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Abstract 
 

This study aims to shed light on the debate concerning the choice between discrete-time and 

continuous-time hazard models in making bankruptcy or any binary prediction using interval censored 

data. Building on the theoretical suggestions from various disciplines, we empirically compare widely 

used discrete-time hazard models (with logit and clog-log links) and continuous-time Cox 

Proportional Hazards (CPH) model in predicting bankruptcy and financial distress of the United 

States Small and Medium-Sized Enterprises (SMEs). Consistent with the theoretical arguments, we 

report that discrete-time hazard models are superior to continuous-time CPH model in making binary 

predictions using interval censored data. Moreover, hazard models developed using failure definition 

based jointly on bankruptcy laws and firms’ financial health exhibit superior goodness of fit and 

classification measures, in comparison to models that employ failure definition based either on 

bankruptcy laws or firms’ financial health.    
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1. Introduction 
Survival or event history analysis is the umbrella term for the set of statistical tools that are 

used to answer questions related to timing and the occurrence of an event of interest. It has 

traditionally been applied in the field of medical research where duration until death or 

duration until appearance or reappearance of a disease is usually the event of interest, hence 

the name Survival Analysis. Survival analysis has been prominently applied in other 

disciplines such as engineering (known as reliability theory), economics (known as duration 

analysis or duration modelling), sociology (known as event history analysis), and political 

science. The variable of primary interest in survival analysis is the time to an event, which in 

our application is the incorporation of a firm to bankruptcy filing or some other financial 

distress event. A firm is said to be at risk of the event (bankruptcy/financial distress) after the 

initial event (i.e. incorporation) has taken place. Alternatively, the response variable can be 

viewed as the duration of time that a firm spent in a healthy state before transition to a 

bankruptcy state occurs. Survival analysis demands special methods primarily due to right-

censoring, where the time to the occurrence of an event is unknown for some subjects 

because the event of interest has not taken place by the end of the sampling or observation 

period. These statistical models examine the hazard rate, which is defined as the conditional 

probability that an event of interest occurs within a given time interval.  

The growing popularity of the use of hazard models to predict corporate failure has 

motivated us to undertake this empirical study. Since the seminal work of Shumway (2001), 

the use of the hazard rate modelling technique has become a popular methodology in 

bankruptcy prediction studies (see among others Chava and Jarrow 2004; Campbell et al. 

2008; Gupta et al. 2014). However, this growing popularity of hazard models in bankruptcy 

prediction seems to be trend or momentum driven, rather than based on a strong theoretical 

underpinning. Although the superiority of hazard models in predicting binary outcomes is 

well documented in the literature (see among others Beck et al. 1998; Shumway 2001; 

Allison 2014), its recent use in predicting corporate failure does not appropriately 

acknowledge fundamental concerns associated with survival analysis. This is because the vast 

majority of existing studies suffer from at least one of the following issues: (i) inappropriate 

or no explanation behind their choice of discrete-time or continuous-time hazard models (e.g. 

Bharath and Shumway 2008); (ii) inappropriate or no specification of baseline hazard rate 

while using discrete-time hazard models (e.g. Nam et al. 2008; Gupta et al. 2014); (iii) no test 

of proportional hazards assumption when using continuous-time Extended Cox models with 
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time-independent covariates (e.g. Liang and Park 2010); (iv) no discussion on frailty and 

recurrent events (e.g. Shumway 2001); and (v) no explanation of how they dealt with the 

issue of delayed entry (e.g. Gupta, Wilson, et al. 2014a).  

Thus, we contribute to the literature by presenting a review and analysis of popular hazard 

models in predicting corporate failure, taking into account the fundamental concerns 

discussed above. Since we often find continuous-time hazard models are being developed 

using discrete-time data (e.g. Bauer and Agarwal 2014), we also contribute to the literature 

by documenting empirical comparison of discrete-time and continuous-time hazard models. 

Multivariate hazard prediction models are developed using financial ratios obtained from 

income statements and balance sheets. The criteria for introducing covariates in multivariate 

models vary across scientific disciplines, and with underlying theoretical or atheoretical 

beliefs or assumptions. Traditionally, the vast majority of popular bankruptcy prediction 

studies report atheoretical approaches toward selection of covariates and developing 

multivariate prediction models (see among others Altman 1968; Ohlson 1980; Shumway 

2001; Altman and Sabato 2007; Campbell et al. 2008; Korol 2013).  The plausible theoretical 

angle that we may reason is the effect of any given covariate on firms’ default likelihood. For 

instance, we may reason that a firm with a higher proportion of debt in its capital structure is 

more likely to default than an almost identical firm with a lower amount of debt in its capital 

structure. Thus an increasing value of the financial ratio debt/total assets enhances firms’ 

default likelihood, and vice-versa. Similar analogies may be deduced for any possible 

covariate. However, with the vast number of financial ratios (or non-financial covariates) 

available, and no proper theory in place, scholars often select covariates that are either 

advocated by popular studies or that suit their empirical research. Thus, in line with the 

discussion in Hosmer Jr et al. (2013) on multivariate model building strategy, we propose an 

atheoretical econometric based model building strategy, based on covariates’ Average 

Marginal Effects (AME) and their inter-temporal discrimination ability. The reasoning 

behind this approach is that a covariate with a higher value of AME induces higher change in 

the default probability, and thus should be given priority in the covariate selection process 

compared with one with a lower value of AME. In addition, the earlier the warning signals, 

the longer the preparation time period for the forthcoming crisis. Therefore, the covariate 

with forecasting ability over a longer horizon should be preferred to the covariate with the 

shorter horizon.  
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We also contribute to the fast growing literature on Small and Medium-Sized Enterprises 

(SMEs) bankruptcy by comparing SMEs failure prediction models developed using different 

definitions of default events. In particular, our comparison involves default definitions based 

on: (i) legal consequences (Chapter 7/11 bankruptcy filings in the United States); (ii) 

financial health, as discussed in Pindado et al. (2008) and Keasey et al. (2014); and (iii) both 

legal and financial health of an SME. Our legal definition classifies a firm as default when it 

files for bankruptcy under the legal bankruptcy law (Event 1), which is usually Chapter 7/11 

in the United States. Our second definition follows the financial distress definition provided 

by Keasey et al. (2014) and classifies a firm as financially distressed if it reports earnings of 

less than its financial expenses for two consecutive years, has net worth/total debt less than 

one, and experiences negative growth in net worth for the same two consecutive time periods 

(Event 2). The definition of SMEs default that we propose combines Event 1 and Event 2, and 

classifies a firm as default when it files for legal bankruptcy alongside financial distress 

(Event 3). The detailed analogy behind this default definition is discussed in Section 3. A 

recent study by Lin et al. (2012) on SMEs default prediction follows a similar line, but 

predicts SMEs default using different definitions of financial distress.  

Our research differentiates itself from Lin et al (2012) in several respects. First, we present 

our analysis based on a sample of US SMEs, whereas their study employs sample of UK 

SMEs. They use static binary logistic regression to establish their empirical validations, while 

we use superior dynamic hazard models. Finally, they use flow-based (earnings/interest 

payable) and stock-based (1 – total liabilities/total assets) insolvency indicators to group the 

firms in their sample into four groups of financial health (which correspond to their four 

different definitions of financial distress), while our distress definitions are more realistic and 

arguably superior (see Tinoco and Wilson (2013) and Keasey et al. (2014) for relevant 

discussion). 

Our test results, obtained by employing firm-year observations of the US SMEs, provide 

convincing evidence. To establish the empirical validation, we calculate a wide range of 

financial ratios to gauge a firm’s performance from liquidity, solvency, profitability, 

leverage, activity, growth and financing dimensions. Then, following the suggestion of 

Hosmer Jr et al. (2013), we use appropriate strategies to narrow down our list of covariates, 

and develop multivariate models. First, in line with the theoretical arguments, the discrete-

time duration-dependent hazard models that we develop with logit and complementary log-

log (clog-log) links provide superior model fit compared with continuous-time Extended Cox 
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models, as they have much lower Akaike Information Criterion (AIC) values than Cox 

models across all default definitions. However, all three econometric specifications lead to 

almost identical within sample and hold-out sample classification performance, thus one 

might be tempted to be indifferent to the choice of hazard specification. Moreover, if the 

event of interest is not duration dependent (i.e. some functional form of time or time 

dummies are not significant in the multivariate model), with hazard rates being invariant or 

vary mildly across different time periods, then the complications of hazard models may not 

be worthwhile considering the marginal gain one would obtain using such models. But in 

case of duration dependence, we suggest the use of discrete-time hazard model with logit link 

to model interval censored or discrete-time data since it produces minimum overall error of 

prediction models developed along with several other benefits. Like, it is well understood by 

researchers and thus does not require learning new statistical techniques; can be estimated 

with any statistical software package; and most importantly, can be extended easily in a 

variety of ways to suit one’s purpose. While developing our multivariate models we find that, 

in the presence of financial covariates, about 90% of the time dummies that we use as 

baseline hazard specifications are insignificant, with very high values of standard errors. Thus 

we follow Shumway (2001) and use the natural logarithm of firms’ annual age (variable 

AGE) as the baseline hazard specification. This specification is significant in most of our 

multivariate hazard models, but this objective can easily be achieved by developing 

regression models using panel logistic regression techniques that use some functional form of 

time to capture any duration dependency. Although Shumway (2001) argues that hazard 

models are superior to competing static models, variable AGE in his multivariate models are 

insignificant, so how can it be used reliably to predict duration specific hazard rates when this 

is primarily why hazard models are used? Unlike areas such as medicine or health economics, 

duration specific prediction of hazard rates is not common in bankruptcy or financial distress 

prediction, thus we do not see any real need for hazard models if similar objectives can be 

achieved using much simpler panel logistic regression that controls for any duration 

dependencies.  

Second, the default definition that we propose (Event 3) performs best in classifying 

defaulted firms. A default definition based on firms’ financial health is superior to default 

definition based on legal consequences, while a default definition that considers both legal 

consequence and firms’ financial health is best. These differences in classification 

performance emphasise the fact that not all firms that file for legal bankruptcy do so purely 



P A G E  | 5                                                                                                                              

 

due to financial difficulties - a significant number of firms consider it a planned exit strategy 

(Bates 2005). Furthermore, we also test the efficiency and stability of covariates suggested by 

the most popular study on US SMEs bankruptcy prediction, by Altman and Sabato (2007). 

Based on our test results, we conclude that the covariates they suggest fail to exhibit 

satisfactory discriminatory power across all default definitions and up to three lagged time 

periods, and find several other financial ratios which are better performers. Their suggestion 

might be biased due to their sample selection process, while our study employs near 

population data of US SMEs. 

We expect this study to be a useful guide to academic scholars and practitioners interested in 

building hazard models for making binary predictions. The rest of this paper is organized as 

follows: Section 2 discusses common concerns regarding the use of hazard models and how 

they can be rectified; Section 3 discusses various default definitions that we consider in our 

study; Section 4 provides detailed discussion of our dataset, choice of covariates and 

methodology; in Section 5 we report and discuss our empirical findings and, finally, Section 

6 concludes our findings.  

2. Common Concerns of Hazard Models  

2.1 Discrete-time vs Continuous-time Hazard Model 

In bankruptcy studies, the survival time, which is the duration or time-to-event, is generally 

measured in quarterly or annual units, and the time scale used may be discrete or continuous. 

If the time of occurrence of an event is precisely known, continuous-time hazard models are 

employed, otherwise a discrete-time hazard model is an appropriate choice when the event 

takes place within a given time interval and the precise time is unknown (Rabe-Hesketh and 

Skrondal 2012). Thus, from a theoretical point of view discrete-time hazard models are an 

appropriate choice, as a firm may file for bankruptcy anytime within a quarter or a year. 

However, in both models the probability of occurrence of an event at time t is being 

modelled. The dependent variable in a continuous-time model is the hazard rate, but in a 

discrete-time model it is the odds ratio (if modelling is done using standard logit/probit 

models). However, recent studies do not provide appropriate explanation behind their choice 

between discrete-time (eg. Campbell et al. 2008; Gupta et al. 2014) and continuous-time 

model (eg. Bharath and Shumway 2008; Chen and Hill 2013). Furthermore, the required 

precision of the timing to an event is significantly dependent on the research question and 

data restrictions. Studies also suggest that results obtained from continuous-time and discrete-
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time methods are virtually identical in most models (Yamaguchi 1991; Allison 2014). Having 

said that, the performance of a bankruptcy prediction model is evaluated based on some non-

parametric classification measures such as misclassification matrix, or area under receiver 

operating characteristic (ROC) curve (see Anderson (2007) for further details). Despite the 

theoretical differences between continuous-time and discrete-time models, if they lead to 

identical classification performance then this theoretical difference is of no practical 

relevance. Thus, we compare the classification performance of most widely used discrete-

time duration-dependent hazard models (see among others Shumway 2001, Nam et al. 2008) 

with the most popular continuous-time duration-dependent Cox model (see among others 

Bharath and Shumway 2008; Chen and Hill 2013) to find any differences in their 

classification performance. If there are no differences, then the Cox model is a reasonable and 

convenient choice (although discrete-time hazard model is more appropriate), as it does not 

require any baseline hazard specification unlike discrete-time models (see Rabe-Hesketh and 

Skrondal 2012).  

2.2 Specification of Baseline Hazard Rate 
The final step before estimation of discrete-time hazard models is the specification of 

baseline hazard function, i.e. the hazard rate when all the covariates are set to zero. The 

baseline hazard can be estimated using time dummies (Beck et al. 1998) or some other 

functional form of time (see Jenkins (2005) for details). However, recent studies seem to 

distort this idea of baseline hazard and have established their own version of baseline hazard 

that includes, for instance,  macroeconomic variables (Nam et al. 2008) or insolvency risk 

(Gupta et al. 2014) in the baseline hazard function (it is more appropriate to acknowledge 

them as control variables). While several studies do not report any baseline hazard function in 

their discrete hazard model (see among others Campbell et al. 2008; Bauer and Agarwal 

2014). Omitting baseline specification (e.g. time dummies, ln(age) etc.) is equivalent to 

assuming that the baseline hazard is constant and that the model is duration-independent. In 

light of the basic theory of survival analysis, this is inappropriate.  

We address this misleading concern in this study and show the steps to be followed in 

specifying the baseline hazard function while developing a discrete hazard model. This can 

be done by defining time-varying covariates that bear functional relationships with survival 

times. Popular specifications are log(survival time), polynomial in survival time, fully non-

parametric and piece-wise constant (Jenkins 2005). Duration-interval-specific dummy 

variables need to be created for specifying a fully non-parametric baseline hazard. The 
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number of dummy variables needs to be equals to one less than the maximum survival time in 

the dataset. For instance, if the maximum survival time is fifty years, then forty nine dummy 

variables are required for model estimation (e.g. Beck et al. 1998). However, this method 

becomes cumbersome if the maximum survival time in the dataset is very high, as in the case 

of bankruptcy databases. A reasonably convenient alternative way of specifying the baseline 

hazard function is to use the piece-wise constant method. In this, the survival times are split 

into different time intervals that are assumed to exhibit constant hazard rate. However, one 

must note that if there exist time intervals or time dummies with no events then one must 

drop the relevant firm-time observation with no event from the estimation, otherwise the 

duration specific hazard rates cannot be estimated for these time intervals/dummies (see 

Jenkins 2005; Rabe-Hesketh and Skrondal 2012). Considering the estimation convenience, 

one might be tempted to use the piece-wise constant specification of baseline hazard rate. 

However, if the hazard curve shows frequent and continuous steep rises and falls, then fully 

non-parametric baseline hazard specification might be an appropriate choice. 

2.3 Proportional Hazards Assumption for Cox Model 
Studies which employ continuous-time Cox models are mostly silent on the critical test of 

proportional hazards (PH) assumptions  for time-independent covariates (e.g. Liang and Park 

2010). The PH assumption implies that the hazard rate of any particular subject is a constant 

proportion of the hazard rate of any other subject across time (Mills 2011). The violation of 

this assumption might lead to overestimation (the covariate violates this assumption and 

exhibits an increasing hazard ratio over time) or underestimation (the covariate violates this 

assumption and exhibits a decreasing hazard ratio over time) of hazard risk (Mills 2011). It 

also results in incorrect standard errors and a decrease in the power of significance tests 

(Box-Steffensmeier and Zorn 2002). The violation of PH assumption is a frequent 

phenomenon, and thus it should always be checked and reported in studies. That said, Allison 

(2010)  warns that it is necessary to worry not only about the violation of the PH assumption, 

but also about other basic requirements such as incorporation of relevant explanatory 

variables. He also asserts that the violation of PH assumption is often covariate specific and 

excessive.  Although all the covariates that we employ in this study are time-dependent, if 

one also employs time-independent covariates, then one should take cognizance of this 
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serious and neglected concern and use appropriate methods to test, report and rectify any 

violation of the proportional hazards assumptions
1
. 

2.4 Frailty and Recurrent Events 

Another highly neglected area of concern is frailty and recurrent events. Correlation of event 

time occurs when firms experiencing a default event belong to a particular cluster or group 

such as industry, geographic location or, in the case of recurrent events, where a firm 

experiences a default event more than once in its lifetime. In the United States (US), the 

Bankruptcy Reform Act of 1978 (Bankruptcy Code) governs the legal processes involved in 

dealing with corporate financial distress. It provides firms facing financial distress with a 

liquidation process (Chapter 7) or a reorganization process (Chapter 11)
2
. Chapter 7 leads to 

permanent shutdown of a financially distressed firm, while Chapter 11 aims at rehabilitation 

of financially distressed but economically viable firms. Hotchkiss (1995) examines 197 

publicly traded firms that filed for Chapter 11 protection from 1979 to 1988 and later 

recovered from Chapter 11 as publicly traded firms. He reports that 40% of the firms 

continue to experience operating losses and 32% either restructure their debt or re-enter 

bankruptcy in the three years following the acceptance of reorganization plans. Thus a firm 

may witness multiple distress events in its lifetime. Given that these issues of clustering and 

recurrent events are an integral part of the real-life environment, they should be made an 

essential and standard part of contemporary event history analysis (see Box‐Steffensmeier 

and De Boef (2006) and Mills (2011) for advanced discussion). The solution is to introduce a 

frailty term in the hazard models. Frailty is an unobserved random proportionality factor that 

modifies the hazard function to account for random effects, association and unobserved 

heterogeneity in hazard models (Mills 2011). The exclusion of a frailty term implicitly 

assumes that all firms are homogeneous, which implies that all the firms are prone to 

experience default in the same way, with the duration of defaults considered to be 

independent from one another. However, in reality some firms are more ‘frail’ and thus have 

a higher likelihood of experiencing default. Therefore, our empirical analysis also accounts 

for this neglected concern while developing hazard models. 

                                                 
1
 See Kleinbaum and Klein (2012) for detailed understanding about various tests of proportional hazards 

assumption for time-independent covariates. A Cox model with time-dependent covariates does not need to 

satisfy the proportional hazards assumption and is called an Extended Cox model. However, if the model 

employs both time-dependent and time-independent covariates, then PH assumption for time-independent 

covariates must be satisfied.  
2
 Although the law provides other provisions, we consider only Chapter 11 and Chapter 7 as the vast majority of 

the financially distressed firms file for either of these two. 
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2.5 Delayed Entry  
In time-to-event studies the origin of time scale is an important consideration, as at this point 

in time a firm becomes at risk of experiencing the financial distress event. This is firms’ 

incorporation date in bankruptcy studies. However, in cases where incorporation dates are 

unknown, firms’ age or the earliest available date of information in the databases serves as 

useful proxy. A firm’s incorporation date may differ from the start date of sampling period; 

as a result the time it becomes at risk does not coincide with the start of the sampling period. 

This leads to delayed entry, which means that a firm becomes at risk before entering the 

study. Thus the appropriate likelihood contribution under delayed entry is obtained by 

allowing the firm to start contributing observations from time period 𝑡𝑘 + 1 and discarding 

prior time periods (see section 14.2.6 of Rabe-Hesketh and Skrondal 2012). Here, 𝑡𝑘 is the 

time period for which a firm has already been at risk when it enters the research study. 

3. Different Default Definitions for SMEs 
Traditionally, the debate about financial distress has been rooted in the literature pertaining to 

firms’ capital structure, with particular relevance to the cost of financial distress (see Altman 

and Hotchkiss (2006) for an overview). However, current studies also highlight its growing 

importance in the context of modelling firms’ insolvency hazards (e.g. Keasey et al. 2014). 

Recent literature pertaining to firms’ default prediction argue that a ‘financial distress’ based 

definition of the default contingent upon a firm’s earnings and market value is more 

appropriate than a definition based on legal consequence (Pindado et al. 2008; Tinoco and 

Wilson 2013; Keasey et al. 2014). We see a range of definitions in the empirical literature 

that have been successfully used to define/proxy firms’ default/distress risk. Most of the 

empirical models employ a definition of default that is in line with some legal consequence 

(e.g. Chapter 11/7 Bankruptcy Code in the United States; United Kingdom Insolvency Act), 

which lead to a well-defined and clearly separated population of bankrupt versus non-

bankrupt firms. This remains the most widely used method of classifying financially 

distressed firms in the empirical literature that employs binary choice statistical models to 

predict firms’ financial distress  (see among others Altman 1968; Ohlson 1980; Hillegeist et 

al. 2004; Gupta et al. 2014a). However, legal definition of default may suffer from 

noteworthy issues. Since insolvency involves lengthy legal processes, there often exists a 

significant time gap between real/economic default date and legal default date. UK 

companies exhibit a significant time gap of up to 3 years (average of about 1.17 years) 
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between the time they enter into the state of financial distress and the legal default dates 

(Tinoco and Wilson 2013), while companies in the US stop reporting their financial 

statements about two years before filing for bankruptcy (Theodossiou 1993). Recent changes 

to insolvency legislation (for instance, the Enterprise Act 2004 in the UK and Chapter 11 in 

the US) do consider this problem and suggest several stages of financial distress based upon 

the severances of financial distress.  

Further, a financially distressed firm may go for a formal reorganization involving the court 

system or an informal reorganization through the market participants (e.g. Blazy et al. 2013). 

Debt restructuring, asset sale and infusion of new capital from external sources are the three 

most commonly used market-based or private methods of resolving financial distress (Senbet 

and Wang 2010). Debt restructuring allows a financially distressed firm to renegotiate the 

outstanding debt obligation or related credit terms with its creditors but is critically subject to 

whether the debt obligation is due to private or public entity. As an alternative to this, a 

distressed firm may sell-off some of its existing assets to reduce its outstanding liability, or 

may undertake new profitable investment opportunities, which may eventually help it to 

overcome its misery. Despite having profitable investment opportunities, a financially 

distressed firm might not be able to generate additional funding due to the high risk involved 

in financing distress firms and the “debt overhang” problem, as discussed by Myers (1977). 

As a consequence, infusion of new capital from external sources is rarely observed in the 

resolution of financial distress. Thus, we cannot rule out the possibility that a financially 

distressed firm may not file for Chapter 7 or Chapter 11 protection, and choose a private 

workout method of resolving financial distress. Gilson et al. (1990) and Gilson (1997) report 

that firms avoid legal bankruptcy processes by out of court negotiation with creditors. 

However, under the binary classification based on legal consequences, a financially 

distressed firm which has not filed for Chapter 7 or Chapter 11 is not considered to be a 

financially distressed firm. There is, therefore, a clear need for a mechanism to identify 

financially distressed firms beyond the legal definitions. In this context, we find the argument 

of Pindado et al. (2008) highly relevant, and thus explore the following definitions of SMEs’ 

default events: 

Event 1 – Any firm which files for bankruptcy under Chapter 7/11 is considered default and 

is said to have experienced Event 1. The vast majority of empirical literature on SMEs default 

prediction employs this kind of binary classification based on some legal consequences to 
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classify a firm as healthy or bankrupt (see among others Altman and Sabato 2007; Gupta, et 

al. 2014b). 

Event 2 –  Here we follow the financial distress definition provided by Keasey et al. (2014) 

while classifying a SME as default under Event 2. In particular, we consider a firm to be 

financially distressed (have experienced Event 2) if its EBITDA (earnings before interest tax 

depreciation and amortization) is less than its financial expenses for two consecutive years, 

the net worth/total debt is less than one, and the net worth experienced negative growth 

between the two periods. Additionally, a firm is also recorded as financially distressed in the 

year immediately following these distress events. 

Event 3 – The third default definition that we propose considers both legal and finance-based 

definitions of distress when classifying a firm as default. A firm is classified as default under 

Event 3 if it satisfies the conditions of Event 1 and Event 2 simultaneously. That is, besides 

being financially distressed, it should also file for bankruptcy under Chapter 7/11. Thus a 

firm is said to experience Event 3 in a given year if it experiences Event 1 in that same year 

and Event 2 the year earlier, the rationale being that not all business closures are due to 

financial difficulties. Many file for legal bankruptcies as part of their planned exit strategies 

(see among others Bates 2005). This definition can therefore identify firms which follow 

legal exit routes purely due to financial difficulties. 

4. Empirical Methods 
This section discusses the source and use of dataset, the selection of explanatory variables, 

and statistical models used in our study. 

4.1 Dataset 
To predict default events over the next one year horizon, our empirical analysis employs 

annual firm-level accounting data from the Compustat database. We consider a relatively 

long analysis period which includes all SMEs that entered the Compustat database after 

January 1950 but before April 2015. In line with the widely popular definition of SMEs 

provided by the European Union
3
, we consider a firm as an SME if it has less than 250 

                                                 
3
 We are aware of the fact that the US Small Business Administration (SBA) defines SMEs differently. Broadly 

it considers a firm as an SME if it has less than 500 employees and annual turnover of less than $7.5 million. 

However, their precise definition varies across industrial sectors to reflect industry differences. For instance, a 

mining firm with less than 1000 employees, a general building and heavy construction firm with annual turnover 

of less than $36.5 million and a manufacturing firm with less than 1500 employees are all classified as small 

businesses as per SBA (https://www.sba.gov/contracting/getting-started-contractor/make-sure-you-meet-sba-
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employees. In Compustat, a company with a “TL” footnote on status alert (data item STALT) 

indicates that the company is in bankruptcy or liquidation (i.e. Chapter 7/11). Generally, a 

company will have a "TL" footnote on status alert - quarterly (and annual) for the first and 

following quarters (and years) the company is in Chapter 11. An "AG" footnote will appear 

on Total Assets (AT_FN) – quarterly, on the quarter the company emerges from Chapter 11. 

Thus, within its lifetime, a firm may go for multiple bankruptcy filings in the form of Chapter 

11, and may remain in the bankruptcy state until it emerges. Consequently, taking the 

bankruptcy filing date as the bankruptcy indicator ignores the possible subsequent bankruptcy 

states. Thus, our first definition (Event 1) considers a firm under bankruptcy when its status 

alert is “TL” and healthy otherwise. This classification is consistent with the basic notion of 

survival analysis in which a subject may remain in a given risky state for more than one time 

period, and thus experience an event of interest for more than one time period.  

Table 1 reports age-wise distribution of censored and distressed firms under respective 

default events (see Section 3 for definitions of various default events). We proxy a firm’s age 

as the earliest year for which financial information for that firm is available in the Compustat 

database. In Compustat, 1950 is the earliest point in time for which financial information is 

available, therefore in order to get the complete financial history of a firm, we selected only 

those firms which entered the Compustat database after 1950. Further, firms belonging to the 

Transportation, Communications & Public Utilities; Finance; Insurance & Real Estate; and 

Public Administration industrial sectors have been excluded from our empirical analysis (see 

Table 2 for details). This is to ensure homogeneity within our sample, as financial firms have 

different asset-liability structures and the rest are heavily regulated by governments. It should 

be noted that the same firms might have multiple entries and exits in our database. For 

instance, when an existing SME reports a number of employees over 250, it exits our sample 

and returns only when its number of employees falls below 250. We also exclude subsidiary 

firms if the ‘stock ownership code’ (Compustat data item ‘stko’) is ‘1’ (subsidiary of a 

publicly traded company) or ‘2’ (subsidiary of a company that is not publicly traded) in the 

Compustat database. 

                                                                                                                                                        
size-standards/summary-size-standards-industry-sector; accessed on May 18, 2016 ). This may not be a 

convenient workable definition from the lender’s point of view. Many of these firms are too big to be called 

SMEs in the real sense, despite being classified as small firms as per SBA. They do this primarily to determine 

the eligibility of a firm for SBA financial assistance, or for its other programs. Thus we follow a more 

appropriate and popular definition of SMEs provided by the European Union for this study. The most popular 

study on predicting bankruptcy of US SMEs by Altman and Sabato (2007) also follows the European Union’s 

definition of SMEs. They consider firms as SMEs if they report sales revenue of less than $65 million 

(approximately €50 million, as suggested by the European Union). 
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As reported in Table 1, for any given age, the numbers of firms experiencing Event 3 is 

significantly lower than the number of firms experiencing Event 1. This shows that legal 

bankruptcy filing due to financial distress is not a dominant exist strategy for US SMEs. 

Thus, vast majority of bankruptcy filings may be due to planned exit strategies (e.g. Bates 

2005) which may not be triggered due to financial difficulties. One may also attribute this 

low frequency of Event 3 to the fact that, vast majority of SMEs are unlevered and do not 

incur any interest expense. Thus, unlevered SMEs facing financial difficulties (in meeting 

their operating expenses or trade payables) cannot be classified as financially distressed as 

per Keasey et al. (2014)’s definition of financial distress, and thus they do not experience 

Event 2. We do acknowledge this as a form of shortcoming of our study, but the cost of 

bankruptcy or financial distress is highest when external debt is introduced into the capital 

structure. In case of default of a levered firm, significant portion of bankruptcy cost is borne 

by providers of debt capital. In this context, we, in line with similar earlier studies (e.g. 

Pindado et al. 2008, Keasey et al. 2014), find a definition of financial distress contingent 

upon a firms’ ability to meet its financial expenses to be most appropriate for building default 

prediction models. 

[Insert Table 1 Here] 

[Insert Table 2 Here] 

4.2 Selection of Variables 

Dependent Variable: As discussed in Section 3, in this study we consider Event 1, Event 2 

and Event 3 as dependent variables for the estimation of respective hazard models. 

Independent Variables: To develop multivariate hazard models we employ a wide range of 

financial ratios that have an established reputation in predicting firms’ default risk. Our 

choice of covariates reflects firms’ performance from leverage, liquidity, solvency, activity, 

profitability and interest coverage dimensions. Specifically, we incorporate covariates from 

popular studies on SMEs bankruptcy, like Altman and Sabato (2007), Lin et al. (2012), Gupta 

et al. (2014), and a recent book on credit risk management by Joseph (2013).   

Leverage – the level of leverage reflect financial position of firms, which in turn determines 

their capacity to raise new capital through borrowing and meet debt obligations. To measure 

the financial fragility of firms, we use several variables reported as useful proxy of leverage 

in earlier literature. A Higher value of total liabilities/tangible total assets (TLTA) and total 

liabilities/net worth (TLNW) signifies higher likelihood of failure. Capital employed divided 
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by total liabilities (CETL) is used as an inverse measure of leverage and firms in financial 

distress are expected to be heavily dependent on borrowed funds and hence are expected to 

have a lower value of CETL. More importantly, inability to meet short-term debt financing 

immediately can be a trigger element in a firm’s termination, therefore, short-term debt 

relative to equity book value (STDEBV) is expected to be critical immediately prior to 

failure. 

Liquidity – during difficult time, firms may weaken their liquidity position in order to meet 

immediate payments (Zavgren 1985). We employ a number of measures linked to firms’ 

liquidity that examine whether a company has adequate cash or cash equivalents to meet its 

current obligations without liquidating other non-cash assets such as stocks. We expect that a 

higher value of following proxies to have a negative effect on firms’ failure probability; cash 

and short-term investment relative to total assets (CTA), cash and marketable securities to 

current liabilities (CHR), current assets relative to current liabilities (CR) and quick ratio 

(CHR). 

Profitability – typically a firm approaching failure witness earnings deterioration. This is 

because when earnings are impaired, firms’ liquidity position gets fragile and thus the default 

on debt service increases. Having said that, Taffler (1983) empirically show that short-term 

liquidity is less important in magnitude to liabilities and earning abilities. This is because, 

even when firms’ liquidity position is weak, capital supplier are more inclined to provide 

funds to firms with high level of earning, therefore, a lower probability of default. To further 

explore this relationship, we initially employ a number of variables which reflect the strength 

of firms’ profitability at different stages of its earning process: earnings before interest, tax, 

depreciation and amortization to total assets (EBITDATA), return on equity (ROE), operating 

profit to capital employed (OPEC), net income to sale (NIS) and operation profit to net 

income (OPNI). Healthy firms are characterized by higher value of these ratios than their 

distressed counterparts. 

Financing – default occurs when a firm fails to pay its financial obligations. Hence, the 

probability of this incident increases monotonically with the level of financial claims on 

either the level of its assets, revenue stream or profitability/retained earnings. Following this 

statement, we explore the discriminatory power of financial expenses relative to total assets 

(FETA), financial expenses relative to sales (FES) and earnings before interest taxes, 

depreciation and amortisation over interest expenses (EBITDAIE). We also explore retained 
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earnings to total assets (RETA) which indicates the cumulative profitability over a firm’s life. 

Thus, a firm’s age may have a direct impact on this variable, as younger firms may have a 

lower chance to generate a higher level of retained earnings relative to older firms and hence 

a higher chance of being bankrupt. However, in the real world younger firms are more likely 

to go bankrupt than older firms. Furthermore, all financing variables can be used as an 

indication of financial constraints. Given the fact that SMEs are normally classified as 

financially constrained firms, it is expected to observe that these variables contribute a higher 

magnitude to the failure of these firms.  

Activity – the variables related to firms’ activity evaluate how efficiently a manager is 

exploiting its assets which in turn affect firms’ performance in the long run. Working capital 

to sale (WCS) and to total assets (WCTA) indicates whether any deficiency in financial 

management skills is shrinking current assets to total assets or sale. We also utilise other 

activity ratios related to debtors (DCP, debtor collection period) and creditors (TCP, trade 

creditor payment period) to examine the impact of firm’s credit policies on its immediate 

ability to meet its financial obligations. The inclusion of these variables is important as 

Hudson (1986) states that many SMEs rely heavily on short-term financing through trade 

creditors. Additionally, the discriminatory power sale to total assets (STA) and stock holding 

period (SHP) has also been explored.  

Growth – Previous studies find that accessing to finance depends on the firm size. Beck and 

Demirguc-Kunt (2006) repot that different size categories (micro, small, medium, and large) 

face different degree of burden in obtaining external financing, they further emphasise how 

this burden play a major obstacle toward their growth. Phillips and Kirchhoff (1989) report 

that survival rate is more than doubles for firms with higher growth rate. We include different 

variables to examine if the lower rate of growth contributes to the failure of SMEs. Sales 

growth (SAG) create the basic source of the bulk of a firm’s income, they can also be an 

indicator of business risk and managers’ capability in dealing with other competitors. Capital 

growth (CAG) and Earnings growth (ERG) are also included, as a higher rate of growth 

indicates a growing capacity to meet financial obligations and vice-versa. 

The final covariate that we consider is the ratio between income taxes to total assets (TTA). 

A heathy profitable firm is expected to pay its tax obligations on time, and is also expected to 

pay higher amount of tax in comparison to an identical unhealthy less profitable firms. Thus, 

a higher value of TTA is expected to bring lower failure likelihood and vice-versa. 
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Table 3 lists all the covariates and their respective definitions. To eliminate the influence of 

outliers on our statistical estimates, we restrict the range of all our financial ratios between 

the 5th and 95th percentiles. 

Control Variables: Considering the suggestion of Gupta, Gregoriou, et al. (2014) we control 

for the diversity between micro, small and medium firms by employing dummy variables for 

micro (less than 10 employees) and small (greater than 9 but less than 50 employees) firms in 

our multivariate models. To control the volatility in the macroeconomic environment 

affecting specific industrial sectors, we calculate an additional measure of industry risk 

(RISK) as the failure rate (number of firms experiencing the event of interest in the respective 

industrial sector in a given year/total number of firms in that industrial sector in that year) in 

each of the seven industrial sectors in a given year. Higher values indicate a higher risk of 

default, and vice versa.  

[Insert Table 3 Here] 

4.3 Hazard Model 

4.3.1 Basic Hazard Model 

Survival analysis deals with the analysis of the time to the occurrence of an event, which in 

this study is the time until a financial default event. Suppose T is a non-negative random 

variable which denotes the time to a distress event and t represents any specific value of 

interest for the random variable T. If, instead of referring to T’s probability density function 

as 𝑓(𝑡) or its cumulative distribution function (CDF) as 𝐹(𝑡) = Pr(𝑇 ≤ 𝑡), we think of T’s 

survivor function, 𝑆(𝑡) or its hazard function, ℎ(𝑡), the understanding of survival analysis 

becomes much clearer (Cleves et al. 2010). The survivor function expresses the probability of 

survival beyond time t, which is simply the reverse CDF of T, i.e.: 

𝑆(𝑡) = 1 − 𝐹(𝑡) = Pr(𝑇 > 𝑡)(1) 

At 𝑡 = 0 the survivor function is equals to one, and moves toward zero as 𝑡 approaches 

infinity. The relationship between survivor function and hazard function (also known as the 

conditional failure rate at a particular time𝑡) is mathematically defined as follows: 

ℎ(𝑡) = lim
∆𝑡→0

Pr(𝑡 + ∆𝑡 > 𝑇 > 𝑡|𝑇 > 𝑡)

∆𝑡
=
𝑓(𝑡)

𝑆(𝑡)
=
−𝑑ln𝑆(𝑡)

𝑑𝑡
;(2) 



P A G E  | 17                                                                                                                              

 

In simple words, the hazard rate is the (limiting) probability that the failure event occurs 

within a given time interval, given that the subject has survived to the start of that time 

interval, divided by the width of the time interval. The hazard rate varies from zero to infinity 

and may be increasing, decreasing or constant over time. A hazard rate of zero signifies no 

risk of failure at that instant, while infinity signifies certainty of failure at that instant.   

4.3.2 Extended Cox Model 

An elegant and computationally feasible way to estimate the hazard function (2) is to use the 

semi-parametric Cox proportional hazards (CPH) model (Cox 1972, 1975) as shown in the 

following equation:  

ℎ𝑖(𝑡) = ℎ0(𝑡). exp(𝑥𝑖
′𝛽)(3) 

Here, 𝑥𝑖
′ is the transpose of covariates vector x𝑖, β is the vector of regression parameters and 

ℎ0(𝑡) is the arbitrary unspecified baseline hazard function (the hazard risk that the subject i 

faces in absence of covariates; i.e. 𝑥 = 0). The regression parameters (βs) are estimated using 

the partial likelihood function, which takes into account censored survival times and 

eliminates the unspecified baseline hazard term ℎ0(𝑡). CPH model treats time as continuous, 

and is semi-parametric in the sense that the model does not make any assumptions related to 

the shape
4
 of the hazard function over time. 

 

Some of the factors (leverage ratio, profitability ratio, volatility, etc.) affecting firms’ survival 

vary with time, but the fixed CPH model as highlighted in Equation (3) does not allow for 

time-varying covariates. However, inclusion of time-varying covariates in the CPH 

framework is relatively easy and thus enables us to predict dynamic survival probability over 

the life of the firm. The CPH model can be generalized to allow for the covariate vector 𝑥 to 

be time-varying as follows: 

ℎ𝑖(𝑡) = ℎ0(𝑡). exp(𝑥(𝑡)𝑖
′𝛽)(4) 

where 𝑥(𝑡) is the covariate vector at time 𝑡. The rate of change of time-varying covariates is 

different for different subjects, and hence the estimated hazard ratio does not remain constant 

over time. However, the inclusion of time-varying covariates is not problematic for the partial 

                                                 
4
 It could be increasing, decreasing, and then increasing or any shape we may imagine. But it assumes that 

whatever the general shape of the hazard function, it is same for all subjects. 
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likelihood estimation (Allison 2010), and hence the CPH model can be easily improved to 

allow for non-proportional hazard risks. It implies that a general hazard model which does 

not have the restrictive assumption of constant proportional hazard ratio can be generalized 

by inclusion of both duration-dependent and duration-independent covariates in the same 

model. However, a CPH model with time-varying covariates is no longer a proportional 

hazards model, and a CPH model with time-varying covariates is appropriately called the 

Extended Cox model (see Kleinbaum and Klein 2012). Additionally, the time-varying 

covariates do not need to satisfy the proportional hazards assumption. However, if the model 

also includes time-independent covariates, then appropriate test of proportionality is 

suggested (see Kleinbaum and Klein 2012).  One major advantage of the Cox method is that 

it easily addresses the problem of right censoring, but it suffers from a major disadvantage of 

proportional hazards assumption if time-independent covariates are also included in the 

model. One may test this restrictive proportional hazard assumption that is being neglected in 

most empirical studies by using the scaled Schoenfeld residual (Grambsch and Therneau 

1994)  rather than the Schoenfeld residual (Schoenfeld 1982). While estimating our empirical 

model we also control for unobserved heterogeneity and recurrent events by including a 

shared frailty term into our model via a multiplicative scaling factor 𝛼𝑖 (see Cleves et al. 

2010). These signify group-level frailty and are unobservable positive values assumed to 

follow the Gamma distribution with mean 1 and variance θ to be estimated using the 

development sample (see Jenkins 2005). Also, the time at which the distress event occurs is 

not really relevant for hazard risk analysis using the Cox method, but the ordering of the 

distress event is critically important. In situations where multiple firms experience the event 

of interest at the same time, the exact ordering of distress events is difficult to determine. 

Thus we use Efron's
5
 (1977) method to handle cases of tied failure times.  

Recent empirical literature highlights the use of CPH in default prediction studies (see among 

others Bharath and Shumway 2008; Chen and Hill 2013) but it is inappropriate to use the 

CPH model in discrete-time frameworks for the reasons discussed earlier, and in the 

following section. Both Bharath and Shumway (2008) and Chen and Hill (2013) are silent on 

issues pertaining to shared frailty and tied failure times, which we consider to be important 

aspects and should be addressed in empirical studies if one chooses to use the CPH modelling 

technique. 

                                                 
5
 In our analysis the risk set keeps decreasing with successive failures. Efron's (1977) method reduces the weight 

of contributions to the risk set from the subjects which exhibit tied event times in successive risk sets.  
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4.3.3 Discrete Hazard Model 

When an event may be experienced at any instant in continuous-time (exact censoring and 

survival times are recorded in relatively fine time scales such as seconds, hours or days) and 

there are no tied survival time periods, then the continuous-time survival model is an 

appropriate choice (Rabe-Hesketh and Skrondal 2012). However, if the data has relatively 

few censoring or survival times with tied survival time periods, then the discrete-time 

survival model is more appropriate, where coarse time-scales are generally used, for instance, 

expressing time to an event in weeks, months or years (Rabe-Hesketh and Skrondal 2012). 

Interval-censoring
6
 leads to discrete-time data, which is the case with our database. Here, the 

beginning and end of each time interval is same for all of the SMEs in analysis time, as the 

information is recorded on an annual basis. Thus, the event of interest may take place at any 

time within the year but it cannot be known until the information is provided at the end of the 

year. Hence, considering the discussion above we also estimate our hazard models in 

discrete-time framework with random effects (𝛼𝑖), thus controlling for unobserved 

heterogeneity or shared frailty. 

The discrete-time representation of the continuous-time proportional hazard model with time-

varying covariates leads to a generalized linear model with complementary log-log (Grilli 

2005; Jenkins 2005; Rabe-Hesketh and Skrondal 2012) link, specified as follows: 

𝑐𝑙𝑜𝑔𝑙𝑜𝑔(ℎ𝑖(𝑡)) ≡ ln{− ln(1 − ℎ𝑖(𝑡))} = 𝛽𝑥(𝑡)𝑖
′ + 𝜆𝑡(5)   

Here, 𝜆𝑡 is a time-specific constant which is estimated freely for each time period t, thus 

making no assumption about the baseline hazard function within the specified time interval. 

However, in most empirical studies logit link is used over complementary log-log (clog-log) 

link as specified in Equation 6: 

𝑃𝑖,𝑡(𝑌 = 1) =
𝑒𝛼(𝑡)+𝑥(𝑡)𝑖

′𝛽

1 + 𝑒𝛼(𝑡)+𝑥(𝑡)𝑖
′𝛽
(6) 

where α(t) captures the baseline hazard rate and𝑃𝑖,𝑡(𝑌 = 1) is the probability of experiencing 

the event of interest by subject i at time t. This will produce very similar results as long as the 

time intervals are small (Rabe-Hesketh and Skrondal 2012) and sample bad rate (% of failed 

to non-failed) is small (Jenkins 2005). One may also choose probit link function, if one 

                                                 
6
 The event is experienced in continuous-time but we only record the time interval within which the event takes 

place. 
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strongly believes that the underlying distribution of the process being modelled is normal, or 

if the event under study is not a binary outcome but a proportion (e.g. proportion of 

population at different income levels). While these specifications will generally yield results 

that are quite similar, there are significant differences in terms of non-proportionality (see 

Sueyoshi (1995) for detailed discussion). Thus, we estimate our discrete hazard models with 

clog-log and logit links, and analyse any differences in the magnitude of coefficients and 

classification performance of multivariate models developed. 

4.4 Performance Evaluation 
To gauge the classification performance of the models developed to identify distressed firms, 

we estimate area under the Receiver Operating Characteristic (ROC) curve (AUROC). This 

curve originates from the signal detection theory, which shows how the receiver detects 

existence of signal in presence of noise. It is obtained by plotting the probability of detecting 

true-positive (sensitivity) (a firm actually defaults and the model classifies it as expected 

default) and false-negative (1 – specificity) (a firm actually defaults but the model classifies it 

as expected non-default) for an entire range of possible cutpoints (these are probability 

values). Cutpoint, c, is defined to obtain a derived binary variable by comparing each 

estimated probability with c. If the estimated probability is greater than c, the value of the 

derived binary variable equals to 1, or 0 otherwise. AUROC is now considered to be the most 

popular non-parametric method for evaluating a fitted prediction model’s ability to assign, in 

general, higher probabilities of the event of interest to the subgroup which develops the event 

of interest (dependent variable = 1) than it does to the subgroup which do not develop the 

event of interest (dependent variable = 0). The AUROC provides a measure of the prediction 

model’s ability to discriminate between those firms which experience the event of interest, 

versus those who do not. Its value ranges from 0.5 to 1.0, which encapsulates the 

classification performance of the model developed. AUROC of 1 denotes a model with 

perfect prediction accuracy, and 0.5 suggests no discrimination ability. In general there is no 

‘golden rule’ regarding the value of AUROC, however anything between 0.7 and 0.8 is 

acceptable, while above 0.8 is considered to be excellent (Hosmer Jr et al. 2013). 

5. Results and Discussion 
We begin this section with analysis of key measures of descriptive statistics of our covariates, 

along with relevant discussion pertaining to correlation among them. We perform univariate 

regression analysis of each covariate in turn using respective event definition and respective 
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econometric specification, to understand any unexpected behaviour in their discriminatory 

performance. We then discuss development and performance evaluation of multivariate 

discrete-time hazard models developed using logit and clog-log links. Finally, we develop 

multivariate extended Cox models and provide a comparative discussion on the performance 

of multivariate models developed using different default definitions. To gauge any temporal 

variation in the explanatory power of our covariates, we perform our regression analysis 

using covariates that are lagged by T – 1, T – 2 and T – 3 time periods. 

5.1 Descriptive Statistics and Correlation 
Inspection of descriptive statistics gives us an initial understanding about the variability of 

covariates and the potential biasness that may arise in the multivariate setup due to any 

unexpected extreme variability. We expect the mean of covariates that exhibit positive 

relationships with the insolvency/distress hazard to be higher for distressed groups (status 

indicator = 1) than for their healthy or censored counterparts (e.g. STDEBV in Table 4). On 

the contrary, the mean of covariates that show negative relationships with the insolvency 

hazard is expected to be lower for distressed groups than for their healthy counterparts (e.g. 

CTA in Table 4). A closer look at Table 4 reveals that the mean, median and standard 

deviation of most of the covariates under respective event definitions are as we expect 

without any extreme variability. However, EBITDAIE and STDEBV raise some serious 

concerns. The mean of EBITDAIE is very high, as most of the firms in our sample do not 

incur (or incur very little) interest expenses
7
. This leads to a very high difference between its 

mean and median values, resulting in a highly skewed distribution and very high value of 

standard deviation. Although STDEBV and TLNW are positively related to firms’ default 

probability, the mean of the default group is significantly lower than the censored group 

under Event 3, which is quite surprising as we expect otherwise. We also observe that the 

mean of respective covariates across different default definitions in Table 4 reveal very little 

variation in value. This signals little variation in the classification performance of 

multivariate models developed, and is confirmed by our results in Section 5.  

[Insert Table 4 Here] 

The correlation matrix in Table 5 shows that some of the covariates exhibit moderate to 

strong correlation with other covariates. RETA shows a strong positive correlation of 

                                                 
7
 While calculating the ratio EBITDAIE, zero interest expense (IE) for all firm-year observations is replaced 

with $1 to avoid missing values. 
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approximately 0.65 with EBITDATA, supporting the belief that SMEs primarily rely on 

internal sources for their funding requirements, thus they end up retaining a significant 

portion of their income. Issues associated with multicollinearity therefore need to be 

addressed carefully when developing multivariate models. Section 5.3.2 on model building 

strategy discusses how we address this issue in this study.  

[Insert Table 5 Here] 

5.2 Univariate Regression and Average Marginal Effects 

It is always advisable to do some univariate analysis before proceeding to estimation of 

multivariate models. In survival analysis the standard approach is to initially look at Kaplan-

Meier survival curves of all categorical covariates to get an insight into the shape of survival 

functions and proportionality of each group
8
. Popular non-parametric tests of equality of 

survival functions, like the log-rank test and the Wilcoxon–Breslow–Gehan test (see Cleves 

et al. 2010), are also reported. However, it is not feasible to calculate Kaplan-Meier curves or 

conduct these non-parametric tests for continuous predictors as continuous predictors have 

too many different levels
9
. But, Nam et al. (2008) report the log-rank test and the Wilcoxon–

Breslow–Gehan test for their continuous predictor, which, to the best of our knowledge, is 

inappropriate. Considering this constraint, we perform univariate regression of each covariate 

in turn, for an initial insight into their effects on respective default events.  

In order to narrow down our list of covariates, at first we obtain univariate regression 

estimates using Event 2 as the dependent variable and Equation (6) as the regression 

methodology (discrete-time hazard model with logit link). Here we use the financial distress 

based definition rather than legal bankruptcy, with the presumption that it is the primary 

reason behind bankruptcy and always precedes the bankruptcy filing event. Further, filing for 

legal bankruptcy is the least efficient exit strategy for SMEs (Balcaen et al. 2012). 

Additionally, to gauge the temporal variation in the explanatory power of covariates we 

obtain regression estimates for T – 1, T – 2 and T – 3 lagged time periods (see Table 6). At 

this stage we exclude covariates from further empirical analysis that (i) are not significant in 

all three time periods (this ensures that the selected covariates are consistent predictors of 

firms’ financial health over a sufficiently long time interval to allow for developing a 

reasonable early warning system), or (ii) are significant but exhibit Average Marginal 

                                                 
8
 See Cleves et al. (2010) for a detailed description of Kaplan-Meier curves. 

9
 See for example http://www.ats.ucla.edu/STAT/stata/seminars/stata_survival/default.htm (accessed May 18, 

2016). Also see Cleves et al. (2010) for a more thorough understanding. 
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Effects
10

 (AME) of less than 5% in all three time periods. The rationale is that a unit change 

in the value of significant covariates must induce sufficient change in the magnitude of the 

outcome probability to clearly distinguish between distressed and healthy firms.  An 

interesting observation in Table 6  is the AME of Altman and Sabato's (2007) covariates that 

are widely employed in modelling default risk of SMEs. Out of the five covariates that they 

suggest, three (STDEBV, EBITDAIE and RETA) exhibit AME of less than 5% with AME of 

EBITDAIE being almost zero. The other two covariates CTA and EBITDATA have AME 

values less than 17%. This suggests that, although these covariates are significant predictors, 

a unit change in their value does not transmit significant change in the probability of outcome 

variable. Although three of Altman and Sabato's (2007) covariates have AME less than 5%, 

we include them for further empirical analysis to gain greater understanding of their 

explanatory power in the multivariate setup. Furthermore, the AME of FETA and TTA are 

highest among all covariates suggesting that financial expense and tax are dominant signals 

to identify financially distressed firms. From 27 variables, this helps us to narrow down to 16 

variables that we use for further empirical analysis. Table 7 reports the final list of covariates 

that we use for further univariate and multivariate regression analysis. 

[Insert Table 6 Here] 

[Insert Table 7 Here] 

Univariate Regression of Event 1: Section A of Table 8 reports the univariate regression 

estimates for Event 1 using discrete and continuous-time hazard models. Magnitude of 

coefficients of respective covariates (β in Table 8) obtained using discrete-time hazard 

specification with logit and cloglog links, and the extended Cox model, are close to each 

other with some variation for covariates TLTA, FETA, CAG, SAG, TTA and RETA. 

However, logit and cloglog estimates exhibit almost identical model fit as their AIC
11

 values 

are almost identical, but they are about three times higher for Cox estimates. This suggests 

                                                 
10

 In non-linear regression analysis, Marginal Effects are a useful way to examine the effect of changes in a 

given covariate on changes in the outcome variable, holding other covariates constant. These can be computed 

as marginal change (it is the partial derivative for continuous predictors) when a covariate changes by an 

infinitely small quantity and discrete change (for factor variables) when a covariate changes by a fixed quantity. 

Average Marginal Effects (AME) of a given covariate is the average of its marginal effects computed for each 

observation at its observed values. Alternatively, AME can be interpreted as the change in the outcome 

(financial distress = 1, in our case) probabilities due to unit change in the value of a given covariate, provided 

other covariates are held constant. See Long and Freese (2014) for detailed discussion on this topic.  
11

 Akaike Information Criterion (AIC) is defined as:  AIC = −2 × L + 2 × (p + 1) where L is the log-likelihood of 

the fitted model and p is the number of regression coefficients estimated for non-constant covariates. In general, 

models with lower values of AIC are preferred to larger ones. 
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that discrete-time model with logit/cloglog links offer better model fit than extended Cox 

models
12

. We also see that CAG and SAG are significant in all time periods when estimated 

using discrete hazard model, but becomes insignificant (in T – 2 and T – 3) when estimated 

using Cox model. Further, the statistical significance of TLTA, NIS and RETA also varies 

with their econometric specification. Altman and Sabato's (2007) covariate EBITDATA loses 

its statistical significance beyond T – 1; STDEBV shows unstable explanatory power (sign is 

opposite to expectation for T – 1 logit and cloglog estimates), is insignificant in T – 1 but 

significant in T – 2 and T – 3; EBITDAIE is significant but its coefficients are almost 0; 

RETA is significant in T – 1 but is insignificant in T – 2 and T – 3 when estimated using 

discrete-hazard specification. Only CTA shows consistent and reliable explanatory power in 

all three time periods across all econometric specifications. Event 1 is the same event 

definition that they use in their default prediction study, however our results do not approve 

the covariates suggested by them. Their suggestion might be biased due to their sample 

selection process, while we use near-population data to establish our empirical validation.  

Univariate Regression of Event 2: Section B of Table 8 reports univariate regression 

estimates obtained using Event 2 as a dependent variable. All covariates are significant across 

all econometric specifications for all lagged time periods. However, the AIC values of logit 

and cloglog estimates are about three to six times lower than values obtained using Cox 

specification. This asserts that discrete hazard models offer better model fit than their 

continuous counterparts. Additionally, in T – 3, FETA and WCTA fail to remain significant 

when estimated using Cox specification. In this case, all of  Altman and Sabato's (2007) 

covariates are significant with expected sign across all econometric specification for 

respective lagged time periods except RETA, for Cox estimate at T – 3. All of their covariates 

also have reasonable magnitude of respective coefficients except EBITDAIE, which is again 

almost 0. However, the real litmus test of their covariates will be performed in the 

multivariate section. 

Univariate Regression of Event 3: Section C of Table 8 reports univariate regression 

estimates obtained using Event 3 as the dependent variable. Unlike Event 2 estimates, many 

of the covariates (OPCE, NIS, CAG, STDEBV, EBITDAIE and RETA) show varying 

                                                 
12

 For most covariates and their respective time lags in Table 8, absolute values of coefficients are highest for 

logit estimates, followed by cloglog estimates, and least for Cox estimates (i.e. |logit| > |cloglog| > |Cox|). 

However, based on this it shall be inappropriate to conclude that, for a unit change in the value of a covariate 

logit estimates lead to highest change in the outcome probability than its alternative counterparts. This 

generalization may only be valid if their Average Marginal Effects (AME) or other similar estimate also show 

this pattern.   
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(insignificant) explanatory power across different time periods. Two of Altman and Sabato's 

(2007) covariates (STDEBV and EBITDAIE) also fail miserably to discriminate distressed 

and censored firms across T – 1 and T – 2 lagged time periods.  

[Insert Table 8 Here] 

5.3 Developing Multivariate Hazard Models 

In this section, we develop and discuss multivariate hazard models for the respective default 

definitions discussed in Section 3. We begin with our choice for specification of the baseline 

hazard rate, which is required for developing discrete-time duration-dependent hazard 

models, then develop and discuss the multivariate discrete-time and continuous-time hazard 

models.  

5.3.1 Detection of Baseline Hazard Rate 

Before developing multivariate discrete-time hazard models it is important to choose a 

baseline specification for the hazard rate. Figure 1 shows the table of hazard curves
13

 

estimated using the Kaplan-Meier (KM) estimator for different default events (Kaplan and 

Meier 1958). KM estimator also known as product limit estimator is the most prolific and 

classic non-parametric technique of survival analysis. It is primarily used to produce useful 

visual plots of survival/life tables, survival curves and hazard curves. This KM estimator 

estimates the survival function at time 𝑡, denoted by �̂�(𝑡), which is the probability of survival 

time being greater than 𝑡. The formula for KM survival probability at failure time 𝑡𝑗 gives the 

probability of surviving past the previous failure time 𝑡𝑗−1, multiplied by the conditional 

probability of surviving past time 𝑡𝑗, given survival to at least time 𝑡𝑗. 

�̂�(𝑡𝑗) = �̂�(𝑡𝑗−1) × Pr(𝑇 > 𝑡𝑗|𝑇 ≥ 𝑡𝑗)(7) 

                                                 
13

 Table 1 shows that the earliest age that a firm can experience a distress event under all three default 

definitions is one year. However, the hazard curves start from somewhere around five years. This difference is 

due to the fact that the “sts graph” command in Stata performs an adjustment of the smoothed hazard near the 

boundaries. In case of the default kernel function of -sts graph- (Epanechnikov kernel), the plotting range of the 

smoothed hazard function is restricted to within one bandwidth of each endpoint. The same is true for other 

kernels, except the epan2, biweight, and rectangular kernels, in which case the adjustment is performed using 

boundary kernels.  If we wish to plot an estimate of the hazard for the entire range, we could use a kernel 

without a boundary correction. Alternatively, we can use the -noboundary- option, but this will produce an 

estimate that is biased near the edges. See “help sts graph” in Stata and Silverman (1986) for further details. 

This will not affect the empirical analysis if one uses a fully non-parametric method of baseline hazard 

specification. However, one needs to be careful while using piecewise-constant specification. 
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As shown below, Equation (7) can also be written as product limit of the survivor function if 

we substitute for survival probabilities �̂�(𝑡𝑗−1) with the product of all fractions that estimate 

the conditional probabilities for failure time 𝑡𝑗−1 and earlier. 

�̂�(𝑡𝑗) = ∏Pr(

𝑗−1

𝑖=1

𝑇 > 𝑡𝑖|𝑇 ≥ 𝑡𝑖)(8) 

Comparison of survival curves is useful when comparison is made between survival patterns 

of two or more categories. In our case, we do not have the same event for multiple categories, 

but multiple events for the same category or sample. Thus, analysis of hazard rate/curves that 

use information from Equation (8), and as stated in Equation (2) is more relevant in this 

context. This also helps us in defining baseline hazard rate of multivariate models. 

As reported in Figure 1, hazard curves of all three events exhibit fairly different functional 

relationships with firms’ age. The hazard curves of all three events show increasing and 

decreasing relationships with firms’ age, and the shape of hazard curves of Event 1 and Event 

3 are quite similar. From the surface it might seem that the default events are highly duration-

dependent. However, one might turn sceptic after looking at the magnitude of hazard rates on 

the vertical axis. For Event 1 it ranges approximately between 0.006 and 0.013; Event 2 

between 0.05 and 0.13; and Event 3 between 0.00175 and 0.00325. Considering these tight 

intervals of hazard rates, piece-wise specification of baseline hazards might fail to reflect the 

differences in the hazard rates between respective age groups.  Additionally, all three hazard 

curves show steep rises and falls with some flatness in a couple of time intervals, thus it is 

inappropriate to assume that the hazard rates are constant for any defined age group. In this 

situation it may be appropriate to use a fully non-parametric baseline hazard specification, 

thus age specific dummy variables to specify the baseline hazard rate. To statistically test our 

intuition, we estimated multivariate discrete hazard models (with logit link) with Event 1, 

Event 2 and Event 3 respectively as dependent variables and only age dummies as 

independent variables. Regression results
14

 confirm that about 90% of age dummies are 

significant (p-value < 0.05) in explaining respective outcome of interest. However, when 

supplemented with financial covariates, only about 10% of age dummies remain statistically 

significant with large values of standard errors of their coefficients. This suggests that in 

presence of financial covariates, temporal dummies fail to capture duration dependence of 

                                                 
14

 These results are not reported in this paper; however, it may be made available from the authors. 
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hazard rates.  Additionally, one also needs to consider that too many variables may make the 

multivariate model numerically unstable. Thus, following Shumway (2001) we re-estimate 

these models using the natural logarithm of firms’ annual age (variable AGE in Table 9) as 

the baseline hazard specification. In contrast to Shumway's (2001) results, variable AGE is 

significant in most of our multivariate hazard models. In light of this discussion we use the 

natural logarithm of firms’ age (AGE) to proxy the baseline hazard rate for all our 

multivariate models developed. 

 [Insert Figure 1 Here] 

5.3.2 Model-Building Strategy 

The criteria for including a covariate in the multivariate model often vary across scientific 

disciplines, but they all strive to develop the ‘best’ model that is numerically stable and can 

be easily adapted for real life applications. The standard error of a model increases with the 

increase in the number of covariates, and this also makes the model more dependent on the 

observed data. Thus the objective should be to employ a minimum number of covariates for a 

desired accuracy level. A good start is to perform univariate regressions of each covariate in 

turn, and consider covariates with p-values of less than 0.25 for developing multivariate 

models (see chapter 4 of Hosmer Jr et al. 2013).  Another school of thought suggests 

inclusion of all theoretically motivated covariates in the multivariate model irrespective of 

their significance level in the univariate analysis. Some studies exclude insignificant 

predictors (p-value > 0.05) from their multivariate models, yet insignificant predictors may 

explain some of the variation of the dependent variable. Multicollinearity can be a serious 

issue that may make the model unstable if not addressed effectively. Thus, at first we rank  

the covariates in Table 7 based on the magnitude of their AME (the covariate with the highest 

value of |AME| is ranked 1, and so on) and then introduce each covariate in turn into the 

multivariate setup, starting with the covariate with the highest ranking (rank = 1 in Table 7). 

The rationale is that the higher the value of AME, the higher the change in the predicted 

probability due to unit changes in the covariate’s value. Thus a covariate with a higher value 

of AME (e.g. FETA in Table 7) is more efficient in discriminating between distressed and 

censored firms than a covariate with lower value of AME (e.g. TLTA in Table 7). 

Furthermore, we exclude a covariate from the multivariate model if, when introduced: (i) it 

affects the sign
15

 of any previously added covariate; (ii) it bears the opposite sign to that 

                                                 
15

 Coefficients with a negative sign become positive and vice versa.  
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expected; (iii) it bears the expected sign but has a p-value greater than 0.25; and (iv) it makes 

a previously added covariate insignificant with a p-value greater than 0.25. These scenarios 

may primarily arise due to multicollinearity among covariates, thus our screening mechanism 

seems to be a reasonable choice. Moreover, we believe that this method of covariate 

introduction while developing multivariate models reasonably addresses the multicollinearity 

problem, and leaves us with a ‘best’ set of covariates that explain the variance of the 

dependent variable. Using the discrete hazard model with logit link, this process is applied to 

Event 1, Event 2 and Event 3 respectively for all three (T – 1, T – 2 and T – 3) respective 

lagged time periods. Then, multivariate hazard models with cloglog link and extended Cox 

are estimated using the same set of covariates selected using logit link to see any differences 

that may arise due to different estimation methods. 

The final set of multivariate hazard models reported in Table 9 are estimated using all 

observations available to us covering the entire sampling period, thus we do not have separate 

test and hold-out samples. In order to assess within-sample classification performance of the 

models developed we estimate area under ROC (AUROC) curves for respective models using 

the full estimation sample. For out-of-sample validation, we first estimate multivariate hazard 

models using observations until the year 2011, and using these estimates we predict the 

default probabilities for the year 2012; we then include 2012 in the estimation sample and 

predict default probabilities for 2013 and so on, until the year 2015. We then use these 

predicted probabilities from the year 2012 through 2015 to estimate out-of-sample AUROC 

for respective multivariate hazard models.   

[Insert Table 9 Here] 

5.3.3 Hazard Models for Event 1 

The binary dependent variable used is Event 1, i.e. firms that filed for legal bankruptcy 

proceedings and are therefore considered to have experienced the default event and censored 

otherwise (please see Section 3 for detailed discussion). Section A of Table 9 reports 

multivariate hazard models estimated for T – 1, T – 2 and T – 3 lagged time periods 

developed using respective econometric specification. As we can see, the logit estimates of 

factors affecting the outcome probability of Event 1 vary considerably across time periods, 

except FETA. However, the control variables Micro, Small, RISK1 and AGE are strongly 

significant across all time periods. Among of five Altman and Sabato's (2007) covariates, 

EBITDATA and RETA fail to find a place in our multivariate models for all three time 
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periods. Additionally, STDEBV, CTA and EBITDAIE do not show consistency in their 

explanatory power. As seen in univariate regression, here too the coefficients of EBITDAIE 

are almost 0. This clearly shows the inefficiency of  Altman and Sabato's (2007) covariate in 

predicting corporate bankruptcies for SMEs. The statistical significance of most of the 

covariates does not vary considerably when estimated using cloglog and Cox specifications 

except STDEBV, CAG and SAG. However, AIC values of logit and cloglog estimates are 

almost identical and are about half that of Cox estimates. This clearly suggests that discrete-

time hazard models offer much superior model fit than the continuous extended Cox model. 

However, the within-sample AUROC for all econometric specifications are almost identical, 

with slight variation among estimates of the hold-out sample (see Figure 2). This suggests no 

significant loss in the classification performance if one uses Cox specification over discrete-

time. Additionally, the AUROC of all our multivariate models developed are around 0.8 or 

higher, which is considered to be excellent. However, shapes of ROC curves of hold-out 

sample estimates are steps rather than concave due to very low number of outcome events in 

out-of-sample validation
16

.  

[Insert Figure 2 Here] 

5.3.4 Hazard Models for Event 2 

Unlike Event 1, multivariate models developed for Event 2 using logit specification show 

consistent explanatory power of most covariates over all three lagged time periods (see 

Section B of Table 9). However, the statistical significance of SAG (T – 1) and AGE (T – 1 

and T – 3) varies with the estimation technique. All control variables (Small, Medium and 

RISK2) are also highly significant across all lagged time periods. Among Altman and 

Sabato's (2007) covariates, STDEBV, EBITDATA and EBITDAIE exhibit significant 

explanatory power across all lagged time periods and econometric specifications. However, 

the coefficient of EBITDAIE is almost 0 here as well. The variable CTA finds place only in 

the models developed for T – 2 time periods, while RETA fails to meet our screening criteria 

for inclusion in the multivariate model. Thus, Altman and Sabato's (2007) covariates are not 

efficient predictors of financial distress, unlike some of the other financial ratios reported in 

Section B of Table 9. Here too the AIC values of discrete hazard models are about three to 

four times lower than Cox models, thus discrete-time hazard models offer a superior model 

fit compared with their continuous counterpart. The within sample and hold-out sample 

                                                 
16

 This might result in misleading estimates of AUROC. Thus one needs to be careful when drawing inferences 

regarding out-of-sample predictive ability of the forecasting model. 
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AUROC estimated for different multivariate models are around, or higher than, 0.80, 

suggesting excellent classification performance of our multivariate models across all time 

periods and econometric specifications (see Figure 2). 

5.3.5 Hazard Models for Event 3 

The final set of hazard models that we estimate is based on the default definition (Event 3) 

that we propose in this study, which considers both legal bankruptcy filing and firms’ 

financial health while classifying SMEs as default (please see Section 3 for details). Section 

C of Table 9 reports multivariate regression estimates for Event 3 across all three lagged time 

periods and respective econometric specifications. A look at the results reveals that factors 

affecting outcome probability vary reasonably across time periods. Even the statistical 

significance of six covariates (STDEBV, OPCE, RETA, CAG, SAG and TTA) is sensitive to 

estimation technique. Among Altman and Sabato's (2007) covariates STDEBV finds place in 

T – 2 and T – 3, while RETA finds a place in T – 1 only. EBITDATA, CTA and EBITDAIE 

fail to meet our inclusion criteria into the multivariate setup. This reinforces the inefficiency 

of covariates suggested by Altman and Sabato (2007) in predicting SMEs financial distress. 

Here too the AIC values are in favour of discrete-time models, which are about 0.8 times 

lower than continuous Cox estimates. Both within sample and hold-out sample classification 

of all multivariate models across all time periods and econometric specifications are close to 

or above 0.9, which is superior to Event 1 and Event 2 models’ classification performance 

(see Figure 2). 

5.3.6 Comparative Performance of Hazard Models 

As reported in Table 9, the extended Cox model performs almost identically to discrete-time 

models with logit and clog-log links as it shows almost identical classification performance 

across all default definitions. Thus one might be indifferent in her choice of hazard 

specification. But, if the event of interest is not duration dependent (i.e. some functional form 

of time or time dummies are not significant in the multivariate model), with the hazard rates 

being invariant or varying mildly across different time periods, then getting involved in the 

complications of hazard models is not rewarding considering the marginal gain one would 

obtain using such models. As reported earlier, in the presence of other financial covariates 

about 90% of time dummies that we use as baseline hazard specification are insignificant, 

with very high values of standard errors. Thus we use natural logarithm of firms’ annual age 

as baseline hazard specification. However, such objective can easily be achieved by 

developing regression models using a panel logistic regression technique that uses some 
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functional form of time to capture any duration dependency. Although Shumway (2001) 

argues that hazard models are superior to competing static models but AGE variables in his 

multivariate models are insignificant, how can it be used to reliably predict duration specific 

hazard rate, which is why hazard models are primarily used? Unlike other scientific 

disciplines such as medicine or health economics, duration specific prediction of hazard rates 

is not a common practice in bankruptcy/financial distress prediction studies, thus we do not 

see any real need for hazard models if similar objective can be achieved using much simpler 

logistic regression that controls for any duration dependencies, as both involve identical 

statistical estimation methods. Another interesting observation is the classification 

performance measures across different default definitions. Based on the AUROC measures, 

Event 1 is the weakest definition of default while Event 3 is the strongest, as it has the highest 

values of AUROC across all time periods. Also, the AIC measure of Event 3 models is the 

lowest among the three default definitions, which indicates that the Event 3 default definition 

provides a vastly improved fit compared to other two competing default definitions.   

6. Conclusion 
The use of hazard models in estimating bankruptcy prediction is gathering momentum in 

financial academic literature. Unfortunately, the vast majority of previous studies suffer from 

at least one of the following shortcomings: (i) insufficient reasoning behind their choice of 

discrete-time or continuous-time hazard models; (ii) inappropriate specification of baseline 

hazard rate; (iii) no test of proportional hazards assumption when using the extended Cox 

model with time-independent covariates; (iv) ignores frailty and recurrent events; or (v) 

insufficient explanation of how they dealt with the issues of delayed entry.  

We contribute to the literature by acknowledging all of these commonly neglected concerns 

in our research. To our knowledge we are the first academic paper to report a performance 

comparison of popular hazard models (discrete hazard models with logit and clog-log links 

and the extended Cox models) used in the recent literature (e.g. Campbell et al. 2008; Chen 

and Hill 2013). We also contribute to the literature by undertaking an empirical investigation 

which compares various default definitions of the US SMEs. Three default definitions that we 

compare are based on legal bankruptcy laws (Event 1), firms’ financial health (Event 2), and 

the third definition (Event 3) proposed in this study that considers both legal bankruptcy and 

firms’ financial health. Considering the suggestion of Hosmer Jr et al. (2013) on multivariate 

model building strategy, we propose an atheoretical econometric based multivariate model 
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building strategy based on covariates’ Average Marginal Effects (AME) and their inter-

temporal discrimination ability. Finally, we further contribute to the field by examining the 

efficiency of covariates, suggested by the most popular study on SMEs’ bankruptcy by 

Altman and Sabato (2007), in predicting SMEs bankruptcy across varying default definitions 

and lagged time periods. 

Our findings show almost identical classification performance of both discrete-time and 

continuous-time hazard model across all three default definitions, suggesting insignificant 

variance of classification performance to econometric specification. Based on comparison of 

AIC measures, discrete-time hazard models provide considerably superior fit than 

continuous-time Cox models. However, AIC measures for both discrete-time hazard models 

(logit and clog-log links) are almost identical; hence the choice between them is left to the 

personal preference of the users. Also, Altman and Sabato's (2007) covariates are unstable 

and inefficient in predicting event outcome across different default definitions and lagged 

time periods in comparison to other competing financial ratios. Furthermore, based on the 

classification performance and AIC values of models developed using different default 

definitions, we understand that the default definition that we propose performs best in 

identifying distressed firms.  

Given the importance of hazard models in predicting bankruptcy, and the robustness of our 

results in dealing with neglected econometric issues in most previous empirical research in 

bankruptcy related survival analysis, we believe this paper makes a significant contribution to 

SMEs and corporate failure literature.     
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Table 1: Survival Table 

Age Event 1 Event 2 Event 3 

1 0 % 1 1 0 % 1 1 0 % 1 

1 8 3,931 0.20 316 3,623 8.02 2 3,937 0.05 

2 13 6,373 0.20 0 6,386 0.00 1 6,385 0.02 

3 28 6,749 0.41 607 6,170 8.96 1 6,776 0.01 

4 41 6,412 0.64 894 5,559 13.85 6 6,447 0.09 

5 52 6,242 0.83 831 5,463 13.20 12 6,282 0.19 

6 47 5,791 0.81 910 4,928 15.59 12 5,826 0.21 

7 56 4,941 1.12 812 4,185 16.25 16 4,981 0.32 

8 48 4,277 1.11 716 3,609 16.55 20 4,305 0.46 

9 54 3,776 1.41 697 3,133 18.20 17 3,813 0.45 

10 50 3,283 1.50 618 2,715 18.54 14 3,319 0.42 

11 35 2,564 1.35 476 2,123 18.31 11 2,588 0.43 

12 25 2,233 1.11 371 1,887 16.43 11 2,247 0.49 

13 24 2,039 1.16 358 1,705 17.35 6 2,057 0.29 

14 19 1,817 1.03 323 1,513 17.59 5 1,831 0.27 

15 15 1,625 0.91 273 1,367 16.65 6 1,634 0.37 

16 10 1,460 0.68 248 1,222 16.87 3 1,467 0.20 

17 11 1,285 0.85 224 1,072 17.28 2 1,294 0.15 

18 7 1,128 0.62 195 940 17.18 3 1,132 0.27 

19 8 1,017 0.78 199 826 19.41 3 1,022 0.29 

20 12 900 1.32 157 755 17.21 4 908 0.44 

21 10 786 1.26 132 664 16.58 1 795 0.13 

22 6 715 0.83 123 598 17.06 0 721 0.00 

23 6 642 0.93 111 537 17.13 1 647 0.15 

24 6 573 1.04 107 472 18.48 0 579 0.00 

25 9 483 1.83 95 397 19.31 3 489 0.61 

26 10 445 2.20 93 362 20.44 3 452 0.66 

27 6 411 1.44 74 343 17.75 5 412 1.21 

28 4 379 1.04 62 321 16.19 0 383 0.00 

29 4 329 1.20 62 271 18.62 1 332 0.30 

30 5 271 1.81 50 226 18.12 2 274 0.73 

31 5 235 2.08 41 199 17.08 1 239 0.42 

32 5 201 2.43 38 168 18.45 1 205 0.49 

33 4 178 2.20 23 159 12.64 1 181 0.55 

34 4 163 2.40 20 147 11.98 1 166 0.60 

35 4 145 2.68 15 134 10.07 0 149 0.00 

36 3 127 2.31 16 114 12.31 0 130 0.00 

37 2 115 1.71 16 101 13.68 1 116 0.86 

38 1 111 0.89 11 101 9.82 0 112 0.00 

39 0 102 0.00 13 89 12.75 0 102 0.00 

40 0 91 0.00 9 82 9.89 0 91 0.00 

41 1 69 1.43 6 64 8.57 0 70 0.00 

42 0 45 0.00 0 45 0.00 0 45 0.00 

43 0 46 0.00 3 43 6.52 0 46 0.00 

44 0 41 0.00 3 38 7.32 0 41 0.00 

45 0 36 0.00 2 34 5.56 0 36 0.00 

46 0 30 0.00 3 27 10.00 0 30 0.00 

47 0 27 0.00 2 25 7.41 0 27 0.00 

48 0 23 0.00 0 23 0.00 0 23 0.00 

49 0 23 0.00 1 22 4.35 0 23 0.00 

50 0 20 0.00 1 19 5.00 0 20 0.00 

51 0 19 0.00 1 18 5.26 0 19 0.00 

52 0 14 0.00 2 12 14.29 0 14 0.00 

53 0 11 0.00 0 11 0.00 0 11 0.00 

54 0 8 0.00 0 8 0.00 0 8 0.00 

55 0 6 0.00 1 5 16.67 0 6 0.00 

56 0 0 0.00 0 0 0.00 0 0 0.00 

57 0 0 0.00 0 0 0.00 0 0 0.00 

58 0 1 0.00 0 1 0.00 0 1 0.00 

Notes: This table shows the age wise distribution of firm-year observations for respective default events discussed in Section 

3. Numeric ‘0’ signifies censorship and ‘1’ signifies that a firm has experienced the respective default event.  
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Table 2: Sample Industrial Classification 

Industry Code SIC Code Industry Included/Excluded 

1 < 1000 Agriculture, Forestry, Fishing Included 

2 1000 to < 1500 Mining Included 

3 1500 to < 1800 Construction Included 

4 2000 to < 4000 Manufacturing Included 

5 5000 to < 5200 Wholesale Trade Included 

6 5200 to < 6000 Retail Trade Included 

7 7000 to < 8900 Services Included 

Excluded 4000 to < 5000 Transportation, Communications & Public Utilities Excluded 

Excluded 6000 to < 6800 Finance, Insurance & Real Estate Excluded 

Excluded 9100 to < 10000 Public Administration Excluded 

Notes: This table reports Standard Industrial Classification (SIC) of US firms. SIC Code is a four digit code that represents 

given industrial sectors. The last column reports the industrial sectors that we included or excluded from our sample.  

 

 

  Table 3: List of Covariates 

Category Variable Definition Compustat Data Item 

Leverage STDEBV Short term debt/equity book value DLC/SEQ 

 TLTA Total liabilities/tangible total assets  LT/(AT – INTAN) 

 TLNW Total liabilities/net worth LT/(AT - LT) 

 CETL Capital employed/total liabilities (AT – LCT)/LT 

    

Liquidity CTA Cash and short-term investments/total assets CHE/AT 

 CR Current Ratio; current assets/current liabilities ACT/LCT 

 
QR 

Quick Ratio; (current assets – stocks - prepayments)/current 

liabilities 

(ACT – INVT – 

XPP)/LCT 

 
CHR 

Cash Ratio; (cash + bank + marketable securities)/current 

liabilities 
CHE/LCT 

    

Financing FETA Financial expenses/total assets XINT/AT 

 FES Financial expenses/sales XINT/SALE 

 RETA Retained earnings/total assets RE/AT 

 
EBITDAIE 

Earnings before interest taxes depreciation and 

amortization/interest expense 
EBITDA/XINT 

    

Profitability 
EBITDATA 

Earnings before interest taxes depreciation and 

amortization/total assets 
EBITDA/AT 

 OPCE Operating profit/capital employed EBIT/(AT - LCT) 

 ROE Return on equity; Net profit/equity NI/SEQ 

 NIS Net income/sales NI/SALE 

 OPNI Operating profit/net income EBIT/NI 

    

Activity SHP Stock holding period; (stock × 365)/sales (INVT × 365)/SALE 

 DCP Debtor collection period; (trade debtors × 365)/sales (RECTR × 365)/SALE 

 TCP Trade creditors payment period; (trade creditors × 365)/sales (AP × 365)/SALE 

 WCTA Working capital/total assets WCAP/AT 

 WCS Working capital/sales WCAP/SALE 

 STA Sales/tangible assets SALE/(AT – INTAN) 

    

Growth CAG Capital growth; calculated as (Capitalt / Capitalt-1) - 1 (AT - LCT) 

 SAG Sales growth; calculated as (Salet / Salet-1) - 1 SALE 

 ERG Earnings growth; calculated as (EBITt / EBITt-1) - 1 EBIT 

    

Other TTA Income taxes/total assets TXT/AT 

    

Control Micro No. of employees < 10  

 Small 10 =<  No. of employees < 50  

 
RISK 

Event rate in a given industrial sector in a given year 

(calculated separately for different Event definition) 
 

Notes: This table lists the set of covariates, along with their respective definition, that we use for the empirical analysis. The 

last column lists the specific Compustat data items that we use to calculate the financial covariates.  
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Table 4: Descriptive Statistics 

Variable 
Status 

Indicator 

Event 1 Event 2 Event 3 

Mean Median SD Mean Median SD Mean Median SD 

STDEBV 0 0.1889 0.0144 0.4235 0.1843 0.0176 0.3977 0.1893 0.0143 0.4245 

 1 0.1967 0.0000 0.5262 0.2163 0.0000 0.5558 0.0442 -0.0571 0.4291 

OPNI 0 1.1200 1.0058 1.0524 1.1707 1.0338 1.0748 1.1177 1.0050 1.0533 

 1 0.6870 0.6729 1.0861 0.7976 0.8270 0.8516 0.5416 0.4644 0.9635 

TLTA 0 0.6390 0.4978 0.5124 0.5481 0.4325 0.4430 0.6404 0.4993 0.5130 

 1 0.9685 0.8343 0.5879 1.1870 1.0742 0.5578 1.2802 1.3848 0.5885 

TLNW 0 1.0663 0.4885 2.4897 1.0672 0.4964 2.2490 1.0681 0.4890 2.4963 

 1 1.0459 0.3762 3.3770 1.0595 0.1858 3.6364 0.2452 -1.1327 3.4305 

CETL 0 2.5593 1.5343 2.5867 2.8603 1.8361 2.6255 2.5520 1.5274 2.5852 

 1 1.1824 0.5146 1.8534 0.7110 0.3667 1.2149 0.6954 0.1984 1.2239 

CTA 0 0.2346 0.1357 0.2351 0.2425 0.1475 0.2362 0.2343 0.1352 0.2352 

 1 0.1856 0.0660 0.2335 0.1853 0.0747 0.2230 0.1681 0.0578 0.2272 

CR 0 2.8370 1.9516 2.4008 3.0807 2.2228 2.4266 2.8311 1.9443 2.4002 

 1 1.6869 0.9452 1.9695 1.3366 0.8283 1.5489 1.3542 0.6025 1.6870 

QR 0 2.1085 1.2028 2.1818 2.3227 1.3980 2.2275 2.1027 1.1982 2.1804 

 1 1.1411 0.4881 1.6776 0.8220 0.3966 1.2752 0.9004 0.3045 1.4141 

CHR 0 1.4273 0.4502 1.9092 1.5658 0.5720 1.9647 1.4240 0.4478 1.9081 

 1 0.8188 0.0984 1.5851 0.5769 0.0900 1.2250 0.6384 0.0572 1.4420 

FETA 0 0.0294 0.0172 0.0324 0.0244 0.0136 0.0285 0.0295 0.0173 0.0324 

 1 0.0507 0.0474 0.0381 0.0583 0.0591 0.0375 0.0602 0.0689 0.0402 

FES 0 0.0611 0.0192 0.0953 0.0509 0.0157 0.0854 0.0613 0.0193 0.0954 

 1 0.0982 0.0510 0.1087 0.1227 0.0624 0.1237 0.1235 0.0608 0.1222 

EBITDAIE 0 99.092 -0.0423 537.480 120.948 1.2368 576.057 98.612 -0.0524 536.500 

 1 22.388 -0.7447 333.325 -24.179 -3.723 166.108 20.568 -0.6260 312.090 

EBITDATA 0 -0.2248 -0.0043 0.6142 -0.1498 0.0266 0.5294 -0.2250 -0.0045 0.6141 

 1 -0.3060 -0.0438 0.6628 -0.6531 -0.2799 0.8446 -0.4394 -0.0765 0.7822 

OPCE 0 -0.1001 -0.0052 0.4090 -0.0905 0.0025 0.3881 -0.1003 -0.0057 0.4091 

 1 -0.1207 -0.0373 0.4296 -0.1573 -0.1130 0.5120 -0.0597 -0.0003 0.4276 

ROE 0 -0.1204 0.0105 0.5801 -0.1293 0.0080 0.5361 -0.1202 0.0104 0.5809 

 1 -0.0163 0.0411 0.6791 -0.0624 0.0754 0.7918 0.1536 0.1829 0.6011 

NIS 0 -0.4445 -0.0374 0.7868 -0.3881 -0.0069 0.7603 -0.4451 -0.0382 0.7866 

 1 -0.5511 -0.2287 0.7520 -0.7995 -0.4063 0.8510 -0.5537 -0.2568 0.7432 

RETA 0 -1.5313 -0.4904 2.2310 -1.2142 -0.3045 2.0203 -1.5314 -0.4929 2.2298 

 1 -2.0233 -1.0498 2.2862 -3.3941 -3.1440 2.4774 -3.2022 -2.7933 2.4772 

SHP 0 50.132 35.532 51.986 49.777 35.764 51.378 50.134 35.536 51.986 

 1 49.579 31.523 52.770 52.287 33.687 55.590 46.837 22.446 54.655 

DCP 0 63.907 55.077 49.284 64.987 56.112 48.985 63.873 55.017 49.304 

 1 59.123 46.274 53.136 57.293 47.770 50.741 60.949 49.949 55.460 

TCP 0 168.668 35.971 532.046 146.338 33.444 485.965 168.499 35.982 531.456 

 1 187.043 40.940 558.262 306.849 58.592 742.050 308.623 50.766 801.227 

WCTA 0 0.2370 0.2774 0.3594 0.2857 0.3245 0.3327 0.2357 0.2760 0.3598 

 1 -0.0152 -0.0288 0.3790 -0.0645 -0.0845 0.3707 -0.1111 -0.2199 0.3810 

WCS 0 0.4157 0.2371 0.6494 0.4689 0.2735 0.6404 0.4140 0.2357 0.6496 

 1 0.0812 -0.0269 0.5831 0.0657 -0.0388 0.5965 -0.0504 -0.1886 0.4929 

STA 0 1.0735 0.8915 0.9189 1.0633 0.8915 0.8993 1.0737 0.8912 0.9192 

 1 1.1171 0.8864 0.9830 1.1347 0.8914 1.0262 1.1383 0.9604 1.0089 

CAG 0 0.1639 0.0292 0.6464 0.1924 0.0469 0.6229 0.1621 0.0283 0.6465 

 1 -0.0889 -0.2126 0.6427 0.0053 -0.2042 0.7368 -0.0191 -0.1314 0.7247 

SAG 0 0.1788 0.0815 0.4423 0.1906 0.0955 0.4327 0.1776 0.0804 0.4424 
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 1 -0.0170 -0.1309 0.4161 0.1033 -0.0326 0.4852 -0.0466 -0.1897 0.4138 

ERG 0 -0.0394 -0.0681 1.3143 -0.0439 -0.0420 1.3478 -0.0407 -0.0695 1.3150 

 1 -0.2671 -0.3645 1.3192 -0.0295 -0.1764 1.1325 -0.3475 -0.4978 1.1091 

TTA 0 0.0130 0.0000 0.0282 0.0148 0.0000 0.0296 0.0130 0.0000 0.0282 

 1 0.0061 0.0000 0.0222 0.0020 0.0000 0.0140 0.0037 0.0000 0.0167 

Notes: This table reports mean, median and standard deviation for healthy (censored; status indicator = 0) and unhealthy 

(firms which experienced default event; status indicator = 1) groups of firms for respective covariates under different 

definitions of default events as discussed in Section 3.  

 

 

Table 5: Correlation Matrix 

Variable  1 2 3 4 5 6 7 8 

STDEBV 1 1        

TLTA 2 0.0780 1       

CETL 3 -0.2986 -0.6772 1      

CTA 4 -0.2670 -0.3276 0.4829 1     

FETA 5 0.1943 0.7093 -0.5344 -0.3343 1    

FES 6 0.0084 0.4339 -0.2462 -0.0563 0.6230 1   

EBITDAIE 7 -0.1004 -0.1983 0.2729 0.1330 -0.2071 -0.1508 1  

EBITDATA 8 0.1278 -0.4223 0.1548 -0.1694 -0.2899 -0.3963 0.2129 1 

OPCE 9 -0.1097 0.0783 -0.0390 -0.2278 0.0482 -0.1084 0.2402 0.3127 

NIS 10 0.1112 -0.2128 -0.0345 -0.2941 -0.172 -0.5105 0.2517 0.6920 

RETA 11 0.1292 -0.5031 0.2299 -0.1590 -0.3409 -0.3353 0.1872 0.6588 

WCTA 12 -0.1851 -0.7413 0.5870 0.5451 -0.5782 -0.4074 0.1994 0.3148 

WCS 13 -0.2144 -0.5619 0.6392 0.7005 -0.4397 -0.1252 0.0593 0.0360 

CAG 14 -0.0992 -0.1505 0.1613 0.1336 -0.1323 -0.0293 0.0540 0.1490 

SAG 15 -0.0117 -0.0651 0.0448 0.0833 -0.0868 -0.0430 0.0225 0.0375 

TTA 16 -0.0680 -0.1870 0.0894 -0.0085 -0.1813 -0.2153 0.2993 0.3199 

  9 10 11 12 13 14 15 16 

OPCE 9 1        

NIS 10 0.4705 1       

RETA 11 0.3057 0.5371 1      

WCTA 12 -0.0633 0.1543 0.3499 1     

WCS 13 -0.2574 -0.2318 0.1047 0.7403 1    

CAG 14 0.2161 0.0921 0.1658 0.1969 0.1783 1   

SAG 15 0.0424 0.0061 0.0497 0.0554 0.0676 0.2730 1  

TTA 16 0.4175 0.3232 0.2985 0.2158 -0.0259 0.1345 0.0971 1 
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Table 6: Event 2 Univariate Regression 

Variable Sign 
T – 1 T – 2 T – 3 

β SE AME % β SE AME % β SE AME  % 

STDEBV      + 0.1700a 0.0298 1.05a 0.3928a 0.0312 2.84a 0.3225a 0.0329 2.72a 

OPNI            - -0.3627a 0.0147 -2.32a -0.3323a 0.0150 -2.48a -0.1608a 0.0146 -1.36a 

TLTA           + 2.4762a a 0.0332 16.59 a 2.2925a 0.0340 17.77a 0.6454a 0.0317 5.78a 

TLNW          + 0.0096b 0.0048 0.05b 0.0349a 0.0050 0.25a 0.0294a 0.0053 0.24a 

CETL           - -0.9832a 0.0175 -7.60a -0.8332a 0.0155 -7.20a -0.2073a 0.0076 -1.87a 

CTA              - -1.9079a 0.0753 -11.67a -2.2780a 0.0882 -16.20a -0.5436a 0.0770 -4.55a 

CR                 - -0.5862a 0.0113 -4.09a -0.5718a 0.0113 -4.60a -0.1559a 0.0077 -1.35a 

QR                 - -0.6774a 0.0179 -4.69a -0.6328a 0.0171 -4.86a -0.1790a 0.0113 -1.51a 

CHR              - -0.5532a 0.0132 -3.55a -0.5760a 0.0138 -4.30a -0.1436a 0.0098 -1.22a 

FETA            + 32.1570a 0.4631 248.01a 24.0993a 0.4610 219.22a 8.8175a 0.4786 84.55a 

FES               + 7.2175a 0.1558 50.52a 6.3882a 0.1665 51.69a 3.7784a 0.1733 33.55a 

EBITDAIE   - -0.0007a 0.0000 -0.00a -0.0020a 0.0001 -0.02a -0.0014a 0.0000 -0.01a 

EBITDATA  - -1.0990a 0.0233 -7.98a -1.5416a 0.0289 -11.39a -0.8150a 0.0276 -7.22a 

OPCE           - -0.1528a 0.0320 -0.94a -1.0082a 0.0351 -7.50a -1.1616a 0.0373 -9.96a 

ROE             - 0.2635a 0.0210 1.64a -0.2591a 0.0219 -1.90a -0.5588a 0.0238 -4.75a 

NIS               - -0.5768a 0.0200 -3.66a -1.0970a 0.0237 -7.89a -0.7226a 0.0229 -5.97a 

RETA           - -0.4931a 0.0078 -3.68a -0.4340a 0.0079 -3.76a -0.1911a 0.0077 -1.81a 

SHP              + -0.0002 0.0000 -0.00 0.0034a 0.0003 0.02a 0.0048a 0.0003 0.04a 

DCP             + -0.0039a 0.0003 -0.02a -0.0023a 0.0003 -0.02a 0.0005 0.0003 0.00 

TCP              + 0.0003a 0.0000 0.00a 0.0003a 0.0000 0.00a 0.001a 0.0000 0.00a 

WCTA          - -3.2430a 0.0500 -22.62a -3.1762a 0.0517 -25.47a -0.8462a 0.0462 -7.44a 

WCS             - -1.5370a 0.0335 -9.60a -1.4041a 0.0336 -10.04a -0.1892a 0.0276 -1.50a 

STA              + 0.2387a 0.0184 1.44a 0.0406b 0.0199 0.28b -0.2551a 0.0215 -2.10a 

CAG             - -0.4236a 0.0210 -3.12a -1.1145a 0.0271 -9.68a -0.4648a 0.0240 -3.78a 

SAG              - -0.4975a 0.0321 -3.42a -0.8480 0.0351 -6.76a -0.3526a 0.0356 -2.70a 

ERG              - -0.0145 0.0104 -0.10 -0.0009 0.0108 -0.00 -0.0331a 0.0116 -0.26a 

TTA              - -24.5294a 0.8286 -166.40a -46.0535a 1.2150 -370.58a -28.3887a 0.9206 -255.68a 

Notes: a (b) [c] significant at the 1 % (5 %) [10 %] level (two-sided test). This table reports univariate regression 

estimates of respective covariates at respective lagged time periods, estimated using a discrete-time hazard 

model with logit link and Event 2 = 1 as outcome event. ‘Sign’ represents expected sign of regression 

coefficients, β is the regression coefficient, SE is standard error and AME is Average Marginal Effects in 

percentage.  
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Table 7: Final Set of Covariates 

Variable Sign 
T – 1 T – 2 T – 3 

β Rank   AME % β Rank AME % β Rank AME % 

STDEBV + 0.1700a 14 1.05a 0.3928a 15 2.84a 0.3225a 11 2.72a 

TLTA + 2.4762a  5 16.59 a 2.2925a 5 17.77a 0.6454a 8 5.78a 

CETL - -0.9832a 9 -7.60a -0.8332a 12 -7.20a -0.2073a 13 -1.87a 

CTA - -1.9079a 6 -11.67a -2.2780a 6 -16.20a -0.5436a 9 -4.55a 

FETA + 32.1570a 1 248.01a 24.0993a 2 219.22a 8.8175a 2 84.55a 

FES + 7.2175a 3 50.52a 6.3882a 3 51.69a 3.7784a 3 33.55a 

EBITDAIE - -0.0007a 16 -0.00a -0.0020a 16 -0.02a -0.0014a 16 -0.01a 

EBITDATA - -1.0990a 8 -7.98a -1.5416a 7 -11.39a -0.8150a 6 -7.22a 

OPCE - -0.1528a 15 -0.94a -1.0082a 11 -7.50a -1.1616a 4 -9.96a 

NIS - -0.5768a 11 -3.66a -1.0970a 10 -7.89a -0.7226a 7 -5.97a 

RETA - -0.4931a 10 -3.68a -0.4340a 14 -3.76a -0.1911a 14 -1.81a 

WCTA - -3.2430a 4 -22.62a -3.1762a 4 -25.47a -0.8462a 5 -7.44a 

WCS - -1.5370a 7 -9.60a -1.4041a 8 -10.04a -0.1892a 15 -1.50a 

CAG - -0.4236a 13 -3.12a -1.1145a 9 -9.68a -0.4648a 10 -3.78a 

SAG - -0.4975a 12 -3.42a -0.8480 13 -6.76a -0.3526a 12 -2.70a 

TTA - -24.5294a 2 -166.40a -46.0535a 1 -370.58a -28.3887a 1 -255.68a 

Notes: a (b) [c] significant at the 1 % (5 %) [10 %] level (two-sided test). This table reports the final set of 

covariates that we use for multivariate hazard analysis. This excludes covariates reported in Table 6 that are not 

significant in all three time periods or are significant but exhibit Average Marginal Effects (AME) of less than 

5% in all three time periods. It also includes all covariates of Altman and Sabato’s (2007) study irrespective of 

their significance or AME values. ‘Sign’ represents expected sign of regression coefficients, β is the regression 

coefficient, SE is standard error and AME is Average Marginal Effects in percentage. Rank is based on the 

absolute values of AME, where highest value gets 1, second highest get 2 and so on. 

 

 

Table 8: Univariate Regression 

Section A: Event 1  

Variable 
logit clog-log Cox 

T – 1 T – 2 T – 3 T – 1 T – 2 T – 3 T – 1 T – 2 T – 3 

TLTA          

β 1.6496a 0.9402a 0.5690a 1.4897a 0.8714a 0.5411a 1.2130a 0.5792a 0.2296c 

SE 0.1164 0.1183 0.1230 0.1031 0.1060 0.1168 0.1111 0.1153 0.1312 

AIC 4866.94 4711.79 4394.56 4865.63 4713.43 4398.85 16902.86 16511.26 15864.87 

CETL          

β -0.4373a -0.3022a -0.2104a -0.4068a -0.2801a -0.1931a -0.3974a -0.2629a -0.1569a 

SE 0.0424 0.0371 0.0346 0.0393 0.0340 0.0316 0.0396 0.0324 0.0337 

AIC 5125.48 4966.65 4650.35 5125.60 4971.34 4663.57 17225.83 17114.84 16301.24 

CTA          

β -1.5618a -2.4716a -2.0885a -1.3537a -2.0737a -1.7839a -1.6333a -2.3980a -1.9371a 

SE 0.2933 0.3325 0.3420 0.2617 0.2903 0.3031 0.2818 0.3004 0.3151 

AIC 5546.80 5240.32 4859.45 5552.50 5253.27 4870.86 18900.08 18084.53 16885.00 

FETA          

β 21.9980a 16.2405a 12.2258a 19.737a 14.708a 11.454a 17.330a 11.251a 7.526a 

SE 1.6891 1.7580 1.9064 1.5101 1.5475 1.6837 1.572 1.598 1.753 

AIC 5028.53 4975.84 4634.43 5033.99 4976.34 4636.87 16649.44 16779.55 16034.27 

FES          

β 4.6120a 4.2092a 3.4310a 4.2783a 3.9209a 3.3885a 4.0081a 3.4730a 2.6573a 
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SE 0.5815 0.6150 0.6842 0.5280 0.5521 0.6161 0.601 0.6159 0.6763 

AIC 4907.00 4804.39 4458.37 4913.86 4812.60 4466.04 16158.28 16259.79 15558.52 

EBITDATA          

β -0.4419a -0.1463 -0.0290 -0.4109a -0.1540 -0.0349 -0.3719a -0.0523 0.0821 

SE 0.0952 0.1106 0.1293 0.0878 0.1021 0.1184 0.0987 0.1137 0.1354 

AIC 4943.13 4525.44 3924.66 4944.80 4531.46 3928.27 16900.65 15599.45 13849.46 

OPCE          

β -0.3015a -0.5390a -0.0830 -0.2527b -0.4796a -0.1038 -0.2982b -0.4521a -0.0438 

SE 0.1351 0.1428 0.1560 0.1236 0.1302 0.1389 0.1304 0.1338 0.1444 

AIC 5180.19 5010.50 4688.66 5185.94 5020.43 4698.28 17676.46 17420.71 16541.07 

NIS          

β -0.4056a -0.3281a -0.1338 -0.3923a -0.3229a -0.1613b -0.4466a -0.3397a -0.1647b 

SE 0.0759 0.0809 0.0887 0.0696 0.0732 0.0795 0.0752 0.0779 0.0841 

AIC 5130.54 5021.24 4681.91 5138.88 5032.81 4696.54 17108.88 17131.33 16317.38 

WCTA          

β -2.3753a -1.5757a -1.0011a -2.1715a -1.4630a -0.9621a -2.0940a -1.2861a -0.6302a 

SE 0.1790 0.1790 0.1188 0.1616 0.1615 0.1717 0.1738 0.1723 0.1805 

AIC 5004.96 4924.59 4641.70 5012.94 4929.73 4649.67 16388.07 16688.53 16071.58 

WCS          

β -1.1173a -0.7756a -0.4955a -1.0632a -0.7286a -0.4557a -1.1180a -0.7139a -0.3625a 

SE 0.1230 0.1185 0.1190 0.1155 0.1083 0.1089 0.1262 0.1190 0.1210 

AIC 4827.48 4722.42 4436.58 4834.08 4730.81 4450.76 15642.71 15998.45 15491.13 

CAG          

β -0.7359a -0.5442a -0.2251b -0.6653a -0.5101a -0.2557a -0.4378a -0.2648a -0.0032 

SE 0.0991 0.1015 0.0986 0.0910 0.0914 0.0883 0.0863 0.0840 0.0826 

AIC 4939.88 4600.72 4203.41 4947.41 4606.36 4208.70 17167.37 16333.60 15133.20 

SAG          

β -1.2002a -0.7332a -0.4815a -1.1010a -0.6863a -0.4584a -0.5733a -0.1759 0.1238 

SE 0.1472 0.1444 0.1465 0.1348 0.1289 0.1290 0.1312 0.1249 0.1245 

AIC 4850.35 4613.32 4226.02 4857.08 4624.41 4237.87 16259.93 15966.82 15100.79 

TTA          

β -15.279a -19.145a -14.104a -12.914a -16.382a -12.404a -9.151a -10.854a -5.7572a 

SE 2.6195 2.8173 2.7590 2.3253 2.5141 2.455 2.396 2.433 2.3351 

AIC 5364.37 5199.73 4846.44 5373.75 5214.21 4854.49 18084.87 17845.73 16942.59 

STDEBV          

β -0.1305 0.3249a 0.2026c -0.1293 0.2497b 0.1838c 0.0581 0.3164a 0.1792c 

SE 0.1211 0.1127 0.1226 0.1075 0.0984 0.1070 0.1023 0.0949 0.0972 

AIC 5536.37 5259.03 4875.63 5540.88 5267.90 4883.93 18894.16 18123.03 16986.19 

EBITDAIE          

β -0.0005a -0.0007a -0.0007a -0.0005a -0.0006a -0.0007a -0.0005a -0.0007a -0.0007a 

SE 0.0001 0.0002 0.0002 0.0001 0.0001 0.0002 0.0001 0.0001 0.0002 

AIC 5116.50 4967.77 4579.99 5119.08 4972.20 4587.21 17237.08 17021.55 15996.35 

RETA          

β -0.2179a -0.0403 0.0579 -0.2123a -0.0545c 0.0342 -0.0963a 0.0828b 0.2082a 

SE 0.0285 0.0313 0.0363 0.0259 0.0285 0.0326 0.0292 0.0328 0.0377 

AIC 5276.77 5164.54 4789.04 5277.01 5173.25 4802.39 17632.39 17494.17 16569.14 

Section B: Event 2 

TLTA          

β 2.4763a 2.2925a 0.6454a 1.9131a 1.7385a 0.4722a 1.5491a 1.2181a -0.0936a 
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SE 0.0332 0.0340 0.0317 0.02433 0.0249 0.0254 0.0269 0.0263 0.0268 

AIC 39819.01 38592.44 39138.22 40351.88 39033.42 39367.36 169228.88 169676.96 151787.27 

CETL          

β -0.9832a -0.8333a -0.2073a -0.8996a -0.7392a -0.1744a -0.7573a -0.5932a -0.0674a 

SE 0.0175 0.0155 0.0076 0.0154 0.0135 0.0067 0.0153 0.0128 0.0071 

AIC 42936.67 40933.98 41487.03 42838.21 40938.75 41690.80 178868.12 179742.98 163152.60 

CTA          

β -1.9080a -2.2780a -0.5437a -1.5666a -1.8406a -0.4203a -1.3751a -1.5422a -0.1930a 

SE 0.0753 0.0821 0.0770 0.0626 0.0667 0.0632 0.0692 0.0689 0.0691 

AIC 50466.9 47135.76 43106.02 50713.44 47333.51 43285.52 187157.31 186678.96 166773.82 

FETA          

β 32.157a 24.0993a 8.8175a 25.545a 18.576a 6.5496a 19.732a 11.720a 0.3837 

SE 0.4632 0.4610 0.4786 0.3534 0.3537 0.3826 0.3847 0.3743 0.3990 

AIC 44019.66 43860.67 41314.35 44370.10 44184.51 41531.49 181845.91 185102.80 163025.31 

FES          

β 7.2176a 6.3882a 3.7784a 5.5920a 4.7768a 2.8066a 4.8881a 3.7060a 1.8270a 

SE 0.1558 0.1665 0.1733 0.1181 0.1252 0.1355 0.1368 0.1371 0.1472 

AIC 42745.25 40838.36 37532.89 43045.40 41128.05 37750.06 161702.51 162744.67 144887.85 

EBITDATA          

β -1.0991a -1.5416a -0.8150a -0.8326a -1.1046a -0.5830a -0.6991a -0.8538a -0.3375a 

SE 0.0233 0.0288 0.0275 0.0173 0.0200 0.0206 0.0195 0.0203 0.0221 

AIC 46126.68 39795.64 36760.93 46499.05 40255.74 37028.58 177955.61 165151.81 143739.48 

OPCE          

β -0.1529a -1.0081a -1.1616a -0.0848a -0.7633a -0.8937a -0.1837a -0.6900a -0.7763a 

SE 0.0320 0.0351 0.0374 0.0268 0.0284 0.0296 0.0269 0.0274 0.0291 

AIC 49958.13 46026.44 41098.81 50193.82 46327.37 41345.69 183139.45 182568.16 161874.04 

NIS          

β -0.5768a -1.0970a -0.7226a -0.4656a -0.8509a -0.5663a -0.5472a -0.9142a -0.5837a 

SE 0.0201 0.0237 0.0229 0.0165 0.0181 0.0181 0.0192 0.0197 0.0203 

AIC 45352.45 40878.51 38124.25 45592.83 41159.19 38350.81 164494.07 162248.50 146980.02 

WCTA          

β -3.2430a -3.1762a -0.8462a -2.6079a -2.4827a -0.6387a -2.1781a -1.8792a -0.0260 

SE 0.0490 0.0516 0.0461 0.0379 0.0391 0.0376 0.0413 0.0404 0.0403 

AIC 44180.67 41937.58 41577.89 44532.85 42262.79 41793.63 178733.60 179140.35 161417.71 

WCS          

β -1.5368a -1.4041a -0.1892a -1.3067a -1.1611a -0.1411a -0.9721a -0.7765a 0.1827a 

SE 0.0336 0.0336 0.0276 0.0282 0.0276 0.0227 0.0286 0.0270 0.0245 

AIC 41981.14 39752.62 37887.54 42170.25 39923.35 38056.91 158354.53 158024.93 142668.54 

CAG          

β -0.4236a -1.1145a -0.4648a -0.3359a -0.9067a -0.3640a -0.1901a -0.6554a -0.1948a 

SE 0.0209 0.0271 0.0240 0.0177 0.0230 0.0199 0.0170 0.0218 0.0194 

AIC 46446.14 40032.58 36510.56 46667.55 40334.54 36707.40 182447.86 161571.4 142418.85 

SAG          

β -0.4975a -0.8480a -0.3526a -0.4018a -0.6950a -0.2773a -0.0007 -0.2608a 0.0784a 

SE 0.0321 0.0351 0.0356 0.0266 0.0292 0.0291 0.0263 0.0286 0.0288 

AIC 42940.24 38469.84 34404.26 43119.91 38641.54 34566.08 163908.56 147657.20 130515.75 

TTA          

β -24.529a -46.053a -28.388a -21.440a -39.567a -25.191a -16.111a -32.700a -17.570a 

SE 0.8287 1.2150 0.9206 0.7345 1.0230 0.8199 0.7956 1.0520 0.8362 
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AIC 49823.67 45309.29 41671.94 50062.04 45472.27 41817.08 186556.15 185582.80 165637.98 

STDEBV          

β 0.1701a 0.3928a 0.3226a 0.1142a 0.2924a 0.2537a 0.2214a 0.3352a 0.3159a 

SE 0.0299 0.0312 0.0329 0.0250 0.0252 0.0261 0.0248 0.0243 0.0261 

AIC 50832.49 47532.22 42826.97 51068.9 47749.17 43001.94 186510.11 185977.43 165771.45 

EBITDAIE          

β -0.0007a -0.0020a -0.0014a -0.0006a -0.0016a -0.0013a -0.0008a -0.0021a -0.0014a 

SE 0.0001 0.0001 0.0001 0.00004 0.0001 0.0001 0.0001 0.0001 0.0001 

AIC 49315.06 45838.27 41007.13 49550 46036.04 41161.93 184043.20 185078.73 162333.72 

RETA          

β -0.4932a -0.4340a -0.1911a -0.3929a -0.3403a -0.1501a -0.2244a -0.1383a 0.0965a 

SE 0.0078 0.0079 0.0077 0.0059 0.0061 0.0062 0.0068 0.0068 0.0072 

AIC 45778.64 44205.43 42160.60 46152.58 44510.55 42364.95 185095.29 185404.33 165212.43 

          

Section C: Event 3 

TLTA          

β 2.2613a 2.2702a 1.7594a 2.0836a 2.0658a 1.6174a 1.9450a 1.7950a 1.0670a 

SE 0.2104 0.2194 0.2057 0.1874 0.1927 0.1835 0.2118 0.2594 0.2529 

AIC 1672.94 1605.55 1607.53 1678.16 1606.31 1612.21 8793.33 11036.43 11439.28 

CETL          

β -0.8100a -1.3677a -1.0503a -0.7819a -1.2917a -0.9926a -0.5795a -1.1940a -0.8392a 

SE 0.1256 0.1756 0.1501 0.1204 0.1596 0.1352 0.1162 0.1653 0.1334 

AIC 1807.22 1713.77 1705.97 1812.53 1715.99 1709.98 11896.03 8558.01 8911.28 

CTA          

β -1.2774b -2.7134a -3.1083a -1.0860b -2.3802a -2.7352a -1.3870a -2.8200a -2.7380a 

SE 0.4999 0.5819 0.6234 0.4575 0.5207 0.5522 0.5584 0.6180 0.6329 

AIC 1956.25 1879.62 1829.70 1964.16 1889.12 1839.38 13023.02 12597.72 12360.73 

FETA          

β 24.262a 29.334a 28.935a 21.696a 27.067a 26.671a 20.470a 24.470a 21.970a 

SE 2.8578 3.0460 3.2041 2.5710 2.7135 2.8383 3.0910 3.2460 3.3690 

AIC 1782.76 1768.11 1734.50 1792.13 1772.51 1737.39 11905.15 11712.32 11686.16 

FES          

β 5.9683a 5.9914a 6.2774a 5.6128a 5.5103a 5.8787a 5.8460a 5.7780a 5.9680a 

SE 0.9425 0.9578 1.0459 0.8731 0.8526 0.9317 1.2450 1.2390 1.2920 

AIC 1683.05 1720.33 1663.62 1688.37 1726.73 1670.39 11989.54 12111.67 11787.72 

EBITDATA          

β -0.6521a -0.7622a -0.8135a -0.6212a -0.6576a -0.7441a -0.4909a -0.4434a -0.7848a 

SE 0.1534 0.1749 0.1794 0.1428 0.1497 0.1628 0.1799 0.1988 0.2319 

AIC 1719.03 1598.20 1437.74 1724.62 1599.91 1444.79 12248.42 11576.53 10713.39 

OPCE          

β 0.4351c -0.0031 -0.5827b 0.4065c -0.0273 -0.5849a 0.2023 -0.0342 -0.6290c 

SE 0.2456 0.2434 0.2499 0.2257 0.2239 0.2246 0.2418 0.2353 0.2484 

AIC 1842.11 1840.29 1798.55 1848.99 1848.20 1807.13 12810.22 12672.58 12406.50 

NIS          

β -0.1690 -0.5182a -0.6758a -0.1570 -0.4651a -0.6240a -0.2152 -0.5197a -0.7127a 

SE 0.1341 0.1321 0.1387 0.1235 0.1172 0.1219 0.1566 0.1499 0.1585 

AIC 1748.85 1759.28 1689.10 1757.05 1766.78 1697.26 12644.75 12542.26 12144.18 

WCTA          

β -2.9201a -3.4000a -2.8521a -2.7048a -3.1075a -2.6474a -2.1300a -2.5091a -1.6840a 
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SE 0.3286 0.3533 0.3375 0.2987 0.3107 0.3000 0.3571 0.3645 0.3442 

AIC 1745.31 1701.38 1700.15 1751.42 1706.69 1705.59 12114.67 11805.99 11934.96 

WCS          

β -1.8870a -1.8229a -1.6438a -1.7958a -1.7241a -1.5782a -1.5530a -1.3580a -1.0540a 

SE 0.2770 0.2724 0.2729 0.2609 0.2501 0.2482 0.2890 0.2652 0.2595 

AIC 1638.45 1658.85 1613.76 1643.09 1664.47 1620.71 11665.17 11757.54 11502.82 

CAG          

β -0.2799c -0.5790a -1.2346a -0.2719b -0.5426a -1.1636a -0.0643 -0.2673c -0.7301a 

SE 0.1512 0.1731 0.2203 0.1390 0.1586 0.2026 0.1342 0.1440 0.1791 

AIC 1830.94 1775.43 1610.59 1838.31 1783.90 1616.51 12647.23 12316.50 11161.17 

SAG          

β -1.1656a -1.6190a -1.7849a -1.1151a -1.4808a -1.4904a -0.5766b -0.9741a -0.7436a 

SE 0.2665 0.2951 0.3119 0.2478 0.2693 0.2711 0.2661 0.2680 0.2664 

AIC 1719.37 1666.91 1556.88 1725.12 1675.49 1566.20 12345.43 11927.15 11210.35 

TTA          

β -20.974a -20.448a -48.177a -17.538a -17.843a -42.345a -17.620a -16.050a -45.040a 

SE 5.5795 5.5359 8.4749 4.8925 4.9486 7.4022 5.6440 5.4830 9.1990 

AIC 1890.55 1877.57 1799.09 1898.95 1886.24 1808.33 12943.40 12792.58 12340.86 

STDEBV          

β -1.7364a -0.0330 0.5541a -1.5598a -0.0460 0.5348a -0.8312a 0.0242 0.4216b 

SE 0.3239 0.1968 0.1824 0.3018 0.1769 0.1596 0.2529 0.1814 0.1770 

AIC 1901.23 1897.58 1846.94 1908.93 1905.26 1854.31 12948.38 12805.56 12503.92 

EBITDAIE          

β -0.0002 -0.0003 -0.0009b -0.0002 -0.0003 -0.0008b -0.0003 -0.0003 -0.0009b 

SE 0.0002 0.0003 0.0004 0.0002 0.0003 0.0004 0.0003 0.0003 0.0004 

AIC 1827.81 1851.02 1791.41 1833.82 1858.40 1799.65 12565.97 12561.62 12210.71 

RETA          

β -0.4576a -0.3484a -0.2025a -0.4209a -0.3201a -0.1846a -0.2789a -0.1585a 0.0303 

SE 0.0511 0.0484 0.0493 0.0453 0.0431 0.0441 0.0598 0.0596 0.0627 

AIC 1788.77 1813.79 1811.38 1793.14 1819.79 1820.26 12422.61 12528.49 12529.59 

Notes: a (b) [c] significant at the 1 % (5 %) [10 %] level (two-sided test). This table reports univariate regression 

estimates of Event 1, Event 2 and Event 3 using respective hazard models and lagged time periods. Section A 

reports regression estimates of Event 1, Section B reports Event 2, and Section C reports Event 3. 

 

 

Table 9: Multivariate Regression  

Section A: Event 1 

Variable 
logit clog-log Cox 

T – 1 T – 2 T – 3 T – 1 T – 2 T – 3 T – 1 T – 2 T – 3 

STDEBV          

β  0.3008b   0.2010c   0.3709a  

SE  0.1295   0.1201   0.0884  

p-value  0.0200   0.0940   0.0000  

TLTA          

β 0.9948a   0.8597a   0.7369a   

SE 0.2226   0.1913   0.1384   



P A G E  | 46                                                                                                                              

 

p-value 0.0000   0.0000   0.0000   

CETL          

β -0.2530a   -0.2388a   -0.2259a   

SE 0.0700   0.0618   0.0448   

p-value 0.0000   0.0000   0.0000   

CTA          

β -0.3425  -2.2829a -0.2665  -1.9289a -0.2804  -1.7416a 

SE 0.4572  0.4935 0.3970  0.4305 0.2786  0.2893 

p-value 0.2440  0.0000 0.2320  0.0000 0.2100  0.0000 

FETA          

β 7.3617a 12.369a 6.1982b 6.0372a 11.740a 6.4750a 3.0878a 9.1737a 5.5547a 

SE 2.7061 2.3270 2.5504 2.3321 2.2416 2.2326 1.8124 1.6206 1.5421 

p-value 0.0070 0.0000 0.0150 0.0100 0.0000 0.0040 0.0000 0.0000 0.0030 

FES          

β          

SE          

p-value          

EBITDAIE          

β  -0.0005b -0.0006a  -0.0005b -0.0006a  -0.0003b -0.0005a 

SE  0.0002 0.0002  0.0002 0.0002  0.0001 0.0001 

p-value  0.0200 0.0090  0.0120 0.0090  0.0420 0.0019 

EBITDATA          

β          

SE          

p-value          

OPCE          

β -0.5270a -0.2243  -0.4234a -0.2546  -0.2847b -0.1002  

SE 0.1812 0.1809  0.1550 0.1697  0.1185 0.1277  

p-value 0.0040 0.2150  0.0060 0.1340  0.0160 0.2300  

NIS          

β          

SE          

p-value          

RETA          

β          

SE          

p-value          

          

WCTA          

β  -0.5958b   -0.6578a   -0.5090a  

SE  0.2543   0.2462   0.1748  

p-value  0.0190   0.0080   0.0036  

WCS          

β          

SE          

p-value          

CAG          

β -0.2328c -0.1335  -0.2025c -0.1082  -0.3474a -0.2175b  

SE 0.1206 0.1120  0.1063 0.1039  0.0913 0.0862  
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p-value 0.0540 0.2330  0.0570 0.2480  0.0000 0.0120  

SAG          

β -0.5326a -0.2226 -0.2023 -0.4826a -0.1808 -0.2368c -0.8411a -0.4764a -0.2778b 

-SE 0.1748 0.1528 0.1643 0.1551 0.1438 0.1415 0.1351 0.1200 0.1155 

p-value 0.0020 0.1450 0.2180 0.0020 0.2090 0.0940 0.0000 0.0000 0.0160 

TTA          

β -4.1461 -10.394a -10.428a -3.4981 -9.5294a -8.9473a -1.1812 -7.6240a -7.0481a 

SE 3.5669 3.6154 3.5802 3.1214 3.3587 3.0952 2.4601 2.5793 2.3600 

p-value 0.2450 0.0040 0.0040 0.2420 0.0050 0.0040 0.6300 0.0031 0.0000 

Micro          

β 2.0176a 1.9982a 2.5646a 1.7140a 2.0089a 2.2413a 0.7910a 1.1579a 1.5554a 

SE 0.2419 0.2119 0.2412 0.2078 0.2038 0.2116 0.1295 0.1254 0.1257 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Small          

β 0.7552a 0.8696a 1.2075a 0.6548a 0.8792a 1.0438a 0.1142 0.3240a 0.5422a 

SE 0.2064 0.1899 0.2060 0.1829 0.1802 0.1861 0.1266 0.1225 0.1275 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3700 0.0084 0.0000 

AGE          

 0.4964a 0.5408a 0.7246a 0.3949a 0.5447a 0.6130a -33.253a -36.575a -43.231a 

β 0.1452 0.1451 0.1835 0.1266 0.1435 0.1631 1.0312 1.2182 1.2320 

SE 0.0010 0.0000 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000 0.0000 

p-value          

RISK1 90.495a 77.879a 91.854a 77.607a 78.677a 78.7463a 46.871a 44.689a 43.998a 

β 7.3345 6.1372 7.3431 6.2999 6.1021 6.4905 3.0780 2.9346 3.3759 

SE 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

p-value          

Model’s Goodness of Fit and Performance Measure 

Chi2 403.06a 321.8a 311.8a 411.2a 377.8a 311.9a 2785a 2874a 3222a 

 likelihood -1746.9 -1837.2 -1791.8 -1748.6 -1838.5 -1790.4 -3051.2 -3291.5 -3283.1 

AIC 3521.9 3702.3 3605.6 3525.3 3705.1 3602.9 6294.5 6753.4 7237.08 

N 46927 44400 40882 46927 44400 40882 46927 44400 40882 

Event 433 464 469 433 464 469 433 464 469 

AUROC-W 0.8209 0.7936 0.7827 0.8212 0.7929 0.7831 0.8192 0.7912 0.7797 

AUROC-H 0.7943 0.8339 0.9242 0.7890 0.8937 0.9233 0.7572 0.8784 0.9112 

Section B: Event 2 

STDEBV          

β 0.1743a 0.2511a 0.2533a 0.1544a 0.2151a 0.1998a 0.2003a 0.2046a 0.1974a 

SE 0.0388 0.0453 0.0456 0.0290 0.0328 0.0348 0.0233 0.0249 0.0290 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

TLTA          

β 1.9886a 2.2478a 0.3296a 1.4622a 1.5668a 0.2143a 1.1641a 1.1266a 0.4912a 

SE 0.0654 0.0777 0.0723 0.0481 0.0548 0.0549 0.0347 0.0370 0.0418 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

CETL          

β          

SE          

p-value          

CTA          

β  -1.3447a   -0.9909a   -0.5477a  
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SE  0.1462   0.1082   0.0769  

p-value  0.0000   0.0000   0.0000  

FETA          

β 15.786a 2.6571a 3.3366a 11.798a 2.1859a 2.6998a 8.6179a 3.6960a 4.5587a 

SE 0.7083 0.9955 0.9549 0.5354 0.7093 0.7338 0.4185 0.5306 0.6053 

p-value 0.0000 0.0080 0.0000 0.0000 0.0020 0.0000 0.0000 0.0000 0.0000 

FES          

β  0.3141 0.8577a  0.0920 0.5806a  -0.3210b 0.1233 

SE  0.2911 0.2675  0.2110 0.2061  0.1461 0.1607 

p-value  0.2410 0.0010  0.6630 0.0050  0.0280 0.4400 

EBITDAIE          

β -0.0003a -0.0004a -0.0006a -0.0004a -0.0004a -0.0006a -0.0005a -0.0004a -0.0006a 

SE 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 0.0001 

p-value 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

EBITDATA          

β -0.1624a -0.7619a -0.3114a -0.0850a -0.5110a -0.2281a -0.0860a -0.3205a -0.1783a 

SE 0.0380 0.0467 0.0422 0.0264 0.0312 0.0312 0.0177 0.0205 0.0236 

p-value 0.0000 0.0000 0.0000 0.0010 0.0000 0.0000 0.0000 0.0000 0.0000 

OPCE          

β -0.9026a -1.4723a -0.8999a -0.6398a -1.0036a -0.6650a -0.5802a -0.7744a -0.6558a 

SE 0.0471 0.0580 0.0538 0.0336 0.0395 0.0409 0.0260 0.0289 0.0341 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

NIS          

β          

SE          

p-value          

RETA          

β          

SE          

p-value          

WCTA          

β -0.5875a -0.2946a -0.1058 -0.5189a -0.3310a -0.1064 -0.3858a -0.2745a -0.0722 

SE 0.0881 0.1130 0.0948 0.0668 0.0832 0.0733 0.0501 0.0595 0.0566 

p-value 0.0000 0.0090 0.2440 0.0000 0.0000 0.1470 0.0000 0.0000 0.2000 

WCS          

β          

SE          

p-value          

CAG          

β  -0.7094a -0.1534a  -0.4575a -0.1116a  -0.4140a -0.1096a 

SE  0.0373 0.0300  0.0278 0.0240  0.0239 0.0221 

p-value  0.0000 0.0000  0.0000 0.0000  0.0000 0.0000 

SAG          

β -0.0569 -0.3881a  -0.0652b -0.2993a  -0.1152a -0.2601a  

SE 0.0395 0.0461  0.0300 0.0342  0.0252 0.0284  

p-value 0.1500 0.0000  0.0300 0.0000  0.0000 0.0000  

TTA          

β -11.374a -28.651a -14.413a -10.596a -25.191a -13.489a -11.846a -24.508a -14.586a 
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SE 1.0783 1.5922 1.1580 0.9030 1.3307 1.0279 0.7909 1.0302 0.9033 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Micro          

β 0.4154a 0.5147a 1.0577a 0.2928a 0.3762a 0.8451a 0.1853a 0.2582a 0.6144a 

SE 0.0662 0.0742 0.0683 0.0504 0.0556 0.0536 0.0342 0.0366 0.0377 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Small          

β 0.2786a 0.3265a 0.6749a 0.2094a 0.2675a 0.5466a 0.1471a 0.1845a 0.4122a 

SE 0.0488 0.0551 0.0521 0.0381 0.0423 0.0421 0.0279 0.0301 0.0316 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

AGE          

β -0.0285 -0.1323a -0.0029 -0.0732a -0.1535a -0.0137 -24.865a -27.661a -33.798a 

SE 0.0353 0.0445 0.0453 0.0277 0.0343 0.0366 0.2734 0.3437 0.4217 

p-value 0.4190 0.0030 0.9490 0.0080 0.0000 0.7090 0.0000 0.0000 0.0000 

RISK2          

β 5.4673a 4.0201a 6.5065a 4.1230a 3.2239a 5.2226a 2.4035a 1.7983a 3.3036a 

SE 0.4117 0.4662 0.4423 0.3152 0.3513 0.3475 0.2266 0.2531 0.2688 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model’s Goodness of Fit and Performance Measure 

Chi2 5135.9a 4381.9a 2228.2a 5818.2a 5039.8a 2307.3a 42073a 37046a 29048a 

 likelihood -13550.1 -10534.2 -12115.9 -13807.9 -10862.8 -12225.9 -52703.6 -42792.4 -39919.4 

AIC 27130.1 21104.3 24263.6 27645.9 21761.6 24483.8 105433.1 85616.7 79866.8 

N 44740 36907 33396 44740 36907 33396 44740 36907 33396 

Event 7553 6390 5721 7553 6390 5721 7553 6390 5721 

AUROC-W 0.8739 0.9015 0.7794 0.8721 0.8991 0.7767 0.8699 0.8969 0.7865 

AUROC-H 0.8436 0.8714 0.7783 0.8425 0.8686 0.7745 0.8414 0.8705 0.7803 

Section C: Event 3 

STDEBV          

β  0.4912c 0.6417b  0.4266c 0.4680c  0.6404a 0.6278a 

SE  0.2715 0.2861  0.2250 0.2401  0.1721 0.1593 

p-value  0.0700 0.0250  0.0580 0.0510  0.0000 0.0000 

TLTA          

β  1.7594a 1.5434a  1.6420a 1.3451a  1.4437a 1.0166a 

SE  0.4712 0.4767  0.3943 0.4140  0.2787 0.2551 

p-value  0.0000 0.0010  0.0000 0.0010  0.0000 0.0000 

CETL          

β -0.4543a   -0.4430a   -1.0176a   

SE 0.1747   0.1682   0.1237   

p-value 0.0090   0.0080   0.0000   

CTA          

β   -1.3311   -1.0743   -0.9048 

SE   1.1703   1.0090   0.6390 

p-value   0.2450   0.2870   0.1600 

FETA          

β 12.022a 16.656a 15.631a 9.5936a 13.686a 14.313a 5.7686b 10.272a 7.3060b 

SE 4.1089 4.9550 5.7427 3.5011 4.1907 4.9884 2.8568 3.3580 3.5285 

p-value 0.0030 0.0010 0.0060 0.0060 0.0010 0.0040 0.0440 0.0000 0.0380 

FES          

β          
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SE          

p-value          

EBITDAIE          

β          

SE          

p-value          

EBITDATA          

β          

SE          

p-value          

OPCE          

β  -0.4816 -0.3651  -0.4501 -0.2209  -0.5053b -0.3928c 

SE  0.3382 0.3815  0.2829 0.3328  0.2123 0.2202 

p-value  0.1540 0.2390  0.1120 0.5070  0.0170 0.0750 

NIS          

β          

SE          

p-value          

RETA          

β -0.2000a   -0.1957a   0.0104   

SE 0.0751   0.0659   0.0451   

p-value 0.0080   0.0030   0.8199   

WCTA          

β -0.6195 -0.8440  -0.5472 -0.5571  0.0368 -0.4660  

SE 0.5165 0.6515  0.4475 0.5384  0.3657 0.4109  

p-value 0.2300 0.1950  0.2210 0.3010  0.9200 0.2600  

WCS          

β   -0.4132   -0.3643   -0.2302 

SE   0.4486   0.3830   0.2504 

p-value   0.2470   0.3410   0.3600 

CAG          

β   -0.5432b   -0.4291c   -0.4133b 

SE   0.2587   0.2286   0.1692 

p-value   0.0360   0.0610   0.0150 

SAG          

β -0.2695 -0.7311b -0.8411b -0.1909 -0.6557b -0.7206b -0.7072a -1.0009a -0.6980a 

SE 0.2873 0.3311 0.3575 0.2571 0.2863 0.3126 0.2307 0.2441 0.2369 

p-value 0.2480 0.0270 0.0190 0.4580 0.0220 0.0210 0.0022 0.0004 0.0032 

TTA          

β -15.152c -3.948 -36.756a -14.043c -3.288 -30.773a -12.173b -3.463 -21.901a 

SE 8.458 8.164 11.596 7.407 6.970 10.121 5.458 5.151 7.195 

p-value 0.0730 0.6290 0.0020 0.0580 0.6370 0.0020 0.0260 0.5000 0.0023 

Micro          

β 1.9486a 2.4476a 2.7400a 1.6619a 1.9905a 2.2511a 1.3615a 1.3692a 1.5166a 

SE 0.4272 0.4541 0.4979 0.3718 0.3700 0.4144 0.2614 0.2485 0.2334 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Small          

β 0.4747 0.4216 0.6411 0.3976 0.3934 0.5285 0.4086c 0.2318 0.2639 

SE 0.3809 0.4366 0.4742 0.3376 0.3681 0.4114 0.2418 0.2565 0.2572 
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p-value 0.2130 0.2340 0.1760 0.2390 0.2850 0.1990 0.0910 0.3700 0.3000 

AGE          

β 0.9837a 0.7653b 0.4242 0.8869a 0.6001b 0.3010 -42.888a -47.477a -35.227a 

SE 0.2714 0.3363 0.3910 0.2386 0.2799 0.3439 2.4175 2.0754 3.2681 

p-value 0.0000 0.0230 0.2480 0.0000 0.0320 0.3810 0.0000 0.0000 0.0000 

RISK3          

β 219.806a 226.564a 239.428a 204.698a 189.601a 211.302a 94.989a 87.859a 79.818a 

SE 22.477 24.405 29.131 16.901 17.913 21.444 11.357 11.824 10.728 

p-value 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

Model’s Goodness of Fit and Performance Measure 

Chi2 170.1a 155.2a 132.6a 236.5a 202.6a 167.3a 1149a 1112a 1084a 

 likelihood -657.02 -590.5 -529.3 -660.6 -592.1 -530.7 -938.6 -881.6 -808.5 

AIC 1338.1 1207.1 1088.6 1345.2 1210.3 1091.4 2117.9 2048.1 1808.8 

Censored 50126 40639 35327 50126 40639 35327 50126 40639 35327 

Event 143 136 131 143 136 131 143 136 131 

AUROC-W 0.8840 0.9019 0.9020 0.8840 0.9031 0.9015 0.8783 0.8955 0.8964 

AUROC-H 0.9249 0.8924 0.9668 0.9317 0.9019 0.9214 0.9447 0.8653 0.9556 

Notes: a (b) [c] significant at the 1 % (5 %) [10 %] level (two-sided test). This table reports multivariate 

regression estimates of Event 1, Event 2 and Event 3 using respective hazard models and lagged time periods. 

Section A reports regression estimates of Event 1, Section B reports Event 2, and Section C reports Event 3. The 

Chi2 values reported for logit and cloglog estimates are obtained using the Wald test, while for Cox regression it 

is obtained using likelihood ratio test. AUROC-W represents within sample and AUROC-H represents hold-out 

sample area under ROC curves. ‘Event’ reports total number of observations with dependent variable = 1 and 

‘censored’ reports total number of observations with dependent variable = 0. Additionally, missing values of β, 

SE and p-value for any covariate implies that it has been excluded from the multivariate model due to its non-

compliance with our model building strategy discussed in Section 5.3.2.  

  

 

 

Figure 1: Table of Hazard Curves 

 
Notes: This table reports smoothed hazard curves estimated using the development sample for different definitions of 

financial distress events as discussed in Section 3. Here ‘Age’ represents the age of firms in years. 
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Figure 2: Table of Area under ROC curves 
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