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Abstract 12 

This proof of concept study presents a Bayesian Network (BN) approach that integrates 13 

relevant biological and physical-chemical variables across spatial (two water layers) and 14 

temporal scales to identify the main contributing microbial mechanisms regulating POC 15 

accumulation in the northern Adriatic Sea. Three scenario tests (diatom, nanoflagellate and 16 

dinoflagellate blooms) using the BN predicted diatom blooms to produce high chlorophyll a 17 

at the water surface while nanoflagellate blooms were predicted to occur also at lower depths 18 

(> 5m) in the water column and to produce lower chlorophyll a concentrations. A sensitivity 19 

analysis using all available data identified the variables with the greatest influence on POC 20 

accumulation being the enzymes, which highlights the importance of microbial community 21 

interactions. However, the incorporation of experimental and field data changed the 22 

sensitivity of the model nodes ≥25% in the BN and therefore, is an important consideration 23 

when combining manipulated data sets in data limited conditions.  24 

 25 

Keywords: Bayesian Network; bacteria; phytoplankton; biogeochemical cycling; particulate 26 

organic carbon; Adriatic Sea. 27 
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1. Introduction 30 

Bayesian Networks (BNs) are being increasingly applied to model complex ecosystem 31 

processes through the graphical and probabilistic integration of numerous interacting 32 

variables to provide a scientifically informed framework for decision making (Fletcher et al., 33 

2014). The graphical representation of complex interactions between multiple variables can 34 

assist in the communication of BNs to end-users thereby facilitating the application of BNs 35 

into water resource management practices (McDonald et al., 2015). Although BNs are limited 36 

by the inability to model feedbacks that are important in aquatic ecosystem processes unless a 37 

computationally demanding dynamic network is developed, they have some benefits that in 38 

particular circumstances, such as data limited conditions, can outweigh this limitation 39 

(McDonald et al., 2015). A benefit of the BN approach is the ability to iteratively evolve 40 

based on the successive incorporation of available and new emerging knowledge of the 41 

investigated system into a scientifically informed framework that can be used to investigate 42 

probabilistic relationships between variables, make predictions and test scenarios (Lowe et 43 

al., 2014; Nojavan et al., 2014). Additionally, the fact that probabilistic dependencies 44 

between variables in BNs are explicitly shown supports the communication of the model 45 

across disciplines such as management and science, and microbiology and computer science 46 

(Fletcher et al., 2014; Levontin et al., 2011). This facilitation of inter-disciplinary 47 

collaboration increases the potential for the model to be applied not only within the scientific 48 

community but also by a wide ranging end-user community, including environmental 49 

managers, regulators and water industries with requiring in-depth understanding of the 50 

detailed modelling approach.  51 

 52 

Aquatic ecosystems are characterised by complex interactions between variable physical, 53 

chemical and biological factors that affect primary production and carbon cycling at different 54 

spatial and temporal scales. At the microscale, the structure and strength of bacteria-55 

phytoplankton coupling vary spatially and temporally, and are regulated by nutrient supply 56 

(Azam and Malfatti, 2007). The organic matter (OM) pool available in aquatic ecosystems 57 

can be conceptualized as a physical continuum of molecules (Verdugo et al., 2004) that spans 58 

from colloids and gel particles known as dissolved organic matter (DOC) to particulate 59 

organic carbon (POC) aggregates such as marine snow (Alldredge and Cohen, 1987) or even 60 

large aggregates of different forms and sizes (mucilage) (Giani et al., 2005 and references 61 
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therein). The pathways and rates of dissolved and particulate carbon cycles may be affected 62 

by sources, composition and transformations of aggregates in the environment (Turner, 2014 63 

and references therein). The microbial communities and biogeochemical processes of the OM 64 

continuum furthermore control the habitat templates and resources for higher trophic 65 

organisms (Green and Dagg, 1997). Currently, marine POC formation, accumulation and 66 

sedimentation processes are being explored as potential pathways to remove CO2 from the 67 

atmosphere through sequestration via photosynthetic fixation of CO2 into biomass by 68 

phytoplankton. 69 

 70 

Current models for predicting microbial community changes, such as function based models 71 

and bioclimatic models as opposed to a BN approach, have limited ability to link processes to 72 

environmental changes in the marine ecosystem and conduct scenario tests on scales relevant 73 

for monitoring and management (Larsen et al., 2012). Complex NPHZ-V multi-trophic 74 

models (Weitz et al., 2015) have been developed to integrate the complex inter-relationships 75 

between viruses, plankton and bacteria but do not reflect the impacts of physio-chemical 76 

conditions. Several numerical models have been implemented previously to investigate 77 

oceanographic properties linked to atmospheric forces that coincided with large organic 78 

aggregates (mucilage) events (Oddo et al., 2005), or to analyse the physical-chemical 79 

mechanisms that may regulate aggregation events (Signell et al., 2005) in the Adriatic Sea. 80 

Numerical models such as Phytoplankton Aggregation Model (PAM), Snow Aggregate 81 

Model (SAM) integrate processes of the microbial cycle but are limited in their application 82 

due to their parameterisation requirements and demands on the specialist numerical modeller 83 

(Kriest, 2002). The PAM and SAM models aim to characterise the marine snow aggregates 84 

by size, density and composition rather than aiming to predict what physical-chemical and 85 

biological conditions lead to aggregate events. Cossarini and Solidoro (2008) performed a 86 

trophodynamic model to highlight the most important factors for POM accumulation, such as 87 

phytoplankton, total phosphorous concentrations, decay rate of particulate organic 88 

phosphorous, and mortality rate of bacteria for the Gulf of Trieste. The Mucilage Aggregate 89 

Index (MAI) approach was proposed to characterise the aggregate characteristics (size and 90 

distribution in the water column) to environmental parameters with correlations (Bragato et 91 

al., 2006). These approaches fail to identify and quantify the mechanisms influencing OM 92 

aggregates along gradients of physical and chemical attributes that vary spatially and 93 

temporally in marine environments. Therefore, there has been a demand for network based 94 
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models, such as BNs, that can be applied by scientists and managers to investigate the 95 

mechanisms of OM aggregates in data limited conditions (Hurwitz et al., 2014). 96 

 97 

The sporadic occurrence and lack of knowledge on the mechanisms of POC accumulation 98 

events has resulted in incomplete and limited datasets on the changes within and between 99 

ecosystem variables that precede aggregate formation. Integrating multiple data sources, such 100 

as expert elicitation with field observations in fuzzy logic approaches, has been commonly 101 

used to supplement quantitative information in the development of BNs under data limited 102 

conditions (Ban et al., 2014; Isci et al., 2014; Scholton et al., 2012). Combining different 103 

sources of a priori data, such as combining simulation and field data, can introduce bias and 104 

increase uncertainty in the posterior (output) probabilities of BNs that require assessment and 105 

in some cases the ranking of data sources (Hamilton et al., 2015). However, the inclusion of 106 

manipulative experimental datasets in a priori data to fill information gaps in data limited 107 

conditions and the consequences on the uncertainty and bias of the resulting posterior 108 

probabilities is undetermined.  109 

 110 

In this study, a BN was iteratively developed to increase our understanding of the main 111 

parameters that effect POC formation in a marine environment using a proof of concept 112 

example developed for the shallow and enclosed areas, such as the Gulf of Trieste (GT), 113 

northern Adriatic. Several recurring events, either linked to anthropogenic eutrophication or 114 

to specific natural conditions, such as hyper-production copious mucus macroaggregates 115 

(Giani et al., 2005) have characterised the whole northern Adriatic basin in the recent past. It 116 

was shown that the variations in the availability of inorganic nutrients, dissolved organic 117 

nitrogen (DON) and dissolved organic phosphorus (DOP) can strongly influence the 118 

phytoplankton primary production and the microbial degradation of OM (Cozzi et al., 2004; 119 

Danovaro et al., 2005). Under certain poorly understood conditions, the recalcitrant nature of 120 

the OM pool combined with slower microbial degradation processes can lead to an increase 121 

of the POM pool and formation of large aggregates (Fajon et al., 1999;  Malfatti et al., 2014). 122 

 123 

Within the model, experimental and field data on microbial activity, including phytoplankton 124 

and bacteria communities, was combined with the physical-chemical parameters. Scenario 125 
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tests using the set of data available for this case study were conducted to investigate the 126 

important processes involved in the POC formation and accumulation. The scenario test 127 

assessed the most probable environmental conditions occurring during: (i) a diatom bloom, 128 

(ii) a nanoflagellate bloom and (iii) a dinoflagellate bloom. A sensitivity analysis was 129 

conducted to assess the causal structure of the BN and the variables that most influence the 130 

output probabilities in the three scenario tests. Our hypotheses were that: 1) Phytoplankton 131 

community structure and primary production are important factors in POC formation and 132 

accumulation; and 2) Bacterial enzymatic activities controlling the transitions between POC 133 

and DOC are important factors in POC accumulation. Additionally, we assess the influence 134 

of incorporating experimental and field a priori data on the posterior probabilities of the BN.  135 

 136 

2. Methods 137 

2.1 Study area 138 

The semi-enclosed Gulf of Trieste (GT) is a shallow coastal area (maximal depth of about 25 139 

m) in the northernmost end of the Adriatic Sea. Its oceanographic conditions are affected by 140 

water mass exchange with the northern Adriatic at the open boundary, by variable local 141 

meteorological conditions that induce a pronounced seasonal cycle of seawater temperature 142 

(from 6 
o
C in winter to summer peaks of >25 

o
C) (Malačič et al., 2006) and by pronounced 143 

freshwater inputs of rivers (Cozzi et al., 2012). These physical factors are ultimately reflected 144 

in strong seasonal and inter-annual variability in ecosystem structure and functioning, which 145 

primarily includes changes in plankton communities and primary production (Fonda Umani 146 

et al., 2007; Malej et al., 1995; Tinta et al., 2015). Two seasonal peaks of phytoplankton 147 

biomass and abundance regularly occur in the GT: one in spring, being mostly due to the 148 

proliferation of nanoflagellates, and the other in late autumn, which is also the highest on the 149 

annual scale and is dominated by diatoms (Mozetič et al., 2012). Dinoflagellate abundance 150 

represents, with some exceptions, only a small portion of the phytoplankton community (on 151 

average around 4%) (France and Mozetič, 2012). At times, phytoplankton dynamics can be 152 

altered by exceptional events such as heavy precipitation or enhanced river inputs in summer, 153 

resulting in a diatom bloom in July (Malej et al., 1997; Tinta et al., 2015). The bacterial 154 

community structure shows the importance of Alphaproteobacteria (mainly SAR11), 155 

Gammaproteobacteria (Bacteriodetes, mostly Flavobacteria) and Cyanobacteria 156 

(Synechococcus) in GT (Tinta et al., 2015). Less abundant or rare bacterial groups are Beta-, 157 
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Delta- and Epsilonproteobacteria, Sphingobacteria, Cytophaga, Planctomycetes, 158 

Actinobacteria, Verrucomicrobia and Deferribacteres. Seasonal and spatial distribution of 159 

bacterial community dynamics is influenced by temperature, freshwater-born nutrients and 160 

phytoplankton blooms (Tinta et al., 2015).  161 

 162 

2.2 Experimental and field data 163 

Two sources of a priori data were used to inform the models posterior probabilities 164 

(described in detail in the Model development section of this paper): a mesocosm experiment 165 

and a field study (monitoring), both conducted in the GT.  166 

 167 

An extensive (in terms of biogeochemical parameters analysed) 64-day mesocosm was 168 

carried out in October 2007 in order to study carbon and phosphorus fluxes mediated via 169 

microbial mechanisms and how interaction between carbon (C) and phosphorus (P) may lead 170 

to DOC accumulation and persistence (Malfatti et al., 2014). Natural plankton assemblages 171 

(bacteria and phytoplankton while larger herbivores were removed using 50 µm mesh) 172 

collected in the south-eastern part of the GT were firstly spiked with nutrients except P at 173 

F/10 concentration (Guillard and Ryther, 1962). After, three replicate carboys (P+) received 174 

0.5 μM PO4
3-

 (approx. 10-times higher concentration compared to average phosphate 175 

concentration in the sea water) while no PO4
3-

 was added to the other three (P-) control 176 

carboys. The six carboys were incubated in situ at 2 m depth. The mesocosm experimental 177 

design, parameters sampled and methods used are explained in details in Malfatti et al. 178 

(2014). In particular, POC and DOC were measured in samples that were retained on or 179 

passed through combusted GF/F filters, respectively, following standard procedures. 180 

 181 

The other set of data originated from a two-year field survey (2009-2010) carried out in 182 

fortnightly intervals at the marine field station 00BF (45° 32.93' N, 13° 33.03' E, 1.3 NM off 183 

the coast, depth of 22 m), where oceanographic buoy Vida is located, in the south-eastern part 184 

of the GT. Samples were collected at the surface (5 m) and near the bottom (20 m) of the 185 

water column. The main objective of this study was to examine the seasonal dynamic of the 186 

bacterial community of a coastal ecosystem and to investigate potential links between 187 

bacterial and phytoplankton community and environmental parameters (for details see Tinta 188 
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et al., 2015). Field station 00BF is the same site where the sea water was collected for the 189 

mesocosm experiment in 2007 and defines relatively undisturbed open waters of the Gulf. 190 

The location also represents one of the longest time-series of the whole GT (Mozetič et al., 191 

2010); some parameters (e.g., dissolved oxygen and chlorophyll a) have been continuously 192 

measured on a monthly basis from mid 80s onwards. Besides, the location makes part of the 193 

grid of sampling stations, which is included in the national monitoring programme and 194 

combines, when possible, with stations on the Italian side of GT into a complete coverage of 195 

the Gulf’s surface. 196 

 197 

2.3 Model development 198 

The iterative development of the BN model commenced with a conceptual model to identify 199 

the variables (nodes) incorporated into sub-models and conditional relationships between 200 

nodes from the available data (Fig. 1). The causal relationships connecting respective nodes 201 

were determined by an extensive literature review and expert knowledge of the authors of this 202 

paper on the considered processes in the northern Adriatic Sea. A BN was developed from 203 

the conceptual model in Fig. 1 using the modelling software Netica 4.16 (Norsys Software 204 

Corporation, 2010). 205 

 206 

The conceptual model was initially developed into a network model in which the conditional 207 

probabilities were derived from cause and effect relationships (Fig. 1). This model was 208 

assessed with sensitivity analysis to investigate the propagation of probabilities through the 209 

network structure. The bacterial and phytoplankton sub-models were then further developed 210 

to include the taxonomy of phytoplankton and bacteria community structure using naïve 211 

Bayesian network (NBN) relationships. The NBN structure assumes independence between 212 

each taxonomical variable in the network (Flores et al., 2014). This NBN approach is 213 

considered a more simplistic, hence naïve, representation of environmental relationships than 214 

the cause and effect approach in defining the conditional structure of the model (Costa et al., 215 

2013). Despite this simplified assumption NBN approaches have strong mathematical 216 

foundations and are effective in large, complex models with data limited conditions or for 217 

unstructured data (Li and Li, 2013; Xu and Ma, 2014). The BN with both causal and naïve 218 

structure was then assessed again with a sensitivity analysis and the results are outlined in 219 



 9 

this paper. The development of the bacteria and phytoplankton community composition sub-220 

models into the NBN structure provides important information on the abundance of each 221 

taxonomical class rather than only the dominant taxa in the initial cause and effect model 222 

structure that was developed (Fig. 1). A sensitivity analysis was used to assess model 223 

propagation through the final network structure and identify any insensitive or poorly 224 

informed nodes which could indicate to problems in the network structure.  225 

 226 

 227 

228 
Fig. 1 Conceptual model of the main causal relationships between sub-models of nodes in the 229 

network describing processes and process interactions leading to the higher POC 230 

concentrations. The arrows indicate conditional dependencies between sub-models.  231 

 232 

In our study, the physical-chemical and biological parameters that might be relevant for 233 

formation and accumulation of POC were integrated into a network model. The a priori data 234 
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used to calculate posterior probabilities for each node in the network combined data from 235 

two-year field survey (2009-2010) with a mesocosm experiment (described in detail in the 236 

Experimental and field data section of this paper) into one case file (Supporting Information 237 

1). The BN is developed with a data node that can be used to distinguish between the data 238 

sources (Fig. 1). The inclusion of experimental data to supplement the field data was 239 

important to fill information gaps that exist in the 2-year monitoring campaign, such as data 240 

on enzyme availability and nutrient thresholds. Therefore, the experimental data are 241 

important to inform the relationships among variables in the model and quantify trends that 242 

the biweekly to monthly monitoring scheme may not detect. The posterior probabilities 243 

derived from only field data and only experimental data are assessed using the data node 244 

embedded in the network and a sensitivity analysis conducted to investigate changes in 245 

influences between variables between the two data sources. 246 

 247 

The BN in our study was developed to the best-practice principles outlined in McDonald et 248 

al. (2015) as a proof of concept for modelling microbial community interactions in aquatic 249 

environments using BNs. Therefore, it is intended that the model is in the initial phase of 250 

construction to assess the approach and will be developed in the future prior to being applied 251 

to ecosystem management. The states for each node (Mild, Mean, Moderate, Maximum) were 252 

defined by percentiles of all available data which is a common method in data limited 253 

conditions (Pollino et al., 2007). The ecological importance of each node included in the 254 

network is outlined in Supporting Information 1. Conditional probability tables (CPTs) were 255 

calculated from the data using the Expectation Maximization (EM) algorithm due to the 256 

limited number of cases (data points) for each node (cases are provided in Supporting 257 

Information 1; CPTs and further model configuration is available from the lead author on 258 

request). The CPTs produced in this unconditioned model represent the base case (the 259 

parameterized model prior to a user defined scenario being entered) or the probabilities based 260 

on all possible outcomes of the a priori data (McDonald et al., 2016).  261 

 262 

2.4 Scenario testing 263 

The complex interactions between mechanisms regulating POC accumulation and microbial 264 

community structure in the unconditioned BN model developed have been furthermore tested 265 
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in three user-defined scenarios. Assuming that a chosen model structure is accurate, scenario 266 

tests (where the model is conditioned to have a specific CPT outcome for at least one node) 267 

can provide information on ecosystem responses under specific conditions (Mantyka-Pringle 268 

et al., 2014; Van Grieken et al., 2013). The first scenario test investigated the ecosystem 269 

responses under a high abundance of diatoms, the second scenario test a high abundance of 270 

nanoflagellates, and the third scenario test included a high abundance of dinoflagellates. 271 

Scenario tests were conducted by setting the abundance node for the phytoplankton group in 272 

question (nanoflagellates, dinoflagellates or diatoms) to 100% probability of the state 273 

representing the highest possible concentrations occurring and the dominant phytoplankton 274 

node finding to 100% probability of occurrence for the same group being investigated in the 275 

scenario test (i.e. diatom, dinoflagellate or nanoflagellate, respectively) (Supporting 276 

Information 2). Thereby, predicting the probable influence a bloom event of a particular 277 

phytoplankton group being investigated on the microbial community and POC. The 278 

predictions for investigating the ecosystem responses in this study were conducted using both 279 

the forward and backward propagation techniques (McDonald et al., 2015). These scenario 280 

tests were used by the authors to investigate both the interactions between phytoplankton 281 

community composition and the physical-chemical factors regulating carbon accumulation 282 

and degradation processes in the GT.  283 

 284 

2.5 Microbial mechanisms 285 

Microbial interactions with POC aggregate formation were investigated using the scenario 286 

testing technique outlined above and compared to the posterior probabilities in the 287 

unconditioned model. The microbial mechanisms were investigated by conducting a scenario 288 

test in which the POC node was set maximum state threshold and all parent nodes remained 289 

unconditioned during the scenario test (Supporting Information 2). Thereby, the scenario test 290 

investigated the most probable environmental and microbial conditions present under the 291 

highest POC conditions in the a priori data were assessed using the BN model.  292 

 293 

2.6 Sensitivity analysis  294 

The sensitivity analysis, combined with the scenario testing, identified the nodes that are 295 

most sensitive to changes in the posterior probabilities (calculated in the conditional 296 
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probability tables (CTPs)) with different outcomes in network. A sensitivity analysis was 297 

conducted on the nodes of interest such as POC, phytoplankton and bacteria abundance. All 298 

parent nodes remained unconditioned during the sensitivity analysis. The variance reduction 299 

(VR) method in the Netica software was used to calculate the sensitivity between nodes in the 300 

network.  301 

 302 

Sensitivity analysis was furthermore used to investigate the mechanisms regulating POC 303 

increase based on the model being informed by: (i) all the a priori data available, (ii) only the 304 

experimental data and (iii) only the field data available. The changes in mechanisms of POC 305 

accumulation identified by the sensitivity analysis were investigated by conducting scenario 306 

tests on the unconditioned model for the all available data case study. The different data 307 

sources were then investigated by setting data node to 100% probability of field data or 100% 308 

probability of experimental data being used to derive the model outputs. Inferring differences 309 

between the sources of the a priori data (field and experimental) aimed to identify the 310 

variability that may be introduced into the model through the incorporation of manipulated 311 

experimental data to fill information gaps in field (monitoring) data.  312 

 313 

3. Results 314 

The output probabilities in the unconditioned BN predict a mean POC concentration to be the 315 

most likely (48.0%) under all possible outcomes (base case) from the a priori data (Fig. 2; 316 

Table 1). The most probable outcome for chlorophyll a concentrations was predicted to fall 317 

within maximum threshold (26%) or within mean threshold (21.4%). The abundance of total 318 

phytoplankton (25.7%) and rates of primary production (41.7%) were predicted to be in the 319 

mean state range. The concentrations of DOC are predicted to fall within the minimum 320 

threshold range (51.8%). The dominant bacteria order is predicted to be SAR 11 (38.9%) 321 

based on all possible outcomes from the a priori data (Fig. 2). Nanoflagellates have the 322 

highest probability of being the dominant phytoplankton group (40.5%). 323 

  324 
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 325 

Fig. 2 The unconditioned BN developed for investigating microbial mechanisms that lead to POC accumulation in marine environments. The 326 

network comprises of the spatial and temporal variables (orange), the basic physical-chemical parameters (green), the inorganic and organic 327 

nutrients (grey), enzyme activities (purple), bacteria community composition (blue) and phytoplankton community composition (yellow). 328 

Bottom layer (20 m) is regarded here as the subsurface layer. 329 
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Table 1. The predicted probabilities of states for key physical and chemical drivers of POC accumulation in each of the scenarios (to 1 decimal 330 

place).  331 

Node State All probable 

outcomes 

High Diatom 

abundance 

High Dinoflagellate 

abundance 

High Nanoflagellate 

abundance 

Maximum POC 

Season Summer 

Autumn 

Winter 

Spring 

25.6 

34.1 

22.5 

17.8 

27.5 

36.4 

17.8 

18.2 

24.5 

33.9 

23.9 

17.7 

26.1 

36.9 

16.1 

20.9 

9.7 

35.0 

17.1 

38.1 

Temperature Minimum 

Mild 

Mean 

Moderate 

Maximum 

11.4 

14.2 

47.1 

15.8 

11.5 

10.6 

12.6 

46.5 

17.1 

13.2 

11.1 

14.4 

46.9 

15.7 

11.9 

11.4 

11.1 

50.5 

15.8 

11.2 

7.8 

27.4 

46.2 

13.0 

5.5 

Depth Surface 

Bottom 

58.9 

41.1 

59.1 

40.9 

61.8 

38.2 

55.8 

44.2 

71.3 

28.1 

Dissolved oxygen 

(DO) 

Minimum 

Mild 

Mean 

Moderate 

Maximum 

11.4 

18.0 

50.3 

13.0 

7.3 

12.4 

19.0 

48.2 

13.0 

7.4 

11.3 

17.7 

51.2 

13.0 

6.8 

12.1 

19.5 

47.1 

13.1 

8.1 

5.69 

22.1 

53.6 

15.3 

3.4 

Ammonium Minimum 

Mild 

8.9 

12.8 

8.62 

12.9 

10.5 

13.8 

7.3 

11.2 

8.96 

13.5 
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Mean 

Moderate 

Maximum 

53.9 

14.2 

10.2 

53.9 

14.3 

10.3 

53.0 

13.6 

9.08 

53.7 

16.4 

11.4 

62.8 

5.24 

9.53 

Ortho-phosphate Minimum 

Mild 

Mean 

Moderate 

Maximum 

15.6 

7.09 

48.9 

15.8 

12.6 

16.6 

7.4 

46.4 

15.4 

14.2 

16.0 

7.6 

47.0 

15.9 

13.5 

15.1 

6.4 

51.8 

15.3 

11.3 

10.9 

11.2 

47.5 

17.1 

13.4 

Total Phosphorus Minimum 

Mild 

Mean 

Moderate 

Maximum 

18.9 

17.5 

18.5 

21.6 

23.5 

19.1 

17.4 

18.2 

21.5 

23.8 

18.8 

17.4 

18.4 

21.6 

23.8 

19.3 

17.6 

18.6 

21.3 

23.2 

15.3 

15.0 

15.9 

14.9 

38.8 

 332 

 333 
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3.1 Scenario testing 334 

The BN model predicts increased probability of POC accumulation in autumn in the 335 

unconditioned network from the a priori data (34.1%), that increased in the nanoflagellate 336 

bloom scenario test (36.9%) and in the diatom bloom scenario test (36.4%) but decreased in 337 

the dinoflagellate bloom scenario test (33.9%),  (Table 1; Supporting Information 2). Diatom 338 

abundance is predicted to increase with water temperatures in the high 17.1% or maximum 339 

13.2% node states. The model output predicts the vertical distribution of diatom (59.1%) and 340 

dinoflagellate (61.8%) with higher abundance in the upper water column, while 341 

nanoflagellates are more evenly distributed between the surface (55.8%) and bottom layer 342 

(44.2%).  343 

 344 

3.2 Microbial mechanisms 345 

The maximum POC scenario is predicted to occur in spring (38.1%) at the surface (71.3%) 346 

(Table 1; Supporting Information 2). The maximum concentrations of total phosphorous 347 

(38.8%) in the a priori data are predicted to occur during POC accumulation events. During 348 

the maximum state POC concentrations the probability of low DO concentrations (in the mild 349 

(22.1%), mean (53.6%) and moderate (15.3%) node state ranges) increases from the 350 

probabilities at base case in the unconditioned model.  351 

 352 

Elevated dinoflagellate abundance is reflected in increase of the chlorophyll a concentration 353 

within the maximum threshold state of 35.5%, an increase from 26% based on all probable 354 

outcomes (base case) in the unconditioned network, 11.2% in high nanoflagellate conditions 355 

and 30% in high diatom conditions (Table 2). Predictions for phytoplankton abundance 356 

falling within the maximum threshold state was greatest in the diatom scenario (50.8%), 357 

which increased from 26% in the unconditioned network. The probability of a maximum 358 

phytoplankton abundance decreased with a nanoflagellate (13.7%) bloom and a dinoflagellate 359 

(5.7%) bloom. The probability of primary production in the high range increased from 29% 360 

in the unconditioned network to 30.1% with high diatom abundance and 30.7% with high 361 

nanoflagellate abundance. The probability of bacteria abundance occurring within the 362 

maximum node state range also increased from 18.7% in the unconditioned network to 23.1% 363 

in the diatom scenario test and 19.8% in the nanoflagellate scenario test. The maximum 364 
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concentrations of POC were expected to increase from 17.8% to 18.7% in the diatom 365 

scenario and 18.4% in the dinoflagellate scenario for POC (Table 2; Supporting Information 366 

2). The probability of higher DOC concentration increased from 7.07% to 7.8%, based on all 367 

probable outcomes in the unconditioned network, with high diatom abundance and even more 368 

(7.2%) with high dinoflagellate abundance.  369 

  370 
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Table 2. The BN output probabilities (%) for key variables that indicate changes in biotic community structure and carbon accumulation (to 1 371 

decimal place). The states with the highest probable outcome are in bold (Full model outputs are provided in Supporting Information 2).   372 

Node State All probable 

outcomes 

High diatom 

abundance 

High dinoflagellate 

abundance 

High nanoflagellate 

abundance 

Maximum POC 

Chlorophyll a Minimum 

Low 

Mean 

High 

Maximum 

17.2 

17.3 

21.4 

18.0 

26.0 

15.1 

11.2 

6.4 

37.3 

30.0 

19.8 

24.5 

0 

20.3 

35.3 

16.8 

14.8 

42.9 

14.3 

11.2 

17.9 

18.9 

20.3 

17.7 

25.2 

Phytoplankton 

abundance 

Low  

Mean  

High  

Maximum 

25.3 

25.7 

24.7 

24.3 

0 

18.4 

30.8 

50.8 

0 

4.0 

90.3 

5.7 

0 

8.1 

77.4 

13.7 

25.5 

24.8 

24.5 

25.2 

Net Primary 

production 

Low 

Mean 

High 

29.3 

41.7 

29.0 

30.5 

39.5 

30.1 

28.5 

43.3 

28.1 

30.4 

38.9 

30.7 

30.8 

38.6 

30.6 

Bacterial abundance  Minimum 

Low 

Mean 

High 

Maximum 

18.5 

23.8 

21.1 

17.9 

18.7 

15.1 

17.1 

27.6 

17.0 

23.1 

21.8 

27.5 

18.2 

15.5 

17.1 

15.7 

21.1 

20.3 

23.1 

19.8 

19.7 

21.9 

20.3 

18.4 

19.7 

POC Minimum 34.2 34.8 33.2 36.0 0 
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Mean 

Maximum 

48.0 

17.8 

46.6 

18.7 

48.4 

18.4 

46.6 

17.4 

0 

100 

DOC Minimum 

Mean 

Maximum 

51.8 

41.2 

7.0 

55.2 

37.0 

7.8 

50.4 

38.9 

7.2 

55.7 

37.4 

6.9 

44.9 

27.3 

27.7 

 373 
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The BN predicted chlorophyll a concentrations in the maximum state range and low total 374 

phytoplankton abundance (25.5%) to be the most probable for POC concentrations in the 375 

maximum node state (Table 2; Supporting Information 3). The most likely bacteria 376 

abundance during maximum POC concentrations is predicted to be within the low state 377 

concentrations (21.9%). The minimum node state concentrations of DOC were the most 378 

probable (44.9%) to occur during events where the POC is within the maximum 379 

concentrations.  380 

 381 

3.3 Sensitivity analysis 382 

The variables with the greatest influence on the probability of POC accumulation in the 383 

model were aminopeptidase (10.5%) and alkaline phosphatases (8.3%) (Fig. 3; Supporting 384 

Information 3). The POC output probabilities were sensitive to salinity (4.7%). The seawater 385 

temperature (3.3%) and silicate (3.3%) were also key factors influencing the probability of 386 

POC accumulation in the system that may account for some of probabilistic changes in the 387 

community composition scenarios investigated in this paper. The dominant phytoplankton 388 

class probabilities were most sensitive to changes in the chlorophyll a (8.7%) and 389 

phytoplankton abundance (3.3%) nodes. The probabilities of phytoplankton community 390 

composition nodes, such as coccolithophorids (1.5%) and dinoflagellates (1.4%), were 391 

identified as key variables influencing the model output probabilities for dominant 392 

phytoplankton class. Probabilities for the bacteria abundance node were most sensitive to 393 

changes in the probabilities of the dominant bacteria (53.2%) node (Supporting Information 394 

3). Bacteria community composition nodes, such as Flavobacteria (38.6%) and SAR11 395 

(37.8%), were also key nodes influencing the probabilities of the bacteria abundance.  396 

 397 
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 398 

Fig. 3 Sensitivity analysis indicating the variables that have the greatest influence on the POC 399 

node based on all available data being used to inform the model. Nodes are provided for 400 

values up to ≥1% VR change. 401 

 402 

3.4 Microbial mechanisms by data source 403 

The embedded data node in the BN structure distinguished between posterior probabilities 404 

derived from manipulated experimental and field data. The posterior probabilities of nodes 405 

populated with experimental data predict higher temperatures (Maximum 18%), lower 406 

salinities (Mild 54%), lower oxygen (Mild 29%), and increased DOC (Maximum 24%) and 407 

DOP (Maximum 28%), than if the model was populated by only field data (Supporting 408 

Information 4). Additionally, the posterior probability of the season node predicts the seasons 409 

that the experiments were conducted in (autumn 81% and winter 19%) when informed by 410 

only the experimental data. The BN populated with experimental data predicts higher bacteria 411 

abundance (21%), increased total phytoplankton (25%) and a shift in the dominant bacteria 412 
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(Rhodobacteraceae 20%). The posterior probabilities of nodes informed with field data 413 

predict a broader range of probabilities among all node states than the probabilities from only 414 

experimental data. For example, lower bacteria abundance (Maximum 19%), and increased 415 

ammonium (11%), silicate (10%), nitrite (10%), nitrate (15%) and orthophosphate (13%) was 416 

predicted in the BN informed by only the field data.  417 

 418 

The nodes that had the greatest influence over the outcomes of POC in the model varied 419 

between whether all data, only experimental data or only field data were used to inform the 420 

posterior probabilities. The variables with the greatest influence on POC using all available 421 

data to inform the probabilities were: aminopeptidase (10.5%) and alkaline phosphatases 422 

activities (8.3%), salinity (4.7%), and season (4.2%). The variables with the greatest 423 

influence on POC using only field data were: salinity (28.9%), total phosphorus (14.8%), 424 

DOP (11.5%), and total nitrogen (11.4%). The variables with the greatest influence on POC 425 

using only experimental data were: aminopeptidase (11.3%) and alkaline phosphatases 426 

activities (9.2%), season (5.1%), and water temperature (3.8%). Changes in the sensitivity of 427 

the POC node from the base case probabilities (all available data in the unconditioned model) 428 

were greatest for the season node which increased by 0.9% and the salinity node which 429 

decreased by 2% in the field data (Fig. 4). In the experimental data the sensitivity of the POC 430 

node increased 24.16% to salinity and season decreased by 2.9% from the base case with all 431 

available data.  432 



 23 

 433 

Fig. 4 The % deviation from the VR (%) of the model at base case (all probable outcomes) 434 

when the model is informed by either only field data, or only experimental data. Nodes are 435 

provided for values up to ≥1% VR change. 436 
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 437 

4. Discussion 438 

The integration of numerous sources of data is a key strength of the BN approach for data 439 

limited conditions (Ban et al., 2015; Li et al., 2010) when the node states, network structure 440 

and learning algorithms are carefully selected and applied (Lucena-Moya et al., 2015; Lui et 441 

al., 2007). Data from experimental ecosystems provide valuable information for predictive 442 

models on ecological thresholds that have not been exceeded and thus, are not detected in 443 

field datasets (Perlinski et al., 2014; Van Dam et al., 2014). However, including manipulated 444 

experimental data into predictive models can skew the output probabilities away from trends 445 

observed in the nature. By embedding a data source node into the network the posterior 446 

probabilities and interactions between variables can be investigated by end-users without 447 

manipulative data if bias is suspected. End-users can then determine the confidence in the 448 

model outputs and make informed decisions accordingly. Therefore, by incorporating 449 

manipulated date in the BN the interactions between variables in the predictive model can be 450 

informed from all available knowledge of the system in data limited conditions. 451 

 452 

Understanding the possible uncertainty and bias in the a priori data, such as manipulated 453 

experimental data, is essential for managers and scientists to make informed interpretations of 454 

the model predictions. Salinity had the greatest variability in the sensitivity of the POC node 455 

and was more important in the experimental data (25% VR difference from the unconditioned 456 

model probabilities) and less important in the field data (-3% VR difference from the 457 

unconditioned model probabilities). This variability in the sensitivity of the POC node, and 458 

therefore POC aggregates, to salinity could be influenced by the lack of seasonal freshwater 459 

fluxes and depth profile in the simplified representations of the environment in the mesocosm 460 

experiments (Puddu et al., 1997; Monticelli et al., 2014). The sensitivity of the POC node to 461 

nutrient availability and turnover was also higher in the experimental data to the field data 462 

and highlights the influence of the nutrient enrichment on POC and system function. The 463 

enzymatic activity (alkaline phosphatase and aminopeptidase) remained among the most 464 

influential nodes on POC in both the manipulated and experimental data. However, alkaline 465 

phosphatase and aminopeptidase dropped from being the most influential nodes on POC 466 

when the model is informed by the manipulated experimental data which could be a result of 467 

the lack of data informing the nodes under the scenario. Similarly to the inclusion of 468 
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simulation or qualitative data into BNs, the inclusion of experimental data in the a priori data 469 

is an acceptable method to fill information gaps or provide information on event that are yet 470 

to occur (McDonald et al., 2015). In our BN, the manipulated experimental data provided 471 

essential information on P thresholds for POC aggregates and filled information gaps on 472 

interactions between nutrient availability, microbial community structure and enzymatic 473 

activity. However, assessing the differences in the sensitivity of a target variable to the 474 

different data sources is important to effectively interpret the model predictions, particularly 475 

in relation to regulatory mechanisms.   476 

 477 

Overall, the posterior probabilities of our BN under the scenarios presented in this paper 478 

support the current understanding of coastal ecosystem functioning (e.g., Malej et al., 1995; 479 

Mozetič et al., 2012; Malfatti et al., 2014; Tinta et al., 2015) such as node states in the high 480 

and mean chlorophyll a concentrations will most probably develop during a diatom (37%) 481 

and nanoflagellate (43%) bloom, respectively. In the GT, diatoms have been observed to be 482 

responsible for the highest seasonal blooms, which usually occur in autumn (October-483 

November) and recently also in mid-summer (June-July) (Mozetič et al., 2012; Tinta et al., 484 

2015). These observations clearly support the BN prediction of a high probability of high 485 

diatom abundance in autumn in the surface layer and indicate that the model is propagating 486 

probabilities from the a priori data well in the current absence of validation. In general, 487 

diatoms are known to thrive under conditions of elevated nutrients (Fawcett and Ward, 2011) 488 

and grow at sufficiently high rates to maintain a major contribution to the biomass (Goericke, 489 

2002). In a recent study Talaber et al. (2014) found abundance of diatoms in the surface layer 490 

most closely related to high concentrations of total inorganic nitrogen and slightly less to 491 

silicate, which corresponded to periods of diatom abundance peaks in late autumn and spring 492 

– summer. Tamše et al. (2014) suggested that, besides mixing of waters of different origin, 493 

phytoplankton uptake controlled the distribution and isotopic composition of nitrate in the 494 

marine system and was more extensive in spring, while in autumn ammonium, not nitrate, 495 

was the dominant source for phytoplankton. Indeed, the posteriror probabilities of the POC 496 

node in our BN was also more sensitive to changes in ammonium than nitrate. 497 

 498 

Nanoflagellates, which are on the annual basis prevailing and most abundant group in the GT, 499 

have not been identified to contribute as much as diatoms or dinoflagellates to chlorophyll a 500 



 26 

biomass. The model prediction that mean chlorophyll a concentrations will most probably 501 

occur during periods of high nanoflagellate abundance, therefore reflects the real situation of 502 

the GT (Mozetič et al., 2012) and of other temperate coastal areas, e.g. Gulf of Naples 503 

(Ribera d'Alcalá et al., 2004) and western Black Sea (Yunev et al., 2007). Lastly, the 504 

prediction of the model that the maximum state of chlorophyll a is most probably achieved 505 

during the third scenario of high dinoflagellate abundance is overestimated due to an unusally 506 

high abundance of dinoflagellates in the year, which was used to populate the BN. 507 

 508 

Our model also predicted the highest probability (44.2%) that a nanoflagellate bloom will 509 

develop in the deeper water column layer (>5m) than a diatom bloom (<5m). An explanation 510 

could be the fact that flagellates can perform active swimming, which permits these 511 

organisms to access the water layer with an adequate quantity of inorganic nutrients, thereby 512 

improving their retrieval (Smayda, 1997). It, however, failed to detect dinoflagellates using 513 

the same advantageous characteristic, vertical mobility, according to the probability (38.2%) 514 

that a dinoflagellate bloom will develop in the bottom layer (>5m).  515 

 516 

In the BN model of this study, probabilities for the bacteria abundance node were most 517 

sensitive to changes in the probabilities of the dominant bacteria (53%) node, with 518 

Flavobacteria (37%) and SAR11 (38%) as key nodes with high VR value. These 519 

observations clearly support our previous results and significant relationships between diatom 520 

blooms and shift in bacterial community composition within Alphaproteobacteria (from 521 

SAR11 to Rhodobacteraceae) and increase of Gammaproteobacteria (within which mostly 522 

Alteromonadaceae, SAR86 and Vibrionaceae) (Tinta et al., 2015) in accordance with others 523 

(Gilbert et al., 2012; Teeling et al., 2012). Gammaproteobacteria appear to be dominant 524 

colonizers of diatom detritus (Bidle and Azam, 2001) and marine snow aggregates (DeLong 525 

et al., 1993). High variability in bacterial and phytoplankton community composition has 526 

been observed in the aggregates during periods of mucilage formation in the northern 527 

Adriatic (Najdek et al., 2002). 528 

 529 

Together with complex network structure, an importance of enzyme activity during large 530 

aggregates events in the GT has been observed (Del Negro et al., 2005; Ivančić et al., 2009; 531 
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Turk et al., 2010), changing quality of the DOC (Faganeli et al., 1995; Giani et al., 2005; 532 

Malfatti et al., 2014). These observations support our BN model output, since the POC node 533 

is most sensitive to changes in the bacterial aminopeptidase and alkaline phosphatase 534 

activities nodes in model at base case (all probable outcomes) and the probabilities predicted 535 

from only field and only the experimental data. Bacterial extracellular enzymes such as 536 

aminopeptidase, lipase, glucosidase, N-acetylglucosaminidase in addition to alkaline 537 

phosphatase are important catalysts in the degradation of POC to DOC (Smith et al., 1995). 538 

The BN outputs highlight that further investigation of interactions between enzyme 539 

availability and bacteria community composition and abundance should be conducted to 540 

quantify the relationship as a mechanism in the degradation of aggregates. 541 

 542 

The explicit quantification of uncertainty in the model output probabilities and 543 

parameterization of the node states from the a priori data will be quantitatively assessed as 544 

the model is updated and further developed. Qualitative indications of the uncertainty in our 545 

model were investigated through the iterative model development (set of alternate models) 546 

and the validation posterior probabilities and node sensitivity against known behaviour of the 547 

system (Melbourne-Thomas et al., 2012). Uncertainty is expected to arise from the inclusion 548 

of field and manipulated experimental data and the lack of feedback loops, such as the 549 

microbial loop, in the model structure. Additionally, the short time series and data limited 550 

conditions could inhibit the model from detecting long term trends or highly sporadic events 551 

outside the available data. Therefore, until our model is updated and uncertainty within our 552 

model is numerically quantified, the posterior probabilities have limited ability to inform 553 

decision making processes. However, our model outputs can indicate the key nodes, variable 554 

interactions and information gaps that are important to direct the future development of the 555 

model and scientific investigations of POC aggregate events.  556 

 557 

The BN framework developed in this study demonstrated exceptional potential to be 558 

developed into a model that can be applied to investigate POC accumulation and microbial 559 

dynamics in marine environments. The posterior probabilities captured the statistical trends in 560 

the a priori data, reported in Tinta et al. (2015) and Malfatti et al. (2014), through the 561 

propagation of probabilities in the network indicating the network structure adequately 562 

represents current knowledge on ecosystem interactions. Furthermore, the model structure 563 



 28 

was sensitive to changes in the CPTs and contained a very small number insensitive or poorly 564 

informed nodes particularly for the model size and data availability. Therefore, further 565 

development of the model may provide valuable information for managers and scientists on 566 

the microbial interactions that regulate POC accumulation and are lacking in current models 567 

used for characterising aggregate formation. However, the model was developed as a proof of 568 

concept that inherently included two notable limitations. Data availability limitations 569 

currently existing in the model can in future be overcome by updating with additional data 570 

and conducting an uncertainty analysis as it becomes available. The inclusion of incomplete 571 

datasets collected over sporadic timeframes is another key benefit of BNs in predicting data 572 

limited environmental events (Ban et al., 2014; Metcalf et al., 2014). A further limitation is 573 

that all field data used to inform the BN model was obtained from one location in the GT. 574 

Data from additional locations, particularly from the Italian coast near the largest river 575 

inflows, may be added in the future for the model to derive probabilities across the spatial 576 

extent of the GT. Despite these limitations the BN created in this study advances previously 577 

developed complex numerical models such as trophodynamic models (Cossarini and 578 

Solidaro, 2008) by integrating physical, chemical and biological variables to investigate the 579 

mechanisms for marine POC accumulation in a framework that has the potential to be used 580 

by managers, scientists and stakeholders.  581 

 582 

A benefit of the BN approach is the adaptability of the approach to be integrated into adaptive 583 

management strategies and frameworks (McDonald et al., 2015). The BN presented in this 584 

study could allow scientists and managers to identify and prioritise research on information 585 

gaps on the poorly understood and complex relationships between the chemical parameters 586 

and microbial activity. Our BN model identifies that carbon and nitrogen availability (and 587 

turnover) is an important indicator of POC aggregate events, and interactions between 588 

enzyme activity and bacterial community composition is important in regulating POC 589 

conditions in marine ecosystems. However, little data is available on enzyme activity and 590 

including enzymes in microbial monitoring schemes is currently not a common practice. 591 

Consequently, quantifying the dynamic relationships between bacteria community structure 592 

and enzyme activity remains poorly understood in the lead up to, during and decomposition 593 

of POC aggregates. Our BN structure is a transparent and scientifically informed framework 594 

to identify and targeted variables for managing POC aggregates that has the potential to be 595 

implemented across international borders such as the Adriatic Sea. Further updating with 596 
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information from additional sites the model framework developed in this study could be 597 

coupled with a GIS interface that scientists and managers could integrate into informed 598 

decision making frameworks (Kocabas et al., 2012; Stelzenmuller et al., 2013). Therefore, a 599 

BN approach that integrates physical, chemical and biological factors into a decision making 600 

framework is an important step forward in predicting and managing POC aggregate events in 601 

the future.  602 
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Supporting Information 1:  Node configuration 986 

Table S1.1 The definition and scientific rationale for each node in the network. 987 

Node Definition States Ecological Importance  Cases 

Data The source of the data used.  Field Observations 

Experimental 

Experimental ecosystems can produce unreliable 

results (Elskens et al. 2005; Brock et al., 2015) 

129 

Season Calendar seasons Summer 

Autumn 

Winter 

Spring 

The seasonal variability of physical and 

chemical mechanisms in the system can 

influence the microbial processes occurring in 

the ecosystem (Tinta et al., 2015).   

129 

Depth (m) Probabilities extrapolated from 

Tinta et al. (2015). 

Surface (5)  

Bottom (20) 

Vertical distribution of physical-chemical 

parameters that influence the growth and 

abundance of plankton organisms (e.g., Fehling 

et al., 2012). 

129 

Water Temperature 

(ºC) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data from Tinta et al. (2015). 

Minimum 0 - 9.78 

Mild 9.78- 11.73 

Mean 11.73 – 19.69 

Moderate 19.69 -23.03 

Maximum >23.03 

Temperature influences the rate of biological 

processes (Pomeroy and Wiebe, 2001).  

100 

Salinity States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data from Tinta et al. (2015). 

Minimum 0 – 34.52 

Mild 34.52 – 36.13 

Mean 36.13 – 37.57 

Moderate 37.57 – 37.69 

The salinity governs physical, chemical and 

biological processes (Levinton, 2013). 

100 
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Maximum >37.69 

Dissolved oxygen 

(mg/L) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data from Tinta et al. (2015). 

Minimum 0 - 4.03 

Mild 4.03 - 4.80 

Mean 4.80 - 5.80 

Moderate 5.80 - 6.45 

Maximum >6.45 

The dissolved oxygen concentration is the one 

of the major factor that determines the type and 

abundance of organisms as well as biochemical 

processes (O’Connor and Di Toro, 1970; Lee 

and Lee, 1995). 

90 

Total Nitrogen (TN)  

(µmol/L) 

 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data from Tinta et al. (2015) and 

Malfatti et al. (2014). 

Minimum 0-9.07 

Mild 9.07-11.63 

Mean 11.63-23.50 

Moderate 23.50- 26.31 

Maximum >26.31 

Giani et al. (2012) reported POC aggregate 

accumulation has a hyperbolic relationship to 

TN concentrations. 

127 

Total Phosphorus 

(TP) (µmol/L) 

 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data from Tinta et al. (2015) and 

Malfatti et al. (2014). 

Minimum 0-0.19 

Mild 0.24-0.19 

Mean 0.24-0.35 

Moderate 0.35-0.4 

Maximum >0.4 

Giani et al. (2012) reported POC aggregate 

accumulation has a linear relationship to TP 

concentrations. 

127 

Ammonium (NH4
+
) 

(µmol/L) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014).  

Minimum 0-0.20 

Mild 0.20-0.32 

Mean 0.32-0.98 

Moderate 0.98-1.57 

Maximum >1.57 

A by-product of OM degradation that increases 

in concentrations in the water column through 

release from sediment, excretion of zooplankton 

(Wright, 1995) and inputs from land (e.g., 

sewage) (Brigolin et al., 2011). It is a 

bioavailable form of N for the biota and can 

serve as an energy source for bacteria (Miller, 

127 
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2004). 

Nitrite (NO2
-
) 

(µmol/L) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0-0.04 

Mild 0.04-0.09 

Mean 0.09-0.46 

Moderate 0.46-0.88 

Maximum >0.88 

A bioavailable form of N that is required for 

photosynthetic processes and microbial 

processes (Miller, 2004). 

127 

Nitrate (NO3
-
) 

(µmol/L) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0-0.45 

Mild 0.45-0.83 

Mean 0.83-4.39 

Moderate 4.39-5.86 

Maximum >5.86 

A bioavailable form of N that is required for 

photosynthetic processes and microbial 

processes (Miller, 2004). 

125 

Silicate SiO4
4-

 

(µmol/L) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014) 

Minimum 0-2.69 

Mild 2.69-5.44 

Mean 5.44-7.31 

Moderate 7.31-9.35 

Maximum >9.35 

Silicon (in the form of orthosilicate ion) is a 

major nutrient for diatoms and silicoflagellates 

(Miller, 2004). 

127 

Orthophosphate 

(PO4
3-

) (µmol/L) 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014).  

Minimum 0-0.04 

Mild 0.04-0.05 

Mean 0.05-0.1 

Moderate 0.1 – 0.15 

Maximum 0.15- 5 

A bioavailable form of P that is required for 

photosynthetic processes and microbial 

processes (Krom et al., 1991). 

127 

Dissolved Organic 

Phosphorus (DOP) 

States derived from <25, 25-75, 

>75 percentiles of data outlined 

Minimum 0-0.11 

Mean 0.11-0.18 

Organic phosphorus pool that is cleaved by the 

alkaline phosphatase enzyme present in bacteria 

19 
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(µmol/L) in Malfatti et al. (2014). Maximum >0.18 and phytoplankton (Ivančić et al. 2009) 

Particulate Organic 

Carbon (POC) 

(µmol/L) 

Percentiles of data outlined in 

Malfatti et al. (2014). 

Minimum 0 - 9.82 

Mean 9.82 - 68.33 

Maximum >68.33 

The origin and variation in chemical 

composition vary annually and can be affected 

by type of microbial community provoking 

blooms (Faganeli et al., 1995) 

16 

Dissolved Organic 

Carbon (DOC) 

(µmol/L) 

States derived from <25, 25-75, 

>75 percentiles of data outlined 

in Malfatti et al. (2014). 

Minimum 0-91.29 

Mean 91.29-160.23 

Maximum >160.23 

During algal growth substantial amount of DOC 

could be released and subsequently utilised by 

heterotrophic bacteria and influence the 

accumulation (Azam et al., 1983). 

20 

Chlorophyll a 

(µg/L) (Chl a) 

 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data from Tinta et al. (2015) and 

Malfatti et al. (2014). 

Minimum 0 - 0.31 

Low 0.31 - 0.42 

Mean 0.42 - 0.99 

High 0.99 - 1.62 

Maximum >1.62 

The concentration of chlorophyll a indicates the 

biomass of phytoplankton, i.e. phytoplankton 

stock in the water column and is the key light-

absorbing pigment involved in photosynthesis 

(Miller, 2004). 

124 

Total Phytoplankton 

abundance (cells/L) 

 

States derived from <25, 25- 75, 

75-90, >90 percentiles of data 

outlined in Tinta et al. (2015) 

and Malfatti et al. (2014). 

Low 0 - 300000 

Mean 300000 - 600000 

High 600000 - 900000 

Maximum >900000 

The amount of photosynthesised carbon can 

strongly vary with changes in the phytoplankton 

abundance and composition (Fonda Umani et 

al., 2005). 

95 

Net Primary 

Production (PP) (µg 

C/L h) 

States derived from <25, 25-75, 

>75 percentiles of data outlined 

in and Malfatti et al. (2014). 

Minimum 0 - 4.07 

Mean 4.07 - 16.33 

Maximum >16.33 

Net PP indicates the amount of inorganic C 

fixed into autotrophic biomass via 

photosynthetic processes within a specified time 

period and is subsequently available to higher 

trophic levels (Lindeman, 1942). 

17 
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Bacterial Carbon 

Production  

(µgC/L day) 

 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0 - 1.07 

Low 1.07 - 2.1 

Mean 2.1 - 8.75 

High 8.75 - 11.44 

Maximum >11.44 

Bacterial growth rate is dependent on nutrient 

availability and on temperature (Hagström and 

Larsson, 1984). 

99 

Bacteria Abundance  

(cells x 10
8
/L) 

 

States derived from <10, 10-25, 

25- 75, 75-90, >90 percentiles of 

data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014).  

Minimum < 1.45 

Low 1.45 -2.06 

Mean 2.06 -5.71 

High 5.71- 9.57 

Maximum >  9.57 

Bacteria abundance varies seasonally and 

depends to a large extend on vertical physical 

processes and nutrient concentrations (Wikner 

and Hagström, 1991).  

109 

Alkaline phosphatase 

(nM/h) 

States derived from percentiles 

of data outlined in Malfatti et al. 

(2014). 

Minimum 0 - 24.28 

Mean 24.28 - 325.52 

Maximum > 325.52 

Enzyme that hydrolyses phosphate from 

phosphorus rich compounds (Celussi and Del 

Negro, 2011). 

14 

Aminopeptidase 

(nM/h) 

States derived from percentiles 

of data outlined in Malfatti et al. 

(2014). 

Minimum 0 - 80.48 

Mean 80.48 - 466.90 

Maximum > 466.90 

Enzyme that hydrolyses aminoacids from 

proteins (Celussi and Del Negro, 2011). 

14 

Dominant 

phytoplankton 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Nanoflagellates 

Diatoms 

Dinoflagellates 

Unidentified 

Seasonal shifts in phytoplankton community 

composition that influences autotrophic C 

availability e.g., a diatom or nanoflagellate 

dominated community structure (Mozetič et al., 

2012; Moran et al., 2012; Taylor et al., 2014).  

95 

Nanoflagellates 

(cells/L) 

States derived from <25, 25-75, 

75-90, >90 percentiles of data 

Low 0 - 100000 

Mean 100000 - 500000 

The abundance of each phytoplankton 

class/group reflects growth rates of that group, 

95 
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outlined in Tinta et al. (2015) 

and Malfatti et al. (2014). 

High 500000 - 900000 

Maximum >900000 

but also physical processes (advection, 

horizontal mixing) that can promote different 

types of phytoplankton (Miller, 2004). Diatoms (cells/L) States derived from <25, 25-75, 

75-90, >90 percentiles of data 

outlined in Tinta et al. (2015) 

and Malfatti et al. (2014). 

Low 0 - 4500 

Mean 4500 - 174875 

High 174875 - 487556 

Maximum >487556 

95 

Dinoflagellates 

(cells/L) 

States derived from <25, 25-75, 

75-90, >90 percentiles of data 

outlined in Tinta et al. (2015) 

and Malfatti et al. (2014). 

Low 0 - 6000 

Mean 6000 - 37628.50 

High 37628.50 - 52900 

Maximum >52900 

95 

Coccolithophorids 

(cells/L) 

States derived from <25, 25-75, 

75-90, >90 percentiles of data 

outlined in Tinta et al. (2015) 

and Malfatti et al. (2014). 

Low 0 - 6650 

Mean 6650 - 42750 

High 42750 - 69900 

Maximum >69900 

95 

Silicoflagellates 

(cells/L) 

States derived from <75, >75 

percentiles of data outlined in 

Tinta et al. (2015) and Malfatti et 

al. (2014). 

Mean 0 - 1000 

High >1000 

95 

Non identified algae 

(cells/L) 

States derived from <25, 25-75, 

75-90, >90 percentiles of data 

from Tinta et al. (2015) and 

Malfatti et al. (2014). 

Low 0 - 4000 

Mean 4000 - 8000 

High 8000 - 11900 

Maximum >11900 

95 

Alphaproteobacteria  States derived from percentiles Minimum 0 - 0.27 Variable environmental parameters (biotic and 16 
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(Relative abundance)  of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Mean 0.27 - 0.37 

Maximum >0.37 

abiotic) affect bacterial community composition 

(Fuhrman et al., 2006; Gilbert et al., 2012). 

Different phylotypes of bacteria have diverse 

metabolism that influence the carbon 

degradation and accumulation processes 

(Fuhrman et al., 2006; Teeling et al., 2012). 

Sequence taxonomic identities (at > 97% 

similarity) were assigned using the genome 

Basic Local Alignment Search Tool (BLAST) at 

the National Center for Biotechnology 

Information (NCBI). Classification was done 

down to the bacterial family level. In order to 

take into account the libraries with different 

sequencing depths we expressed the 

contributions of distinct bacterial families as a 

percentage of the total number of sequences in 

each library (relative abundance) (Tinta et al., 

2015). 

Rhodospirillaceae 

and 

Rhodobacteraceae 

(Relative abundance) 

States derived from <75, >75 

percentiles of data outlined in 

Tinta et al. (2015) and Malfatti et 

al. (2014).  

Mean 0 - 0.143 

High >0.143 

16 

Gamma-

Proteobacteria 

(Relative abundance) 

States derived from <25, 25-75, 

>75 percentiles of data outlined 

in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Low 0 – 0.149 

Mean 0.149 - 0.181 

 High >0.181 

16 

Alteromonadaceae 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Mean 0 - 0.39 

Maximum >0.39 

16 

SAR11 (Relative 

abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0 – 0.28 

Mean 0.28 - 0.68 

Maximum > 0.68 

16 

SAR86 (Relative 

abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0 – 0. 0.16 

Mean 0.16 – 0.53 

Maximum >0.53 

16 

Betaproteobacteria 

(Relative abundance) 

 States derived from <90, 

>90%percentiles of data outlined 

in Tinta et al. (2015) and 

Mean 0 – 0.02 

Maximum >0.02 

16 
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Malfatti et al. (2014). 

Deltaproteobacteria 

(Relative abundance) 

 States derived from <90, 

>90%percentiles of data outlined 

in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Mean 0 - 0.003 

Maximum > 0.003 

16 

Epsilonproteobacteria 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Present 

Absent 

16 

Unclassified 

Proteobacteria 

(Relative abundance) 

 States derived from <90, 

>90%percentiles of data outlined 

in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Mean 0 - 0.003 

Maximum > 0.003 

16 

Flavobacteria 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0 – 0.07 

Mean 0.07 - 0.23 

Maximum >0.23 

16 

Sphingobacteria 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015). 

Mean 0 - 0.05 

Maximum >0.05 

16 

Cytophaga (Relative 

abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Mean 0 – 0.0001 

Maximum >0.0001 

16 

Unclassified 

Bacteroidetes 

States derived from <90, 

>90%percentiles of data outlined 

Mean 0 - 0.003 

Maximum >0.003 

23 
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(Relative abundance) in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Actinobacteria 

(Relative abundance) 

States derived from <90, 

>90%percentiles of data outlined 

in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Mean 0 – 0.05 

Maximum >0.05 

16 

Cyanobacteria 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Minimum 0-0.07 

Mean 0.07 - 0.26 

Maximum >0.26 

23 

Planctomycetes 

(Relative abundance) 

States derived from <90, 

>90%percentiles of data outlined 

in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Mean 0 - 0.04 

Maximum >0.04 

23 

Verrumcomicrobia 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

Mean 0 - 0.04 

Maximum >0.04 

23 

Deferribacteria 

(Relative abundance) 

States derived from <90, 

>90%percentiles of data outlined 

in Tinta et al. (2015) and 

Malfatti et al. (2014). 

Absent 

Present 

16 

Dominant Bacteria 

(Relative abundance) 

States derived from percentiles 

of data outlined in Tinta et al. 

(2015) and Malfatti et al. (2014). 

SAR11 

Proteobacteria 

The bacteria present in the highest abundance at 

each observation point. 

23 
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Rhodobacteria 

SAR86 

Alteromonsdaceae 

  988 
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Supporting Information 2 Appendix of the scenario tests conducted in this study.  989 

 990 

Fig S2.1 Scenario test for a diatom bloom. 991 

Season

Summer
Autumn
Winter
Spring

27.5
36.4
17.8
18.2

Depth

Surface
Subsurface

59.1
40.9

7.09 ± 5.7

WaterTemperature

Minimum
Mild
Mean
Moderate
Maximum

10.6
12.6
46.5
17.1
13.2

16.7 ± 7

Salinity

Minimum
Mild
Average
Moderate
Maximum

11.9
24.3
40.5
14.6
8.67

34.6 ± 7.5

Oxygen

Miniumum
Mild
Mean
Moderate
Maximum

12.4
19.0
48.2
13.0
7.43

5.05 ± 1.6

PTotal

Minimum
Mild
Mean
Moderate
Maximum

19.1
17.4
18.2
21.5
23.8

0.595 ± 0.73

NTotal

Minimum
Mild
Mean
Moderate
Maximum

19.2
23.7
20.1
16.1
20.8

17.3 ± 9.7

Silicate

Minimum
Mild
Mean
Moderate
Maximum

10.1
15.9
51.3
13.8
8.89

5.7 ± 2.9

Nitrite

Minimum
Mild
Mean
Moderate
Maximum

8.32
15.7
56.5
9.53
9.95

0.425 ± 0.57

Nitrate

Minimum
Mild
Mean
Moderate
Maximum

12.8
17.2
38.0
12.1
19.8

4.32 ± 4.9

OrthoPhosphate

Minimum
Mild
Mean
Moderate
Maximum

16.6
7.39
46.4
15.4
14.2

0.426 ± 1

Ammonium

Minimum
Mild
Mean
Moderate
Maximum

8.62
12.9
53.9
14.3
10.3

0.862 ± 0.77

Aminopeptidase

Minimum
Mean
Maximum

33.5
49.0
17.5

237 ± 180

AlkalinePhosphatase

Minimum
Mean
Maximum

43.3
46.7
9.96

123 ± 130

BacteriaCarbonProduction

Low
Minimum
Mean
High
Maximum

17.8
20.2
21.7
22.1
18.2

6.68 ± 5.6

Rhodobacteraceae

Minimum
Mean
Maximum

30.7
69.3
 0 +

11.8 ± 11

Gamma

Minimum
Mean
Maximum

23.1
53.8
23.0

3.56 ± 7.5

Beta

Mean
Maximum

82.5
17.5

0.446 ± 1.1

Alteromonadaceae

Mean
Maximum

50.0
50.0

9.66 ± 12

UnclassifiedBacteroidetes

Mean
Maximum

76.6
23.4

0.588 ± 1.3

Flavobacteria

Minimum
Mean
Maximum

32.4
46.4
21.1

4.72 ± 11

Rhodospirillaceae

Mean
Maximum

67.4
32.6

2.4 ± 4.1

Bacteridetes

Minimum
Mean
Maximum

33.3
33.3
33.3

0.861 ± 1.4

Alpha

Minimum
Mean
Maximum

17.5
63.2
19.3

5.56 ± 13

SAR11

Minimum
Mean
Maximum

23.0
48.0
29.0

16.3 ± 30

Delta

Mean
Maximum

63.9
36.1

0.905 ± 1.5

Epsilon

Absent
Present

94.3
5.68

0.142 ± 0.67

SAR86

Minimum
Mean
Maximum

23.1
43.9
32.9

16.7 ± 29

SAR406

Absent
Present

53.0
47.0

0.704 ± 0.96

Proteobacteria

Minimum
Mean
Maximum

27.7
44.7
27.7

1.39 ± 1.2

SBR1093

Absent
Present

58.5
41.5

0.622 ± 0.93

Sphingobacteria

Mean
Maximum

71.5
28.5

2.87 ± 5.5

Cytophaga

Absent
Present

82.7
17.3

0.867 ± 2.2

UnclassifiedProteobacteria

Mean
Maximum

84.6
15.4

0.464 ± 1.3

Planctomycetes

Mean
Maximum

69.5
30.5

1.54 ± 2.8

Actinobacteria

Mean
Maximum

67.4
32.6

2.47 ± 4.3

Cyanobacteria

Minimum
Mean
Maximum

43.5
41.8
14.7

5.26 ± 15

Verrucomicrobia

Mean
Maximum

67.0
33.0

2.38 ± 4.1

Deferribacteria

Absent
Present

50.0
50.0

1.25 ± 1.6

Chlorophylla

Minimum
Low
Mean
High
Maximum

15.1
11.2
6.42
37.3
30.0

1.29 ± 0.83

PrimaryProductionTotal

Low
Mean
High

30.5
39.5
30.1

10.9 ± 7.7

Silicoflagellates

Mean
High

75.7
24.3

1590 ± 2300

TotalPhytoplankton

Low
Mean
High
Maximum

 0 +
18.4
30.8
50.8

3060000 ± 3100000

DominantPhytoplankton

Dinoflagellates
Nanoflagellates
Diatoms
NonIdentified

   0
   0

 100
   0

NonIdentified

Low
Mean
High
Maximum

34.7
37.7
22.7
4.86

5940 ± 3800

Nanoflagellates

Low
Mean
High
Maximum

9.42
60.9
14.1
15.6

984000 ± 1900000

Diatoms

Low
Mean
High
Maximum

   0
   0
   0

 100

744000 ± 150000

Dinoflagellates

Low
Mean
High
Maximum

1.23
60.2
22.9
15.7

90300 ± 170000

Coccolithophore

Low
Mean
High
Maximum

11.0
48.9
27.0
13.1

39000 ± 27000

Data

Field
Experimental

83.4
16.6

BacteriaAbundance

Minimum
Low
Mean
High
Maximum

15.1
17.1
27.6
17.0
23.1

1.43e9 ± 2.3e9

ParticulateOrganicC

Minimum
Mean
Maximum

34.8
46.6
18.7

45 ± 50

DissolvedOrganicP

Minimum
Mean
Maximum

46.3
41.9
11.8

0.215 ± 0.37

DissolvedOrganicC

Minimum
Mean
Maximum

55.2
37.0
7.79

87 ± 55

DominantBacteria

SAR11
Proteobacteria
Verrucomicrobia
Rhodobacteraceae
SAR86
Alteromonadaceae

36.9
17.1
2.57
20.0
9.40
14.1



 55 

 992 

Fig. S2.2 Scenario test for a dinoflagellate bloom. 993 

 994 

Season

Summer
Autumn
Winter
Spring

26.1
36.9
16.1
20.9

Depth

Surface
Subsurface

55.8
44.2

7.42 ± 5.8

WaterTemperature

Minimum
Mild
Mean
Moderate
Maximum

11.4
11.1
50.5
15.8
11.2

16.3 ± 6.8

Salinity

Minimum
Mild
Average
Moderate
Maximum

9.79
23.4
41.9
16.4
8.50

35.1 ± 6.9

Oxygen

Miniumum
Mild
Mean
Moderate
Maximum

12.1
19.5
47.1
13.1
8.12

5.07 ± 1.6

PTotal

Minimum
Mild
Mean
Moderate
Maximum

19.3
17.6
18.6
21.3
23.2

0.585 ± 0.72

NTotal

Minimum
Mild
Mean
Moderate
Maximum

18.6
23.1
22.5
15.6
20.2

17.3 ± 9.6

Silicate

Minimum
Mild
Mean
Moderate
Maximum

9.40
15.1
51.2
14.4
9.89

5.83 ± 3

Nitrite

Minimum
Mild
Mean
Moderate
Maximum

7.14
14.9
60.0
9.70
8.26

0.402 ± 0.53

Nitrate

Minimum
Mild
Mean
Moderate
Maximum

10.8
17.2
43.2
10.4
18.4

4.18 ± 4.8

OrthoPhosphate

Minimum
Mild
Mean
Moderate
Maximum

15.1
6.44
51.8
15.3
11.3

0.356 ± 0.92

Ammonium

Minimum
Mild
Mean
Moderate
Maximum

7.29
11.2
53.7
16.4
11.4

0.914 ± 0.8

Aminopeptidase

Minimum
Mean
Maximum

32.5
49.5
18.0

240 ± 180

AlkalinePhosphatase

Minimum
Mean
Maximum

44.7
45.9
9.46

120 ± 130

BacteriaCarbonProduction

Low
Minimum
Mean
High
Maximum

17.7
17.4
30.0
18.0
16.9

6.47 ± 5.5

Rhodobacteraceae

Minimum
Mean
Maximum

34.6
65.4
 0 +

11.1 ± 11

Gamma

Minimum
Mean
Maximum

20.3
54.9
24.9

3.84 ± 7.8

Beta

Mean
Maximum

83.6
16.4

0.417 ± 1.1

Alteromonadaceae

Mean
Maximum

50.0
50.0

9.66 ± 12

UnclassifiedBacteroidetes

Mean
Maximum

76.9
23.1

0.58 ± 1.3

Flavobacteria

Minimum
Mean
Maximum

39.4
39.3
21.3

4.76 ± 11

Rhodospirillaceae

Mean
Maximum

68.3
31.7

2.33 ± 4

Bacteridetes

Minimum
Mean
Maximum

33.3
33.3
33.3

0.861 ± 1.4

Alpha

Minimum
Mean
Maximum

16.4
62.5
21.2

6.08 ± 13

SAR11

Minimum
Mean
Maximum

24.9
45.3
29.8

16.8 ± 30

Delta

Mean
Maximum

60.3
39.7

0.995 ± 1.5

Epsilon

Absent
Present

92.3
7.69

0.192 ± 0.78

SAR86

Minimum
Mean
Maximum

20.3
50.2
29.6

15.1 ± 28

SAR406

Absent
Present

48.4
51.6

0.774 ± 0.97

Proteobacteria

Minimum
Mean
Maximum

25.6
48.7
25.6

1.36 ± 1.2

SBR1093

Absent
Present

61.5
38.5

0.577 ± 0.91

Sphingobacteria

Mean
Maximum

70.0
30.0

3.03 ± 5.6

Cytophaga

Absent
Present

82.8
17.2

0.859 ± 2.2

UnclassifiedProteobacteria

Mean
Maximum

86.4
13.6

0.411 ± 1.2

Planctomycetes

Mean
Maximum

65.8
34.2

1.73 ± 2.9

Actinobacteria

Mean
Maximum

65.2
34.8

2.63 ± 4.4

Cyanobacteria

Minimum
Mean
Maximum

49.3
36.9
13.8

4.91 ± 14

Verrucomicrobia

Mean
Maximum

63.6
36.4

2.62 ± 4.2

Deferribacteria

Absent
Present

50.0
50.0

1.25 ± 1.6

Chlorophylla

Minimum
Low
Mean
High
Maximum

16.8
14.8
42.9
14.3
11.2

0.828 ± 0.65

PrimaryProductionTotal

Low
Mean
High

30.4
38.9
30.7

10.9 ± 7.8

Silicoflagellates

Mean
High

86.5
13.5

1110 ± 1800

TotalPhytoplankton

Low
Mean
High
Maximum

 0 +
8.81
77.4
13.7

1330000 ± 1900000

DominantPhytoplankton

Dinoflagellates
Nanoflagellates
Diatoms
NonIdentified

   0
 100

   0
   0

NonIdentified

Low
Mean
High
Maximum

12.2
18.5
57.1
12.2

8860 ± 3700

Nanoflagellates

Low
Mean
High
Maximum

   0
   0
   0

 100

4790000 ± 2400000

Diatoms

Low
Mean
High
Maximum

1.26
67.9
19.7
11.1

209000 ± 220000

Dinoflagellates

Low
Mean
High
Maximum

0.59
33.4
33.8
32.1

160000 ± 220000

Coccolithophore

Low
Mean
High
Maximum

2.99
60.7
18.2
18.1

41100 ± 27000

Data

Field
Experimental

84.9
15.1

BacteriaAbundance

Minimum
Low
Mean
High
Maximum

15.7
21.1
20.3
23.1
19.8

1.29e9 ± 2.1e9

ParticulateOrganicC

Minimum
Mean
Maximum

36.0
46.6
17.4

43.3 ± 49

DissolvedOrganicP

Minimum
Mean
Maximum

45.1
43.9
11.0

0.208 ± 0.36

DissolvedOrganicC

Minimum
Mean
Maximum

55.7
37.4
6.89

85.9 ± 54

DominantBacteria

SAR11
Proteobacteria
Verrucomicrobia
Rhodobacteraceae
SAR86
Alteromonadaceae

35.6
16.8
2.20
22.3
10.2
13.0
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Fig. S2.3 A scenario test for a nanoflagellate bloom. 996 

 997 

Season

Summer
Autumn
Winter
Spring

26.1
36.9
16.1
20.9

Depth

Surface
Subsurface

55.8
44.2

7.42 ± 5.8

WaterTemperature

Minimum
Mild
Mean
Moderate
Maximum

11.4
11.1
50.5
15.8
11.2

16.3 ± 6.8

Salinity

Minimum
Mild
Average
Moderate
Maximum

9.79
23.4
41.9
16.4
8.50

35.1 ± 6.9

Oxygen

Miniumum
Mild
Mean
Moderate
Maximum

12.1
19.5
47.1
13.1
8.12

5.07 ± 1.6

PTotal

Minimum
Mild
Mean
Moderate
Maximum

19.3
17.6
18.6
21.3
23.2

0.585 ± 0.72

NTotal

Minimum
Mild
Mean
Moderate
Maximum

18.6
23.1
22.5
15.6
20.2

17.3 ± 9.6

Silicate

Minimum
Mild
Mean
Moderate
Maximum

9.40
15.1
51.2
14.4
9.89

5.83 ± 3

Nitrite

Minimum
Mild
Mean
Moderate
Maximum

7.14
14.9
60.0
9.70
8.26

0.402 ± 0.53

Nitrate

Minimum
Mild
Mean
Moderate
Maximum

10.8
17.2
43.2
10.4
18.4

4.18 ± 4.8

OrthoPhosphate

Minimum
Mild
Mean
Moderate
Maximum

15.1
6.44
51.8
15.3
11.3

0.356 ± 0.92

Ammonium

Minimum
Mild
Mean
Moderate
Maximum

7.29
11.2
53.7
16.4
11.4

0.914 ± 0.8

Aminopeptidase

Minimum
Mean
Maximum

32.5
49.5
18.0

240 ± 180

AlkalinePhosphatase

Minimum
Mean
Maximum

44.7
45.9
9.46

120 ± 130

BacteriaCarbonProduction

Low
Minimum
Mean
High
Maximum

17.7
17.4
30.0
18.0
16.9

6.47 ± 5.5

Rhodobacteraceae

Minimum
Mean
Maximum

34.6
65.4
 0 +

11.1 ± 11

Gamma

Minimum
Mean
Maximum

20.3
54.9
24.9

3.84 ± 7.8

Beta

Mean
Maximum

83.6
16.4

0.417 ± 1.1

Alteromonadaceae

Mean
Maximum

50.0
50.0

9.66 ± 12

UnclassifiedBacteroidetes

Mean
Maximum

76.9
23.1

0.58 ± 1.3

Flavobacteria

Minimum
Mean
Maximum

39.4
39.3
21.3

4.76 ± 11

Rhodospirillaceae

Mean
Maximum

68.3
31.7

2.33 ± 4

Bacteridetes

Minimum
Mean
Maximum

33.3
33.3
33.3

0.861 ± 1.4

Alpha

Minimum
Mean
Maximum

16.4
62.5
21.2

6.08 ± 13

SAR11

Minimum
Mean
Maximum

24.9
45.3
29.8

16.8 ± 30

Delta

Mean
Maximum

60.3
39.7

0.995 ± 1.5

Epsilon

Absent
Present

92.3
7.69

0.192 ± 0.78

SAR86

Minimum
Mean
Maximum

20.3
50.2
29.6

15.1 ± 28

SAR406

Absent
Present

48.4
51.6

0.774 ± 0.97

Proteobacteria

Minimum
Mean
Maximum

25.6
48.7
25.6

1.36 ± 1.2

SBR1093

Absent
Present

61.5
38.5

0.577 ± 0.91

Sphingobacteria

Mean
Maximum

70.0
30.0

3.03 ± 5.6

Cytophaga

Absent
Present

82.8
17.2

0.859 ± 2.2

UnclassifiedProteobacteria

Mean
Maximum

86.4
13.6

0.411 ± 1.2

Planctomycetes

Mean
Maximum

65.8
34.2

1.73 ± 2.9

Actinobacteria

Mean
Maximum

65.2
34.8

2.63 ± 4.4

Cyanobacteria

Minimum
Mean
Maximum

49.3
36.9
13.8

4.91 ± 14

Verrucomicrobia

Mean
Maximum

63.6
36.4

2.62 ± 4.2

Deferribacteria

Absent
Present

50.0
50.0

1.25 ± 1.6

Chlorophylla

Minimum
Low
Mean
High
Maximum

16.8
14.8
42.9
14.3
11.2

0.828 ± 0.65

PrimaryProductionTotal

Low
Mean
High

30.4
38.9
30.7

10.9 ± 7.8

Silicoflagellates

Mean
High

86.5
13.5

1110 ± 1800

TotalPhytoplankton

Low
Mean
High
Maximum

 0 +
8.81
77.4
13.7

1330000 ± 1900000

DominantPhytoplankton

Dinoflagellates
Nanoflagellates
Diatoms
NonIdentified

   0
 100

   0
   0

NonIdentified

Low
Mean
High
Maximum

12.2
18.5
57.1
12.2

8860 ± 3700

Nanoflagellates

Low
Mean
High
Maximum

   0
   0
   0

 100

4790000 ± 2400000

Diatoms

Low
Mean
High
Maximum

1.26
67.9
19.7
11.1

209000 ± 220000

Dinoflagellates

Low
Mean
High
Maximum

0.59
33.4
33.8
32.1

160000 ± 220000

Coccolithophore

Low
Mean
High
Maximum

2.99
60.7
18.2
18.1

41100 ± 27000

Data

Field
Experimental

84.9
15.1

BacteriaAbundance

Minimum
Low
Mean
High
Maximum

15.7
21.1
20.3
23.1
19.8

1.29e9 ± 2.1e9

ParticulateOrganicC

Minimum
Mean
Maximum

36.0
46.6
17.4

43.3 ± 49

DissolvedOrganicP

Minimum
Mean
Maximum

45.1
43.9
11.0

0.208 ± 0.36

DissolvedOrganicC

Minimum
Mean
Maximum

55.7
37.4
6.89

85.9 ± 54

DominantBacteria

SAR11
Proteobacteria
Verrucomicrobia
Rhodobacteraceae
SAR86
Alteromonadaceae

35.6
16.8
2.20
22.3
10.2
13.0
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Fig. S2.4 Scenario test for the maximum concentrations of POC in the a priori data to occur.  999 

Season

Summer
Autumn
Winter
Spring

9.74
35.0
17.1
38.1

Depth

Surface
Subsurface

71.3
28.7

5.87 ± 5.2

WaterTemperature

Minimum
Mild
Mean
Moderate
Maximum

7.80
27.4
46.2
13.0
5.54

15 ± 5.8

Salinity

Minimum
Mild
Average
Moderate
Maximum

28.4
15.7
27.4
14.1
14.5

31.8 ± 11

Oxygen

Miniumum
Mild
Mean
Moderate
Maximum

5.69
22.1
53.6
15.3
3.35

5.14 ± 1.2

PTotal

Minimum
Mild
Mean
Moderate
Maximum

15.3
15.0
15.9
14.9
38.8

0.809 ± 0.85

NTotal

Minimum
Mild
Mean
Moderate
Maximum

14.0
17.7
29.1
24.9
14.3

18.2 ± 8.7

Silicate

Minimum
Mild
Mean
Moderate
Maximum

21.3
22.3
49.6
5.85
1.01

4.33 ± 2.3

Nitrite

Minimum
Mild
Mean
Moderate
Maximum

16.7
11.6
54.3
8.12
9.24

0.394 ± 0.56

Nitrate

Minimum
Mild
Mean
Moderate
Maximum

17.6
17.3
33.1
16.5
15.5

3.86 ± 4.5

OrthoPhosphate

Minimum
Mild
Mean
Moderate
Maximum

10.9
11.2
47.5
17.1
13.4

0.408 ± 0.99

Ammonium

Minimum
Mild
Mean
Moderate
Maximum

8.96
13.5
62.8
5.24
9.53

0.786 ± 0.74

Aminopeptidase

Minimum
Mean
Maximum

33.5
26.7
39.8

289 ± 210

AlkalinePhosphatase

Minimum
Mean
Maximum

59.2
21.4
19.4

115 ± 140

BacteriaCarbonProduction

Low
Minimum
Mean
High
Maximum

17.9
18.1
23.7
23.3
16.9

6.69 ± 5.5

Rhodobacteraceae

Minimum
Mean
Maximum

33.9
66.1
 0 +

11.2 ± 11

Gamma

Minimum
Mean
Maximum

22.2
56.1
21.7

3.37 ± 7.4

Beta

Mean
Maximum

85.2
14.8

0.379 ± 1

Alteromonadaceae

Mean
Maximum

50.0
50.0

9.66 ± 12

UnclassifiedBacteroidetes

Mean
Maximum

76.1
23.9

0.599 ± 1.3

Flavobacteria

Minimum
Mean
Maximum

37.1
41.1
21.8

4.86 ± 11

Rhodospirillaceae

Mean
Maximum

68.0
32.0

2.36 ± 4.1

Bacteridetes

Minimum
Mean
Maximum

33.3
33.3
33.3

0.861 ± 1.4

Alpha

Minimum
Mean
Maximum

14.8
67.1
18.1

5.24 ± 12

SAR11

Minimum
Mean
Maximum

21.7
47.6
30.6

17.2 ± 31

Delta

Mean
Maximum

55.5
44.5

1.11 ± 1.6

Epsilon

Absent
Present

93.9
6.14

0.154 ± 0.7

SAR86

Minimum
Mean
Maximum

22.2
49.9
27.9

14.2 ± 27

SAR406

Absent
Present

50.6
49.4

0.741 ± 0.97

Proteobacteria

Minimum
Mean
Maximum

27.2
45.6
27.2

1.38 ± 1.2

SBR1093

Absent
Present

59.2
40.8

0.612 ± 0.92

Sphingobacteria

Mean
Maximum

67.6
32.4

3.27 ± 5.7

Cytophaga

Absent
Present

84.4
15.6

0.78 ± 2.1

UnclassifiedProteobacteria

Mean
Maximum

84.4
15.6

0.471 ± 1.3

Planctomycetes

Mean
Maximum

66.2
33.8

1.71 ± 2.9

Actinobacteria

Mean
Maximum

62.4
37.6

2.84 ± 4.5

Cyanobacteria

Minimum
Mean
Maximum

49.7
37.7
12.6

4.5 ± 14

Verrucomicrobia

Mean
Maximum

64.0
36.0

2.59 ± 4.2

Deferribacteria

Absent
Present

50.0
50.0

1.25 ± 1.6

Chlorophylla

Minimum
Low
Mean
High
Maximum

17.9
18.9
20.3
17.7
25.2

1.05 ± 0.85

PrimaryProductionTotal

Low
Mean
High

30.8
38.6
30.6

10.9 ± 7.8

Silicoflagellates

Mean
High

87.0
13.0

1080 ± 1700

TotalPhytoplankton

Low
Mean
High
Maximum

25.5
24.8
24.5
25.2

1690000 ± 2600000

DominantPhytoplankton

Dinoflagellates
Nanoflagellates
Diatoms
NonIdentified

13.4
40.0
25.5
21.0

NonIdentified

Low
Mean
High
Maximum

51.6
26.4
18.1
3.87

5000 ± 3800

Nanoflagellates

Low
Mean
High
Maximum

26.7
48.8
13.0
11.5

762000 ± 1700000

Diatoms

Low
Mean
High
Maximum

25.4
53.0
13.7
7.94

153000 ± 210000

Dinoflagellates

Low
Mean
High
Maximum

24.7
47.7
15.1
12.5

71400 ± 160000

Coccolithophore

Low
Mean
High
Maximum

27.3
48.2
14.8
9.67

29600 ± 26000

Data

Field
Experimental

78.7
21.3

BacteriaAbundance

Minimum
Low
Mean
High
Maximum

19.7
21.9
20.3
18.4
19.7

1.25e9 ± 2.1e9

ParticulateOrganicC

Minimum
Mean
Maximum

   0
   0

 100

134 ± 38

DissolvedOrganicP

Minimum
Mean
Maximum

44.9
27.3
27.7

0.367 ± 0.53

DissolvedOrganicC

Minimum
Mean
Maximum

60.2
29.5
10.3

84.6 ± 57

DominantBacteria

SAR11
Proteobacteria
Verrucomicrobia
Rhodobacteraceae
SAR86
Alteromonadaceae

36.4
15.5
2.19
22.0
8.98
14.9
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Supporting Information 3 Sensitivity analysis of the nodes most relevant to the case study 1000 

presented. 1001 

Table S3.1 Sensitivity analysis for POC, dominant phytoplankton and bacterial abundance 1002 

nodes (listed to 1% VR). 1003 

Output node Node VR 

Particulate Organic Carbon (POC) Aminopeptidase 10.5 

 Alkaline Phosphatase 8.3 

 Salinity 4.7 

 Seawater Temperature 3.3 

 Silicate 3.3 

 Dissolved Organic Phosphorus 

(DOP) 
3.1 

 Total Nitrogen (TN ) 2.3 

 Total Phosphorus (TP ) 1.9 

 Dissolved oxygen 1.2 

 Nitrite 1.1 

Dominant Phytoplankton Chlorophyll a  8.7 

 Phytoplankton abundance 3.3 

 Coccolithophorids 1.5 

 Dinoflagellates 1.4 

 Bacteria Abundance 1.2 

Bacteria Abundance Dominant Bacteria 53.2 

 Flavobacteria 38.6 

 SAR11 37.8 

 Deltaproteobacteria 37.5 

 Alphaproteobacteria 32.4 

 SAR86 27.4 

 Actinobacteria 25.8 

 Rhodobacteraceae 25.7 

 Sphingobacteria 24 

 Planctomycetes 22.7 

 Verrucomicrobia 22.2 

 Cyanobacteria 22 

 Gammaproteobacteria 20.5 
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 SAR406 15.8 

 Unclassified Proteobacteria 10.8 

 Rhodospirillaceae 10.5 

 Proteobacteria 10.4 

 Betaproteobacteria 10.3 

 Bacteria Carbon Production 1.3 

 Season 1.2 

 1004 

  1005 
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Table S3.2 The full sensitivity analysis for the POC node with all data (VR %), monitoring 1006 

data (VR MON %) and experimental data (VR EXP %). 1007 

Node VR (%) VR MON (%) VR EXP (%) 

POC 100 100 100 

Aminopeptidase 10.5 11.3 9.56 

Alkaline Phosphatase 8.28 9.17 6.49 

Salinity 4.74 2.78 28.9 

Season 4.21 5.12 1.33 

Water Temperature 3.32 3.81 1.33 

Silicate 3.29 3.21 9.27 

Dissolved Organic P 3.07 1.5 11.5 

N total 2.27 1.62 11.4 

Ptotal 1.9 0.632 14.8 

Oxygen 1.18 1.22 1.86 

Nitrite 1.13 0.419 4.85 

Dissolved Organic C 0.998 1.25 0.321 

Ammonium 0.969 1.41 9.91 

Depth 0.739 0.675 7.69E-06 

Nitrate 0.732 0.585 4.27 

Ortho Phosphate 0.494 0.29 4.33 

Bacteria Abundance 0.363 0.294 1.07 

Bacteria Carbon Production 0.285 0.203 1.08 

Data 0.203 0 0 

SAR11 0.191 0.153 0.488 

Planctomycetes 0.184 0.142 0.546 

Verrucomicrobia 0.173 0.13 0.542 

Actinobacteria 0.164 0.139 0.372 

Rhodobacteraceae 0.164 0.13 0.427 

Delta 0.151 0.139 0.288 

Flavobacteria 0.142 0.113 0.403 

Dominant Bacteria 0.137 0.11 0.381 

Cyanobacteria 0.123 0.0985 0.364 

Alpha 0.0969 0.0758 0.332 

SAR86 0.0905 0.0801 0.188 

Gamma 0.0741 0.0612 0.18 

Primary Production Total 0.0504 0.0273 0.384 

Chlorophyll a 0.0417 0.041 0.147 

Beta 0.0375 0.0293 0.135 

Rhodospirillaceae 0.0342 0.029 0.0621 

Sphingobacteria 0.0332 0.0242 0.108 

Total Phytoplankton 0.0243 0.0346 0.0186 

Unclassified Bacteroidete 0.0243 0.0184 0.0683 

Dominant Phytoplankton 0.0217 0.0207 0.0714 
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Cytophaga 0.0195 0.0185 0.0304 

Unclassified Proteobacteria 0.0173 0.00981 0.11 

Non-Identified 0.013 0.0212 0.00454 

Epsilon  0.0103 0.00783 0.0316 

Proteobacteria 0.0093 0.00713 0.028 

Dinoflagellates 0.00599 0.0101 0.00872 

Coccolithophore 0.00591 0.00841 0.00779 

SBR1093 0.00535 0.00411 0.0161 

Nanoflagellates 0.0044 0.00758 0.00421 

Diatoms 0.00202 0.00351 0.00507 

Silicoflagellates 0.00198 0.00232 0.000394 

SAR406 0.00188 0.000614 0.0256 

Deferribacteria 0 0 0 

Alteromonadaceae 0 0 0 

Bacteridetes 0 0 0 

 1008 

  1009 
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Supporting Information 4 Posterior probabilities depending on data source 1010 

 1011 

Fig. S4.1 Posterior probabilities informed from field data only. 1012 

 1013 

Season

Summer
Autumn
Winter
Spring

30.6
25.0
23.1
21.3

Depth

Surface
Subsurface

50.9
49.1

7.91 ± 5.9

WaterTemperature

Minimum
Mild
Mean
Moderate
Maximum

12.9
15.5
47.9
13.5
10.2

15.7 ± 6.8

Salinity

Minimum
Mild
Average
Moderate
Maximum

10.7
16.5
45.1
18.1
9.58

35.1 ± 7.2

Oxygen

Miniumum
Mild
Mean
Moderate
Maximum

10.1
15.9
51.1
14.1
8.75

5.2 ± 1.5

PTotal

Minimum
Mild
Mean
Moderate
Maximum

19.5
18.4
18.9
20.7
22.5

0.573 ± 0.71

NTotal

Minimum
Mild
Mean
Moderate
Maximum

18.1
22.7
20.5
17.1
21.7

17.7 ± 9.7

Silicate

Minimum
Mild
Mean
Moderate
Maximum

10.7
14.9
51.4
13.2
9.79

5.74 ± 3

Nitrite

Minimum
Mild
Mean
Moderate
Maximum

6.77
13.3
59.5
10.5
9.86

0.436 ± 0.56

Nitrate

Minimum
Mild
Mean
Moderate
Maximum

11.2
17.2
44.5
12.0
15.0

3.86 ± 4.4

OrthoPhosphate

Minimum
Mild
Mean
Moderate
Maximum

12.8
7.48
50.0
16.8
13.0

0.398 ± 0.98

Ammonium

Minimum
Mild
Mean
Moderate
Maximum

8.66
11.8
52.3
16.2
11.1

0.896 ± 0.79

Aminopeptidase

Minimum
Mean
Maximum

33.1
52.3
14.6

231 ± 180

AlkalinePhosphatase

Minimum
Mean
Maximum

46.7
46.0
7.28

113 ± 120

BacteriaCarbonProduction

Low
Minimum
Mean
High
Maximum

17.8
17.3
26.5
21.9
16.4

6.6 ± 5.5

Rhodobacteraceae

Minimum
Mean
Maximum

35.7
64.3
 0 +

10.9 ± 11

Gamma

Minimum
Mean
Maximum

21.6
57.3
21.1

3.28 ± 7.3

Beta

Mean
Maximum

84.7
15.3

0.39 ± 1.1

Alteromonadaceae

Mean
Maximum

50.0
50.0

9.66 ± 12

UnclassifiedBacteroidetes

Mean
Maximum

77.0
23.0

0.576 ± 1.3

Flavobacteria

Minimum
Mean
Maximum

38.6
39.9
21.5

4.81 ± 11

Rhodospirillaceae

Mean
Maximum

69.5
30.5

2.25 ± 4

Bacteridetes

Minimum
Mean
Maximum

33.3
33.3
33.3

0.861 ± 1.4

Alpha

Minimum
Mean
Maximum

15.3
66.5
18.2

5.27 ± 13

SAR11

Minimum
Mean
Maximum

21.1
46.1
32.8

18.4 ± 32

Delta

Mean
Maximum

54.7
45.3

1.13 ± 1.6

Epsilon

Absent
Present

94.0
5.98

0.15 ± 0.69

SAR86

Minimum
Mean
Maximum

21.6
51.0
27.4

14 ± 27

SAR406

Absent
Present

50.1
49.9

0.748 ± 0.97

Proteobacteria

Minimum
Mean
Maximum

27.4
45.3
27.4

1.38 ± 1.2

SBR1093

Absent
Present

59.0
41.0

0.615 ± 0.92

Sphingobacteria

Mean
Maximum

69.3
30.7

3.1 ± 5.6

Cytophaga

Absent
Present

84.9
15.1

0.757 ± 2.1

UnclassifiedProteobacteria

Mean
Maximum

84.5
15.5

0.468 ± 1.3

Planctomycetes

Mean
Maximum

64.9
35.1

1.77 ± 2.9

Actinobacteria

Mean
Maximum

61.0
39.0

2.95 ± 4.5

Cyanobacteria

Minimum
Mean
Maximum

49.9
37.4
12.7

4.54 ± 14

Verrucomicrobia

Mean
Maximum

62.9
37.1

2.67 ± 4.3

Deferribacteria

Absent
Present

50.0
50.0

1.25 ± 1.6

Chlorophylla

Minimum
Low
Mean
High
Maximum

17.4
17.4
21.6
18.1
25.5

1.07 ± 0.85

PrimaryProductionTotal

Low
Mean
High

29.7
40.8
29.6

10.9 ± 7.7

Silicoflagellates

Mean
High

87.5
12.5

1060 ± 1700

TotalPhytoplankton

Low
Mean
High
Maximum

25.4
25.7
24.8
24.1

1640000 ± 2500000

DominantPhytoplankton

Dinoflagellates
Nanoflagellates
Diatoms
NonIdentified

12.9
41.0
25.1
21.0

NonIdentified

Low
Mean
High
Maximum

51.7
26.1
18.3
3.92

5000 ± 3800

Nanoflagellates

Low
Mean
High
Maximum

26.6
48.6
13.2
11.5

764000 ± 1700000

Diatoms

Low
Mean
High
Maximum

25.4
52.6
14.1
7.88

153000 ± 210000

Dinoflagellates

Low
Mean
High
Maximum

24.7
47.7
14.9
12.6

71800 ± 160000

Coccolithophore

Low
Mean
High
Maximum

27.0
49.0
14.4
9.57

29400 ± 26000

Data

Field
Experimental

 100
   0

BacteriaAbundance

Minimum
Low
Mean
High
Maximum

18.7
23.5
21.7
17.9
18.2

1.18e9 ± 2.1e9

ParticulateOrganicC

Minimum
Mean
Maximum

34.2
49.0
16.8

43.3 ± 48

DissolvedOrganicP

Minimum
Mean
Maximum

53.5
39.1
7.39

0.167 ± 0.3

DissolvedOrganicC

Minimum
Mean
Maximum

56.3
39.9
3.74

83.2 ± 51

DominantBacteria

SAR11
Proteobacteria
Verrucomicrobia
Rhodobacteraceae
SAR86
Alteromonadaceae

39.0
14.6
2.02
21.4
8.52
14.5
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 1014 

Fig. S4.2 Posterior probabilities informed from experimental data only. 1015 

Season

Summer
Autumn
Winter
Spring

 0 +
81.0
19.0
 0 +

Depth

Surface
Subsurface

 100
 0 +

3 ± 1.7

WaterTemperature

Minimum
Mild
Mean
Moderate
Maximum

3.79
7.61
43.0
27.3
18.3

18.9 ± 6.5

Salinity

Minimum
Mild
Average
Moderate
Maximum

13.2
53.6
25.4
2.57
5.19

33.7 ± 7.5

Oxygen

Miniumum
Mild
Mean
Moderate
Maximum

17.6
28.6
46.4
7.36
 0 +

4.53 ± 1.4

PTotal

Minimum
Mild
Mean
Moderate
Maximum

15.9
12.8
16.4
25.8
29.1

0.682 ± 0.77

NTotal

Minimum
Mild
Mean
Moderate
Maximum

23.7
26.6
20.2
9.25
20.2

15.9 ± 9.8

Silicate

Minimum
Mild
Mean
Moderate
Maximum

8.61
16.6
59.5
11.8
3.47

5.32 ± 2.4

Nitrite

Minimum
Mild
Mean
Moderate
Maximum

13.6
22.6
46.6
8.93
8.23

0.366 ± 0.54

Nitrate

Minimum
Mild
Mean
Moderate
Maximum

15.0
14.4
26.6
10.7
33.3

5.67 ± 5.8

OrthoPhosphate

Minimum
Mild
Mean
Moderate
Maximum

29.7
5.08
43.6
10.8
10.8

0.332 ± 0.91

Ammonium

Minimum
Mild
Mean
Moderate
Maximum

10.4
18.2
62.4
3.91
5.22

0.66 ± 0.6

Aminopeptidase

Minimum
Mean
Maximum

29.8
40.7
29.5

273 ± 190

AlkalinePhosphatase

Minimum
Mean
Maximum

35.2
43.6
21.2

158 ± 140

BacteriaCarbonProduction

Low
Minimum
Mean
High
Maximum

16.9
15.6
27.1
24.1
16.3

6.8 ± 5.4

Rhodobacteraceae

Minimum
Mean
Maximum

36.3
63.7
 0 +

10.8 ± 11

Gamma

Minimum
Mean
Maximum

21.1
57.4
21.4

3.33 ± 7.3

Beta

Mean
Maximum

86.3
13.7

0.349 ± 1

Alteromonadaceae

Mean
Maximum

50.0
50.0

9.66 ± 12

UnclassifiedBacteroidetes

Mean
Maximum

77.0
23.0

0.576 ± 1.3

Flavobacteria

Minimum
Mean
Maximum

39.6
40.4
20.0

4.46 ± 10

Rhodospirillaceae

Mean
Maximum

68.5
31.5

2.32 ± 4

Bacteridetes

Minimum
Mean
Maximum

33.3
33.3
33.3

0.861 ± 1.4

Alpha

Minimum
Mean
Maximum

13.7
69.4
17.0

4.94 ± 12

SAR11

Minimum
Mean
Maximum

21.4
45.6
33.0

18.5 ± 32

Delta

Mean
Maximum

54.4
45.6

1.14 ± 1.6

Epsilon

Absent
Present

94.1
5.89

0.147 ± 0.69

SAR86

Minimum
Mean
Maximum

21.1
51.1
27.8

14.1 ± 27

SAR406

Absent
Present

51.7
48.3

0.724 ± 0.96

Proteobacteria

Minimum
Mean
Maximum

27.4
45.1
27.4

1.38 ± 1.2

SBR1093

Absent
Present

58.8
41.2

0.617 ± 0.92

Sphingobacteria

Mean
Maximum

69.2
30.8

3.1 ± 5.6

Cytophaga

Absent
Present

84.5
15.5

0.777 ± 2.1

UnclassifiedProteobacteria

Mean
Maximum

85.9
14.1

0.424 ± 1.2

Planctomycetes

Mean
Maximum

63.1
36.9

1.87 ± 3

Actinobacteria

Mean
Maximum

60.7
39.3

2.97 ± 4.6

Cyanobacteria

Minimum
Mean
Maximum

52.4
35.7
11.9

4.27 ± 13

Verrucomicrobia

Mean
Maximum

60.7
39.3

2.83 ± 4.3

Deferribacteria

Absent
Present

50.0
50.0

1.25 ± 1.6

Chlorophylla

Minimum
Low
Mean
High
Maximum

16.1
17.0
20.3
17.7
28.9

1.13 ± 0.87

PrimaryProductionTotal

Low
Mean
High

27.5
46.4
26.1

10.7 ± 7.4

Silicoflagellates

Mean
High

87.0
13.0

1090 ± 1700

TotalPhytoplankton

Low
Mean
High
Maximum

24.5
25.9
24.2
25.4

1700000 ± 2600000

DominantPhytoplankton

Dinoflagellates
Nanoflagellates
Diatoms
NonIdentified

13.1
38.1
24.9
23.9

NonIdentified

Low
Mean
High
Maximum

51.6
26.7
17.8
3.82

4980 ± 3800

Nanoflagellates

Low
Mean
High
Maximum

26.2
49.2
13.1
11.4

760000 ± 1700000

Diatoms

Low
Mean
High
Maximum

24.7
53.4
13.9
8.00

154000 ± 210000

Dinoflagellates

Low
Mean
High
Maximum

23.9
48.7
15.0
12.5

71200 ± 150000

Coccolithophore

Low
Mean
High
Maximum

26.5
49.0
14.9
9.57

29700 ± 26000

Data

Field
Experimental

   0
 100

BacteriaAbundance

Minimum
Low
Mean
High
Maximum

17.8
25.2
18.1
17.7
21.2

1.32e9 ± 2.2e9

ParticulateOrganicC

Minimum
Mean
Maximum

33.9
42.8
23.3

49.7 ± 53

DissolvedOrganicP

Minimum
Mean
Maximum

26.5
45.6
28.0

0.385 ± 0.52

DissolvedOrganicC

Minimum
Mean
Maximum

28.6
47.6
23.8

119 ± 59

DominantBacteria

SAR11
Proteobacteria
Verrucomicrobia
Rhodobacteraceae
SAR86
Alteromonadaceae

38.2
16.2
2.35
20.3
9.13
13.8


