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Abstract 
Flexible control over currently relevant sensory representations is an essential feature of primate 

cognition. We investigated the neurophysiological bases of such flexible control in humans during an 

intermodal working memory task in which participants retained visual or tactile sequences. Using 

magnetoencephalography, we first show that working memory retention engages early visual and 

somatosensory areas, as reflected in the sustained load-dependent suppression of alpha and beta 

oscillations. Next, we identify three components that are also load-dependent, but that are modality 

independent: medial prefrontal theta synchronization, fronto-parietal gamma synchronization, and 

sustained parietal event-related-fields. Critically, these domain-general components predict (across 

trials and within load conditions) the modality-specific suppression of alpha and beta oscillations, with 

largely unique contributions per component. Thus, working memory engages multiple complementary 

fronto-parietal components that have discernible neuronal dynamics and that flexibly modulate 

retention-related activity in sensory areas in a manner that tracks the current contents of working 

memory. 
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Introduction 

The ability to dynamically regulate different sensory representations as a function of ongoing task 

demands is an essential feature of primate cognition that enables adaptive behaviour. Such flexible 

cognitive control is widely believed to be mediated by the same (domain-general) frontal and parietal 

brain areas whose regulatory influence over other brain areas is continuously aligned to match current 

task demands (e.g. Corbetta and Shulman, 2002; Duncan, 2010; Gazzaley and Nobre, 2012; Squire et 

al., 2013). Despite this widely accepted notion, however, little evidence to date has confirmed within a 

single experiment that the same fronto-parietal substrates of cognition can flexibly control activity in 

different sensory modalities as a function of what is currently relevant. Moreover, while frontal and 

parietal areas consistently “light up” in human fMRI studies of cognition, little remains known about 

the neurophysiological substrates of fronto-parietal control in humans. We therefore set out to 

investigate the neurophysiology of flexible fronto-parietal control in humans, and did so in relation to 

working memory. 

 Working memory pertains to the core cognitive ability to temporarily retain and manipulate 

information in mind, for as long as this information remains relevant to current goals (e.g. Baddeley, 

1992, 2012; D’Esposito and Postle, 2015). A common aspect of the many models of working memory 

is that working memory relies on one or more central executive control components that can flexibly 

regulate representations in distinct storage components, depending on what information is currently 

relevant (e.g. Baddeley, 1992, 2012). Over the past decade, neuroscience has colored this picture by 

demonstrating that the latter can engage even primary sensory areas (Pasternak and Greenlee, 2005; 

Harrison and Tong, 2009; Spitzer and Blankenburg, 2012) – at least when the sensory properties of the 

information are retained (Lee et al., 2013). Accordingly, it has been proposed that the frontal and 

parietal substrates that have traditionally been associated with working memory (e.g. Fuster and 

Alexander, 1971; Smith and Jonides, 1999) reflect domain-general executive control components that 

regulate representation-specific activity in early sensory areas (Sreenivasan et al., 2014; Lara and 

Wallis, 2014; D’Esposito and Postle, 2015). 

 While this framework for understanding the neural implementation of working memory is 

highly appealing, not many studies to date have directly substantiated its central hypothesis that the 

same fronto-parietal substrates of working memory can flexibly regulate activity in distinct sensory 

modalities, depending on what information is currently held in working memory. This is because most 

prior studies (1) presented information in a single sensory modality (making it hard to distinguish 

domain-general control from representation-specific components) and (2) focused on either fronto-

parietal or sensory substrates (not addressing whether they co-occur, let alone, interact; but see 

Gazzaley et al., 2004; Rissman et al., 2007). In addition, the majority of prior studies in humans that 

support this framework are fMRI studies (as reviewed in e.g. D’Esposito and Postle, 2015; with some 

notable exceptions: e.g. Palva et al., 2010). Accordingly, the following key questions have remained 

largely unaddressed: (1) does “activation” of different frontal-parietal areas engage similar 

neurophysiological (time/frequency) profiles, or do different fronto-parietal areas engage qualitatively 

distinct neurophysiological processes? (2) Are the same neurophysiological processes engaged for top-

down control over different sensory modalities, or are these processes modality-specific? (3) How do 

neural dynamics in fronto-parietal areas relate to neuronal dynamics in modality-specific brain areas? 

To investigate these questions regarding neurophysiological substrates of flexible fronto-

parietal control during working memory in humans, we capitalized on the high temporal resolution 

and whole-head coverage of magnetoencephalography, and adopted an intermodal working memory 

task in which the same working memory operations (retaining a sequence of 2 or 4 items) were 

required on either visual or tactile representations. We first confirm that working memory engages 

early visual and somatosensory areas, and show that this is reflected in the sustained suppression of 

alpha and beta (8-30 Hz) oscillations in the relevant sensory area that, moreover, scales with load. We 

next identify three electrophysiological substrates of working memory (frontal theta synchronization, 

medial fronto-parietal gamma synchronization, and a sustained parietal elevation in magnetic field 

strength) that each also scale with load, but that are largely independent of its contents. Finally, and 

addressing our central hypothesis, we demonstrate that each of these supramodal components predict, 

in a largely unique manner, the activity modulations in early sensory areas – with the pattern of 

correlation tracking the contents of working memory. 
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Materials and Methods 
 

This study was conducted in accordance with guidelines of the local ethics committee (Committee on 

Research Involving Human Subjects, Region Arnhem-Nijmegen, The Netherlands). 

 

Participants 

16 healthy human volunteers (4 female, age range 24-37, all right handed) participated in the study 

after providing informed consent. Participants received 10 euro/hour for their participation. Data from 

all participants were retained in the analysis. 

 

Task and procedure 

Participants performed an intermodal working memory task with visual and tactile sequences (Fig. 1), 

while seated in the MEG. In different blocks, participants were required to reproduce either the visual 

or the tactile sequences after a four second retention interval. Visual sequences were produced by 

sequentially lighting up four out of eight placeholders that were positioned around a central fixation 

cross. Similarly, tactile sequences were produced by sequentially tapping four out of eight possible 

fingers (see Visual and tactile stimulation details for details). Visual and tactile sequences were 

always presented together, but their sequences were drawn independently of each other. Both 

sequences always contained four unique items. Within visual and tactile blocks, working memory load 

was varied across three miniblocks of eight trials each (Fig. 1b). In load 2 miniblocks, participants 

were required to reproduce only the first two items of the sequence, while in load 4 miniblocks they 

were required to reproduce all four items. Finally, in load 4* miniblocks, they were again required to 

reproduce all four items, but could do so in arbitrary order (and we confirmed that this manipulation 

worked in our behavioral data; see Results). Instructions were provided through a visual display that 

required the participant’s response in order to start the (mini)block. It is key to note that across all 

conditions (tactile/visual, loads 2/4/4*), sensory input was matched (i.e. only instructions varied). 

 Twenty-five percent of all trials served as non-working memory control trials. In these trials, 

the fixation cross turned red (instead of green) at the onset of the sequence and participants were 

instructed not to retain the items but instead to base their responses on information provided at the 

reproduction stage (as described below). The fixation cross remained red or green until the end of the 

retention interval. Control trials were randomly interleaved with working memory trials and were 

equally distributed across the miniblocks. 

 At the reproduction stage, a visual display depicted all possible response options for that block 

(visual or tactile; see Fig. 1a), together with a response cursor (a white line) beneath one of them. To 

avoid response preparation during the retention interval, we drew the cursor’s starting position 

randomly. Participants moved the cursor clockwise or counterclockwise by pressing a button with 

their right or left thumb, and selected a response option by pressing both buttons within a 75 ms 

timeframe. In control trials, the to-be-selected responses were indicated by dots inside the requested 

response options. Participants sequentially selected two or four options depending on the load 

miniblock they were in (also in the control trials that were presented in this miniblock). After an item 

was selected, the selection could not be undone. Feedback was presented after every selection, by 

flashing the selected option green (correct) or red (incorrect) for 100 ms. The interval between the last 

response and the start of the next trial was randomly drawn from a truncated negative exponential 

distribution (truncated between 1 and 4 s) with a mean of 1500 ms. 

 All participants completed two sessions of one hour with a 15-30 minute break in between. 

Each session contained 10 blocks (5 visual, 5 tactile) of 24 trials. Between blocks, we presented visual 

and tactile localizers, during which participants were instructed to relax. Localizer stimuli involved 

stimulation of all eight visual placeholders or all eight fingers and lasted 100 ms each. Visual and 

tactile stimuli were randomly interleaved, and inter-stimulus-intervals were randomly drawn between 

500-700 ms. Each localizer contained 100 stimuli (50 visual, 50 tactile).  

 

Visual and tactile stimulation details 

Visual displays were projected to a screen that was positioned approximately 70 cm in front of the 

participant’s eyes. We placed eight placeholders (small squares of approximately 0.3 degrees visual 

angle) on an invisible oval that was centered at the fixation cross (Fig. 1a). Placeholders appeared 



 
 

Page 4 of 25 
 

immediately after the response in the previous trial. The dimensions of the oval were approximately 5 

degrees visual angle in width and 2 degrees in height. Placeholder locations were varied from trial to 

trial, with the constraint that individual placeholders were at least 25 degrees apart on the 

circumference of the oval (which spans 360 degrees). Placeholders were gray (RGB values; 15, 15, 

15) and were set to purple (RGB values: 20, 4, 30) for 100 ms for visual stimulation.  

For tactile stimulation, we made use of two custom-built graspable tactile stimulation devices 

(as also described and depicted in van Ede et al., 2011), one for each hand. Each device contained five 

piezoelectric braille cells (Metec, Stuttgart, Germany), each with 8 plastic pins that can be raised and 

lowered. When being raised, this produces the sensation of a tap to the finger. We positioned all 

fingertips on a separate (adjustable) braille cell, but excluded the thumbs. Instead, at the thumbs, each 

stimulation device contained a response button that was used for sequence reproduction.  

Visual and tactile sequences were always presented simultaneously and each consisted of 4 

individual stimulations of 100 ms, with 366 ms inter-stimulus-intervals, thus yielding sequences of 

1500 ms. 

 

MEG acquisition and preprocessing 

Data were acquired using a CTF MEG system that contained 275 axial gradiometers and that was 

housed in a magnetically shielded room. Localization coils at the nasion, the left and the right ear 

continuously monitored the position of the head relative to the gradiometers. Data were sampled at 

1200 Hz, and were analyzed in Matlab using FieldTrip (Oostenveld et al., 2011). During data 

preprocessing, we removed line noise using a discrete Fourier Transform filter, cut out our epochs of 

interest, and subtracted the average signal per epoch (i.e. de-meaning). For analyses of event-related 

fields (ERFs), we instead baseline-corrected the signal by subtracting a 1000 ms pre-sequence 

baseline. Excessively noisy trials were excluded in two ways. First, noisy trials were detected by 

visual inspection of the signal’s variance across trials and channels. Second, for all analysis involving 

a single (extracted) value per trial, we additionally removed trials for which this value was more than 

three standard deviations away from all other trials. For sensor-level analyses of oscillatory power, we 

calculated synthetic planar gradients of the signal, which are known to be maximal above the sources 

(Bastiaansen and Knosche, 2000). Horizontal and vertical gradients were combined (summed) after 

power was calculated. For ERF analyses, we did not perform this planar gradient transformation 

because it removes information about the in- and outflux of the source-generated magnetic fields 

(which are relevant to interpreting ERFs, but not power). 

 

Frequency analyses 

We calculated oscillatory power with and without time resolution. For analyses without time 

resolution, we estimated power across the full four second retention interval for four a-priori defined 

frequency-bands that were non-overlapping. For theta we used 4-7 Hz. We based this range on the 4-8 

Hz band put forward by Hsieh and Ranganath (2014), but stopped at 7 Hz to avoid overlap with the 8-

12 Hz alpha band. For alpha and beta, we used the standard bands from 8-12 Hz and 13-30 Hz. 

Finally, for gamma, we used 55-75 Hz based on our own prior study that had revealed a prominent 

gamma source in this range (van Ede et al., 2014; note that this band is also very close to the 60-80 Hz 

band identified by Roux et al., 2012). We combined Fourier analysis with multi-tapering (Percival 
and Walden, 1993) to achieve the desired spectral smoothing in each of these bands. For all analyses 

with time resolution, we used a 1000 ms sliding time window that was advanced in steps of 200 ms 

across the epochs of interest. For time-resolved analyses of frequencies below 50 Hz we applied ± 2 

Hz smoothing, while for frequencies above 50 Hz we applied ± 5 Hz smoothing.  

 

Source analyses 

We placed grids with 0.75 cm3 spacing inside a standardized MNI anatomy – yielding 5341 voxels 

inside anatomical boundaries. For each participant, we then warped this grid to match their individual 

structural MRI. Per voxel, a leadfield matrix was calculated using a forward model based on a single 

shell volume conductor (Nolte, 2003). For the different frequency bands of interest, we then used a 

frequency-domain beamformer (DICS; Gross et al., 2001) to reconstruct source-level power. Source-

level power was subsequently contrasted between conditions. 
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 For the sustained ERF component, a comparable beamforming approach in the time-domain 

(LCMV) did not yield interpretable source reconstructions. There are two plausible reasons for this. 

First, although the effect topographies (working memory minus control) were relatively clean, the 

topographies observed in the individual conditions (from which only the pre-sequence baseline had 

been subtracted) were much noisier. This noise will have affected the source reconstructions of the 

individual conditions, and the degree to which this has happened may have corrupted the between-

condition contrast to such a degree that it does not look focal anymore. Second, and equally important, 

the source of this sustained ERF component may have had a wide spatial distribution. Distributed 

sources are a form of correlated sources, and for this type of sources it is known that the beamformer 

performs poorly (van Veen et al, 1997). To deal with these challenges, we resided to a source 

reconstruction approach that is not adversely affected by correlated sources (but is inferior to the 

beamformer when sources are actually uncorrelated). This approach is a form of signal subspace 

projection. Specifically, per voxel, we calculated the proportion of variance in the average effect 

topography (working memory minus control trials, averaged across the full retention interval) that 

could be explained by a linear combination of the three leadfields associated with that voxel. This 

proportion of explained variance was expressed as an R2-value, and it resulted in one source-level R2-

map per participant. 

 

Analysis strategy and statistics 

For all neurophysiological components of interest (theta / alpha / beta / gamma / sERF), we first 

contrasted these components between working memory and control trials with regard to their average 

strength across the full four second retention interval. We did this both at the sensor- and the source-

level. For the oscillatory components (theta, alpha, beta, and gamma), we further normalized this 

difference, by expressing it as a percentage change: ((wm-control) / control)*100. We then statistically 

evaluated these contrasts at the source-level using a cluster-based permutation approach. This 

approach circumvents the multiple-comparisons problem by evaluating the full dataspace under a 

single permutation distribution with regard to the largest cluster of neighboring values that exceed the 

univariate threshold of p < 0.05 (Maris and Oostenveld, 2007, for details). Because for the sustained 

ERF component, we only obtained a single source-level map of R2 values per participant (for reasons 

explained above in Source Analyses), the same statistical source-level comparison between working 

memory and control trials was not possible. We instead based our statistical analysis of this 

component on a leave-one-out approach that we will explain and justify in more detail below.  

 Following our evaluation of the presence of a retention-related source (i.e. working memory 

minus control) in the different frequency bands of interest, we next turned to the temporal and spectral 

profiles of these components, as well as their dependence on working memory modality and load. For 

reasons explained below, this involved a slightly different procedure for the different components of 

interest. 

 To further explore the profile of the observed alpha and beta band modulations in the sensory 

areas, we were able to define participant-specific visual and somatosensory regions of interest (ROIs) 

on the basis of an independent localizer. Specifically, we contrasted 8-30 Hz power in the 150-400 ms 

post-stimulus window between visual and tactile localizer stimuli and assigned the 300 voxels (5.6 % 

of the total volume) that showed the largest positive difference to the somatosensory ROI and the 300 

voxels that showed the largest negative difference to the visual ROI. We could then reconstruct 

activity in these ROIs to map out their time-frequency profiles, as well as their load and modality 

dependence with regard to 8-30 Hz power. To this end, we (1) reconstructed the time-domain activity 

for each of the selected voxels (by multiplying the data with the beamformer-derived filters for those 

voxels), (2) subjected all virtual channels to the desired frequency analysis, and (3) averaged the 

resulting power estimates across all voxels within that ROI.  

 For the other components of interest, we did not have a localizer and we therefore required a 

different approach. For the theta and the gamma components, we reconstructed activity from the 

significant source-level clusters that were obtained by comparing all working memory and all control 

trials. For theta, this involved a cluster of 343 voxels (6.4% of the total volume), and for gamma of 

350 voxels (6.6%). Importantly, because we selected these clusters on the basis of a statistically 

significant difference between working memory and control trials, subsequent analyses evaluating this 

particular difference will be biased by this selection. In our analysis, this was the case only for the 
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analyses of the time-frequency profiles of these modulations. We therefore presented these profiles 

only for descriptive purposes and did not use them for statistical inference. At the same time, it is 

important to note that two other analyses of interest remain unbiased by this selection. First, this holds 

for the comparison between load and modality conditions, because the clusters were found on the basis 

of all working memory conditions collapsed (with an equal number of trials in each). Second, this also 

holds for the correlation analyses between, on the one hand, the sensory-specific working memory 

components, and on the other hand, the supramodal theta and gamma components. The latter holds 

because the clusters were found on the basis of the trial-averaged difference between working memory 

and control trials, rather than on the basis of the covariance of any trial-specific values with any other 

variable. 

 For the analysis of the sustained ERFs, we employed a slightly different approach. This was 

driven by the facts that for this component (1) we were not able to test for a significant source-level 

cluster, as we were only able to obtain a single (effect-topography based) R2-map per participant, and 

(2) the individual topographical effect maps revealed vast across-participant variability that was likely 

driven by differently oriented sources. Instead of reconstructing this sustained ERF component on the 

basis of a significant group level source cluster, we therefore reconstructed it on the basis of the 

participant-specific sensor-level effect topographies. Specifically, we used a leave-one-out approach 

that allowed us to leverage participant-specific information, while avoiding double dipping. In this 

approach, for every given trial, we obtained a spatial filter from the effect topography of all remaining 

trials for that participant. We started from the difference between the average working memory and the 

average control trials, which we calculated using all trials except one (which could be a working 

memory or a control trial). We then subjected this difference (dimensions: channels x time points) to a 

singular value decomposition (SVD), and used the spatial weights associated with the component with 

the highest singular value as a spatial filter (dimensions: channels x 1). Applying this filter to the 

remaining trial allowed us to estimate the time course of this trial’s sustained ERF component. We 

applied this procedure separately for every trial. Because this leave-one-out approach provides an 

unbiased selection of the relevant dataspace, all subsequent comparisons (including those of the 

reconstructed time courses itself) remained unbiased.   

 

Between-component correlation analyses 

Across-trial correlations between all observed neurophysiological components were calculated with 

regard to their reconstructed trial-wise strengths, averaged across the full retention interval. 

Correlations were evaluated exclusively on working memory trials, and were calculated separately for 

each session, and subsequently averaged (as for all other outcome measures). To evaluate across-trial 

correlations within each of the load conditions, we calculated these correlations separately for each of 

the load conditions, and subsequently averaged the resulting correlations. 

 Prior to calculating the between-component correlations, we regressed out the contribution of 

two main potential sources of correlated variability: time-on-task and head position. For time-on-task, 

we used the trial number within the session as a regressor. For head position, we first subjected the 

time courses of the 9 head movement parameters (x, y, z, for each of the three localization coils) to an 

SVD analysis, and retained the component with the largest singular value. Per trial, this component 

was averaged across the retention interval, and the resulting variable was then used as a regressor to 

remove its contribution to the neurophysiological components. 

 Our main focus was on the correlation between each of the observed supramodal components 

(theta / gamma / sustained ERF) and the sensory-specific modulation in 8-30 Hz power. We evaluated 

these correlations separately for power in the alpha and the beta bands, and did this once for all 

channels, and once with regard to the average power in the participant-specific visual and 

somatosensory ROIs. We also evaluated this correlation for a combined predictor that was obtained by 

z-normalizing across trials the strengths of each of the supramodal predictors (i.e., subtracting the 

mean and dividing by the standard deviation), and summing their trial-specific z-values. We focused 

on the difference in this correlation between visual and tactile working memory trials, and we did so 

for two reasons: (1) to zoom in on our hypothesis that the same supramodal component correlates with 

activity in different sensory areas as a function of what is currently held in memory, and (2) to increase 

sensitivity by subtracting out sources of common variance that are unrelated to the WM task 

(fluctuations in arousal, head movements, etc.). 
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Results 
 

Working memory tasks and performance  

16 healthy human volunteers performed an intermodal working memory task with simultaneously 

presented visual and tactile sequences (Fig. 1a) while their electrophysiological brain activity was 

recorded using magnetoencephalography (MEG). Visual sequences consisted of small squares that lit 

up around the fixation cross, and tactile sequences consisted of taps to different fingers across both 

hands. In different blocks, participants reproduced either the visual or the tactile items after a four 

second retention interval (Fig. 1a,b). Working memory load and sequencing were varied by instructing 

participants to reproduce either the first two (load 2) or all four (load 4) items of the sequence (in the 

presented order), or all four items while neglecting the order (load 4*; Fig. 1b). A subset of the trials 

served as non-working memory control trials in which the fixation cross turned red and participants 

were instructed not to retain the items (Materials and Methods for further details). 

 Participants performed both the tactile and the visual tasks well above chance level: on 

average, 83.3 ± 1.7 % (mean ± 1 SE) of all items were correctly reproduced (Fig. 1c). An analysis of 

variance further revealed that performance was higher for visual than for tactile items (main effect of 

modality: F(1,15) = 51.91, p = 3.05e-6, ηp
2 = 0.78) and that performance was lower with load 4 than with 

loads 2 and 4* (main effect of load: F(2,30) = 78.61, p = 1.8e-12, ηp
2 = 0.84; load 4 vs 2: t(15) = -10.99; p = 

1.43e-8, d = -2.75, CI = [-15.31, -10.34]; 4 vs 4*: t(15) = -9.75, p = 6.93e-8, d = -2.44, CI = [-15.25, -

9.78]), while loads 2 and 4* did not differ (4* vs 2: t(15) = -0.29, p = 0.78, d = -0.07, CI = [-2.6, 1.98]). 

The performance data also confirmed that participants disregarded the sequence-order in the load 4* 

condition: while 89.4 ± 1.2 % of the items were correctly reported in this condition, only 27.4 ± 0.6 % 

of the items were correctly reported in the presented order (see inserted error bars in Fig. 1c). 
 

 

Fig. 1 
 

<Figures WITH captions to be found at the bottom of the document> 
 

Tactile and visual working memory engage early sensory areas, as reflected in the sustained 

suppression of alpha and beta oscillations  

Figure 2a shows the topographical maps of working memory-related changes in power in the alpha (8-

12 Hz) and the beta (13-30 Hz) frequency bands, estimated over the entire four second retention 

interval and collapsed across load conditions. Relative to control trials, a marked suppression of power 

is observed during both tactile and visual working memory. Critically, this suppression involves 

distinct topographies: during tactile working memory retention (leftmost topographies), power is 

predominantly suppressed in central sites, whereas during visual working memory retention (middle 

topographies) this is the case in posterior sites. Indeed, the direct comparison between tactile and 

visual working memory (rightmost topographies), confirms a clear separation between power 

modulations in central and posterior sites, with power being lower in the central sites during tactile 

working memory (blue in the depicted contrast), and lower in posterior sites during visual working 

memory (red in the depicted contrast). This is similarly evident in both the alpha (top row) and the 

beta (bottom row) frequency bands, and for this reason we consider them jointly (i.e. 8-30 Hz) in 

subsequent analyses. 
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 We next studied the sources and statistical significance of these modulations. For this, we 

calculated the same contrast between tactile and visual working memory for reconstructed source 

power, and statistically evaluated this difference across all voxels using a cluster-based permutation 

analysis (Materials and Methods for details). This confirmed two significant clusters (Fig. 2b): one 

sensorimotor cluster encompassing left and right primary somatosensory areas (cluster p = 0.001), and 

one occipital cluster encompassing left and right early visual areas (cluster p = 0.007). Although 

cluster-level p-values cannot be used for spatially-specific statistical inference (Maris, 2012), this 

result strongly suggests that during the retention of tactile items, 8-30 Hz power is more suppressed in 

primary sensorimotor areas, whereas during the retention of visual items 8-30 Hz power is more 

suppressed in early visual areas (see also Fig. 6a). 

 We next characterized the time-frequency profile of the sensory-specific power modulations in 

the somatosensory and visual areas using a Region of Interest (ROI) approach. A somatosensory and 

visual ROI were each extracted from an independent localizer (Materials and Methods for details). For 

both ROIs, we contrasted trials in which the items in working memory were relevant or irrelevant to 

the ROI. As depicted in Figure 2c, for both ROIs collapsed (left panel) as well as for each ROI 

separately (middle and right panels), this confirmed that the modality-specific power modulations are 

most pronounced in the 8-30 Hz band, are largely sustained throughout the four second retention 

interval, and are highly similar in each ROI. Although the depicted contrasts also suggests that the beta 

suppression diminishes toward the end of the retention period, complementary contrasts with the 

control condition showed that, instead, this modulation does persist but becomes less modality specific 

(Fig. 2d). 

 Finally, we investigated to what extent the identified power modulations in the sensory areas 

depend on working memory load. As depicted in Figure 2e, in both the somatosensory and the visual 

ROIs, power was more suppressed with higher load, but only when the items in working memory were 

relevant to the ROI (i.e. tactile working memory for the somatosensory ROI and visual working 

memory for the visual ROI). This was confirmed by a significant 3-way interaction between the 

factors ROI, modality, and load (F(2,30) = 36.75, p = 8e-8, ηp
2 = 0.71). Breaking this down for power 

modulations in the somatosensory ROI during tactile working memory, 8-30 Hz power is more 

suppressed with loads 4 and 4*, compared with load 2 (4 vs 2: t(15) = -5.84, p = 3.24e-5, d = -1.46, CI = 

[-14.1, -6.55]; 4* vs 2: t(15) = -7.63, p =1.53e-6, d = -1.91, CI = [-14.66, -8.26]), whereas loads 4 and 4* 

are not significantly different (t(15) = 1.55, p = 0.14, d = 0.39, CI = [-0.43, 2.71]). The same pattern of 

load-dependence occurs in the visual ROI during visual working memory (4 vs 2: t(15) = -6.55, p = 

9.23e-6, d = -1.64, CI = [-15.18, -7.73]; 4* vs 2: t(15) = -8.21, p = 6.27e-7, d = -2.05, CI = [-16.76, -

9.85]; 4 vs 4*: t(15) = 1.57, p = 0.14, d = 0.39, CI = [-0.66, 4.36]). 
  

 Fig. 2 
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In sum, the tactile and visual working memory tasks engaged, respectively, early somatosensory and 

visual areas, and this covert sensory recruitment is reflected in the sustained suppression of 8-30 Hz 

oscillations that scales with the amount of items held in working memory. 

 

Frontal and parietal theta and gamma synchronization, as well as a sustained ERF, reflect three 

supramodal substrates of working memory 

Theta oscillations (4-7 Hz) 

We next analyzed working memory-related modulations in the theta band by comparing working 

memory with control trials with regard to power in the 4-7 Hz theta band (See Materials and Methods 

for frequency band justification). In contrast to the 8-30 Hz band, this revealed a very different picture 

(Fig. 3). While we observed prominent modulations also in this lower frequency band, this time their 

topographical maps were highly similar during tactile and visual working memory (see also Fig. 6b). 

In both cases, theta power is elevated in the same set of frontal sites (Fig. 3a, top). At the source-level, 

this is reflected in a significant cluster (cluster p = 0.031) that encompasses medial prefrontal areas 

(Fig. 3a, bottom; Fig. 6b). The time-frequency profile extracted from this prefrontal source-cluster 

(Fig. 3b) confirms that this modulation occurs in the classical 4-7 Hz theta band, and that it is largely 

specific to the retention interval. Finally, when comparing the different load-conditions with regard to 

this prefrontal theta source (that was found on the basis of all load-conditions collapsed), we observe a 

main effect of load (F(2,30) = 6.45, p = 0.005, ηp
2 = 0.30) that is constituted by the fact that, during both 

tactile and visual working memory, loads 4 and 4* show larger increases in power than load 2 (tactile: 

4 vs 2: t(15) = 2.52, p = 0.024, d = 0.63, CI = [0.71, 8.47]; 4* vs 2: t(15) = 2.42, p = 0.029, d = 0.60, CI = 

[0.66, 10.48]; visual: 4 vs 2: t(15) = 2.38, p = 0.031, d = 0.60, CI = [0.90, 16.32]; 4* vs 2: t(15) = 2.37, p 

= 0.03, d = 0.60, CI = [0.6, 8.5]), while loads 4 and 4* do not significantly differ (tactile: t(15) = -0.79, 

p = 0.44, d = -0.2, CI = [-3.63, 1.68]; visual: t(15) = 1.99, p = 0.07, d = 0.5, CI = [-0.30, 8.55]). Thus, 

similar to the 8-30 Hz suppression in the relevant sensory ROIs, also this domain-general theta 

components scales with the number of items in working memory, independent of whether they need to 

be retained in their original sequence order.   
 

Fig. 3 

 

Gamma oscillations (55-75 Hz) 

The same analyses for gamma power (55-75 Hz, See Materials and Methods for frequency band 

justification) revealed another supramodal component in mid-frontal sites (Fig. 4a, top; note that for 

these topographies, we plotted group level t-values, taking advantage of the fact that t-value maps 

down-weight unreliable effects, which are much more pronounced in this higher frequency band). 

Source analysis yielded a significant source-level cluster (cluster p = 0.022) that centers on medial 

frontal areas and extends to medial parietal areas (Fig. 4a, bottom; see also Fig. 6c). As for the 

identified theta power increase, also this gamma power increase is band-limited and sustains 

throughout the retention interval (Fig. 4b). Moreover, as depicted in Figure 4c, also this increase in 

medial fronto-parietal gamma power scales with load (main effect of load: F(2,30) = 22.59, p = 1.04e-6, 
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ηp
2 = 0.60). In fact, it was only apparent with loads 4 and 4*. As for the theta modulation, during both 

tactile and visual working memory, power is higher with loads 4 and 4* than with load 2, while loads 

4 and 4* do not differ (tactile: 4 vs 2: t(15) = 4.94, p =1.79e-4, d = 1.23, CI = [2.10, 5.27]; 4* vs 2: t(15) = 

4.88, p = 1.99e-4, d = 1.22, CI = [1.91, 4.87]; 4 vs 4*: t(15) = 0.5, p = 0.622 d = 0.13, CI = [-0.95, 1.54]; 

visual: 4 vs 2: t(15) = 4.12, p =8.87e-4, d = 1.03, CI = [1.49, 4.68]; 4* vs 2: t(15) = 4.16, p = 8.30e-4, d = 

1.04, CI = [1.56, 4.83]; 4 vs 4*: t(15) = -0.19, p = 0.855, d = -0.047, CI = [-1.37, 1.15]).  

 Apart from their distinct spectral content and spatial localization, the functional properties of 

the identified theta and the gamma modulations thus appear strikingly similar. We did, however, note 

one key difference: while the increase in theta power is largely restricted to the retention interval (Fig. 

3b), the increase in gamma power already becomes prominent during sequence encoding (Fig. 4b).  
 

Fig. 4 

 

Sustained event-related-fields (ERFs) 

We next investigated the average strength of the sustained magnetic field during the retention interval 

(i.e. the “DC component” of the signal). The topographical maps of this component (average field 

strength in working memory trials minus average field strength in control trials) are depicted in Figure 

5a. Note that, in contrast to the power modulations described before, we here depict axial gradiometer 

signals, because these retain information on the precise pattern of magnetic out- and influx (in red and 

blue respectively). These effect topographies too are highly similar during tactile and visual memory, 

and suggest a central dipolar source. Despite this promising sensor-level topography, we did not 

succeed in producing a convincing (localized) source reconstruction using the beamformer 

methodology (Van Veen et al, 1997), which we used in the other analyses. However, using an older 

and much simpler source reconstruction methodology (signal subspace projection; see Materials and 

Methods for details) we identified a prominent source in superior parietal cortex that extends to medial 

frontal areas as well (Fig. 5b; see also Fig 6d). 

 We did note vast differences in the effect topographies between participants. For example, 

while the pattern of out- and influx is relatively similar to the grand average for participant i in Figure 

5a, it appears reversed for participant ii. Yet, also for participant ii, we observed reproducible effect 

topographies when moving from tactile to visual working memory. This intermodal reproducibility 

was confirmed at the group level: while effect topographies between tactile and visual working 

memory are based on two fully independent sets of data, they are, on average, highly correlated (r = 

0.51 ± 0.08; t(15) = 6.561, p = 9.02e-6). 

 To better deal with these vast inter-individual differences, we reconstructed the time courses 

of this sustained event-related field (ERF) component on the basis of participant-specific effect 

topographies (rather than on the basis of a group-level source-cluster, as for the theta and gamma 

components). To avoid statistical bias, we used a leave-one-out approach in which each trial’s time 

course was reconstructed using a spatial filter that was based on the effect topography of all other trials 

(Materials and Methods for details). Reconstructed component time-courses are depicted in Figure 5c. 

Relative to control trials, during both tactile (top) and visual (bottom) working memory, field strength 

increases over the encoding interval and remains elevated throughout the retention interval. Moreover, 
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this elevation increases with higher load (Fig. 5c,d). This was confirmed by a significant main effect 

of load (F(2,30) = 5.16, p = 0.012, ηp
2 = 026) with follow-up t-tests revealing the same pattern of load-

dependence as described for the theta and gamma components. Only a single exception was observed: 

the contrast between loads 4 and 2 during tactile working memory did just not reach significance any 

more (tactile: 4 vs 2: t(15) = 2.06, p = 0.058, d = 0.51, CI = [-0.01,0.45]); all the other contrasts were as 

before (tactile: 4* vs 2: t(15) = 3.22, p = 0.006, d = 0.81, CI = [0.09,0.44]e-12; 4 vs 4*: t(15) = -0.88, p = 

0.391, d = -0.22, CI = [-0.16,0.06]*e-12; visual: 4 vs 2: t(15) = 2.196, p = 0.044, d = 0.55, CI = 

[0.01,0.53]*e-12; 4* vs 2: t(15) = 3.298, p = 0.005, d = 0.82, CI = [0.06,0.29]*e-12; 4 vs 4*: t(15) = 0.85, p 

= 0.409, d = 0.21, CI = [-0.14, 0.33]*e-12). Interestingly, we also noted a further increase in the 

strength of this component during the report (Fig. 5c), where it also becomes evident in control trials 

(that also require a report; see Materials and Methods). 
 

Fig. 5 
 

 In sum, we have identified and characterized three further electrophysiological signatures of 

working memory that each also scale with the number of items in working memory and that, unlike 

the identified sensory modulations, are similarly engaged during both tactile and visual working 

memory (see also Fig. 6). 
 

 Fig. 6 
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Supramodal theta, gamma, and sustained ERF components flexibly correlate with somatosensory 

or visual activity, depending on working memory content 

Having identified a robust sensory-specific suppression of 8-30 Hz power alongside three supramodal 

components that are enhanced during working memory, we turned to our central hypothesis that the 

same supramodal component can flexibly correlate with activity in distinct sensory areas, depending 

on what information is kept in memory. To this end, we employed (between-frequency) power-power 

correlations (see also e.g. Mazaheri et al., 2009; Hipp et al., 2012). Specifically, we calculated the 

strength of each of the supramodal components as a single number per trial. These trial-specific 

quantifications of the three supramodal components were then correlated across trials with the alpha 

and beta power in each recording site (Materials and Methods for details). We did this separately for 

tactile and visual working memory trials. By comparing the resulting topographical correlation maps 

between tactile and visual working memory, we could evaluate our central hypothesis, while at the 

same time correcting the topographical correlation maps for sources of variance that are common to 

both tasks, such as fluctuations in arousal. Provided that the sensory-specific component involves a 

decrease in power in the relevant sensory area, we hypothesized more negative correlations in 

somatosensory sites during tactile working memory and in visual sites during visual working memory. 

For each of the extracted supramodal predictors (theta, gamma, sustained ERF, as well as a 

combined predictor; Materials and Methods for details), Figure 7a shows the degree to which their 

trial-wise correlation with alpha and beta power in all sites was different depending on whether 

somatosensory or visual information was retained. During tactile working memory, each of the 

supramodal predictors correlate more negatively with power in central sites (blue in the depicted 

contrast), whereas during visual working memory the same predictors correlate more negatively with 

power in posterior sites (red in the depicted contrast) – akin to the power modulation topographies in 

Figure 2a. This is the case for power in both the alpha (top row) and the beta (bottom row) bands, and, 

as expected, is most clear when the predictors are combined (rightmost topographies). Thus, for each 

of the supramodal components, when this component is more pronounced, also the suppression of 8-

30 Hz power in the relevant sensory area is more pronounced. In other words, the same supramodal 

components predict the suppression of 8-30 Hz power in distinct sensory areas, depending on whether 

tactile or visual items are retained. 

 Because all analyzed components followed the same dependence on load (being more 

pronounced during loads 4 and 4* compared with load 2), the observed pattern of correlation may be 

due to load-induced differences alone. However, if these supramodal components truly regulate 

activity in these sensory areas, then the same pattern of correlation should also be manifest across 

trials within each of the load conditions. The topographic maps in Figure 7c show exactly this. 

 We now turn to the statistical evaluation of this pattern or interest. For this, we again made use 

of the ROI approach in which, for both the somatosensory and the visual ROI, we contrasted the 

correlations between the conditions in which the items in working memory were relevant versus 

irrelevant to the ROI (cf. Fig. 2c). To increase sensitivity, we averaged this outcome measure across 

the somatosensory and the visual ROIs (importantly, this does not hamper the interpretation of this 

statistical test because the topographical maps (Fig.7a,c) reveal largely symmetrical effects between 

visual and somatosensory sites). This analysis confirmed that, for each supramodal predictor, 

correlations are more negative when the items in working memory are relevant to the ROI (Fig. 7b,d). 

Restricting ourselves to the more meaningful within-load-condition-correlations, we obtained the 

following (Fig. 7d): for the sustained ERF and the combined predictors this pattern is significant with 

regard to the power in the alpha- as well as the beta bands (sERF-alpha: t(15) = -2.45, p = 0.027, d = -

0.61, CI = [-0.12, -0.01]; sERF-beta: t(15) = -2.36, p = 0.031, d = -0.59, CI = [-0.11,-0.06]; combined-

alpha: t(15) = -2.48, p = 0.025, d = -0.62, CI = [-0.15, -0.01]; combined-beta: t(15) = -3.56, p = 0.003, d 

= -0.89, CI = [-0.14, -0.03]), for the theta predictor this only reaches significance for beta power 

(theta-alpha: t(15) = -1.64, p = 0.106, d = -0.41, CI = [-0.12, 0.02]; theta-beta: t(15) = -2.60, p = 0.02, d = 

-0.65, CI = [-0.10, -0.01]), and for the gamma predictor this is only the case for the alpha power 

(gamma-alpha: t(15) = -2.43, p = 0.028, d = -0.61, CI = [-0.12, -0.01]; gamma-beta: t(15) = -1.22, p = 

0.18, d = -0.30, CI = [-0.09, 0.03]). 
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Fig. 7 

 

The different supramodal components have a largely unique contribution in predicting the sensory-

specific modulation of alpha and beta oscillations  

Given that all supramodal components show the same modulation of their topographic correlations 

maps (see Fig. 7), it is obvious to ask whether this might be due to the correlation between these 

supramodal components. To investigate this we evaluated the unique contributions of the different 

supramodal components to the across-trial (within load condition) correlations described above. To 

this end, we performed a partial correlation analysis in which, for each of the supramodal predictors, 

the contributions of either or both of the other supramodal predictors was partialled out. As depicted in 

Figure 8, the predictive power of each of the supramodal components was largely independent of the 

other supramodal components. In fact, for none of the observed effects did we find a significant 

reduction when either or both of the other two components were partialled out (all p > 0.25), and for 

two out of three supramodal predictors, the effect of interest remained significant after partialling out 

(only for the sustained ERF predictor, this was not the case). This result is further substantiated by the 

observation that the across-trial correlations between the different supramodal predictors, while 

positive, were generally low. In fact, this correlation only reached significance between the theta and 

the sustained ERF components (theta-sERF: r = 0.07 ± 0.02; t(15) = 3.16, p = 0.006; theta-gamma: r = 

0.01 ± 0.01; t(15) = 0.05, p = 0.59; gamma-sERF: r = 0.02 ± 0.02; t(15) = 0.90, p = 0.38). 
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 Fig. 8 

 
Discussion 
 

We investigated the neurophysiological bases of working memory in humans and evaluated the 

hypothesis that the same fronto-parietal substrates of working memory can flexibly regulate activity in 

distinct sensory areas depending on the content of working memory. This hypothesis is akin to the 

notion of central executive control over information that is held in one of several available sketchpads 

(see e.g. Baddeley, 1992; 2012). On the basis of MEG, we identified and characterized the neuronal 

dynamics of three such supramodal control signatures (enhanced fronto-parietal theta and gamma 

synchronization, as well as sustained ERFs), alongside a robust sensory-specific signature (the 

suppression of alpha and beta oscillations in the relevant sensory area). The key finding is that each of 

these domain-general components flexibly correlates with activity in either the visual or the 

somatosensory area, depending on the contents of working memory.  
 

Main advances of the current study 

To appreciate the relevance of the present results, it is important to first note that several of the 

components observed in this study have previously already been reported and discussed in relation to 

working memory, such as frontal theta (Gevins et al., 1997; Raghavachari et al., 2001; Jensen and 

Tesche, 2002; Hsieh et al., 2011) and gamma (Roux et al., 2012) synchronization, as well as the 

modulation of sensory-specific alpha and beta oscillations (Sauseng et al., 2009; Lozano-Soldevilla et 

al., 2014; Spitzer and Blankenburg, 2012; van Ede et al., 2016); see also Roux and Uhlhaas (2014) for 

a review. To date, however, these different components have typically been studied in isolation, 

leaving open the questions to what extent they are task- and/or modality specific, and whether and 

how they are inter-related. By evaluating this diverse set of electrophysiological signatures of working 

memory within a single experiment, this work makes four key advances.   

 First, although it is widely believed that cognitive control over currently relevant 

representations is mediated by multiple frontal and parietal brain areas, evidence for this in humans 

comes predominantly from fMRI studies (e.g. Corbetta and Shulman, 2002; Gazalley et al., 2004; 

Dosenbach et al., 2008; Rissman et al., 2008). Our results reveal several neurophysiological processes 

involved in this control, and demonstrate that these are highly multifaceted. Specifically, (1) in medial 

prefrontal regions we observed theta oscillations that were largely restricted to the retention interval, 

(2) in medial premotor and parietal areas, we observed gamma oscillations that were most prominent 

during the transition from encoding to retention, and (3) in superior parietal areas we observed a 

sustained ERF component that was prominent both during the retention interval and the report. These 

different temporal and spectral profiles could not have been identified using fMRI. An important 

target for future research will be to address how these different electrophysiological signatures relate 

to the more commonly observed fronto-parietal fMRI activations.  



 
 

Page 15 of 25 
 

 Second, whereas the modulation of sensory alpha and beta oscillations has become a highly 

popular index of attentional gating (Jensen and Mazaheri, 2010; Worden et al., 2000; Thut et al., 2006; 

van Ede et al., 2011; 2012; Haegens et al., 2011; Foxe and Snyder, 2011), the electrophysiological 

processes that control these modulations in sensory areas remain largely elusive. While combined 

TMS-EEG and EEG-fMRI studies have revealed important insights into their control – demonstrating, 

for example, a causal involvement of the FEF (Capotosto et al., 2009; Marshall et al., 2015) – they 

have been blind to the neurophysiological processes reflecting this control. Our data suggest at least 

three such processes. Of course, because our analysis is only correlational, we must be aware of 

alternative scenarios that could also explain our results. For example, the domain-general components 

could be involved in monitoring the output of the sensory areas, rather than controlling their activity in 

a top-down fashion.  

 Third, whereas fronto-parietal engagement is often considered to be domain-general, this is 

not often directly shown. Here, we have shown this for the theta, the gamma and the sustained ERF 

modulations. Still, it cannot be ruled out that these components might involve modality-specific sub 

populations/networks that may only be resolved at a finer spatial scale (cf. Chambers et al., 2004). 

 Finally, we show that that each of the observed domain-general components has a largely 

unique contribution in predicting activity modulations in sensory areas. This is surprising, as it 

suggests a set of relatively autonomous, complementary, processes that independently regulate sensory 

activity. It should be noted, however, that at least part of this apparent independence may be driven by 

the notion that the different spectral components may be susceptible to different sources of noise. 

 

Relating the sustained ERF component to other sustained components 

In contrast to the alpha, beta, theta and gamma components, the sustained parietal ERF component, 

reflects a signature that, to our knowledge, has not yet been reported in relation to working memory. 

Clearly, because this component was similarly present during tactile and visual working memory, it 

must be distinguished from other sustained working memory components that are characterized by 

their content/location specificity (e.g. Vogel and Machizawa, 2004; Khader et al., 2007). What then 

might this component relate to? Intracranial recordings in hippocampus previously revealed a 

sustained ERP component that also depended on working memory load (Axmacher et al., 2007). 

Whether and how this hippocampal component is related to the here observed parietal component 

remains an interesting target for future research. Similarly, it would be interesting to know what the 

counterpart(s) are of this MEG component in the EEG literature, where sustained components have 

been given more attention. One possibility is that this working-memory-related component is related 

to the sustained fronto-parietal EEG component that has been linked to attentional deployment (Grent-

‘t-Jong and Woldorff, 2007). A direct test of this hypothesis would require a combined EEG-MEG 

experiment.  
 

No robust signature of sequencing operations in working memory 

Surprisingly, all four neurophysiological signatures of working memory observed in the current study 

scaled with the number of items in memory, but remained independent of whether or not the items 

were retained in sequence. Moreover, a direct comparison of the load 4 and 4* conditions across the 

full dataspace neither revealed any robust difference (results not shown). At least for the medial 

prefrontal theta oscillations, this observation appears at odds with prior empirical (Hsieh et al., 2011; 

Roberts et al., 2013) and theoretical (Roux and Uhlhaas, 2014) work, arguing for a particular role of 

these oscillations in retaining order information in working memory. Our data suggests that this notion 

might require revisiting. However, despite the fact that our behavioral data strongly suggested that our 

participants dropped the order in the load 4* condition, it cannot be excluded that the sequence order 

may have only been dropped at the response stage. 
 

Considering alternative cognitive operations 

It is conceivable that, during retention, participants were engaged in probe (reproduction display) 

and/or response anticipation, in addition to working memory retention. Could our results reflect such 

processes instead? Probe anticipation as a potential confound is particularly relevant with regard to the 

observed modulations of sensory alpha and beta oscillations, because these modulations are known to 

also index the allocation of preparatory attention for an upcoming stimulus (e.g. Worden 2000; Thut 
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2006; van Ede 2011; 2012; Haegens 2011; Foxe and Snyder, 2011). This potential confound can be 

ruled out because, in our study, the alpha and beta band modulations were highly dependent on the 

modality of the retained memoranda, whereas the probes were always presented visually. In further 

support of a mnemonic function for these alpha and beta modulations, we also note that previous 

studies have linked these modulations in the visual modality to working memory capacity (Fukuda et 

al., 2015), to content-specific working memory representations (Foster et al., 2015; Fukuda et al., 

2016), and to impairments in working memory performance with neuropsychiatric conditions 

(Erickson et al., 2016). 

 Response preparation can also be ruled out as a confound because, during the working 

memory retention interval, the starting position of the response cursor was unknown to the 

participants. Thus, what action was required to reach the first item for reproduction would only 

become clear with the initial reproduction display. Therefore, no specific motor program could be 

prepared during the retention interval. Of course, this does not rule out more general forms of motor 

preparation. Because we anticipated this, we required participants to also make a motor response in the 

control trials, thus equating the trials with respect to these more general forms of motor preparation.  

 Another potential concern regards ocular artefacts. This is particularly a concern regarding the 

observed theta modulation, provided its low-frequency nature and frontal topography. However, if eye 

artefacts were to account for this, one would probably expect to see this modulation in a broader 

frequency range (because of the sharp transients in ocular artefacts) and to be strongest during 

encoding. In contrast, the observed modulation was specific to the narrow theta band and was highly 

specific to the retention interval. Moreover, one would probably also expect eye movements to be 

more prevalent during visual as compared to tactile working memory retention. Yet, if anything, the 

frontal theta modulation was slightly larger during tactile retention (Fig. 3a,c).   

 Having excluded probe and response anticipation accounts, this does not imply that the here 

reported phenomena are necessarily exclusive to working memory: they may still reflect general 

processes of cognitive control that are also engaged in other tasks. In fact, in the context of a sustained 

attention task, we previously observed similar sustained ERF and medial frontal gamma components 

(data from van Ede et al., 2014; unreported observations), and it is noteworthy that a very similar 

gamma source has also been reported during response competition (Grent-‘t-Jong et al., 2013) and 

long-term memory encoding (Meeuwissen et al., 2011). Analogously, medial frontal theta oscillations 

have previously also been linked to additional cognitive operations, such as long-term memory 

encoding and retrieval (as reviewed in Hsieh and Ranganath, 2014). 

 

Conclusion 

The present work has revealed that the neural dynamics of top-down control are highly multi-faceted, 

demonstrating at least three distinct and complementary neurophysiological processes that flexibly 

predict retention-related activity in the relevant sensory areas (i.e., the sensory areas that correspond to 

the information that is currently kept in working memory). 
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Figures with Captions 
 

 
Figure 1. Task and performance. (a) Trial structure of the intermodal working memory task. During 

encoding, participants are presented with visual and tactile sequences of 4 items each (Materials and 

Methods for stimulation details). Visual and tactile sequences are always presented simultaneously, 

and are drawn independently. In different blocks (see also b), participants are required to sequentially 

reproduce either the visual or the tactile sequence after a 4 s delay (the retention interval). In 25 % of 

the trials, the fixation cross turns red at encoding and participants are instructed not to retain the 

sequences in working memory, but rather to base their report on information presented at the 

reproduction stage (Materials and Methods for details). (b) Block structure. Tactile and visual blocks 

are randomly interleaved. Each modality block consists of three mini blocks that vary in working 

memory load. In load 2 mini blocks participants are required to reproduce only the first two items of 

the 4-item sequence (in order); in load 4 mini blocks all four items (in order); and in load 4* mini 

blocks also all four items, but this time they can reproduce them in arbitrary order. (c) Behavioral 

performance, quantified as the percentage of items that are correctly reproduced. Insets in the load 4* 

condition show the percentage of items that are reproduced in their original presentation order. Error 

bars depict ± 1 SE, calculated across participants.  
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Figure 2. Modality-specific suppression of alpha and beta oscillations during working memory 

retention. (a) Topographies of alpha (8-12 Hz) and beta (13-30 Hz) power during tactile and visual 

working memory. Power is estimated across the full four s retention interval and expressed as a 

percentage change from the control conditions (left two columns) or between tactile and visual 

working memory (rightmost column). (b) Source-level contrast between tactile and visual working 

memory with regard to 8-30 Hz power in the retention interval. Data are masked by significant 

clusters obtained from a cluster-based permutation analysis. (c) Time-frequency profiles of the 

retention-related modality-specific power modulations. For both a visual and a somatosensory ROI 

(that were based on an independent functional localizer), power was contrasted between trials in which 

the items in working memory were relevant vs. irrelevant to that ROI. Time-frequency profiles were 

highly similar between visual and somatosensory ROIs (right and middle panels) and were collapsed 

in the leftmost panel. (d) Time courses of the beta power modulation in working memory versus 

control trials in relevant and irrelevant ROIs. (e) Load-dependence of the modality-specific 8-30 Hz 

modulation across the full retention interval. Data were extracted from each ROI, and expressed as a 

percentage change from the control condition. Error bars and shading represent ± 1 SE, calculated 

across participants.  

 

 
 

Figure 3. Supramodal theta synchronization during working memory retention. (a) Topographies 

and source reconstruction of 4-7 Hz theta power during tactile and visual working memory. (b) Time-

frequency profile of the extracted 4-7 Hz theta source depicted in a (Materials and Methods for details) 

(c) Load-dependence of the extracted 4-7 Hz theta source. Conventions as in Figure 2.      
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Figure 4. Supramodal gamma synchronization during working memory retention. (a) 

Topographies and source reconstruction of 55-75 Hz gamma power during tactile and visual working 

memory. Note that for these topographies, we plotted group level t-values of the contrast between 

working memory and control trials, taking advantage of the fact that t-value maps down-weight 

unreliable effects, which are much more pronounced in this higher frequency band. (b) Time-

frequency profile of the extracted 55-75 Hz gamma source depicted in a (Materials and Methods for 

details) (c) Load-dependence of the extracted 55-75 Hz gamma source. Conventions as in Figures 2,3.     

 

 
 

Figure 5. Supramodal sustained event-related fields during working memory retention. (a) 

Effect topographies (working memory minus control) of average field strength across the full retention 

interval, separately for tactile and visual working memory. The top row depicts grand average effect 

topographies, whereas the bottom two rows depict effect topographies for two representative 

participants. (b) Source reconstruction of the sustained ERF effect topographies, expressed as a 

percentage explained variance (Materials and Methods for details). Functional data were thresholded 

at a minimum explained variance of 25%. (c) Reconstructed time courses of the sustained ERF 

component (Materials and Methods for details). (d) Load-dependence of the reconstructed sustained 

ERF component (working memory minus control, averaged across the full retention interval).  
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Figure 6. Source overlap between tactile and visual working memory versus control. Color 

coding indicates voxels that survived thresholding for the contrast tactile working memory vs. control 

(cyan), visual working memory vs. control (magenta), or both (purple). Contrasts were obtained for 

data over the full four second retention interval. For thresholding we used mass univariate statistical 

significance at an alpha level of 0.01 (panel a), 0.05 (panels b,c), or a minimum explained variance of 

25% (panel d; as in Fig. 5). 
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Figure 7. Modality-specific trial-wise correlations between each of the supramodal components 

and alpha and beta power. (a) Topographies of the difference in trial-wise correlations obtained 

during tactile and visual working memory trials. Correlation maps in tactile and visual trials were 

obtained for alpha and beta power separately, and with regard to four different predictors. The theta, 

gamma and sustained ERF predictors are characterized in Figures 3-5, and were extracted using 

procedures described in the Materials and Methods section. In addition, a combined predictor was 

obtained by z-normalizing the individual predictors and summing their trial-specific z-scores. Trial-

specific strength of each component was extracted across the full retention interval. (b) Difference in 

correlation with alpha and beta power in the relevant compared to the irrelevant sensory ROI (i.e. 

visual ROI: rvisual – rtactile; somatosensory ROI: rtactile – rvisual). ROIs showed highly comparable effects 

(see also the symmetry in the effect topographies between posterior and central sites) and were 

collapsed to increase statistical sensitivity. (c,d) Similar to a and b, except correlations were calculated 

separately within each load condition, before collapsing across them. * p < 0.05; ** p < 0.01. 
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Figure 8. Complementary contributions of the different supramodal components to the 

modality-specific alpha and beta modulations. Modality-specific correlation effects for each of the 

supramodal predictors (as in Fig. 7d), while accounting for the other predictors. For each of the 

predictors, we regressed out one or both of the other predictors, as indicated by “–xxx”. * p < 0.05.   


