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Abstract
The ecohydrological impact of tree‐canopy removal on moss and peat, which provide a principal

carbon store, is just starting to be understood. Different mosses have contrasting contributions to

carbon and water fluxes (e.g., Sphagnum fuscum, Pleurozium schreberi) and are strongly influenced

by tree‐canopy cover. Changes in tree‐canopy cover may therefore lead to long‐term shifts in

species composition and associated ecohydrological function. However, the medium‐term

response to such disturbance, the associated lag in this transition to a new ecohydrological and

biogeochemical regime, is not understood in detail. We investigate this medium‐term (4 years)

ecohydrological, biogeochemical, and species compositional response to tree‐canopy removal

using a randomized plot design within a northern peatland. This is the only study to test for the

influence of increased light alone. We demonstrate that changes in treatment plots 4 years after

tree‐canopy removal were not significant. Notably, P. schreberi and S. fuscum remained within

their respective plots post treatment, and there was no significant difference in plot resistance

to evapotranspiration or carbon exchange. Results show that tree‐canopy removal alone has little

impact on bryophyte ecohydrology in the short or medium‐term. This resistance to disturbance

contrasts strongly with short‐term changes observed within mineral soils, suggesting that concur-

rent shifts in the large scale hydrology induced within such disturbances are necessary to cause

rapid ecohydrological transitions. Understanding this lagged response is critical to determine

the strength of medium to long‐term negative ecohydrological feedbacks within peatlands in

addition to carbon and water fluxes on a decadal timescale in response to disturbance.

KEYWORDS

boreal, feathermoss, peat, Sphagnum, tree‐canopy disturbance
1 | INTRODUCTION

Boreal forests occupy approximately 10% of the earth's vegetated sur-

face (McGuire, Melillo, Kicklighter, & Joyce, 1995), of which, peatlands

are a dominant feature. These northern peatlands are estimated to be

one of the world's largest carbon stores (Yu, 2012). Despite this,

northern forested peatlands are subject to widespread tree‐canopy

disturbances. Linear tree clearance from seismic lines exceeds

1.5 Mkm in Alberta, Canada, alone (Timoney & Lee, 2001). This

equates to a 19‐Mha disturbance assuming a 60‐m edge effect.
e Creative Commons Attribution Li

ohn Wiley & Sons Ltd

wileyonlin
Thinning of spruce stands is used as a fire control method. In addition,

insect infestations have the potential to act as a significant future dis-

turbance with increases in the frequency and severity of fire and

drought projected to reduce tree‐canopy resistance to insects and dis-

ease (Raffa et al., 2008). Such disturbances not only remove the tree‐

canopy but also impact the ecohydrological function of the moss and

peat (Kettridge et al., 2013), which provide the principal carbon store

within these carbon rich ecosystems.

Mosses play an integral role in ecosystem functioning with their

ability to equal or exceed tree‐canopy productivity within northern
cense, which permits use, distribution and reproduction in any medium, provided
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forested peatlands (Bisbee, Gower, Norman, & Nordheim, 2001) and

contribute up to 69% of total ecosystem evapotranspiration (Bond‐

Lamberty, Gower, Amiro, & Ewers, 2011). Typically, feather mosses

(e.g., Pleurozium schreberi) are associated with a high black spruce stand

density and Sphagnum carpets are more typical of open tree‐canopy

peatlands. A combination of these floor cover types exist on peatlands

with low stand density. Since tree cover controls the moss layer envi-

ronment (e.g., temperature and radiation), its loss or thinning results in

different ground layer species compositions as a result of competition

and extinction‐colonization dynamics. Feather moss groundcover per-

centage is negatively related to tree‐canopy transmittance of photo-

synthetically active radiation (PAR), when Sphagnum is present

while percentage ground cover of Sphagnum is positively related to

tree‐canopy PAR transmittance (Bisbee et al., 2001). This suggests that

thinning of tree canopies will increase Sphagnum cover. Carbon and

water fluxes would alter as a result because Sphagnum fuscum is three

times more productive than P. schreberi (Bisbee et al., 2001) and evap-

orates much more due to its enhanced water transport abilities

(McCarter & Price, 2014).

Short‐term studies withinmineral soils suggest that S. fuscum cover

increases in the first years after tree‐canopy removal (Fenton &

Bergeron, 2007) and P. schreberi shows complete absence after 1 year

(Shields,Webster, & Glime, 2007) or significant decreases in cover after

4 years (Fenton, Frego,&Sims, 2003). Despite the extent of tree‐canopy

disturbancewithin carbon rich forested peatlands, and their strong con-

trol over water and carbon fluxes, the medium‐term response of moss

species composition that characterizes the transitional periods of lagged

responses and their associated carbon and water fluxes, remains largely

unstudied. It may be argued that transitional phases dominate peatland

composition and function, particularly in boreal Alberta. The cycling of

disturbances such as fire, thinning, clear cutting, and seismic line crea-

tion is continuous in this region, resulting in a patchwork of continually

responding ecosystems, yet work at the response/transitional phase

(medium‐term) timescale is rarely considered. Findings of short‐term

studiesmay change in themedium‐term because the disturbance/treat-

ment response processes may take longer than their study period. For

example, a decline in S. fuscum 2 years after tree‐canopy removal is sug-

gested to have been a result of physiological shock due to exposure to

new conditions (Fenton & Bergeron, 2007) and is likely to recover

(Clymo & Duckett, 1986). In addition to lack of medium‐term studies,

we are not aware of any that report or demonstrate minimal changes

in water‐table depth and/or the impact of machinery. These are com-

mon confounding factors in large‐scale timber clearances where most

tree‐canopy removal studies have taken place.

We target these key knowledge gaps by investigating the

ecohydrological, biogeochemical, and compositional response of two

key northern bryophytes to tree‐canopy removal. The experiment is

uniquely conducted with before and after treatment (tree‐canopy

removal) plots in a black spruce peatland, with no additional factors

(e.g., disturbance related changes in water levels and surface micro

topography), allowing unequivocal evaluation of medium‐term moss

response to changes in light conditions alone. The isolation of light

as a process that likely induces changes to the influential moss layer

will allow more robust and flexible modeling and predictions of

peatland ecohydrological functioning to various disturbances
including, tree removal, insect infestations, and any other light

increasing disturbances.
2 | STUDY SITE

Experiments were conducted on a poor fen in central Alberta, Canada

(55.81°N, 115.11°W). The depth of peat is ≥3 m and the hydrological

regime is such that it is part of a larger flow‐through system within

the landscape, resulting in a stable water table. Total annual precipita-

tion for (for the study period) 2010, 2011, 2012, 2013, 2014, 2015

was 282, 489, 497, 523, 376 and 387 mm, respectively. The study site

is characterized by a tree cover of Picea mariana with a basal area and

average height of 11 m2 ha−1 and 2.3 m respectively. Tree basal areas

for northern Albertan peatlands range from 0.3 to 47.3 m2 ha−1 for

peatlands that are 21 to 100 years since fire, respectively (Wieder et al.,

2009). Ground layer vegetation is composed of S. fuscum, Sphagnum

angustifolium, and P. schreberi with vascular species that include Rhodo-

dendron groenlandicum, Rubus chamaemorus, Chamaedaphne calyculata,

Maianthemum trifolia, Vaccinium oxycoccus, and Vaccinium vitus‐idea.
3 | METHODS

In May, 2010, 20 polyvinyl chloride collars (inside diameter of 0.17 m,

length 0.10 m) were installed in the ground based on the species pres-

ent (10 × S. fuscum and 10 × P. schreberi, each with 100% cover). No

significant differences in sky view factor between the proposed con-

trol (0.60 ± 0.08) and treatment (0.65 ± 0.09) plots (p > 0.05,

t = −1.58) or between the S. fuscum (0.60 ± 0.06) and P. schreberi

(0.64 ± 0.11) plots (p > 0.05, t = −1.16) were found. On June 17,

2010, trees around five randomly selected S. fuscum collars and five

randomly selected P. schreberi collars were cut by hand to increase

sky view factor at the collar. Trees within a 5 m radius that influence

the available light at the plot were removed, which significantly

increased the sky view factor in the treatment plots (0.85 ± 0.03) rela-

tive to the control plots (0.60 ± 0.08) (p < 0.001, t = 9.7). Relative

humidity (%) did not differ significantly between treatment and control

plots (p = 0.91, t = −0.11) or between species (p = 0.22, t = 1.3). Air

temperature did not differ significantly between treatment and control

plots (W = 42, p = 0.58) or between species (W = 62, p = 0.39) either.

Between June and August 2010, soil moisture and surface resistance

to evapotranspiration were measured 15 times within each collar.

Between July and August, 2014, measurements of species composi-

tion, and five repeat measurements of surface resistance (rs), CO2

exchange (net primary productivity, respiration, net ecosystem

exchange), and soil moisture were undertaken within each collar. Moss

stress (chlorophyll fluorescence) was measured in all plots at intervals

between 7 a.m. and 6 p.m. in 2015. All measurement dates were ran-

domly selected between May and August of each respective year, pro-

vided that there was no precipitation on the day of measurement.

Bryophyte species cover was estimated as a percentage for each

collar. Moisture measurements were taken at 0.06 m depth (repeats

of n = 5 were taken during 2010 and 2014). Resistance to evapotrans-

piration and CO2 exchange were measured using a closed chamber

system in accordance with McLeod, Daniel, Faulkner, and Murison
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(2004). A cylindrical clear plexiglass chamber (volume of 12.6 L) was

placed over the collar for 2 min and the air inside mixed continuously

using a small fan. Changes in the humidity and CO2 concentration

within the chamber were measured every 1.6 s using a PP systems

EGM4 infra‐red gas analyser. A dark (opaque) chamber with the same

dimensions was used to measure respiration (respiration assumed

equal to dark chamber CO2 flux) by the same method as described

for resistance to evapotranspiration. Light chamber measurements

were immediately followed by dark chamber measurements between

9 a.m. and 5 p.m. Temperature measurements were taken at 0.02 m

below the bryophyte surface. Evapotranspiration rate (ET) was calcu-

lated from the slope of the linear change in vapor density (Stannard,

1988) during the first 35 s of measurement because changes in vapor

density reduce significantly after the first minute (also reported by

Kettridge et al. (2013)). The surface resistance to evaporation (rs) is

equal to

rs ¼ ρ�vs−ρva
ET

−ra; (1)

where ρvs and ρva are the saturation vapor density of the peat surface

and the vapor density of the air within the chamber, respectively and ra

is the aerodynamic resistance within the chamber during a measure-

ment (calculated by placing the chamber over a water bath at room

temperature (rs = 0) and calculating evaporation accordingly using the

same setup and duration as the field method).

3.1 | CO2 flux

Net ecosystem exchange (NEE) was calculated from (Shaver, Street,

Rastetter, Van Wijk, & Williams, 2007),

NEE ¼ ρV
A

dC
dt

; (2)

where ρ is air density (mol/m3), V is the volume of the chamber plus

base (m3), A is the projected horizontal surface area of the chamber

(m2), and dC/dt is the rate of change in CO2 concentration within the

plexiglass chamber (μmol mol−1 s−1). Ecosystem respiration (RE;
TABLE 1 Species cover percentages for all plots (5 of each species) in 201

C

Pleurozium schreberi plots P. schreberi Mean
SE ±
median
range

Bare ground Mean
SE±
median
range

Aulacomnium palustre Mean
SE±
median
range

Polytrichum strictum Mean
SE±
median
range

Sphagnum fuscum plots S. fuscum Mean
SE±
median
range
μmol m−2 s−1) was calculated in accordance with Equation 2 but with

dC/dt determined within a dark (opaque) chamber. Gross ecosystem

productivity (GEP) is equal to NEE‐RE, where a negative value indi-

cates carbon uptake and a positive value indicates carbon release.
3.2 | Chlorophyll fluorescence measurements

Maximum quantum yield of photosystem II (Fv/Fm) was used to assess

plant stress in response to tree‐canopy removal due to its sensitivity as

an indicator of plant photosynthetic performance (Maxwell & Johnson,

2000). An OS30p handheld chlorophyll fluorometer was used to mea-

sure Fv/Fm after 20 min of dark adaptation (Maxwell & Johnson, 2000)

of mosses in each treatment. The theoretical maximum of Fv/Fm is

between 0.78 and 0.89 (Adams & Demmig‐Adams, 2004). Individual

species will have different optimal values when un‐stressed. Lower

than optimal values indicate a lowered photosynthetic capacity (or

stress); normally, this is water stress for bryophytes (Maxwell &

Johnson, 2000). Chlorophyll fluorescence measurements were taken

from all plots at regular intervals between 6 a.m. and 6 p.m. on July

17, 2015 to compare between control and treatment diurnal patterns.

All statistical analyses were conducted in R. A Wilcoxon rank‐sum

test was used to determine differences between percentage cover of

bryophyte abundance between control and treatment plots (2014),

daily average Fv/Fm treatment, and control plots of each species

(2015). Repeat measures of moisture, GEP, and rs from each collar

were averaged. An ANOVA comparing species, year (where appropri-

ate: moisture and rs) and treatment were undertaken.
4 | RESULTS

4.1 | Species cover

Plots in 2010 were selected to include 100% cover of the respective

species. S. fuscum and P. schreberi were still present in the relevant

treatment and control plots in 2014 (Table 1). No significant difference

was observed in either species abundance as a result of treatment. All

S. fuscum plots contained 100% S. fuscum cover in treatment and
0 and 2014

ontrol 2010 Open 2010 Control 2014 Open 2014

100.0 100.0 99.0 60.4
0.0 0.0 2.0 17.1

100.0 100.0 100.0 75.0
0.0 0.0 5.0 98.0
— — 0.0 21.4
— — 0.0 16.5
— — 0.0 2.0
— — 0.0 95.0
— — 0.0 4.6
— — 0.0 3.5
— — 0.0 0.0
— — 0.0 20.0
— — 0.6 1.0
— — 0.5 0.9
— — 0.0 0.0
— — 3.0 5.0

100.0 100.0 100.0 100.0
0.0 0.0 0.0 0.0

100.0 100.0 100.0 100.0
0.0 0.0 0.0 0.0
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control plots. Although P. schreberi showed a decline (mean of percent-

age cover in control =99% (SE ± 0.89, median = 100, range = 95 to

100), mean of percentage cover in treatment =60% (SE ± 17.1,

median = 75, range = 2 to 100), this was not significant (p = 0.06,

n = 5). P. schreberi remained present in all 10 collars in 2014.
4.2 | Gross ecosystem productivity, surface
resistance and moisture

In 2014, gross ecosystem productivity did not differ significantly

between treatment types but did show significant differences with

species (Table 2 and Figure 1) with S. fucsum (mean: −6, ±0.6 SE)

more productive than P. schreberi (mean: −12, ±0.9 SE). Surface

resistance was significantly different between species (i.e., rs greater

in P. schreberi plots: Figure 2) but did not show a treatment effect (

Table 2). Moisture in the top 0.06 m also did not differ significantly

with treatment but did show a significant species and year effect (

Table 2 & Figure 3).
4.3 | Chlorophyll fluorescence

In 2015, both mean P. schreberi and S. fuscum Fv/Fm in the control col-

lars remained near optimal throughout the day, only reaching a low of

0.66 for S. fuscum. The S. fuscum treatment fell as low as 0.63. The

P. schreberi treatment plots on the other hand showed a drop in mean

Fv/Fm later in the day to 0.46 at 4 p.m (Figure 4). Differences between

treatment and control S. fuscum Fv/Fm were not significant (p = 0.69,

n = 5). However, the treatment did cause significant reductions in

P. schreberi Fv/Fm values (p = .0079, n = 5).
5 | DISCUSSION

5.1 | Species response to disturbance

Pleurozium schreberi is negatively correlated to the tree‐canopy PAR

transmittance when Sphagnum is present and is typically found under

dense tree covers (Bisbee et al., 2001). Sphagnum is positively corre-

lated with tree‐canopy PAR transmittance and associated with open

tree‐canopy areas (Bisbee et al., 2001). It is therefore likely that long‐

term shifts toward an S. fuscum dominated system will occur in

response to tree‐canopy removal. Despite this, tree‐canopy removal
TABLE 2 ANOVA results of comparisons between species, treatment and

Moisture (Mv) Gross ec

F value (1/16) p value F valu

(Intercept) 201.70 <.0001 20

Species 22.52 .0002* 2

Treatment 0.16 .7

Year 21.77 .0003*

Species:Treatment 0.58 .46

Species:Year 1.05 .32

Treatment:Year 0.16 .7

Species:Treatment:Year 0.02 .89

Note. Asterisk (*) = significant.
alone did not cause any significant changes in species compositions

in the medium‐term. P. schreberi was present in all treatment collars

4 years after tree‐canopy removal and showed no significant decrease

in cover. We suggest here that the tree‐canopy PAR transmittance,

substrate type, depth, and its associated hydrology not only control

the species distribution (Bisbee et al., 2001) but also modify the rate

of this transition in response to tree‐canopy removal.

Decline in P. schreberi has been attributed to increased evapora-

tion stress. If tree‐canopy cover is not adequate to prevent evapora-

tion stress, feather mosses dry out and die because they are nearly

independent of the substrates' water supply (Johnson, 1981). Thus,

evaporative stress will provide the likely driver for the expected long‐

term transition from P. schreberi to S. fuscum after tree‐canopy

removal. P. schreberi treatment plots exhibit less optimal Fv/Fm, values

compared to control plots, resulting in reduced carbon accumulation

which slowly reduces their competitive strength and groundcover. Fur-

ther work is required to determine how the duration and intensity in

P. schreberi stress varies on a diurnal cycle, its association with tree‐

canopy removal, its link with evaporative demand and near‐surface

moisture/tension. However, this evaporative stress is the probable

cause of the observed decline of P. schreberi abundance and long‐term

shift to a Sphagnum dominated system. We observed that if increased

evaporative stress associated with increased solar radiation is acting

alone, the resulting shift in species occurs much slower, with no signif-

icant changes found within 4 years, suggesting the response is lagged.

This lagged response left subcanopy species outside of their niche

environment, in this experiment, for a period of greater than 4 years.

Despite the slower response observed in this study, Shields et al.

(2007) and Fenton et al. (2003) observed a complete loss of P. schreberi

within mineral soils 1 year after tree‐canopy removal and a significant

decrease after 4 years, respectively. This significant and rapid

decrease/absence of P. schreberi in response to tree‐canopy removal

in short‐term, mineral soil studies may be a result of changes in near‐

surface moisture saturation levels. A change in the moisture regime

as a side effect of tree‐canopy removal may be due to a change in

any combination of the following: substrate depth, substrate storage,

transpiration rates (lack of, after disturbance), disturbance size, and

compaction. If the balance between the water storage available and

reduction in evapotranspiration through tree removal results in a water

table rise to a level unfavourable for P. schreberi, changes in species

compositions may occur at a faster rate. Tree removal can result in a
year for moisture, surface resistance and gross ecosystem productivity

osystem productivity (gC m−2 s−1) Surface resistance (s/m)

e (1/16) p value F value (1/16) p value

7.73 <.0001 90.57 <.0001

2.85 .0002* 21.21 .0003*

0.13 .72 0.03 .87

0.40 .53

0.62 .44 0.07 .79

0.33 .58

3.54 .08

1.72 .21
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water table rise (due to lack of transpiration; Pothier, Prévost, & Auger,

2003), which causes negative effects in feather moss (Busby, Bliss, &

Hamilton, 1978) in as little as 4 months (Birse, 2016). However, near‐

surface moisture conditions did not change significantly within our

study. It is also unlikely that water levels changed significantly, due

to the small scale of the disturbance (and low predisturbance transpira-

tion rate) and the fact that the system has groundwater through flow.

This ground water through flow limits large water level fluctuation that

would adversely affect the studied mosses. The small scale nature of

the experiment on a large groundwater fed fen facilitates the minimiza-

tion of water level changes as a confounding effect (which is supported

by soil moisture results; Figure 3). Further, such a rapid transition may

be exacerbated by the tree clearance method employed. For instance,

machinery used for harvesting can cause variable changes in forest

floor depth by substrate compaction (Mariani, Chang, & Kabzems,

2006). Trees were cut by hand in this study, therefore, eliminating

the influence of such disturbance. The lack of observed

ecohydrological changes may have also been due to low

predisturbance tree densities, resulting in a less extreme increase in

light than in comparative studies (Shields et al., 2007; Fenton et al.,

2003). However, the sky view factor was significantly reduced in the

treatment plots. At a sky view factor of 0.85, both species could main-

tain their presence and ecohydrological functioning. Further work is
FIGURE 1 Mean ( ± SE) gross ecosystem
productivity for each collar (n = 5) with five
repeat measurements, 2014
required to assess whether the predisturbance tree density or sky view

factor has an impact on species presence and ecohydrological function.

However, given the high sky view factor values for treatment plots,

this study highlights that light alone is not enough to rapidly change

species composition.

Sphagnum fuscum percentage cover did not change between con-

trol and treatment collars. This was expected because S. fuscum usually

grows in areas with a less dense tree cover (Bisbee et al., 2001).

S. fuscum decline in literature has been attributed to a physiological

shock in response to increased light levels (Fenton & Bergeron,

2007). This may have occurred in the short‐term after which the

S. fuscum subsequently recovered (Clymo & Duckett, 1986). For exam-

ple, Locky and Bayley (2007) found a decline in Sphagnum cover 1 to

4 years after tree‐canopy removal but a subsequent increase after 9

to 12 years.
5.2 | Hydrological and biogeochemical response

Differences in P. schreberi GEP and rs between treatment and control

collars were not significant in this study (Figures 1 and 2). The lack of

connectivity with a water supply means that P. schreberi can only evap-

orate until the water available (from precipitation (Busby et al., 1978),

dew and distillation (Carleton & Dunham, 2003)) runs out and then it
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becomes stressed. Surface resistance is a measure of resistance to

evaporation from the peat surface: low surface resistance allows high

evaporation rates and vice versa. Surface resistance varies with precip-

itation and is therefore highly variable within a subhumid climate. This

is supported by highly variable rs, GEP, and Fv/Fm measurements for

control plots. Evaporative stress is likely happening for a greater pro-

portion of the day and is likely the cause of the long‐term decline in

P. schreberi abundance. There was also no significant change observed

in S. fuscum rs and GEP. S. fuscum can access water at depth, allowing it
FIGURE 3 Mean ( ± SE ) moisture data (n = 5) for treatment and contro
treatment. (Black spruce canopy was removed on the 17th of June 2010)
to meet most increases in evaporative demand (e.g., increased energy

at the surface) and maintain consistent rs and GEP rates. This is sup-

ported by Fv/Fm values that were consistently near the optimum range

in both treatment and control plots (Figure 4). Although no significant

changes in rs and GEP were observed between treatments, significant

differences were found between species for GEP and rs, supporting

suggestions that species compositions have the dominant control over

C and water fluxes (Heijmans, Arp, & Chapin, 2004). In the short/

medium‐term, moss layer hydrology and biogeochemistry have not
l plots of Pleurozium schreberi and Sphagnum fuscum before and after
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changed, suggesting that these peatlands show some degree of resis-

tance to disturbances. The lack of changes in surface resistance and

GEP coupled with a decrease in transpiration from the tree‐canopy

suggests that less water is lost from the ecosystem through evapo-

transpiration, which facilitates the maintenance of the peatlands'

existing, globally important, carbon stock. In the longer term, a shift

toward an S. fuscum dominated moss layer is suggested by the Fv/Fm

data, moss physiology and because feather mosses are characteristic

of areas with low light levels (Bisbee et al., 2001). Such a shift in spe-

cies composition will significantly change the moss layer hydrology

and biogeochemistry of moss layers by increasing evapotranspiration

and carbon accumulation.

Bryophyte species act a first order control on the small scale atmo-

spheric carbon and water fluxes from peatlands. Ecohydrological feed-

back models that assume moss layer species change in equilibrium with

tree‐canopy PAR (BETA model; Kettridge et al., 2013) may provide a

poor estimation of water fluxes during any transition period. Although

PAR is a distinguishing feature between P. schreberi and S. fuscum dom-

inated peatlands, the species compositional response to increased PAR

is not immediate. This delayed response, compared to immediate

responses of the same species within other studies (Shields et al.,

2007) highlight that different environmental factors, has varying con-

trols over species competitive strengths and response rates to distur-

bances. As such, including appropriate disturbance response rates in

ecohydrological models could dramatically improve their carbon and

water balance prediction capabilities. For example, in this study, we

predict a shift toward an S. fuscum dominated system and increased

carbon accumulation and evaporation from the moss layer, provided

trees do not reestablish quickly. However, if the rate at which trees

reestablish is faster than the rate at which P. schreberi cover signifi-

cantly declines, the system could revert back to the status quo without

significant changes to biogeochemistry and hydrology. Understanding

species response rates provides better insight into ecosystem resis-

tance to disturbance, ecohydrological feedback mechanisms, and

quantification of carbon and water fluxes within globally important

peatland systems.
6 | CONCLUSION

Within the studied peatland, no significant changes in species compo-

sition, surface resistance, or carbon fluxes from the bryophyte layer

were observed as a result of tree‐canopy removal. This study was

uniquely conducted in a peatland system where confounding changes

associated with tree‐canopy clearance (e.g., significant water table

changes and machinery influences) were avoided, allowing confident

interpretation of results that were a direct effect of tree‐canopy

removal. These results showed slower changes (40% decrease in

P. schreberi after 4 years) than those observed in short‐term studies

undertaken within mineral soils, which suggest that water table varia-

tions and/or harvest method may modify the responses of species to

tree‐canopy removal. Long‐term changes are likely to result in a shift

toward an S. fuscum dominated system as a result of evaporative stress

causing weakened competitive strength of P. schreberi and eventual

mortality. Because species have a dominant control over carbon and

water fluxes from the system after tree‐canopy removal, we argue that

further process‐based understanding of moss species compositional

change over medium to long‐term is essential for more accurate esti-

mations of carbon and water fluxes in these globally important

ecosystems.
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