhibited in the presence of the FMS-01 mAb
(Fig S4C). Moreover, soluble Annexin A2 was at least as efficient
as anti-CD3 mAb to activate the 73R9 clone (Fig 5D). Finally,
Annexin A2, but not A6, was able to induce multiple functions
on the clone such as cytotoxicity (assessed by CD107a expression
and granzyme B production) but also TNFα, IFNγ and GM-CSF
secretion (Fig 5D).

Molecular interaction between Annexin A2 and the 73R9
TCR was then confirmed by surface plasmon resonance (SPR).
We observed greater responses when recombinant Annexin A2
was injected over immobilized 73R9 TCR compared to control
TCRs or streptavidin alone, indicating specific binding (Fig 5E).
Equilibrium binding analyses yielded an apparent dissociation
constant (Kd) of ∼3μM (Fig S4D). No specific binding of An-
nexin A6 was observed to 73R9 TCR when compared to con-
trol TCR. Annexin A2 was not only binding but also signalling
through the TCR since ERK 1/2 and SLP76 phosphorylation was
induced in the 73R9 clone (Fig 5F) - but not control clone (Fig
S4E) - as well as in the JRT3-73R9 - but not in a control transduc-
tant - (Fig S4F). Altogether, these results provide evidence that
the 73R9 TCR directly recognizes Annexin A2 independently of
S100A10. Annexin A2 translocation to the cell surface represents
a unified stress signal recognized by this TCR.

Annexin A2 induces the proliferation of a Vδ2neg γδ T cell
subset

Finally, we tested the effect of Annexin A2 on Vδ2neg γδ
T cells isolated from the blood of healthy donors. When co-
cultured with autologous PBMC, a small population of prolif-
erating Vδ2neg γδ T cells appeared in the presence of Annexin
A2 plus IL-2 when compared to IL-2 alone (Fig 6A). Results
obtained from 7 different donors are shown in Figure 6B, indi-
cating statistically significant increase of proliferating Vδ2neg γδ
T cells with Annexin A2. Moreover, the effect of Annexin A2 was
specific as Annexin A6 had no effect (Fig. 6C), in agreement with
the results obtained with JRT3 73R9 activation and SPR. This
prompted us to try to derive new Annexin A2-specific Vδ2neg γδ T
cell clones. From 72 Vδ2neg γδT cell clones expanded polyclonally
from three different healthy donors, two clones were able to react
to Annexin A2. Interestingly, one of them also reacted to Annexin
A6, suggesting the recognition by this clone of a region shared by
both Annexins. Using anti-Vδ and anti-Vγ TCR chain antibodies
and flow cytometry analysis, we showed that one clone (# 24.2)
expressed a Vδ3 TCR (the Vγ chain could not be determined
using the panel of available antibodies but was neither Vγ4, Vγ8
nor Vγ9), and the other one (# 33.20) expressed a Vγ4Vδ1 TCR.
These results indicate that Annexin A2 specificity is not restricted
to the 73R9 TCR nor to Vγ8Vδ3 TCRs.

Discussion:

Because they are able to react to infected, activated or trans-
formed cells, and are involved in host response to diverse situ-
ations of stress, γδ T cells are considered to be important players
in lymphoid stress surveillance. However, the nature of the cel-
lular dysregulation events that they respond to and the specific
molecular stress stimuli that trigger their activation remain poorly
understood. In particular, identification of the molecular signals
associated with these dysregulations and specifically recognized
by the γδ TCR is still limited. As a contribution to this knowledge,
we characterized Annexin A2 translocation to the cell surface as
a common molecular stress signal recognized by a Vγ8Vδ3 TCR.

The Vγ8Vδ3 γδ T cell clone 73R9 used in this study is
representative of a panel of Vδ2neg γδ T cells previously described
to recognize a large panel of B lymphoma cell lines through
an atypical ILT-2/HLA axis (19). We show here that stressed
glioblastoma cells can also activate clone 73R9. Interestingly,
different molecular mechanisms mediated recognition of distinct
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Fig. 5. 73R9 TCR recognizes Annexin A2 CD69 expression by JRT3-73R9 incubated: (A) with or without EGTA eluates from highly confluent U373MG cells with
or without FMS-01 mAb, (B) with U373 (left panel) or U343 (right panel) transduced with scramble, Annexin A2 (ANXA2) or S100A10 sh-RNAs and pre-treated
in normoxia or hypoxia, (C) with or without increasing doses of recombinant soluble Annexin A2 and/or S100A10 (left panel), with anti-CD3 mAb, or with
soluble Annexin A6 (right panel). (D) Clone 73R9 was activated with anti-CD3 mAb, soluble Annexin A2 or A6, and CD107a membrane expression after 4h
(left panel) or indicated cytokine secretion after 24h (right panel) were evaluated by flow cytometry. (E) Binding of Annexin A2 (1.75 µM) to biotinylated
73R9 TCR or two control TCRs immobilized on streptavidin-coated flow cells at 2,153 RU, 2,175 RU, and 2,748 RU, respectively, or streptavidin alone, assessed
by surface plasmon resonance and presented as Resonance Units (RU). (F) Detection of phosphorylated SLP-76 and ERK-1/2 in clone 73R9 incubated in the
indicated conditions. All the results are from at least 3 independent experiments and are shown as mean+SEM.

target cells. γδ T cell HLA molecules recognize ILT2 on B
lymphoma cells and the Vγ8Vδ3 TCR is not (or weakly) involved
in this process. In contrast, the TCR recognizes Annexin A2
on glioblastoma cells and ILT2 is not involved. The same γδ T
cells can thus recognize different types of cellular dysregulation
through distinct molecular pathways, making them able to inte-
grate several and potentially separate contextual signals, in order
for them to enlarge their functional diversity and responses to
different situations.

Here, we identify Annexin A2 as the antigen targeted by
FMS-01 mAb that specifically inhibited Vγ8Vδ3 TCR-mediated
recognition of glioblastoma cells. Together with the observa-
tion that purified Annexin A2 was able to activate the Vγ8Vδ3
TCR specifically, this result demonstrates that Annexin A2 is
critical for Vγ8Vδ3 TCR-dependent recognition of target cells.
Annexin A2 belongs to the evolutionary ancient family Ca2+-
regulated phospholipid-binding annexin proteins (22). Annexin
A2 is present in the cytoplasm, associated with intracellular mem-
branes of different organelles and with the internal or extracel-
lular face of plasma membrane. It participates in a variety of
membrane-related functions (endocytosis, exocytosis, membrane
repair) in response to diverse cellular fluctuations including Ca2+

influx, pH variation, membrane phospholipid composition and its
own post-translational modification. It can exist as a monomer
or as heterotetrameric complexes with the S100A10 protein,
which enhances its membrane phospholipid binding affinity. In
our hands, the highest expression of Annexin A2 observed at
the cell surface was achieved by placing cells under hypoxia,
probably because it combines both membrane translocation and
an increase in Annexin A2 gene expression which has been shown

to be dependent on HIF-1 (23). Cellular reoxygenation after
hypoxia is followed by ROS burst, and inhibiting ROS production
using antioxidant NAC decreased stress-induced Annexin A2
surface expression. Oxidative stress could thus be a common
pathway leading to Annexin A2 membrane translocation and γδ
T cell activation since NAC also decreased heat shock and high
confluence-induced Annexin A2 expression.

Several features of Annexin A2 fulfil what we can expect
from a canonical ligand of a Vδ2neg γδ TCR. First, Annexin
A2 is overexpressed in many cancer cells including glioblastoma
where it correlates positively with histologic grade and central
nervous system dissemination (24). Secondly, despite the absence
of a transmembrane domain, intracellular Annexin A2 can swiftly
translocate to cell surface upon stress signals (25) in agreement
with the increase of FMS-01 binding on glioblastoma cells treated
for only 30 minutes at 42°C. In endothelial cells, Annexin A2
translocation is obtained, in vitro but also in vivo, within minutes in
response to heat stress, thrombin exposure or hypoxia and relies
on Annexin A2 phosphorylation (21–23). Thirdly, consistent with
the γδ T cell responses to tissue injury (26) Annexin A2 plays
a role in membrane repair and wound healing (27), which is
supposedly due to an intracellular rise in Ca2+ upon membrane
damage (28). Fourthly, in agreement with 73R9 TCR recognition
of CMV-infected cells, CMV-infection has been shown to induce
Annexin A2 phosphorylation which is necessary for translocation
to cell surface and to further enhance CMV infection (29).

Annexin A2 appears to represent a bona fide stress antigen
expressed on the cell surface only upon cellular dysregulation,
and able to alert γδ T cells such as 73R9, 24.2 or 33.20 γδ T
cells. Annexin A2 specific γδ T cells could thus contribute to
lymphoid stress surveillance, a property that has rather been so
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Fig. 6. Annexin A2 stimulates Vδ2neg γδ T cell proliferation(A-C) CFSE
labelled Vδ2negγδ T cells were co-cultured with autologous PBMC in the
presence of recombinant IL-2 with or without Annexin A2 for 5 days. Results
are presented as percentages of CFSE-low cells among Vδ2negγδ T cells.
(A) Representative dot-plot of flow cytometry staining, (B) percentages
of proliferating Vδ2negγδ T cells from independent donors (n=7), and (C)
comparison of Annexin A2 and Annexin A6 effects. (D) TNFα production by
two T cell clones isolated from healthy donors and incubated for 24h with
soluble Annexins A2 or A6. Results from C to E are mean+SEM of at least 2
independent experiments.

far attributed to innate-like invariant γδ T cells (13). The diversity
and low frequency of Annexin A2-specific γδ T cells that we
describe in this study suggest that response to Annexin A2 may
rather represent an adaptive response requiring clonal expansion
in specific situations. This "adaptive lymphoid stress surveillance"
would probably be less immediately efficient than the massive
response of invariant subsets but could be more rapid than a
conventional αβ T cell response because conceivably taking place
within stressed tissues.

Annexins and S100 molecules have been previously classified
among alarmins (30) because of their ability to induce inflam-
matory patterns in endothelial cells and macrophages. Annexin
A2 could be considered as a γδ T cell alarmin, acting either
through cell-cell contact or as soluble form since Annexin A2
can be released in the extracellular microenvironment (31). It is

tempting to imagine that soluble Annexin A2 could alert distant
specific γδ T cells and stimulate their proliferation. However, the
affinity of Annexins for membrane phospholipids suggests that
even when produced in soluble form Annexin A2 probably rapidly
binds to proximal cell membranes and act in a membrane-bound
fashion. Our results showing an induction of Vδ2neg γδ T cell
proliferation by soluble Annexin A2 should foster further inves-
tigations to evaluate the interest of this antigen in immunother-
apeutic settings aiming at stimulating γδ T cell control of cancer
or infections.

Materials and Methods:
For further details see SI Materials and Methods.

Generation of effector cells.
Human γδ T clone 73R9 (expressing a TCR Vγ8Vδ3) was obtained as pre-

viously described in (19). Reporter cells expressing TCR 73R9 (JRT3-73R9) were
generated as previously described (6) by co-transduction with viral particles

expressing Vγ8 TCR chain and particles expressing Vδ3 TCR chain. Amino acid
sequences of the Vδ3-Dδ3-Jδ1 and Vγ8-Jγ2 junctional regions of 73R9 TCR
are: CAFTGLGDTSHADKLIF and CATWDSSKLFGSGTTLVVT, respectively.

Functional assays with stressed cells.
Activation of JRT3 transduced with γδ TCRs by tumor cell lines at 1:1

(E:T) ratio was measured by expression of CD69 by flow cytometry. Activation
of clone 73R9 was analysed using CD107a mobilization assay or cytokine
production. TCR signalling was also analysed by flow cytometry. In some
experiments, tumor cells were infected with CMV clinical strain TB40/E for
4 days. Correct infection of the cells was confirmed by cytopathic effect
observation. For hypoxic stress, tumor cells were grown in 21% or 0.1%
oxygen atmosphere and were released, counted and stained in normoxia.
For heat shock assay, cell lines were grown for 48 hours, then detached and
incubated at 42°C or 37°C for the indicated times. For all assays, target cells
were washed twice before incubation with effector cells in a 1:1 ratio, or
before staining with specific mAbs. In some experiments, glioblastoma cell
lines were pre-incubated for 1h with 10 mM N-Acetyl-L-Cystein pH-adjusted
solution, before stress induction (heat shock) or cell detachment.

Identification of the ligand of FMS-01
Immunoprecipitation with FMS-01 was applied on tumor cell lysates and

bands of interest were cut and eluted proteins digested by trypsin for nLC-
MS/MS analysis.

Expression of soluble TCR and binding studies
Soluble TCR was produced in drosophila cells and binding with proteins

analysed by surface plasmon resonance.
Generation of FMS-01 mAb
Balb/c mice were immunized with U373MG and hybridomas generated

as previously described (6). Hybridomas that secreted antibody able to inhibit
JRT3-73R9 reactivity against U373MG were cloned by limiting dilution, end-
ing with selection of FMS-01 mAb because of its robust neutralizing activity.
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