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Abstract 1	  

 Replisome disassembly is the final step of DNA replication in 2	  

eukaryotes, involving the ubiquitylation and CDC48-dependent dissolution of 3	  

the CMG helicase (Cdc45-MCM-GINS).  Using Caenorhabditis elegans early 4	  

embryos and Xenopus egg extracts, we show that the E3 ligase CUL-2LRR-1 5	  

associates with the replisome and drives ubiquitylation and disassembly of 6	  

CMG, together with the CDC-48 co-factors UFD-1 and NPL-4.  Removal of 7	  

CMG from chromatin in frog egg extracts requires CUL2 neddylation, and our 8	  

data identify chromatin recruitment of CUL2LRR1 as a key regulated step during 9	  

DNA replication termination.  Interestingly, however, CMG persists on 10	  

chromatin until prophase in worms that lack CUL-2LRR-1, but is then removed 11	  

by a mitotic pathway that requires the CDC-48 co-factor UBXN-3, orthologous 12	  

to the human tumour suppressor FAF1.  Partial inactivation of lrr-1 and ubxn-3 13	  

leads to synthetic lethality, suggesting future approaches by which a deeper 14	  

understanding of CMG disassembly in metazoa could be exploited 15	  

therapeutically.  16	  

 17	  
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Chromosome replication in eukaryotes is initiated by the assembly of 1	  

the CMG helicase at origins of DNA replication1, 2.  CMG then controls the 2	  

progression of DNA replication forks, by unwinding the parental DNA duplex 3	  

to form the single-strand substrate for DNA polymerases3, 4.  The CMG 4	  

helicase forms the core of the eukaryotic replisome1, 5 and must remain 5	  

associated with replication forks throughout elongation, since it cannot be 6	  

reloaded6.  The catalytic core of the helicase is formed by a hexameric ring of 7	  

the MCM2-7 proteins, which is topologically trapped around the DNA template 8	  

and is stabilised and activated by association with CDC45 and GINS1, 7. 9	  

The remarkably stable association of CMG with replication forks means 10	  

that a specialized mechanism is needed to remove the helicase and trigger 11	  

replisome disassembly during DNA replication termination8.  In budding yeast 12	  

and Xenopus egg extracts, the CMG helicase was found to be ubiquitylated 13	  

on its Mcm7 subunit in a late step of DNA replication9-11, leading rapidly to a 14	  

disassembly reaction that requires the CDC48/p97 AAA+ ATPase10, 11. 15	  

In Saccharomyces cerevisiae, the cullin 1-based E3 ligase SCFDia2 16	  

associates with the replisome and is essential for CMG ubiquitylation and 17	  

disassembly10, 12, 13.  Orthologues of the F-box protein Dia2 are not apparent 18	  

in metazoa, but a putative role for a metazoan cullin ligase during DNA 19	  

replication termination was suggested by the fact that CMG ubiquitylation and 20	  

disassembly are inhibited in Xenopus egg extracts11 by the neddlylation 21	  

inhibitor MLN492414, since the major role of neddylation is to activate cullin 22	  

ligases15, 16.   23	  
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Here we describe a screen for factors controlling CMG helicase 1	  

disassembly in the C. elegans early embryo, leading to the identification of a 2	  

cullin ligase that we show is also essential for chromatin extraction of CMG 3	  

during S-phase in Xenopus egg extracts, where we find that recruitment of the 4	  

ligase to chromatin is a key regulated step during DNA replication termination.  5	  

We also identify a second pathway for CMG helicase disassembly during 6	  

mitosis in C. elegans, indicating that replisome disassembly in metazoa 7	  

involves additional mechanisms not previously identified in yeast. 8	  

 9	  

Results 10	  

A cytological assay for replisome dissolution in C. elegans early embryos 11	  

 We established an in vivo assay for defects in replisome disassembly 12	  

in live C. elegans early embryos (Figure 1), by time-lapse analysis of embryos 13	  

simultaneously expressing mCherry-Histone H2B and GFP-tagged CMG 14	  

components17, 18.  We initially examined GFP-tagged versions of CDC-45 and 15	  

the GINS component SLD-5, after depletion of CDC-48.   As shown in 16	  

Supplementary Figure 1a, both GFP-CDC-45 and GFP-SLD-5 were absent 17	  

from chromatin during prophase in control embryos, but were chromatin-18	  

associated throughout mitosis in embryos treated with cdc-48 RNAi.  We also 19	  

screened all the known or predicted adaptors of worm CDC-4819-‐21 20	  

(Supplementary Figure 1b), and found that depletion of either subunit of the 21	  

NPL-4_UFD-1 heterodimer22,	  23	  led to persistence of both GINS and CDC-45 22	  

on condensing prophase chromatin (Figure 1b-c, Supplementary Figure 1c, 23	  

Supplementary Movies 1-2).  Moreover, a fraction of GFP-MCM-3 was 24	  
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present on chromatin during early mitosis in embryos depleted for NPL-4 or 1	  

CDC-48 (Figure 1d and Supplementary Figure 1d-e, npl-4 or cdc-48 RNAi, 2	  

‘early metaphase’; note that the high concentration of MCM-2-7 in the nucleus 3	  

precluded the examination of prophase chromatin).  Finally, we used 4	  

fluorescence recovery after photobleaching (FRAP) to confirm that npl-4 RNAi 5	  

caused ‘old’ CMG components to persist on chromatin after S-phase, rather 6	  

than driving the premature assembly of ‘new’ CMG complexes (Figure 1h, 7	  

Supplementary Movie 3, Supplementary Figure 1g-h).  These findings 8	  

indicated that CDC-48 and its co-factors NPL-4 and UFD-1 are essential for 9	  

the extraction of CMG components from chromatin during S-phase in the C. 10	  

elegans early embryo. 11	  

Consistent with these data, we found that npl-4 RNAi led to a strong 12	  

accumulation of the CMG helicase with ubiquitylated MCM-7 subunit (Figure 13	  

1e-g).  Ubiquitylation of CMG was reduced if the completion of DNA 14	  

replication was inhibited (Supplementary Figure 1f), by RNAi depletion of the 15	  

ribonucleotide reductase RNR-1 as described previously18, consistent with the 16	  

idea that CMG ubiquitylation in the worm embryo is linked to DNA replication 17	  

termination as in budding yeast and Xenopus laevis10, 11.   18	  

 19	  

CUL-2LRR-1 is required for ubiquitylation and disassembly of the CMG helicase 20	  

during S-phase in C. elegans 21	  

 The C. elegans genome encodes CUL-1 to CUL-5 (Supplementary 22	  

Figure 2a), which are orthologues of the five cullins found in diverse metazoa, 23	  

plus CUL-6 that is a paralogue of CUL-124.  Using our cytological assay for 24	  
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CMG disassembly, we found that RNAi depletion of CUL-2 was unique in 1	  

causing persistence of SLD-5 and PSF-1 on prophase chromatin (Figure 2a, 2	  

Supplementary Figure 2b and Supplementary Movie 4).  The same defect was 3	  

observed after depletion of the RING finger protein Rbx1, which links CUL-2 4	  

(and CUL-1/3/4/6) to its cognate ubiquitin conjugating enzyme, or after 5	  

depletion of the worm orthologues of Elongin B and Elongin C, which connect 6	  

CUL-2 (and CUL-5) to its substrate adaptors (Figure2a; see below for Elongin 7	  

B).  These findings indicated that a CUL-2 ligase regulates disassembly of the 8	  

CMG helicase during S-phase in C. elegans, probably involving ubiquitin 9	  

ligase activity, since not only CUL-2 but also RBX-1 is required for removing 10	  

CMG from chromatin.   11	  

 Six different substrate adaptors of CUL-2 have been characterized in 12	  

C. elegans (Supplementary Figure 2c), five of which are conserved in 13	  

humans.  We depleted each of these and found that RNAi to lrr-1 (Leucine-14	  

rich repeats 1) was unique in causing GINS and CDC-45 to persist on 15	  

prophase chromatin (Figure 2b, Supplementary Figure 2d and Supplementary 16	  

Movie 5 for GINS; see Supplementary Figure 3d below for CDC-45).  17	  

Importantly, depletion of LRR-1 also dramatically reduced CMG ubiquitylation, 18	  

when replisome disassembly was blocked by npl-4 RNAi (Figure 2c-d).  These 19	  

data indicated that CUL-2LRR-1 regulates CMG disassembly during DNA 20	  

replication termination in the C. elegans early embryo. 21	  

 22	  

A mitotic pathway for CMG chromatin extraction requires the CDC-48 co-23	  

factor UBXN-3 24	  
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 Although CMG was initially retained on prophase chromatin following 1	  

RNAi depletion of CUL-2LRR-1, both GINS and CDC-45 were then released 2	  

from chromatin a few minutes before nuclear envelope breakdown in late 3	  

prophase (Figure 3a, Supplementary Figure 3a, b, d, and Supplementary 4	  

Movies 4-5; note that MCM-2-7 could not be examined on prophase 5	  

chromatin, as discussed above).  Moreover, the same was true in lrr-1∆ / lrr-6	  

1∆ homozygous embryos that lack the LRR-1 protein (Figure 3c and 7	  

Supplementary Figure 3c; lrr-1 is an essential gene in C. elegans, but the first 8	  

embryonic cell cycles in homozygous lrr-1∆ embryos can be examined as 9	  

described in Methods).  The delayed release of CMG components from 10	  

chromatin in the absence of LRR-1 was not produced by a delay in the 11	  

completion of S-phase, since RNAi depletion of the catalytic or primase 12	  

subunits of Pol alpha greatly extended the length of S-phase, yet did not 13	  

cause CMG to persist on condensing chromatin (Figure 3a-b, div-1 and pol 14	  

alpha RNAi), consistent with our previous data17.  Instead, these findings 15	  

indicated that the C. elegans early embryo has two different pathways for 16	  

CMG helicase disassembly (Supplementary Figure 3e).  The first pathway 17	  

acts during DNA replication termination and requires CUL-2LRR-1, whereas the 18	  

second provides backup and is activated during prophase.  Consistent with 19	  

the existence of the second pathway, we found that depletion of LRR-1 did not 20	  

cause a strong accumulation of CMG in embryo extracts, compared to 21	  

depletion of NPL-4 (Figure 3d, compare samples 2 and 3).  However, lrr-1 22	  

RNAi did abrogate the basal level of CMG ubiquitylation that is seen in control 23	  

embryos (Figure 3d-e, longer exposures, compare samples 1 and 2).   24	  
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Both CMG disassembly pathways require CDC-48 / UFD-1 / NPL-4, 1	  

since depletion of the latter leads to persistence of CMG on chromatin 2	  

throughout mitosis (Figure 1, Supplementary Figure 1).  In addition to the 3	  

three ‘core’ co-factors that form mutually exclusive complexes with CDC-48 / 4	  

p97, namely UFD-1_NPL-4, UBXN-2 / p47 and UBXN-6 / UBXD1, eukaryotic 5	  

cells also contain a range of other partners of p97 / CDC-48 that recruit the 6	  

segregase to specific targets or to particular sub-cellular locations25-27 7	  

(Supplementary Figure 1b).  To test whether one of these links CDC-48 to the 8	  

mitotic CMG disassembly pathway, we combined lrr-1 RNAi with depletion of 9	  

each of the predicted CDC-48 adaptors in C. elegans (see Methods), and then 10	  

examined the association of CMG components with mitotic chromatin.  11	  

Amongst all the tested combinations, only simultaneous depletion of LRR-1 12	  

and UBXN-3 led to persistence of GFP-CDC-45, GFP-PSF-1 and GFP-SLD-5 13	  

on mitotic chromatin (Figure 4a, Supplementary Figure 4a-b and 14	  

Supplementary Movie 6).  In contrast, these CMG components were released 15	  

from chromatin before prophase in embryos treated with RNAi to ubxn-3 alone 16	  

(Figure 4a, Supplementary Figure 4a-b and Supplementary Movie 7). 17	  

To assay directly the level of the CMG helicase in the presence or 18	  

absence of UBXN-3, we isolated GFP-PSF-1 from embryo extracts as above. 19	  

Simultaneous RNAi to ubxn-3 and lrr-1 led to a striking accumulation of CMG, 20	  

equivalent to that seen with npl-4 RNAi (Figure 4b, compare level of CDC-45 21	  

and MCM-2 associated with GINS in samples 2-4), with residual ubiquitylation 22	  

of CMG as seen with npl-4 lrr-1 RNAi (compare Figure 4b samples 3-4 with 23	  

Figure 3d-e samples 3-4).  Together with the imaging data described above, 24	  
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these findings identify UBXN-3 as a factor required for a mitotic pathway of 1	  

CMG disassembly in the C. elegans early embryo.  2	  

 3	  

The SUMO protease ULP-4 modulates the mitotic CMG disassembly pathway 4	  

 To screen for regulators of the mitotic CMG disassembly pathway, we 5	  

combined lrr-1 RNAi with depletion of candidate proteins, including factors 6	  

that regulate cell division or genome integrity (Supplementary Table 1).  7	  

These included mitotic regulators such as the Aurora B and Polo kinases AIR-8	  

2 and PLK-1, candidate ubiquitin ligases such as BRC-1 (BRCA1) and SMC-9	  

5, regulators of DNA replication such as the ATL-1 checkpoint kinase, and 10	  

components of the SUMO pathway.  Uniquely amongst these factors, we 11	  

found that co-depletion of the SUMO protease ULP-4 with LRR-1 delayed the 12	  

release of CMG components from chromatin, until at or after nuclear envelope 13	  

breakdown, (Figure 4c and Supplementary Figure 4c-d).  ULP-4 is the major 14	  

SUMO protease during mitosis in C. elegans, analogous to SENP6-7 in 15	  

human cells, and is present on mitotic chromosomes and at the spindle 16	  

midzone 28.  Although ulp-4 lrr-1 RNAi produced a less severe CMG 17	  

disassembly defect than co-depletion of LRR-1 and UBXN-3, these findings 18	  

indicated that the UBXN-3-dependent mitotic pathway for CMG disassembly is 19	  

also modulated by ULP-4.   20	  

 21	  

Combining defects in the S-phase and mitotic CMG disassembly pathways 22	  

produces synthetic lethality 23	  
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Previous work showed that LRR-1 is essential for germ cell formation 1	  

and embryonic development in C. elegans29, 30.  In contrast, RNAi to ubxn-3 or 2	  

ulp-4 is tolerated without causing severe embryonic lethality (see below), 3	  

indicating that the mitotic CMG disassembly pathway is dispensable in worms 4	  

that can disassemble CMG via the CUL-2LRR-1 S-phase pathway. 5	  

To explore the physiological importance of the mitotic CMG 6	  

disassembly pathway should CUL-2LRR-1 fail to act, we fed worms on bacteria 7	  

with 10% expressing lrr-1 RNAi (Figure 4d shows that this low dose of lrr-1 8	  

RNAi scarcely affects viability), and then gradually increased the proportion of 9	  

bacteria that expressed RNAi to ubxn-3 or ulp-4.  Strikingly, even the lowest 10	  

tested dose of ubxn-3 RNAi produced 100% lethality in combination with 10% 11	  

lrr-1 RNAi, despite both single RNAi treatments causing almost no detectable 12	  

lethality (Figure 4e).  Similarly, the lowest tested dose of ulp-4 RNAi produced 13	  

90% embryonic lethality in combination with 10% lrr-1 RNAi, even though 14	  

neither individual RNAi treatment affected viability to a significant degree 15	  

(Figure 4f).  These findings indicate that both UBXN-3 and ULP-4 become 16	  

essential when the function of CUL-2LRR-1 is even partially defective, 17	  

consistent with the possibility that the mitotic CMG disassembly pathway 18	  

provides an essential back up for the S-phase pathway (though this remains 19	  

to be demonstrated directly in future studies).   20	  

 21	  

LRR-1 couples the CUL-2LRR-1 ubiquitin ligase to the worm replisome 22	  

 To test whether CUL-2LRR-1 associates with the worm replisome, we 23	  

treated control and GFP-psf-1 worms with npl-4 RNAi to block replisome 24	  
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disassembly, and then used isolated embryos to generate extracts that were 1	  

incubated with beads coupled to anti-GFP antibodies.  A fraction of the 2	  

resultant material was analysed by immunoblotting, to confirm the specific 3	  

isolation of ubiquitylated CMG helicase from the GFP-psf-1 embryos (Figure 4	  

5a).  The remainder was resolved by SDS-PAGE (Figure 5b) and analysed by 5	  

mass spectrometry (Supplementary Table 2). 6	  

The worm CMG helicase and associated factors showed remarkable 7	  

convergence with the better-characterized replisome from budding yeast 8	  

(Supplementary Table 2, Figure 5c: note that our data represent the worm 9	  

replisome just after termination of DNA synthesis).  Notably, CUL-2LRR-1 was 10	  

the only cullin ligase associated with the post-termination worm replisome 11	  

(Supplementary Table 2), and we subsequently found that the presence of 12	  

CUL-2 in the purified material was dependent upon LRR-1 (Figure 5d, 13	  

Supplementary Table 3).  Therefore, LRR-1 is required for CUL-2 to associate 14	  

with the replisome in C. elegans early embryos.   15	  

 16	  

CUL2LRR1 associates with the vertebrate replisome during DNA replication 17	  

termination in Xenopus egg extracts 18	  

 In analogous experiments, we examined whether CUL2LRR1 associated 19	  

with the vertebrate replisome during DNA replication termination in Xenopus 20	  

egg extracts.   Sperm nuclei were added to an extract supplemented with a 21	  

dominant negative p97 mutant as well as the neddylation inhibitor MLN4924, 22	  

both of which block CMG disassembly at the end of S-phase11.  After bulk 23	  

DNA replication had been completed (see below), the CMG helicase was 24	  
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isolated from the chromatin fraction by DNA digestion followed by 1	  

immunoprecipitation of MCM3 (Figure 6a; non-specific IgG was used as a 2	  

negative control).  The resultant material was then analysed by mass 3	  

spectrometry and found to contain orthologues of every component of the 4	  

isolated post-termination worm replisome (Supplementary Table 4).  5	  

Strikingly, the post-termination vertebrate replisome was associated with a 6	  

single cullin ligase, namely CUL2LRR1 (Supplementary Table 4, Figure 6b).  7	  

Correspondingly, immunoprecipitation of LRR1 from digested chromatin, after 8	  

inhibition of replisome disassembly with a p97 inhibitor, led to co-purification 9	  

not only of CUL2 and Elongin B/C, but also of the frog replisome (Figure 6c, 10	  

Supplementary Table 5).  Interestingly, immunoprecipitation of LRR1 from 11	  

digested chromatin under such conditions led to co-depletion of CUL2 12	  

(Supplementary Figure 5a, compare flowthrough for IgG and LRR1 IPs).  13	  

Therefore, these data not only demonstrate that the association of CUL2LRR1 14	  

with the replisome is conserved from worms to vertebrates, but also indicate 15	  

that CUL2LRR1 is the major CUL2 ligase on interphase chromatin.   16	  

The recruitment of Xenopus CUL2LRR1 to chromatin was dependent 17	  

upon replisome assembly during the initiation of chromosome replication 18	  

(Figure 6d).  Moreover, the association of CUL2LRR1 with chromatin was 19	  

greatly increased when replisome disassembly at the end of S-phase was 20	  

blocked by addition of MLN4924 to the extracts (Figure 6e: Figure 6f and 21	  

Supplementary Figure 5b show that replication kinetics were not affected by 22	  

MLN4924, consistent with our previous findings11).  These data suggested 23	  

that regulated recruitment of CUL2LRR1 to chromatin is an important feature of 24	  
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the mechanism of replisome disassembly during DNA replication termination.  1	  

Correspondingly, CUL2LRR1 was not recruited to chromatin if DNA synthesis 2	  

and subsequent termination were blocked, by addition of the DNA polymerase 3	  

inhibitor aphidicolin (Figure 6g; note that caffeine had to be added to these 4	  

reactions, to prevent the S-phase checkpoint pathway from limiting the 5	  

accumulation of CMG on chromatin, by blocking new initiation events). 6	  

To test directly whether chromatin recruitment of CUL2LRR1 was linked 7	  

to DNA replication termination, we either inhibited replisome disassembly after 8	  

termination of DNA synthesis, by inactivating CDC48 / p97 with the small 9	  

molecule inhibitor NMS87331, 32, or delayed the convergence of DNA 10	  

replication forks during termination, by addition of the TOPO2 inhibitor 11	  

ICRF19311, 33.  Neither treatment affected the kinetics of bulk DNA synthesis 12	  

(Supplementary Figure 5c), consistent with previous studies9, 11.   Inhibition of 13	  

p97 / CDC48 with NMS873 caused a dramatic accumulation of CMG and 14	  

CUL2LRR1 on chromatin (Figure 6h, NMS873).  However, delaying DNA 15	  

replication fork convergence with ICRF193 delayed removal of CMG 16	  

components from chromatin (Figure 6h, compare CDC45 and PSF2 between 17	  

control and ICRF193 treatment), but this was not associated with chromatin 18	  

recruitment of CUL2LRR1 (Figure 6h).  These findings indicate that CUL2LRR1 19	  

only associates with the replisome during the termination of DNA replication.   20	  

 21	  

Active CUL2LRR1 is essential for extraction of the CMG helicase from 22	  

chromatin at the end of chromosome replication in Xenopus egg extracts 23	  



	   14	  

 Depletion of frog egg extracts with antibodies to CUL2-RBX1 (Figure 1	  

7a) abolished detectable chromatin recruitment of CUL2LRR1 during DNA 2	  

replication termination (Figure 7b), even in the presence of MLN4924 that 3	  

stabilises the association of the ligase with the post-termination replisome as 4	  

shown above.  The kinetics of bulk DNA replication in egg extracts were not 5	  

affected by CUL2 depletion (Figure 7d-e), but the release of CMG 6	  

components from chromatin at the end of replication was inhibited (Figure 7f).  7	  

Moreover, ubiquitylation of the MCM7 subunit of CMG was both delayed and 8	  

greatly reduced under such conditions (Figure 7f, MCM7). 9	  

 To confirm that the failure of CMG chromatin extraction was indeed due 10	  

to inactivation of CUL2-RBX1, we attempted to rescue the defect by addition 11	  

of recombinant CUL2-RBX1, purified from insect cells.  However, we noted 12	  

that LRR1 was co-depleted from extracts along with CUL2 (Figure 7c), and 13	  

thus we performed the rescue experiments in the presence or absence of 14	  

recombinant LRR1, expressed and purified from E. coli.  By isolating sperm 15	  

chromatin from Xenopus egg extracts after the completion of bulk DNA 16	  

replication, we confirmed that CMG components were absent from chromatin 17	  

in mock-depleted extracts that were subjected to two rounds of 18	  

immunoprecipitation with rabbit IgG (Figure 7g, lane 1), whereas CMG 19	  

remained on chromatin following depletion of CUL2LRR1 (Figure 7g, lane 2), as 20	  

shown above (Figure 7f).   Crucially, the defect in CMG helicase disassembly 21	  

was not rescued by addition of CUL2-RBX1 complex alone (Figure 7g, lane 22	  

3), but was fully complemented by the addition of CUL2-RBX1 together with 23	  

recombinant LRR1 (Figure 7g, lane 5).   24	  
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To explore whether the E3 ligase activity of CUL2LRR1 was required for 1	  

CMG chromatin extraction, we tested a version of CUL2-RBX1 with a mutated 2	  

neddylation site and another mutation in the interaction site with the DCN1 3	  

neddylase34, since neddylation promotes cullin function in vertebrates and we 4	  

previously showed that the neddylation inhibitor MLN4924 blocks CMG 5	  

ubiquitylation and chromatin extraction during DNA replication termination in 6	  

Xenopus egg extracts11.  Importantly, mutated CUL2-RBX1 was not able to 7	  

restore CMG chromatin extraction in CUL2-depleted extracts (Figure 7g, lane 8	  

4), even when added with recombinant LRR1 (Figure 7g, lane 6).   9	  

These findings demonstrate that CMG helicase disassembly at the end 10	  

of chromosome replication in Xenopus egg extracts requires LRR1 and 11	  

neddylation of CUL2, indicating a requirement for active CUL2LRR1.  Together 12	  

with past work establishing CMG helicase disassembly as the final regulated 13	  

step during chromosome replication in vertebrates9, these findings establish 14	  

the ubiquitin ligase CUL2LRR1 as the key enzyme in this process. 15	  

 16	  

Discussion 17	  

Previous work showed that LRR-1 is essential for germ cell formation 18	  

and embryonic development in C. elegans29, 30.  Inactivation of lrr-1 induces 19	  

DNA damage, thereby blocking germ cell proliferation and delaying mitotic 20	  

entry in the early embryo29, via the ATL-1 S-phase checkpoint pathway that is 21	  

equivalent to the ATR response in vertebrates.  The molecular basis for DNA 22	  

damage induction in the absence of LRR-1 is poorly understood, but a recent 23	  

study found that low-dose RNAi to CMG components could suppress the 24	  



	   16	  

sterility phenotype of lrr-1∆ worms, as well as suppressing the embryonic 1	  

lethality associated with a cul-2 temperature sensitive allele under semi-2	  

restrictive conditions35.  These findings suggest that the CMG helicase is a 3	  

functionally important target of CUL-2LRR-1 in C. elegans.   4	  

Our data indicate that CUL2LRR1 activity is required to extract CMG from 5	  

chromatin during DNA replication termination, both in worms and in frog egg 6	  

extracts, indicating that the role of CUL2LRR1 in the S-phase pathway of CMG 7	  

helicase disassembly is widely conserved in metazoa.  Moreover, our data 8	  

identify chromatin recruitment of CUL2LRR1 as a key regulated step (Figure 6).  9	  

We note that a recent study of plasmid replication in Xenopus egg extracts 10	  

has also shown that CUL2LRR1 is recruited during termination and is required 11	  

for replisome disassembly36, consistent with our findings.   12	  

Despite metazoa and yeast using different cullin ligases to trigger 13	  

replisome disassembly during termination of replication, our data highlight 14	  

invariant features of the disassembly mechanism in diverse eukaryotes.  15	  

Firstly, the CMG helicase is ubiquitylated on its MCM7 subunit at the end of 16	  

chromosome replication in budding yeast10, worm (this study) and frog9, 11, 17	  

perhaps linked to a structural change in the CMG helicase that renders it 18	  

accessible to the E3 ligase during DNA replication termination.  Secondly, we 19	  

found that UFD-1 and NPL-4 are required for CDC-48-dependent disassembly 20	  

of the CMG helicase during S-phase in C. elegans (Figure 1 and 21	  

Supplementary 1), and UFD1-NPL4 associate with the ‘post-termination’ 22	  

replisome in Xenopus (Supplementary Table 4), consistent with previous 23	  

data37.  These findings indicate that UFD1 and NPL4 mediate CDC48-24	  



	   17	  

dependent replisome disassembly in metazoa, and we predict that the same 1	  

is true for budding yeast.   2	  

Whereas budding yeast appears to have a single pathway for CMG 3	  

helicase disassembly that acts during S-phase10, our C. elegans data indicate 4	  

that metazoa have an additional CMG disassembly mechanism that operates 5	  

during mitosis and requires the UBXN-3 partner of CDC-48.  Interestingly, a 6	  

recent study found that depletion of UBXN-3 sensitises worm embryos to DNA 7	  

replication inhibitors, consistent with a role for UBXN-3 in regulation of the 8	  

replisome38.  It remains to be determined in future studies whether the mitotic 9	  

pathway is also controlled by an E3 ubiquitin ligase, analogous to the role of 10	  

CUL-2LRR-1 during S-phase, but we have found that the mitotic CMG 11	  

disassembly pathway is modulated by the ULP-4 SUMO protease, which is 12	  

the major desumoylase on mitotic chromosomes28.  It will thus be interesting 13	  

to explore whether SUMO regulates CMG helicase disassembly during 14	  

mitosis, perhaps inhibiting disassembly until desumoyation by ULP-4, or 15	  

whether ULP-4 acts in some other way, for example by recruiting CDC-48 16	  

partners like UBXN-3 to mitotic chromatin. 17	  

We have found that UBXN-3 and ULP-4 become essential for viability 18	  

when the function of LRR-1 is even partially compromised (Figure 4), 19	  

highlighting the physiological importance of UBXN-3 and ULP-4.  These 20	  

findings suggest that the mitotic CMG disassembly pathway provides 21	  

important backup to the DNA replication termination pathway, although at 22	  

present we cannot exclude that our data also reflect other roles for LRR-1, 23	  

UBXN-3 and ULP-4.  Interestingly, the human FAF1 protein is orthologous to 24	  



	   18	  

UBXN-3, associates with p97-UFD1-NPL439 and is deleted or depleted in 1	  

many human cancers40.  Moreover, depletion of FAF1 in human cells leads to 2	  

defective progression and increased stalling of DNA replication forks38.  3	  

Should it be possible in the future to develop small molecule inhibitors of 4	  

CUL2LRR1, our data indicate that transient or partial inhibition of the CUL2LRR1 5	  

E3 ligase might cause synthetic lethality in cancer cells with defective FAF1.  6	  

It is thus to be hoped that a deeper understanding of the biology of replisome 7	  

disassembly during DNA replication termination will have important 8	  

implications for human pathology. 9	  
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Figure legends 1	  

Figure 1 2	  

The CDC-48 co-factor NPL-4 is required for CMG helicase disassembly during 3	  

S-phase in the C. elegans early embryo.  (a) Illustration of a live-embryo 4	  

assay for CMG helicase disassembly, comparing control embryos (‘normal 5	  

CMG disassembly’) with mutant embryos (‘defective CMG disassembly’).  6	  

Note that the two nuclei derived from oogenesis and spermatogenesis – 7	  

referred to in this manuscript as the female and male pronuclei - move 8	  

together during prophase of the first cell cycle.  Following nuclear envelope 9	  

breakdown, the ‘male’ and ‘female’ sets of chromosomes then intermingle 10	  

during metaphase.  (b) Timelapse video microscopy of the first cell cycle in 11	  

embryos expressing GFP-SLD-5 and mCherry-HistoneH2B, either untreated 12	  

or exposed to npl-4 RNAi.  The female pronucleus is shown during S-phase, 13	  

before convergence with the male pronucleus.  Prophase begins during 14	  

migration of the pronuclei.  The arrows indicate examples of persistence of 15	  

GFP-SLD-5 on chromatin during prophase after depletion of NPL-4.  (c) 16	  

Equivalent analysis for embryos expressing GFP-CDC-45.  (d) Equivalent 17	  

data for embryos expressing GFP-MCM-3.  The arrow indicates the small pool 18	  

of GFP-MCM-3 that remains on chromatin during early metaphase after 19	  

depletion of NPL-4.  (e) Homozygous GFP-psf-1 / GFP-psf-1 worms were 20	  

exposed to npl-4 RNAi or left untreated.  Embryos were then isolated and 21	  

used to generate whole-embryo extracts, before immunoprecipitation of GFP-22	  

PSF-1.  The indicated proteins were monitored by immunoblotting.  (f) The 23	  

same samples were separated in a 4-12% gradient gel, before immunoblotting 24	  
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with an antibody to poly-ubiquitin chains.  (g) Equivalent npl-4 RNAi 1	  

experiment comparing control worms with homozygous mcm7-5FLAG-9His 2	  

embryos generated by CRISPR-Cas9.  The samples were separated in a 3-3	  

8% gradient gel, before immunoblotting with antibody to poly-ubiquitin chains.  4	  

(h) Timelapse video microscopy of an npl-4 RNAi embryo expressing GFP-5	  

CDC-45 and mCherry-HistoneH2B.  The GFP signal in the female pronucleus 6	  

was photo-bleached during early S-phase and then monitored in the 7	  

subsequent mitosis.  Lack of recovery of the GFP signal on ‘female’ 8	  

chromosomes, compared to the unbleached control male pronucleus, 9	  

indicated that GFP-CDC45 persists on chromatin after S-phase rather than 10	  

being reloaded, in embryos lacking NPL-4.  The scale bars correspond to 11	  

5µm.  Unprocessed scans of key immunoblots are shown in Supplementary 12	  

Figure 8. 13	  

 14	  

Figure 2 15	  

CUL-2LRR-1 is required for CMG helicase disassembly during S-phase in C. 16	  

elegans.  (a-b) Embryos from GFP-sld-5 mCherry-H2B worms were exposed 17	  

to the indicated RNAi and processed as in Figure 1b.  Timelapse images are 18	  

shown from S-phase to mid-prophase.  Five embryos were examined for each 19	  

treatment and all behaved equivalently.  Arrows denote examples of 20	  

persistence of GFP-SLD-5 on prophase chromatin and scale bars correspond 21	  

to 5µm.  (c-d) Embryos from homozygous GFP-psf-1 / GFP-psf-1 worms were 22	  

exposed to the indicated RNAi and processed as in Figure 1e-f.  Unprocessed 23	  

scans of key immunoblots are shown in Supplementary Figure 8. 24	  
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 1	  

Figure 3 2	  

A mitotic pathway for CMG helicase disassembly is revealed in the absence of 3	  

CUL-2LRR-1.  (a) Embryos from GFP-psf-1 mCherry-H2B worms were exposed 4	  

to the indicated RNAi treatments, or empty vector in the control, and then 5	  

processed as in Figure 1b, except that the figure depicts data from the second 6	  

embryonic cell cycle (P1 cell).  Timelapse images are shown from S-phase to 7	  

metaphase.  GFP-PSF1 initially persists on prophase chromatin following 8	  

depletion of LRR-1 (the arrows denote examples), before being released in 9	  

late prophase (indicated by asterisk).  Scale bars correspond to 5µm.  (b) The 10	  

duration of the indicated cell cycle phases for the experiment in (a) were 11	  

measured as described in Methods.  The data are expressed relative to the 12	  

length of the corresponding period in control embryos, and represent the 13	  

mean values (n = 5 embryos; the lines on the boundary of each cell cycle 14	  

phase indicate standard deviations from the mean).  (c) Worms homozygous 15	  

for GFP-psf-1 and lrr-1∆ were grown in parallel to the equivalent heterozygote 16	  

(control), as described in Methods.  After exposure to atl-1 RNAi (this allows 17	  

homozygous lrr-1∆ germ cells to proceed with meiosis), the resultant embryos 18	  

were processed as above.  The images depict the second embryonic cell 19	  

cycle (P1 cell), showing persistent association of GFP-PSF-1 with chromatin 20	  

during prophase (arrows), before release in late prophase (asterisk).  (d-e) 21	  

Homozygous GFP-psf-1 worms were exposed to the indicated RNAi.  22	  

Embryos were then isolated and processed as in Figure 1e-f.  Unprocessed 23	  

scans of key immunoblots are shown in Supplementary Figure 8. 24	  
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 1	  

Figure 4 2	  

The mitotic CMG helicase disassembly pathway requires UBXN-3 and is 3	  

modulated by the SUMO protease ULP-4, both of which become essential 4	  

when LRR-1 is depleted.  (a) Embryos from GFP-psf-1 mCherry-H2B worms 5	  

were exposed to the indicated RNAi and processed as in Figure 3a.   The 6	  

arrows indicate persistent association of GFP-PSF1 with mitotic chromatin 7	  

(throughout mitosis in the case of RNAi to npl-4, or after simultaneous RNAi to 8	  

lrr-1 + ubxn-3), whereas the asterisk denotes release of GFP-PSF-1 from 9	  

chromatin in late prophase in embryos treated only with lrr-1 RNAi.  The scale 10	  

bars correspond to 5µm.  (b) Homozygous GFP-psf-1 worms were exposed to 11	  

the indicated RNAi and isolated embryos were then processed as in Figure 12	  

1e.  (c) Embryos from GFP-cdc-45 mCherry-H2B worms were exposed to the 13	  

indicated RNAi and processed as above.  The data correspond to the AB cell 14	  

in the second cell cycle, in which lrr-1 ulp-4 double RNAi leads to persistence 15	  

of GFP-CDC-45 until at or after nuclear envelope breakdown (8 of 9 embryos 16	  

tested).  (d) Worms were fed on plates where the indicated proportion of 17	  

bacteria expressed lrr-1 double-stranded RNAi, and embryonic viability was 18	  

measured as described in Methods (for each timepoint, 69-94 embryos were 19	  

examined from five adult worms).  (e) Worms were fed on the indicated 20	  

proportion of bacteria expressing ubxn-3 RNAi, either alone or in combination 21	  

with 10% bacteria expressing lrr-1 RNAi.  The data represent the mean values 22	  

(n = 3 independent experiments; for each timepoint, 70-100 embryos were 23	  

examined from five adult worms), with the indicated standard deviations from 24	  
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the mean value.  (f) Similar experiment involving increasing doses of ulp-4 1	  

RNAi, with or without 10% lrr-1 RNAi (n = 3 independent experiments; for 2	  

each timepoint, 70-100 embryos were examined from five adult worms).  3	  

Unprocessed scans of key immunoblots are shown in Supplementary Figure 4	  

8. 5	  

 6	  

Figure 5 7	  

Isolation of the post-termination worm replisome.  (a) Control or homozygous 8	  

GFP-psf-1 worms were exposed to npl-4 RNAi before being processed as 9	  

described above for Figure 4.  The purified samples were monitored by SDS-10	  

PAGE and immunoblotting of the indicated components of the CMG helicase.  11	  

(b) The remainder of the samples were then resolved in a 4-12% gradient gel, 12	  

which was stained with colloidal coomassie.  The major contaminants in both 13	  

samples (marked with asterisks) represent the four major yolk proteins of the 14	  

worm early embryo41.  Each lane was cut into 40 bands as indicated, before 15	  

analysis of protein content by mass spectrometry (see Supplementary Table 16	  

2).  (c) Comparison of the replisome isolated from active replication forks in 17	  

budding yeast 1,	  42,	  43, with the isolated post-termination replisome from worm 18	  

and frog (this study).  For simplicity, some of the proteins that act at forks, but 19	  

that are not present in the isolated replisome, have been omitted.  In addition, 20	  

Mcm10 has been excluded, since its status at forks and its association with 21	  

the isolated replisome remain unclear (absent from isolated yeast and worm 22	  

replisomes under physiological conditions, but co-purifying with frog MCM-3 23	  

from digested chromatin post-termination).  (d) Comparison of isolated 24	  
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replisome material for the experiment in Supplementary Table 3 (worms 1	  

treated with npl-4 RNAi or npl-4 lrr-1 double RNAi).  Unprocessed scans of 2	  

key immunoblots are shown in Supplementary Figure 8. 3	  

 4	  

Figure 6 5	  

CUL2LRR1 associates with the post-termination vertebrate replisome and is 6	  

recruited to chromatin during DNA replication termination in Xenopus egg 7	  

extracts.  (a) Experimental scheme for isolation of proteins associated with the 8	  

CMG helicase after termination in the absence of replisome disassembly, in 9	  

extracts of Xenopus laevis eggs.  (b) Immunoblots of input and the indicated 10	  

IP samples for the experiment in (a).  (c) Replisome disassembly was 11	  

inhibited with the p97 inhibitor NMS873, and LRR1 was then isolated from 12	  

digested chromatin at the 70’ timepoint, in parallel with a control IP with IgG, 13	  

before detection of the indicated proteins by immunoblotting.  (d) Chromatin 14	  

association of the indicated factors was monitored by immunoblotting, at the 15	  

indicated timepoints after addition of sperm chromatin to egg extracts (except 16	  

for the -DNA sample that lacked chromatin).  Where indicated, replication 17	  

initiation was blocked by addition of p27(KIP1) or Geminin.  The neddylase 18	  

inhibitor MLN4924 was added to all samples to block replisome disassembly.  19	  

(e) Timecourse experiment comparing chromatin-bound factors in the 20	  

absence or presence of the neddylation inhibitor MLN4924.  (f) Replication 21	  

kinetics were monitored for the experiment in (e), by incorporation of 22	  

radiolabelled α-dATP into newly synthesised DNA (see also Supplementary 23	  

Figure 5b; source data for repeats of this experiment are included in 24	  



	   31	  

Supplementary Table 6).  (g) Inhibition of DNA synthesis blocks association of 1	  

CUL2LRR1 with chromatin.  DNA synthesis was inhibited with the DNA 2	  

polymerase inhibitor aphidicolin.  Caffeine was added to inactivate the S-3	  

phase checkpoint, which otherwise would have reduced the level of CMG on 4	  

chromatin +Aphidicolin.  (h) Analogous experiment to that in (e), showing that 5	  

CUL2-LRR1 accumulated on chromatin with CMG when replisome 6	  

disassembly was blocked by the p97 inhibitor NMS873, but chromatin 7	  

recruitment of CUL2-LRR1 was inhibited if DNA replication termination was 8	  

delayed by addition of the TOPO2 inhibitor ICRF193.  Unprocessed scans of 9	  

key immunoblots are shown in Supplementary Figure 8. 10	  

 11	  

Figure 7 12	  

Active CUL2LRR1 is required for extraction of CMG components from chromatin 13	  

during DNA replication termination in Xenopus egg extracts.  (a) Experimental 14	  

scheme.  (b) Replication reactions were performed in the presence of 15	  

MLN4924 to stabilise CUL2LRR1 on chromatin during DNA replication 16	  

termination in mock-depleted extracts (treated with two rounds of IgG-beads).  17	  

In contrast, neither CUL2 nor LRR1 were detected on chromatin in CUL2-18	  

depleted extracts, confirming the efficiency of the depletion.  (c) Depletion of 19	  

CUL2 also removes LRR1 from the extract (the panel shows immunoblots of 20	  

the antibody-coupled beads after each of the two rounds of depletion).  (d) 21	  

Kinetics of DNA synthesis in extracts subjected to two rounds of 22	  

immunoprecipitation with control IgG (‘mock depletion’) or with antibodies to 23	  

Hs_CUL2-RBX1 (‘CUL2 depletion’, see Methods).  Source data for repeats of 24	  



	   32	  

this experiment are included in Supplementary Table 6.  (e) In an analogous 1	  

experiment, replication reactions were performed in ‘mock-depleted’ and CUL-2	  

depleted extracts.  A pulse of α-dATP was added for 3’ at either the 60’ or 3	  

120’ timepoints, and the incorporation of radiolabel into nascent DNA was 4	  

monitored after isolation of total DNA, indicating that replication proceeded 5	  

and completed with similar kinetics in both extracts, consistent with the data in 6	  

(d).  (f) Kinetics of chromatin association of the indicated factors for the same 7	  

experiment shown in (a-b).  Note that the MCM7 immunoblot is over-exposed 8	  

in order to reveal the ubiquitylated forms of the protein.  (g) Mock-depleted or 9	  

CUL2-depleted extracts were supplemented with the indicated recombinant 10	  

proteins (X.l. LRR1, wt/mutant Hs_CUL2-RBX1 – see Methods), and 11	  

chromatin was isolated from the 120’ timepoint in a similar experiment to that 12	  

described above.  Unprocessed scans of key immunoblots are shown in 13	  

Supplementary Figure 8. 14	  

 15	  
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Legends to Supplementary Information 

Supplementary Figure 1 

The CDC-48_UFD-1_NPL-4 complex is required for CMG helicase 

disassembly in C. elegans.  (a) cdc-48 RNAi leads to persistence of GINS and 

CDC-45 on chromatin during prophase and throughout mitosis (examples 

indicated by arrows).  (b) Adaptors of CDC-48 in C. elegans.  (c) ufd-1 RNAi 

leads to persistence of GINS and CDC-45 on chromatin during prophase and 

throughout mitosis (examples indicated by arrows).  (d) Equivalent experiment 

to that in Figure 1d, illustrating the effect of npl-4 RNAi on embryos expressing 

GFP-MCM-3.  To help visualise the small proportion of GFP-MCM-3 on 

chromatin in early metaphase (marked by an arrow), the experiment also 

included RNAi to the 3’UTR of endogenous MCM3 (this 3’ UTR is not present 

in the GFP-MCM-3 transgene), to increase the incorporation of GFP-MCM3 

into replication complexes.  (e) cdc-48 RNAi experiment, analogous to that in 

Figure 1d.  (f) Homozygous GFP-psf-1 worms were exposed to the indicated 

RNAi.  Embryos were then isolated and processed as in Figure 1e-f. The 

middle panels show that the amount of CMG isolated from RNR-1 depleted 

extract was reduced compared to control (compare levels of MCM-7, MCM-2 

and CDC-45), due to the inhibition of DNA replication in each embryonic cell 

cycle.  In the right panels, loading of the GFP-PSF-1 IP samples was adjusted 

to obtain a similar level of CMG (compare MCM-2 and CDC-45).  (g-h) 

Photobleaching experiments for GFP-SLD5 and GFP-MCM3, equivalent to the 

experiment in Figure 1h.  The scale bars correspond to 5µm.  Unprocessed 

scans of key immunoblots are shown in Supplementary Figure 8. 



 

Supplementary Figure 2 

CUL-2LRR-1 is required for removal of GINS from chromatin during S-phase in 

C. elegans.  (a) C. elegans contain six families of cullin complexes, each with 

a specific cullin and a unique set of substrate adaptors.  (b) Embryos from 

GFP-sld-5 mCherry-H2B worms were exposed to RNAi against the indicated 

cullins and processed as in Figure 2.  Timelapse images are shown from S-

phase to mid-prophase.  (c) Six forms of the CUL-2 ligase in C. elegans, each 

with a unique substrate adaptor.  (d) Embryos from GFP-sld-5 mCherry-H2B 

worms were exposed to RNAi against the indicated substrate adaptors of 

CUL-2 and processed as in Figure 2.  Timelapse images are shown from S-

phase to mid-prophase.  RNAi for zyg-11 produces meiotic defects and leads 

to abnormal nuclear morphology in the first embryonic cell cycle.  Arrows in 

this figure indicate the persistent association of GFP-SLD-5 with mitotic 

chromatin in embryos treated with npl-4 RNAi.  Scale bars correspond to 5µm.   

 

Supplementary Figure 3 

A new pathway for CMG helicase disassembly acts during mitosis.  (a) 

Embryos from GFP-psf-1 mCherry-H2B worms were exposed to the indicated 

RNAi and processed as in Figure 3.  Timelapse images of the first embryonic 

cell cycle are shown from S-phase to metaphase.  GFP-PSF1 initially persists 

on prophase chromatin following RNAi to components of CUL-2LRR-1 (the 

arrows denote examples), before being released in late prophase (indicated 

by asterisks).  (b) Extended timecourses for the GFP-SLD-5 data presented in 



Figure 2a-b.  (c) Data from the first cell cycle, for the experiment in Figure 3b.  

(d) Embryos from GFP-cdc-45 mCherry-H2B worms were exposed to the 

indicated RNAi and processed as above.  (e) Illustration of CMG disassembly 

defects produced either by depletion of CDC-48 / UFD-1 / NPL-4, or by 

depletion of components of CUL-2LRR-1.  Scale bars correspond to 5µm.   

  

Supplementary Figure 4 

The mitotic disassembly pathway for the CMG helicase requires UBXN-3 and 

is modulated by ULP-4.  (a) Embryos from GFP-sld-5 mCherry-H2B worms 

were exposed to the indicated RNAi and processed as in Figure 4a.  The 

arrows indicate persistent association of GFP-PSF1 with mitotic chromatin 

(throughout mitosis in the case of RNAi to npl-4, or after simultaneous RNAi to 

lrr-1 + ubxn-3), whereas the asterisk denotes release of GFP-PSF-1 from 

chromatin in late prophase in embryos treated only with lrr-1 RNAi. Scale bars 

correspond to 5µm.  (b) Embryos from GFP-cdc-45 mCherry-H2B worms 

were processed as for Figure 4b.  (c) Embryos from GFP-psf-1 mCherry-H2B 

worms were exposed to the indicated RNAi and processed as above.  The 

data correspond to the AB cell in the second cell cycle and CMG components 

remained on chromatin until at or after nuclear envelope breakdown in 3/5 

embryos treated with lrr-1 ulp-4 double RNAi. The panel shows an example of 

an embryo where CMG persists on chromatin until nuclear envelope 

breakdown upon co-depletion of LRR-1 and ULP-4. (d) Data from a similar 

experiment, corresponding to the EMS cell in the third cell cycle. Note that in 

this case we also depleted the ATL-1 checkpoint kinase, to shorten the 



otherwise long cell cycle delay that is induced by the combination of ulp-4 lrr-1 

double RNAi.  CMG components remained on chromatin until late metaphase 

in 5/5 embryos treated with lrr-1 ulp-4 atl-1 triple RNAi.  CMG was extracted 

normally from chromatin during S-phase in embryos subjected to ulp-4 atl-1 

double RNAi (5/5 embryos tested), whereas lrr-1 atl-1 double RNAi resembled 

lrr-1 single RNAi treatment (CMG extracted before the end of prophase in 5/5 

embryos).     

 

Supplementary Figure 5 

Additional supplementary material for experiments with Xenopus egg extracts. 

(a) In a similar experiment to that in Figure 6c, replisome disassembly was 

blocked during chromosome replication by addition of MLN4924 to Xenopus 

egg extracts.  After isolation of chromatin and digestion of DNA, 

immunoprecipitation of LRR1 led to co-depletion of CUL2. (b) Analysis of 

ongoing DNA synthesis at the indicated timepoints for the experiment in 

Figure 6e-f, by addition of short pulses of α-dATP (see Methods).  Data for 

repeats of this experiment are included in Supplementary Table 6.  (c) 

Replication kinetics for the experiment in Figure 6h, measured by monitoring 

total incorporation of α-dATP into nascent DNA by the indicated timepoints 

(see Methods).  Data for repeats of this experiment are included in 

Supplementary Table 6.  Unprocessed scans of key immunoblots from this 

Figure are shown in Supplementary Figure 8. 

 

Supplementary Figure 6 



CUL2 is very highly conserved in vertebrates.  Alignment of Xenopus CUL2 

with the human and mouse orthologues, showing that the mammalian and 

frog proteins are almost identical.  Moreover, previous work indicated that all 

key residues in CUL2 that contact EloB-C and substrate adaptors are 100% 

conserved between the human and frog orthologues1.   

 

Supplementary Figure 7 

Validation of new antibodies generated in this study for C. elegans proteins.  

(a-d) In each case, RNAi was used to deplete the corresponding protein, 

before immunoblotting of embryonic extracts (upper panels).  Ponceau S 

staining of the nitrocellulose membare (lower panels) provides a loading 

control in each case. 

 

Supplementary Figure 8 

Unprocessed scans of key immunoblots.  (a) Raw immunoblot data for Figure 

1e, with red boxes indicating the crops used to construct Figure 1e.  (b) 

Equivalent data for Figure 1f.  (c) Equivalent data for Figure 1g.  (d) 

Equivalent data for Figure 6d.  (e) Equivalent data for Figure 6h.  

 

Supplementary Table 1 

Factors targeted by RNAi in screen for components of the mitotic CMG 

disassembly pathway. 

 

Supplementary Table 2 



CUL-2LRR-1 associates with the isolated ‘post-termination’ replisome from C. 

elegans.  Summary of mass spectrometry data for experiment shown in 

Figure 5b. 

 

Supplementary Table 3 

LRR-1 is required for CUL-2 to associate with the ‘post-termination’ worm 

replisome.  Summary of mass spectrometry data for experiment shown in 

Supplementary Figure 5d.  

 

Supplementary Table 4 

CUL2LRR1 associates with the ‘post-termination’ frog replisome.  Summary of 

mass spectrometry data for experiment summarised in Figure 6a.  

 

Supplementary Table 5 

The ‘post-termination’ replisome associates with purified frog CUL2LRR1.  

Summary of mass spectrometry data for an equivalent experiment to that 

shown in Figure 6c.  

 

Supplementary Table 6 

Statistics Source Data.  Source data of all repeats of the experiments in 

Figure 6f, Figure 7d, Supplementary Figure 5b and Supplementary Figure 6g. 

 

Supplementary Table 7 

Antibody dilutions for immunoblots. 



 

Supplementary Table 8 

Sequence of oligonucleotide primers used to generate RNAi vectors for 

depletion of C. elegans proteins. 

 

Supplementary Movie 1 

The CMG helicase component PSF-1 does not associate with condensing 

chromatin during mitotic prophase or throughout mitosis.  Video of a single 

optical section through an embryo expressing GFP-PSF-1 (left panel) and 

mCherry-Histone H2B (right panel) progressing throughout the first and 

second embryonic cell cycles.  Images were acquired every 10 sec with a 

spinning disk confocal microscope and processed with ImageJ software.  The 

female and male pronuclei are orientated respectively towards the left and 

right of the video.   

 

Supplementary Movie 2 

GFP-PSF-1 associates with condensing chromatin during prophase in 

embryos depleted for NPL-4 and remains on chromatin throughout mitosis.  

Images were acquired and analysed as for Supplementary Movie 1.   

 

Supplementary Movie 3 

FRAP analysis of GFP-CDC-45 after depletion of NPL-4.  The movie was 

generated as above and shows an embryo expressing GFP-CDC-45 (left 

panel) and mCherry-Histone H2B (right panel).  The female pronucleus (left 



side of the embryo) was photobleached during early S-phase (shown as a 

white disk in the video at 1'50'') and the chromosomes from the female and 

male pronuclei were then analysed during the following mitosis (see 19'30'' to 

24'50'').  No recovery of the GFP-CDC-45 signal was observed on the female 

chromatin, indicating that depletion of NPL-4 causes CDC-45 to persist on 

chromatin from S-phase until the end of mitosis.   

 

Supplementary Movie 4 

GFP-PSF-1 associates with condensing chromatin during prophase in 

embryos depleted for CUL-2, but is then released from chromatin during late 

prophase.  Images were acquired and analysed as for Supplementary Movie 

1.  Note that depletion of CUL-2 leads to meiotic defects in the embryo and 

thus to abnormal nuclear morphology, reflecting the important role of CUL-

2ZYG-11 during the second meiotic cell division 2,	  3.  In addition, mitotic entry is 

delayed in the first embryonic cell cycle after depletion of CUL-2.   

 

Supplementary Movie 5 

GFP-PSF-1 associates with condensing chromatin during prophase in 

embryos depleted for LRR-1, but is then released from chromatin during late 

prophase.  Images were acquired and analysed as for Supplementary Movie 

1.  The association of GFP-PSF-1 with prophase chromatin can be seen in 

the first embryonic cell cycle (P0 cell) from 3'20'' to 5'50'' and during the 

second cell cycle from 24'30'' to 26'10'' for the AB cell (left side of embryo) or 

from 27'30'' to 29'10'' for the P1 cell (right side). 



  

Supplementary Movie 6 

GFP-PSF-1 remains on chromatin throughout mitosis in embryos depleted for 

both UBXN-3 and LRR-1.  Images were acquired and analysed as for 

Supplementary Movie 1.   

 

Supplementary Movie 7 

GFP-PSF-1 is released from chromatin before prophase in ubxn-3 RNAi 

embryos.  Images were acquired and analysed as for Supplementary Movie 1.   
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Protein Properties
AIR-‐2 Aurora	  protein	  kinase
PLK-‐1 Polo	  protein	  kinase
CYB-‐3 Cyclin	  B
CYA-‐1 Cyclin	  A
GSK-‐3 GSK3	  protein	  kinase
MBK-‐2 MBK2	  protein	  kinase
BRC-‐1 BRCA1	  orthologue
BRD-‐1 BARD1	  orthologue
D2085.4 HECT	  ligase	  (meiosis)
SMC-‐5 SMC5-‐6	  complex
NSE-‐1 SMC5-‐6	  complex
C32D5.10 RING	  (RNF146	  orthologue)
C32D5.11 RING	  (Pex10	  orthologue)
EEL-‐1 HECT	  ligase
Y47G6A.31 RING	  (homology	  with	  RNF4)
SPAT-‐3 RING	  (H2A	  ubiquitylation)
MIG-‐32 RING	  (H2A	  ubiquitylation)
RNF-‐113 RNF113	  orthologue
VPS-‐11 VPS11	  orthologue
TO1G5.7 RING	  (homology	  with	  RNF8)
ATL-‐1 ATR	  checkpoint	  protein	  kinase
ATM-‐1 ATM	  checkpoint	  protein	  kinase
SMC-‐4 Condensin
PIF-‐1 DNA	  helicase
DVC-‐1 Spartan	  protease
SMO-‐1 SUMO
UBC-‐9 SUMO	  E3	  enzyme
ULP-‐4 Major	  mitotic	  SUMO	  protease



Protein Total	  spectral	  counts	  for	  control	  IP	  (npl-‐4	  RNAi)
MCM-‐2	  (99	  kDa) 62
MCM-‐3	  (91	  kDa) 167
MCM-‐4	  (92	  kDa) 87
MCM-‐5	  (85	  kDa) 137
MCM-‐6	  (91	  kDa) 70
MCM-‐7	  (82	  kDa) 150
CDC-‐45	  (66	  kDa) 12
PSF-‐1	  (23	  /	  54	  kDa) 3
PSF-‐2	  (20	  kDa) 15
PSF	  -‐3	  (22	  kDa) 2
SLD-‐5	  (26	  kDa) 0

CTF-‐4	  (123	  kDa) 12
SPT-‐16	  (117	  kDa) 14
SSRP-‐1A/B	  (79/78	  kDa) 0	  /	  2
CTF-‐18	  (97	  kDa) 0
TIM-‐1	  (157	  kDa) 0
TIPIN	  (27	  kDa) 0
TOPO-‐2	  (172	  kDa) 5
CLASPIN	  (85	  kDa) 0
POLE1	  (245	  kDa) 37
POLE2	  (59	  kDa) 8

CUL-‐2	  (98	  kDa) 26
LRR-‐1	  (51	  kDa) 0



Total	  spectral	  counts	  for	  PSF-‐1	  IP	  (npl-‐4	  RNAi)
1244
1110
967
1381
1065
1577
563
1624
335
399
516

94
714

124	  /	  229
53
624
74
37
51
211
33

156
67



Protein Total	  spectral	  counts	  for	  PSF-‐1	  IP	  (npl-‐4	  RNAi)
MCM-‐2	  (99	  kDa) 585
MCM-‐3	  (91	  kDa) 655
MCM-‐4	  (92	  kDa) 493
MCM-‐5	  (85	  kDa) 682
MCM-‐6	  (91	  kDa) 483
MCM-‐7	  (82	  kDa) 1088
CDC-‐45	  (66	  kDa) 219
PSF-‐1	  (23	  /	  54	  kDa) 1033
PSF-‐2	  (20	  kDa) 274
PSF	  -‐3	  (22	  kDa) 319
SLD-‐5	  (26	  kDa) 338

CTF-‐4	  (123	  kDa) 64
SPT-‐16	  (117	  kDa) 246
SSRP-‐1A/B	  (79/78	  kDa) 66	  /	  111
CTF-‐18	  (97	  kDa) 32
TIM-‐1	  (157	  kDa) 380
TIPIN	  (27	  kDa) 51
TOPO-‐2	  (172	  kDa) 15
CLASPIN	  (85	  kDa) 24
POLE1	  (245	  kDa) 51
POLE2	  (59	  kDa) 27

CUL-‐2	  (98	  kDa) 95
LRR-‐1	  (51	  kDa) 81



Total	  spectral	  counts	  for	  PSF-‐1	  IP	  (lrr-‐1	  npl-‐4	  RNAi)
800
688
552
644
630
827
211
908
217
260
203

73
343

80	  /	  153
12
319
16
16
20
88
29

20
5



Protein Total	  spectral	  counts	  for	  control	  IP
MCM2	  (100	  kDa) 17
MCM3	  (90	  kDa) 17
MCM4	  (97	  kDa) 7
MCM5	  (82	  kDa) 30
MCM6	  (93	  kDa) 39
MCM7	  (82	  kDa) 24
CDC45	  (66	  kDa) 2
PSF1	  (23	  kDa) 0
PSF2	  (21	  kDa) 0
PSF	  3	  (24	  kDa) 0
SLD5	  (26	  kDa) 0

CTF4	  (125	  kDa) 6
SPT16	  (118	  kDa) 3
SSRP	  (79	  kDa) 0
TIMELESS	  (149	  kDa) 0
TIPIN	  (40	  kDa) 0
TOP2a	  (179	  kDa) 6
CLASPIN	  (146	  kDa) 0
POLA1	  (165	  kDa) 0
POLA2	  (67	  kDa) 0
POLE1	  (261	  kDa) 2
POLE2	  (60	  kDa) 0
CTF18	  (113	  kDa) 0
RFC3	  (40	  kDa) 4
RFC4	  (40	  kDa) 2
RFC2	  (38	  kDa) 0

p97	  /	  CDC48	  (89	  kDa) 0
UFD1	  (35	  kDa) 0
NPL4	  (69	  kDa) 0

CUL2	  (87	  kDa) 0
LRR1	  (47	  kDa) 0
Elongin	  B	  (13	  kDa) 0
Elongin	  C	  (12	  kDa) 0



Total	  spectral	  counts	  for	  MCM3	  IP
975
1111
947
927
888
905
277
62
33
55
44

554
453
229
171
54
484
72
109
7

543
103
172
36
31
27

361
4
19

101
46
5
7



Protein Total	  spectral	  counts	  for	  control	  IP
CUL2	  (87	  kDa) 14
LRR1	  (47	  kDa) 8
Elongin	  B	  (13	  kDa) 0
Elongin	  C	  (12	  kDa) 0

MCM2	  (100	  kDa) 47
MCM3	  (90	  kDa) 47
MCM4	  (97	  kDa) 30
MCM5	  (82	  kDa) 46
MCM6	  (93	  kDa) 68
MCM7	  (82	  kDa) 50
CDC45	  (66	  kDa) 14
PSF1	  (23	  kDa) 2
PSF2	  (21	  kDa) 0
PSF	  3	  (24	  kDa) 2
SLD5	  (26	  kDa) 2

CTF4	  (125	  kDa) 42
SPT16	  (118	  kDa) 29
SSRP	  (79	  kDa) 6
TIMELESS	  (149	  kDa) 0
TIPIN	  (40	  kDa) 0
TOP2a	  (179	  kDa) 20
CLASPIN	  (146	  kDa) 2
POLA1	  (165	  kDa) 0
POLA2	  (67	  kDa) 0
POLE1	  (261	  kDa) 3
POLE2	  (60	  kDa) 4
CTF18	  (113	  kDa) 7

p97	  /	  CDC48	  (89	  kDa) 0



Total	  spectral	  counts	  for	  LRR1	  IP
748
197
20
26

275
252
190
243
251
216
128
25
17
21
25

350
136
40
62
26
283
107
17
2

145
31
29

16
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