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2Institute of Mechanics, Lomonosov Moscow State University, Moscow 119192, Russia

(Received xx; revised xx; accepted xx)

The dynamics of a jet of an inviscid incompressible liquid spiralling out under the action
of centrifugal forces is considered with both gravity and the surface tension taken into
account. This problem is of direct relevance to a number of industrial applications,
ranging from the spinning disc atomization process to the nanofibre formation. The
mathematical description of the flow by necessity requires the use of a local curvilinear
nonorthogonal coordinate system centered around the jet’s baseline, and we present
the general formulation of the problem without assuming that the jet is slender. To
circumvent the inconvenience inherent in the nonorthogonality of the local coordinate
system, the orthonormal Frenet basis is used in parallel with the local nonorthogonal
basis, and the equation of motion, with the velocity considered with respect to the local
coordinate system, is projected onto the Frenet basis. The variation of the latter along the
baseline is then described by the Frenet equations which naturally brings the baseline’s
curvature and torsion into the equations of motion. This technique allows one to handle
different line-based nonorthogonal curvilinear coordinate systems in a straightforward
and mathematically transparent way. An analysis of the slender-jet approximation that
follows the general formulation shows how a set of ordinary differential equations de-
scribing the jet’s trajectory can be derived in two cases: We = O(1) and ǫWe = O(1)
as ǫ → 0, where ǫ is the ratio of characteristic length scales across and along the jet,
and We is the Weber number. A one-dimensional model for the propagation of nonlinear
peristaltic disturbances along the jet is derived in each of these cases. A critical review
of the work published on this topic is presented showing where errors typically occur and
how to identify and avoid them.

1. Introduction

Liquid jets spiralling out under the action of centrifugal forces are elements of many
applications, including spinning disc atomization (Senuma et al. 2000), drawing and
spinning of polymers and glass (Pearson 1985), nanofibre formation (Mellado et al. 2011),
prilling (Saleh et al. 2015) and some others. Theoretical research into the dynamics of
curved and later spiralling liquid jets began with integral approaches (Entov & Yarin
1984; Tchavdarov et al. 1993) and then moved on to a more detailed description, first, of
nearly straight jets (Dewynne et al. 1992; Cummings & Howell 1999) and then arbitrarily
curved ones, including the effects of inertia and surface tension (Wallwork et al. 2002),
gravity (Decent et al. 2002), viscosity with no gravity (Decent et al. 2009), unsteadiness
and arbitrary shape of the jet’s trajectory, first, without surface tension0 (Panda et al.

2008) and then with surface tension (Marheineke & Wegener 2009), propagation of
waves (Părău et al. 2006), viscoelasticity (Alsharif et al. 2015; Marheineke et al. 2016),

† Email address for correspondence: Y.D.Shikhmurzaev@bham.ac.uk
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surfactants for Newtonian (Uddin et al. 2008) and non-Newtonian fluids (Uddin &
Decent 2009) to mention but the main developments. All this research activity gives
an impression of a well-researched topic with plenty of results ripe for application to
problems where the spiralling jet is but one element of the flow and ready-to-use simplified
equations and/or solutions are required.

However, there is one serious issue. To be confident in the results one finds in the
literature with regard to their potential application, one should be able to verify at least
some key elements in their derivation. The problem in question is mathematically rather
intricate, by necessity it requires the use of a local curvilinear nonorthogonal coordinate
system, and one should be able to check, for example, how the authors of published
work handled the derivatives of the nonorthogonal basis vectors of this system with
respect to these curvilinear nonorthogonal coordinates, which is needed to do covariant
differentiation in the derivation of the governing equations of fluid mechanics. However,
it is these details that are invariably missing in the exposition of published studies.
Furthermore and rather alarmingly, the demonstrably non-orthogonal coordinate system,
which has been known as such for quite a while (Entov & Yarin 1984), is routinely referred
to and dealt with as orthogonal (Decent et al. 2002; Panda et al. 2008; Marheineke &
Wegener 2009; Marheineke et al. 2016). Such details as, for example, differentiation of
one independent variable with respect to another, as in (20) of (Decent et al. 2002), or
a kinematic boundary condition on the free surface somehow including a component of
the binormal to the trajectory, as (2.7) in (Wallwork et al. 2002), do little to reassure
the reader.

Thus, a ‘practitioner’ looking for results to apply faces a dilemma: either to suppress
unease and take what has been published on trust or to spend the same amount of time
and effort as the authors did re-deriving them to make sure they are correct. Neither
of these options looks particularly appealing. The first one essentially means leaving
science, as then it would be only faith to rely upon, whilst the second largely defeats
the whole point of mathematical research where verification and replication of obtained
results is supposed to be much easier, and by far less time-consuming, than their original
derivation.

If one sets aside these reservations and embarks on a laborious journey of deriving
the mathematical framework needed to handle the spiralling jet problem and then goes
through the reported derivations and solutions, it becomes clear very soon that taking
the published results on trust would’ve been, at best, unwise. For example, the entire
research output of Decent and co-workers in this area (Wallwork et al. 2002; Decent
et al. 2002; Partridge et al. 2005; Uddin et al. 2006; Părău et al. 2006, 2007; Uddin
et al. 2008; Decent et al. 2009; Uddin & Decent 2009; Hawkins et al. 2010; Uddin &
Decent 2012) appears to be riddled with mistakes, which begin from the handling of some
basic elements of differential geometry required in this problem (see below for details).
Furthermore, the mistakes tend to propagate in all directions as later papers rely on
those published earlier, with cross-referencing between different research groups, so that
these, purely mathematical, errors ‘snowball’ and make distilling the results potentially
unaffected by them a practically impossible task, especially given an abbreviated format
of exposition of mathematics. The bottom line to our trawling of the work published on
the dynamics of spiralling jets is that we were unable to find a single paper with correct
mathematics not to mention its verifiable exposition. The ‘bifurcation point’ after which
valid early work on buckling (Entov & Yarin 1984; Tchavdarov et al. 1993) and nearly
straight jets (Dewynne et al. 1992; Cummings & Howell 1999) turned into a stream of
erroneous publications on spiralling and highly-curved jets appears to be (Wallwork et al.
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2002) so that now, after fifteen years of erroneous mathematical exercises, the field is in
need of a thorough clean-up.

The purpose of the present work is twofold. Firstly, it is to create a verifiable math-
ematical framework for the spiralling jet problem, a framework that doesn’t use any
simplifying assumptions with the exposition allowing one to check its every element
without even reaching for pen and paper. Transparency of the exposition here is the key
given that, as we show, too many mistakes in the published work are hidden behind
reassuring phrases like “using standard methods, we obtain . . . ”. Our intention is (a)
to give researchers and ‘practitioners’ in this field the necessary mathematical toolkit
to deal with different aspects of the curved jet problem and (b) to set the standard of
clarity of exposition required in this field for it to develop. The transparent mathematical
framework we present also makes it possible to analyze the key elements where mistakes
are typically made. In order for this analysis not to interfere with our exposition of the
results, we put it into separate subsections at the end of the key steps in the derivation.

The second aim of the present work is to examine the case most important from
a practical viewpoint, namely that of a slender jet, where we asymptotically derive
some equations needed for practical applications. These include, first, equations for
the jet’s trajectory which come from solving the governing equations for a steady flow.
Secondly, it is the simple one-dimensional model describing the propagation of peristaltic
disturbances and hence allowing one to consider evolution of the flow leading to the
formation of drops. Both types of equations are derived for different relations between the
slenderness parameter and the Weber number, with assumptions highlighted throughout
the derivation.

Ultimately, our goal is to show that spiralling jets, or indeed jets of arbitrary shapes, are
very easy to handle. Once the Frenet basis is used alongside the, generally nonorthogonal,
jet-specific coordinate system with respect to which the flow velocity is considered, the
mathematics required is no more difficult than that involved in the description of the
motion of a material point in the Frenet basis. This analogy is pointed out in the places
where the key equations are introduced. As for the disturbances that propagate along the
jet, it is shown that their wavelengths are asymptotically short compared with the radius
of curvature of the jet’s trajectory, so that for them, to leading order in the slenderness
parameter, the jet is straight. The general formulation makes it possible to consider
higher-order approximations in the slenderness parameter, where the curvature of the
jet’s trajectory comes into play, or abandon the slender-jet approximation altogether.

The structure of the present work is as follows. In Section 2, we state what problem is
to be considered and in Section 3 lay out the necessary geometric framework, from the
introduction of the local jet-specific coordinate system, the basis vectors and components
of the metric tensor to the calculation of the Christoffel symbols and the free-surface
curvature in a general case, i.e. without assuming that the jet is slender. For the ease
of reading, we place some technical details of the calculations into Appendices, which
form an integral part of this paper. In Section 4, the governing equations and boundary
conditions of Section 2 are derived for the local jet-specific curvilinear coordinate system
in a general case, and Section 5 deals with these equations in the slender-jet approxima-
tion, where we derive ordinary differential equations for the jet’s trajectory in different
cases and one-dimensional equations describing peristaltic disturbances. In Section 6,
we summarize the work, point out some directions of research that it makes possible
and highlight the necessity to develop a purpose-designed symbolic software capable of
converting the invariant vector/tensor form of fluid mechanics equations into their scalar
form corresponding to a prescribed curvilinear coordinate system.
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Figure 1. Sketches of applications involving spiralling liquid jets: (a) a representative sector in
the ligament regime of the spinning disc atomization process (Frost 1981), (b) the generation of
nanofibers from a spinning head (Zhang & Lu 2014).

2. Problem

We consider a free liquid jet produced by some kind of a spinning device. It could
be, for example, a spinning disc atomizer, where, in the so-called ‘full ligament mode’,
the film flowing over a rotating disc comes out of its rim in the form of separate jets
(Fig. 1a), or the nanofiber generator, where the jets come from the orifices in the side
wall of a rapidly spinning head (Fig. 1b). The gas surrounding the jet is assumed to
be inviscid and dynamically passive. In the simplest case of a device spinning with a
constant angular velocity about a vertical axis directed against gravity g and the fluid
modelled as inviscid and incompressible with a constant density ρ, the fluid’s velocity v

and pressure p (measured with respect to a constant pressure in the ambient gas) are
described by the Euler equations which, in the observer’s reference frame rotating with
angular velocity Ω and the origin at the axis of rotation, take the form:

∇ · v = 0,
dv

dt
= −1

ρ
∇p+ g− 2Ω × v −Ω × (Ω × r), (2.1)

where r is the radius-vector, the last term on the right-hand side is the centrifugal force
and the preceding term is the Coriolis force. Note that, to consider the jet as a whole
as steady, in (2.1) Ω must be the angular velocity of the frame rotating with the jet,
which is usually, as in the situation shown in Fig. 1b, equal to the angular velocity of
the device, but in some cases, notably in the spinning disc atomization process (Fig. 1a),
can be different, albeit not by much.

On the free surface of the jet implicitly given as f(r, t) = 0, where the function f is to
be found, one has the usual kinematic and dynamic boundary conditions:

∂f

∂t
+ v · ∇f = 0, (2.2)

p = σκs, (2.3)

where σ is the surface tension and κs is the mean curvature of the jet’s free surface.

To specify a particular flow, one has to add to the system (2.1)–(2.3) also the boundary
conditions specifying how the jet is produced, e.g. at the orifice of the spinning container,
and initial conditions specifying the initial shape of the jet’s free surface and the initial
distribution of velocity. Here we will be interested in (2.1)–(2.3) and the equations one
can derive for the jet’s trajectory and the nonlinear disturbances propagating along the
jet.
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3. Geometric framework

To describe the flow in the jet, it is convenient to consider equations (2.1) and boundary
conditions (2.2), (2.3) in a local curvilinear coordinate system based on some line that
goes along the jet and whose form is to be determined. Such a ‘jet-specific’ coordinate
system would allow one to introduce meaningful scales along and across the jet and,
using their disparity in the slender-jet case, simplify the problem via an appropriate
asymptotic method. The price to pay for this simplification is that one has to handle a
rather cumbersone geometric side of the problem in a systematic way.

3.1. Baseline and Frenet’s basis

Let us introduce the jet’s ‘baseline’, i.e. a geometric line going along the jet and, for
the class of motions to be considered, staying inside it at all time, as

R(ξ) = X(ξ) x̂+ Y (ξ) ŷ + Z(ξ) ẑ, (3.1)

where ξ is the arclength along it and x̂, ŷ and ẑ are the basis vectors of the Cartesian
coordinate frame rotating with the angular velocity Ω, i.e. the frame in which we have
equations (2.1). We introduce the term ‘baseline’ as opposed to ‘centreline’ used for (3.1)
in the literature to emphasize that the ‘baseline’ is a geometric construction needed to set
up a local coordinate system whilst the location of the jet’s ‘centreline’, if the ‘centre’ of
an arbitrarily-shaped cross-section of the jet can be meaningfully defined, is determined
by the jet’s dynamics so that, in particular, one can have a situation where the ‘centreline’
wobbles about the defined-as-steady ‘baseline’. In what follows, we will assume that the
functions X(ξ), Y (ξ), Z(ξ) are sufficiently smooth with all derivatives required of them
continuous.
The Frenet (or ‘natural’) local orthonormal basis at every point of the baseline is

formed by the unit tangential vector τ (ξ), the unit normal vector n(ξ) and the unit
binormal vector b(ξ) defined in terms of R(ξ) and its components as follows:

τ =
dR

dξ
= X ′(ξ)x̂+ Y ′(ξ)ŷ + Z ′(ξ)ẑ, X ′2 + Y ′2 + Z ′2 = 1, (3.2)

n =
dτ

dξ

∣

∣

∣

∣

dτ

dξ

∣

∣

∣

∣

−1

=
d2R

dξ2

∣

∣

∣

∣

d2R

dξ2

∣

∣

∣

∣

−1

=
X ′′x̂+ Y ′′ŷ + Z ′′ẑ√
X ′′2 + Y ′′2 + Z ′′2

(3.3)

b = τ × n =
(Y ′Z ′′ − Z ′Y ′′) x̂+ (Z ′X ′′ −X ′Z ′′) ŷ + (X ′Y ′′ − Y ′X ′′) ẑ√

X ′′2 + Y ′′2 + Z ′′2
, (3.4)

where primes denote differentiation with respect to ξ. The second equation in (3.2)
specifies that ξ is the arclength. The Frenet basis is often used in the mechanics of a
material point in the situations where the point’s trajectory is known (e.g. in designing a
roller-coaster track) as it allows one to reduce the problem of determining three unknown
components of velocity to a one-dimensional problem along the trajectory with the
normal and binormal projections of the equations of motion used a-posteriori to find
the reaction forces (Butenin et al. 1979).
The derivatives of the tangent, normal and binormal with respect to ξ are related with

τ , n and b via the Frenet formulae:

dτ

dξ
= κ1n,

dn

dξ
= −κ1τ + κ2b,

db

dξ
= −κ2n, (3.5)

where

κ1(ξ) =

∣

∣

∣

∣

d2R

dξ2

∣

∣

∣

∣

=
√

X ′′2 + Y ′′2 + Z ′′2, (3.6)
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κ2 =

〈

dR

dξ
,
d2R

dξ2
,
d3R

dξ3

〉 ∣

∣

∣

∣

dR

dξ
× d2R

dξ2

∣

∣

∣

∣

−2

=
X ′(Y ′′Z ′′′ − Z ′′Y ′′′) + Y ′(Z ′′X ′′′ −X ′′Z ′′′) + Z ′(X ′′Y ′′′ − Y ′′X ′′′)

(Y ′Z ′′ − Z ′Y ′′)2 + (Z ′X ′′ −X ′Z ′′)2 + (X ′Y ′′ − Y ′X ′′)2
(3.7)

are the curvature and the torsion of the baseline, respectively. In the last equation, the
angular brackets denote the so-called parallelepipedal product, i.e. the determinant where
the components of the three vectors inside the brackets form the rows.

3.2. Local curvilinear coordinates and the corresponding basis

To be able to describe the flow, we introduce a local curvilinear coordinate system
(ξ, η, θ) where ξ is the arclength along the baseline introduced earlier and η and θ are the
polar radius and angle in the plane normal to the baseline at point R(ξ), i.e. the plane
where n(ξ) and b(ξ) lie, with the angle θ measured from n (Fig. 2). Where convenient,
we will also use the notation ξ1 = ξ, ξ2 = η, ξ3 = θ and the summation convention with
respect to repeated lower and upper indices.
In the reference frame rotating with the angular velocity Ω, the radius-vector of an

arbitrary point in the jet in Cartesian coordinates (x, y, z) is given by

r(x, y, z) = x x̂+ y ŷ + z ẑ, (3.8)

and the same radius-vector is expressed in the local coordinates (ξ, η, θ) as

r(ξ, η, θ) = R(ξ) + η cos θ n(ξ) + η sin θ b(ξ). (3.9)

Expressions (3.8) and (3.9) allow one to recalculate one set of coordinates into the other.
The local coordinate system, which we have introduced via (3.9), can be used for the jets
in the situations where the normal planes to the baseline do not intersect inside the jet
and hence the local coordinates of all points inside the jet and on its surface are specified
uniquely. In other words, the radius of curvature of the baseline must be greater than
the distance from it to the concave side of the jet’s free surface, which can be achieved
by the appropriate choice of the baseline.
Essentially from this point onwards, i.e. after we have introduced the local coordinate

system by (3.9), the construction of the mathematical framework for our problem is
‘automatic’ in a sense that one just has to follow the rules of differential geometry.
The basis vectors of our curvilinear coordinate system are defined by

ei =
∂r

∂ξi
(i = 1, 2, 3), (3.10)

i.e. as tangent (and not necessarily unit) vectors to the corresponding coordinate lines.
Using (3.9) and Frenet’s formulae (3.5), we have

e1 =
∂r

∂ξ
=

dR

dξ
+ η cos θ

dn

dξ
+ η sin θ

db

dξ
= τ + η cos θ(−κ1τ + κ2b) + η sin θ(−κ2n)

= (1 − ηκ1 cos θ)τ − ηκ2 sin θ n+ ηκ2 cos θ b, (3.11)

e2 =
∂r

∂η
= cos θ n+ sin θ b, (3.12)

e3 =
∂r

∂θ
= −η sin θ n+ η cos θ b. (3.13)

The Frenet basis, i.e. vectors τ , n and b, can be expressed in terms of the local basis
vectors e1, e2, e3 by resolving linear equations (3.11)–(3.13) with respect to the former
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Figure 2. A sketch illustrating coordinate systems involved in the description of curved jets.
The arclength ξ (= ξ1) along the jet’s ‘baseline’ together with two orthogonal (e.g. plane polar)
coordinates η (= ξ2), θ (= ξ3) in the plane normal to the baseline give a visual impression of
an always-orthogonal coordinate system, often declared as such “by definition” (Decent et al.
2002) with the tangent to the baseline τ = dR/dξ “defined” as the basis vector corresponding to
the ξ-coordinate. However, once defined analytically in the correct way as the derivative of the
radius-vector r with respect to ξ (3.10), the basis vector e1 corresponding to the ξ-coordinate
turns out to be coinciding with τ only on the baseline whilst away from it e1 appears to
be different in magnitude and can even have a nonzero projection on the azimuthal direction
(e1 · e3 = η2κ2 6= 0) if the baseline’s torsion κ2 is nonzero. Thus, unlike the orthonormal Frenet
basis τ , n, b, in general, i.e. for a nonzero torsion of the baseline (κ2 6= 0), the coordinate system
(ξ, η, θ), whose basis is shown as e1, e2, e3, is non-orthogonal and hence cannot be handled in
terms of ‘scaling factors’ (i.e. Lamé coefficients) nor via transformations based on its presumed
orthogonality.

giving

τ =
e1 − κ2e3

1− ηκ1 cos θ
, n = cos θ e2 −

sin θ

η
e3, b = sin θ e2 +

cos θ

η
e3. (3.14)

Note that, in a general case, i.e. if κ2 6= 0, vectors τ and e1 are not parallel outside the
baseline (Fig. 2).

3.3. Metric tensor and Christoffel symbols

The covariant components of the metric tensor of the local coordinate frame are defined
by gij = ei · ej , (i, j = 1, 2, 3). After using (3.11)–(3.13) to calculate them, we have in a
matrix form

(gij) =





(1− ηκ1 cos θ)
2
+ (ηκ2)

2
0 η2κ2

0 1 0
η2κ2 0 η2



 . (3.15)
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Note that (i) if κ2 6= 0, the basis vectors e1, e2, e3 are not orthogonal everywhere
outside the baseline (i.e. for η 6= 0) and hence g13 = g31 6= 0 and (ii) e1 and e3 are not
unit vectors. Nonorthogonality of the basis vectors indicates that ‘scaling factors’ (i.e.
Lamé coefficients) cannot be used for calculating covariant derivatives whilst the fact
that the basis vectors are not unit vectors means that, as for every curvilinear coordinate
system, components of vectors and tensors in this basis are not the ‘physical’ components
used in fluid mechanics; the latter require normalization of the basis vectors and will be
introduced below in due course.
Using the notation ∆ for the determinant

∆ = det(gij) =
[

(1− ηκ1 cos θ)
2 + (ηκ2)

2
]

η2 − η4κ2
2 = (1− ηκ1 cos θ)

2η2, (3.16)

we introduce also the contravariant components of the metric tensor (gij) inverse to (gij),
i.e. gikgkj = δij , where δij is Kronecker’s delta-symbol, arriving at

(gij) =
1

∆





η2 0 −η2κ2

0 ∆ 0

−η2κ2 0 (1− ηκ1 cos θ)
2 + (ηκ2)

2



 . (3.17)

To be able to do covariant differentiation, we need to calculate the Christoffel symbols
Γ i
ij defined by

∂ei
∂ξj

= Γ k
ijek, (i, j = 1, 2, 3). (3.18)

One can find Γ k
ij , (i, j, k = 1, 2, 3) using the following steps: (i) differentiate (3.11)–(3.13)

with respect to ξi (i = 1, 2, 3), having in mind the notation ξ1 = ξ, ξ2 = η, ξ3 = θ; (ii)
use Frenet’s formulae (3.5) to express the derivatives of τ , n, b with respect to ξ back
in terms of τ , n, b, (iii) apply (3.14) to express the Frenet basis τ , n, b in terms of ei
(i = 1, 2, 3) and then (iv) use the definition (3.18) to find Γ k

ij , (i, j, k = 1, 2, 3). The full
details of this procedure are given in Appendix A. As the result, we have:

Γ 1
11 =

(

− cos θ
dκ1

dξ
+ κ1κ2 sin θ

)

η

1− ηκ1 cos θ

Γ 2
11 = (1− ηκ1 cos θ)κ1 cos θ − ηκ2

2,

Γ 3
11 =

(

cos θ
dκ1

dξ
− κ1κ2 sin θ

)

ηκ2

1− ηκ1 cos θ
− (1− ηκ1 cos θ)

κ1 sin θ

η
+

dκ2

dξ
.

Γ 1
22 = 0, Γ 1

33 = 0, Γ 1
23 = Γ 1

32 = 0,
Γ 2
22 = 0, Γ 2

33 = −η, Γ 2
23 = Γ 2

32 = 0,

Γ 3
22 = 0, Γ 3

33 = 0, Γ 3
23 = Γ 3

32 =
1

η

Γ 1
12 = Γ 1

21 = − κ1 cos θ

1− ηκ1 cos θ
, Γ 1

13 = Γ 1
31 =

ηκ1 sin θ

1− ηκ1 cos θ
,

Γ 2
12 = Γ 2

21 = 0, Γ 2
13 = Γ 2

31 = −ηκ2,

Γ 3
12 = Γ 3

21 =
κ1κ2 cos θ

1− ηκ1 cos θ
+

κ2

η
, Γ 3

13 = Γ 3
31 = − ηκ1κ2 sin θ

1− ηκ1 cos θ
.

These expressions for the Christoffel symbols are needed to do covariant differentiation
both for the derivations below and, especially, should one wish to generalize the results
of the present work to the case of a viscous fluid.



Spiralling liquid jets: Verifiable mathematical framework 9

3.4. Curvature of the free surface

Let the free surface be parameterized in the local coordinate system (ξ, η, θ) as

η = h(ξ, θ, t), (3.19)

so that, following from (3.9), the radius-vector r of a point on the free surface is given
by

r(ξ, θ, t) = R(ξ) + h(ξ, θ, t) cos θ n(ξ) + h(ξ, θ, t) sin θ b(ξ).

Having the free surface parameterized, we can use the standard procedure for calculating
the mean curvature κs of the jet’s free surface as

κs =
EN +GL− 2FM

EG− F 2
, (3.20)

where E, F , G and L, M , N are coefficients of the first and second fundamental form
of the surface, respectively. The details of their calculation for the general case we are
dealing with at the moment are given in the first section of Appendix B.

3.5. Typical mistakes

Although it might seem that in the above procedure there is simply no room for mis-
takes, this turns out not to be the case. Typically, instead of introducing the coordinate
system analytically (3.9), defining, also analytically, the basis vectors in a regular way
(3.10) and then checking whether the introduced coordinate system (ξ, η, θ) is orthogonal
or not by calculating components of the metric tensor (3.15), orthogonality of this
coordinate system is proclaimed from the start as a self-evident fact, usually ‘supported’
by a sketch, similar to (a simplified version of) our Fig. 2, to make this statement more
palatable. Then, the orthonormal vectors τ , e2 and ê3 = e3/|e3| are declared to be
the basis corresponding to this coordinate system (Wallwork et al. 2002; Decent et al.

2002; Panda et al. 2008; Marheineke & Wegener 2009; Marheineke et al. 2016). This
opening gambit takes place even when the paper has the words ‘systematic derivation’
in its title (Panda et al. 2008), which makes it difficult to distinguish this systematic
derivation from the presumably unsystematic ones elsewhere. As a result of this intuitive
rather than systematic approach, in the situations where the jet’s baseline has a nonzero
torsion (i.e. κ2 6= 0), for example, if gravity is taken into account (Decent et al. 2002)
or if the intention is to describe jets of arbitrary shapes (Panda et al. 2008; Marheineke
& Wegener 2009; Marheineke et al. 2016), τ used as a basis vector turns out not to be
tangential to the corresponding coordinate lines everywhere except the baseline itself. In
other words, in this case τ is not a basis vector of the coordinate system (ξ, η, θ). To put
it formally, from the definition of the local coordinate system (3.9) and the definitions
(3.2) and (3.11) it follows that outside the baseline

e1 =
∂r

∂ξ
6= dR

dξ
= τ ,

and for κ2 6= 0 one has that e1 ∦ τ . Thus, from this point onwards, all geometric con-
structions based on the presumed orthogonality of the local coordinate system that follow
are, at best, questionable as ‘scaling factors’ (i.e. Lamé’s coefficients) and transformations
between orthogonal coordinate systems simply do not work for nonorthogonal coordinate
frames.
Notably, nonorthogonality of the coordinate system (3.9) in the situations where κ2 6= 0

has been pointed out specifically by Entov & Yarin (1984) but their paper, although
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ritually referenced (Panda et al. 2008; Marheineke & Wegener 2009), is apparently never
read.
Sometimes an analytic definition of the basis vectors is not given at all and they are

‘defined’ visually via definition sketches (Wallwork et al. 2002) which is a bit concerning
given that in the sketches of (Wallwork et al. 2002) as well as in the sketches of its twin-
paper (Decent et al. 2002) the normal to the centreline (used as the baseline) points in
the wrong direction.
Another useful indicator alerting one to the unconventional handling of differential

geometry is that in some papers, e.g. (Decent et al. 2002; Uddin et al. 2006; Părău et al.

2007), in a complete reversal of the standard procedure used above, the radius-vector r
is defined after the basis vectors and, even more peculiarly, in terms of the latter simply
by stating that (in our notation)

r =

ξ
∫

0

τ dξ + ηeη. (3.21)

Then, if the expression for eη, given either as eη = cos θ n + sin θ b in (Decent et al.

2002), which coincides with (3.12) above, or, more originally, as

eη = Y ′ cos θ x̂−X ′ cos θ ŷ − sin θ ẑ

in (Părău et al. 2007), is substituted in definition (3.21) of r and then, using it, the basis
vectors are calculated in the standard way (3.10), one arrives at a contradiction: the
resulting basis vector eξ corresponding to the ξ-coordinate will differ from τ used as the
basis vector in defining r in (3.21). Notably, this self-contraction takes place irrespective
whether the local coordinate system (ξ, η, θ) is orthogonal (κ2 = 0) or not (κ2 6= 0) which
indicates a fundamental flaw in the whole procedure. This error occurs because in (3.21)
not only the integral but also eη depends on ξ. This highlights an important general
point: the directions of all three vectors in the local basis and the Frenet basis vary along
the baseline, and this variation cannot be captured by any ‘definition sketch’ which,
like our purely illustrative Fig. 2, shows only one cross-section of the jet. Therefore, all
‘definitions’ of the basis vectors for the local coordinate frame (ξ, η, θ) coming from such
sketches, as in (Wallwork et al. 2002; Decent et al. 2002) and the papers that rely on
them (Partridge et al. 2005; Uddin et al. 2006; Părău et al. 2006, 2007; Uddin et al. 2008;
Decent et al. 2009; Uddin & Decent 2009; Hawkins et al. 2010; Uddin & Decent 2012),
lead to inconsistencies in the geometric framework and hence the equations derived on
its basis.

4. Governing equations in curvilinear coordinates

4.1. Continuity equation

4.1.1. Two ways of deriving the equation

As mentioned earlier, the basis vectors e1, e2, e3 are not unit vectors, so that, to
introduce the ‘physical’ components of velocity v, we need to normalize these vectors:

v = v1e1+v2e2+v3e3 = v1|e1|
e1

|e1|
+v2|e2|

e2

|e2|
+v3|e3|

e3

|e3|
= uξê1+uηê2+uθê3, (4.1)

where

uξ = v1|e1| = v1
√
g11, uη = v2|e2| = v2, uθ = v3|e3| = v3η (4.2)
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are the physical components of v and ê1 = e1/|e1|, ê2 = e2/|e2|, ê3 = e3/|e3| are now
unit vectors.
The continuity equation ∇ · v = 0, i.e. ∇iv

i = 0, written down explicitly has the form

∂vi

∂ξi
+ Γ i

ikv
k = 0, (4.3)

that is
∂v1

∂ξ1
+ Γ 1

11v
1 + Γ 1

12v
2 + Γ 1

13v
3 +

∂v2

∂ξ2
+ Γ 2

21v
1 + Γ 2

22v
2 + Γ 2

23v
3

+
∂v3

∂ξ3
+ Γ 3

31v
1 + Γ 3

32v
2 + Γ 3

33v
3 = 0,

or

∂v1

∂ξ1
+
∂v2

∂ξ2
+
∂v3

∂ξ3
+
(

Γ 1
11 + Γ 2

21 + Γ 3
31

)

v1+
(

Γ 1
12 + Γ 2

22 + Γ 3
32

)

v2+
(

Γ 1
13 + Γ 2

23 + Γ 3
33

)

v3 = 0.

Then, using (4.2), which express the velocity components v1, v2, v3 in terms of the
physical components uξ, uη, uθ, and the expressions for the Christoffel symbols Γ i

jk,
(i, j, k = 1, 2, 3) calculated in Appendix A with the results summarized in Section 3.3,
we finally have the continuity equation in the following form:

∂

∂ξ

(

uξ√
g11

)

+
∂uη

∂η
+

1

η

∂uθ

∂θ
− η cos θ

1− ηκ1 cos θ

dκ1

dξ

uξ√
g11

+

(

1− ηκ1 cos θ

1− ηκ1 cos θ

)

uη

η
+

κ1 sin θ

1− ηκ1 cos θ
uθ = 0. (4.4)

The component g11 of the metric tensor, which accounts for the torsion of the baseline,
is given in (3.15), and the curvature κ1 of the baseline is expressed in terms of X(ξ),
Y (ξ), Z(ξ) in (3.6). Note that in (4.4), besides differential terms, there are also algebraic
terms proportional to each of the three components of velocity.
An alternative and much shorter way of deriving the continuity equation is by using

the well-known formula for the divergence (Sedov 1997)

∇iv
i =

1√
∆

∂(vi
√
∆)

∂ξi
, (4.5)

where ∆ = det(gij) is calculated earlier (3.16), and the expressions of vi (i = 1, 2, 3) in
terms of the physical components of velocity (4.2). Once applied, this formula verifies (4.4)
and hence implicitly the expressions for the Christoffel symbols calculated in Appendix A
and summarized in a compact form in §3.3.

4.1.2. Typical mistakes

As one can see from the derivation above, there is again no room for making a mistake
as all what the derivation of (4.4) requires is the definition of a divergence as ∇iv

i, the
definition of the covariant derivative leading to (4.3) and the definition of the Christoffel
symbols (3.18). The latter, of course, rely on the correct definition of the basis vectors
(3.10). The formula (4.5) requires even less, namely the expression for ∆ (3.16), which,
again, relies on the correct definition of the basis vectors, and the definition of the physical
components of velocity resulting in (4.2).
In the published work on the topic, there is invariably a gap between the introduction

of the local curvilinear coordinate system (ξ, η, θ) with the supposedly corresponding
basis vectors and the continuity equation. The details of the derivation are covered by
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the phrases like “we obtain the conservation of mass . . . ” (Wallwork et al. 2002), “using
standard methods, we obtain the continuity equation . . . ” (Părău et al. 2007) or simply
“we obtain the continuity equations as . . . ” (Decent et al. 2002), so that the continuity
equation becomes the first litmus test as to how these ‘standard methods’ have been
applied.

By comparing equation (4.4) with the versions featuring, for example, in (Wallwork
et al. 2002; Decent et al. 2002; Părău et al. 2006, 2007; Decent et al. 2009) one can see
immediately that the latter are erroneous in all what is related to the jet being curved
and, notably, irrespective whether the coordinate system is orthogonal (κ2 = 0) or not
(κ2 6= 0). In other words, even where by chance the local coordinate system ‘introduced’
as orthogonal happens to be orthogonal (Wallwork et al. 2002) and hence the technique
of ‘scaling factors’ should work, the resulting continuity equation is still erroneous. The
term proportional to uξ and the derivative of the baseline’s curvature with respect to ξ
is simply missing whilst the factors in front of other algebraic terms involve the (non-
normalized) component of the binormal, in our notation X ′Y ′′ − Y ′X ′′, but not the
curvature of the baseline given by (3.6) as they should.

Ribe (2004), one of the few who recognized that the local coordinate system for a coiling
liquid jet is nonorthogonal, arrived at the continuity equation as the first invariant of the
rate-of-strain tensor taking the latter from (Green & Zerna 1992). The result was again
the absence of the term proportional to the variation of the baseline’s curvature along
the baseline.

4.2. Equations of motion

We will now derive the equation of motion in projections on the Frenet basis τ , n,
b and, as before, ensure that the derivation is completely verifiable. For clarity, we will
derive the required expression for each term in the second equation (2.1) separately and
then put them together.

4.2.1. Velocity and acceleration in Frenet’s basis

One way of deriving the expression for the acceleration term on the left-hand side of
the equation of motion (2.1) in projection on the Frenet basis is simply by writing it
down as ∂v/∂t+v ·∇v, doing the required covariant differentiation using the Christoffel
symbols calculated in Appendix A and then projecting the result on the Frenet basis
using (3.11)–(3.13). This procedure is rather lengthy and cumbersome, so it would have
to be hidden behind “after lengthy calculations, we obtain . . . ”. To remain verifiable, we
will take an alternative route where calculating the Christoffel symbols and projecting
the result onto the Frenet basis is built into the very procedure. This route is used in
textbooks when the equations of motion in curvilinear coordinates are introduced. The
subtlety in our case is that the velocity components we are dealing with correspond to our
curvilinear nonorthogonal coordinate system whilst what we need is these components in
the Frenet basis. To find the latter, we will, first, consider the velocity of a ‘fluid particle’,
i.e. a particle with fixed Lagrangian coordinates, moving with respect to the Eulerean
coordinate frame.

If we take a fluid particle whose position-vector at moment t in our (Eulerean)
coordinate system (ξ, η, θ) is given by r(t) = r(ξ(t), η(t), θ(t)), then the particle’s velocity
is

v =
dr

dt
=

∂r

∂ξ

dξ

dt
+

∂r

∂η

dη

dt
+

∂r

∂θ

dθ

dt
=

dξ

dt
e1 +

dη

dt
e2 +

dθ

dt
e3.
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Comparing this with (4.1) we see that

dξ

dt
= v1,

dη

dt
= v2,

dθ

dt
= v3 (4.6)

are components of the particle’s velocity in the local basis e1, e2, e3.
Now, given that for a fluid particle, according to (3.9),

r(ξ(t), η(t), θ(t)) = R(ξ(t)) + η(t) cos θ(t)n(ξ(t)) + η(t) sin θ(t)b(ξ(t)),

all what we need to do is differentiate r with respect to t and use the Frenet formulae
(3.5) together with the definitions (4.6) and (4.2):

v =
dR

dξ

dξ

dt
+

(

dη

dt
cos θ − η sin θ

dθ

dt

)

n+ η cos θ
dn

dξ

dξ

dt
+

(

dη

dt
sin θ + η cos θ

dθ

dt

)

b

+η sin θ
db

dξ

dξ

dt
=

uξ√
g11

τ + (uη cos θ − uθ sin θ)n+ η cos θ
uξ√
g11

(−κ1τ + κ2b)

+ (uη sin θ + uθ cos θ)b− ηκ2 sin θ
uξ√
g11

n.

After re-arrangement, we finally have:

v = (1− κ1η cos θ)
uξ√
g11

τ +

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

n

+

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

b. (4.7)

The coefficients in front of τ , n, b, i.e.

vτ = (1− κ1η cos θ)
uξ√
g11

, vn = −κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ, (4.8)

vb = κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ, (4.9)

are components of velocity in the Frenet basis τ , n, b expressed in terms of the physical
components of velocity uξ, uη, uθ in our curvilinear coordinate system (ξ, η, θ) whose
(nonorthogonal) basis is e1, e2, e3.
Now, we can consider the velocity field of a moving continuum and treat our velocity

components in (4.7) as functions of (t, ξ, η, θ). To calculate the acceleration term in the
second equation (2.1), we need to differentiate (4.7) with respect to t keeping in mind
that (a) the derivatives of ξ, η, θ with respect to t are, according to definitions (4.6),
components v1, v2, v3, which, following definitions (4.2), can be expressed in terms of
the physical components uξ, uη, uθ, and (b) the Frenet basis τ , n, b varies with ξ and
the derivatives can be expressed back in terms of τ , n, b using Frenet’s formulae (3.5).
This is basically the textbook derivation of the acceleration in a curvilinear coordinate
system with the only difference that vτ , vn, vb in (4.8), (4.9) are expressed in terms of
uξ, uη, uθ. Thus, differentiating (4.7) we obtain

dv

dt
=

{

(1− κ1η cos θ)

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

− η cos θ
dκ1

dξ

u2
ξ

g11
− κ1 cos θ

uξuη√
g11

+ κ1 sin θ
uξuθ√
g11
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−κ1
uξ√
g11

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)}

τ

+

{

−κ2η sin θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

−η sin θ
dκ2

dξ

u2
ξ

g11
−κ2 sin θ

uξuη√
g11

−κ2 cos θ
uξuθ√
g11

+cos θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

− sin θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)

−uθ

η
(uη sin θ+uθ cos θ)+κ1(1−κ1η cos θ)

u2
ξ

g11

−κ2
uξ√
g11

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)}

n

+

{

κ2η cos θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+κ2
uξ√
g11

(uη cos θ − uθ sin θ)+η cos θ
dκ2

dξ

u2
ξ

g11
+sin θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

+cos θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)

+
uθ

η
(uη cos θ − uθ sin θ) + κ2

uξ√
g11

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)}

b.

After re-arrangement, we finally have

dv

dt
=

{

(1− κ1η cos θ)

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+η
u2
ξ

g11

(

κ1κ2 sin θ − cos θ
dκ1

dξ

)

− 2κ1
uξ√
g11

(uη cos θ − uθ sin θ)

}

τ

+

{

−κ2η sin θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+
u2
ξ

g11

(

κ1 − η cos θ(κ2
1 + κ2

2)− η sin θ
dκ2

dξ

)

−
(

2κ2
uξ√
g11

+
uθ

η

)

(uη sin θ + uθ cos θ)

+ cos θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

− sin θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)}

n

+

{

κ2η cos θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+

(

2κ2
uξ√
g11

+
uθ

η

)

(uη cos θ − uθ sin θ) + η
u2
ξ

g11

(

cos θ
dκ2

dξ
− κ2

2 sin θ

)

+sin θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

+cos θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)}

b. (4.10)
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An alternative way of calculating the acceleration is to substitute into

dv

dt
=

(

∂vi

∂t
+ vj∇jv

i

)

ei =

(

∂vi

∂t
+ vj

∂vi

∂ξj
+ vjvkΓ i

jk

)

ei (4.11)

the expressions for Γ i
jk (i, j, k = 1, 2, 3) from §3.3 and the expressions (4.2) of vi (i =

1, 2, 3) in terms of the physical components uξ, uη, uθ and project the result on the Frenet
basis by expressing ei (i = 1, 2, 3) in terms of τ , n, b using (3.11)–(3.13). We used this
(slightly more cumbersome) way for an independent verification of (4.10).

4.2.2. Pressure gradient in Frenet’s basis

To calculate the pressure gradient, we need only its definition and expressions (3.11)–
(3.13) relating the local basis with Frenet’s basis:

∇p = ei∇ip = gij
∂p

∂ξj
ei

=

(

g11
∂p

∂ξ
+ g13

∂p

∂θ

)

[(1− ηκ1 cos θ) τ − ηκ2 sin θ n+ ηκ2 cos θ b]

+g22
∂p

∂η
(cos θ n+ sin θ b) +

(

g31
∂p

∂ξ
+ g33

∂p

∂θ

)

(−η sin θ n+ η cos θ b) .

Using expressions for gij , (i, j = 1, 2, 3) from (3.17), we finally have

∇p =
1

1− ηκ1 cos θ

(

∂p

∂ξ
− κ2

∂p

∂θ

)

τ +

(

cos θ
∂p

∂η
− sin θ

η

∂p

∂θ

)

n

+

(

sin θ
∂p

∂η
+

cos θ

η

∂p

∂θ

)

b. (4.12)

Note that for nonzero torsion of the baseline, κ2 6= 0, the τ -projection of the gradient
includes an azimuthal derivative of the pressure.

4.2.3. Centrifugal, Coriolis and gravitational forces in Frenet’s basis

Centrifugal force. Using the parametrization (3.9), for the centrifugal force we have

−Ω × (Ω × r) = −Ω × (Ω ×R)− η cos θΩ × (Ω × n)− η sin θΩ × (Ω × b).

Given that Ω = Ωẑ, R = Xx̂+ Y ŷ + Z ẑ and using the notation τ = τxx̂ + τyŷ + τz ẑ,
n = nxx̂+ nyŷ + nzẑ, b = bxx̂+ byŷ + bzẑ, we obtain

Ω × (Ω ×R) = Ω2ẑ× (−Y x̂+Xŷ) = −Ω2(Xx̂+ Y ŷ)

and similarly

Ω × (Ω × n) = −Ω2(nxx̂+ nyŷ), Ω × (Ω × b) = −Ω2(bxx̂+ byŷ).

Then the centrifugal force takes the form

−Ω× (Ω× r) = Ω2(X + ηnx cos θ+ ηbx sin θ)x̂+Ω2(Y + ηny cos θ+ ηby sin θ)ŷ, (4.13)

or, in projection on the Frenet basis,

−Ω × (Ω × r) = Ω2[(X + ηnx cos θ + ηbx sin θ)τx + (Y + ηny cos θ + ηby sin θ)τy ]τ

+Ω2[(X + ηnx cos θ + ηbx sin θ)nx + (Y + ηny cos θ + ηby sin θ)ny]n

+Ω2[(X + ηnx cos θ + ηbx sin θ)bx + (Y + ηny cos θ + ηby sin θ)by]b.
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Coriolis’ force. Using the representation of v in the Frenet basis (4.7), the Coriolis
force can be written down as

−2Ω × v = −2 (1− κ1η cos θ)
uξ√
g11

Ω × τ

−2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

Ω × n

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

Ω × b,

and for its projections onto the Frenet basis one has

− (2Ω × v) · τ = −2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

(Ω × n) · τ

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

(Ω × b) · τ , (4.14)

− (2Ω × v) · n = −2 (1− κ1η cos θ)
uξ√
g11

(Ω × τ ) · n

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

(Ω × b) · n, (4.15)

− (2Ω × v) · b = −2 (1− κ1η cos θ)
uξ√
g11

(Ω × τ ) · b

−2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

(Ω × n) · b. (4.16)

For Ω = Ωẑ, we obviously have

Ω × τ = Ω(−τyx̂+ τxŷ), Ω × n = Ω(−nyx̂+ nxŷ), Ω × b = Ω(−byx̂+ bxŷ),

and the scalar products on the right-hand side of (4.14)–(4.16) are given by

(Ω × τ ) · n = Ω(−τynx + τxny), (Ω × τ ) · b = Ω(−τybx + τxby),

(Ω × n) · τ = Ω(−nyτx + nxτy), (Ω × n) · b = Ω(−nybx + nxby),

(Ω × b) · τ = Ω(−byτx + bxτy), (Ω × b) · n = Ω(−bynx + bxny).

Thus, finally projections of the Coriolis force onto the Frenet basis are:

−(2Ω × v) · τ = −2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

Ω (−nyτx + nxτy)

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

Ω (−byτx + bxτy) , (4.17)

−(2Ω × v) · n = −2(1− κ1η cos θ)
uξ√
g11

Ω (−τynx + τxny)

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

Ω (−bynx + bxny) ,(4.18)

−(2Ω × v) · b = −2 (1− κ1η cos θ)
uξ√
g11

Ω (−τybx + τxby)

−2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

Ω (−nybx + nxby) .(4.19)
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Gravity. The gravity force g = −gẑ in projection onto the Frenet basis is simply
g = −gτzτ − gnzn− gbzb.

4.3. Euler’s equation in Frenet’s basis

After putting into the second equation (2.1) the expressions derived in Sections 4.2.1–
4.2.3, Euler’s equation in projection on Frenet’s basis take the following form.
Projecting on τ :

(1− κ1η cos θ)

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+η
u2
ξ

g11

(

κ1κ2 sin θ − cos θ
dκ1

dξ

)

− 2κ1
uξ√
g11

(uη cos θ − uθ sin θ)

= − 1

ρ(1− ηκ1 cos θ)

(

∂p

∂ξ
− κ2

∂p

∂θ

)

− gτz

−2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

Ω(nxτy − nyτx)

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

Ω(bxτy − byτx)

+Ω2 [(X + ηnx cos θ + ηbx sin θ) τx + (Y + ηny cos θ + ηby sin θ) τy ] . (4.20)

Projecting on n:

−κ2η sin θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+
u2
ξ

g11

(

κ1 − η cos θ(κ2
1 + κ2

2)− η sin θ
dκ2

dξ

)

−
(

2κ2
uξ√
g11

+
uθ

η

)

(uη sin θ + uθ cos θ)

+ cos θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

− sin θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)

= −1

ρ

(

cos θ
∂p

∂η
− sin θ

η

∂p

∂θ

)

− gnz − 2 (1− κ1η cos θ)
uξ√
g11

Ω(τxny − τynx)

−2

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

Ω(bxny − bynx)

+Ω2 [(X + ηnx cos θ + ηbx sin θ)nx + (Y + ηny cos θ + ηby sin θ)ny] . (4.21)

Projecting on b:

κ2η cos θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+

(

2κ2
uξ√
g11

+
uθ

η

)

(uη cos θ − uθ sin θ) + η
u2
ξ

g11

(

cos θ
dκ2

dξ
− κ2

2 sin θ

)
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+sin θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

+cos θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)

= −1

ρ

(

sin θ
∂p

∂η
+

cos θ

η

∂p

∂θ

)

− gbz − 2 (1− κ1η cos θ)
uξ√
g11

Ω(τxby − τybx)

−2

(

−κ2η sin θ
uξ√
g11

+ uη cos θ − uθ sin θ

)

Ω(nxby − nybx)

+Ω2 [(X + ηnx cos θ + ηbx sin θ) bx + (Y + ηny cos θ + ηby sin θ) by] . (4.22)

The component g11 of the metric tensor featuring in (4.20)–(4.22) is given in (3.15), the
Cartesian projections of τ , n and b are defined in terms of X , Y , Z by (3.2)–(3.4),
and the curvature κ1 and torsion κ2 of the baseline are expressed in terms of X , Y , Z
in (3.6), (3.7), respectively. Note that instead of (4.21)–(4.22) one can take their linear
combinations each having only one derivative of p but this would be at the expense of
other terms.

4.4. Boundary conditions

With the jet’s free surface parameterized in the curvilinear system by (3.19), the
kinematic boundary condition (2.2), i.e. explicitly

∂f

∂t
+ vi

∂f

∂ξi
= 0 at f(ξ1, ξ2, ξ3, t) = 0,

after substitution f = h(ξ, θ, t)− η and the use of (4.2) defining the physical components
of velocity, becomes

∂h

∂t
+

uξ√
g11

∂h

∂ξ
+

uθ

η

∂h

∂θ
= uη at η = h(ξ, θ, t). (4.23)

The dynamic boundary condition equating the pressure at the free surface with the
capillary pressure has its usual form

p = σκs at η = h, (4.24)

where the free-surface curvature κs is given by (3.20) with the coefficients of the two
fundamental forms E, F , G and L, M , N calculated in Appendix B.

4.5. Typical mistakes

At this step, the most obvious mistakes can be seen in the boundary conditions. For
example, in (Wallwork et al. 2002) and the papers that followed and relied on it (Părău
et al. 2006, 2007), instead of having the textbook boundary condition (4.23) above, which
takes just one line to derive from (2.1), the kinematic boundary condition, stated without
a derivation, somehow includes the (non-normalized) vertical component of the binormal
vector, X ′Y ′′−Y ′X ′′ in our notation. It is also noteworthy that the kinematic boundary
conditions can, somewhat unconventionally, include the derivative of one independent
variable with respect to another, as in condition (20) of (Decent et al. 2002), but the
gaps in the exposition of mathematics do not allow one to find out what this nontrivial
derivative meant and how it was used.
Another error in the boundary conditions which is less obvious and takes some

calculation to expose is typically made in the derivation of the free-surface curvature κs in
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the local coordinate system (3.9). As one can see in Appendix B, where the textbook way
of calculating the free-surface curvature is used, in a general case it is rather complicated,
and there is no ‘cheap’ way of deriving it. By comparing κs derived in Appendix B with
simplistic expressions for the curvature featuring, for example, in (Wallwork et al. 2002;
Decent et al. 2002), one has to conclude that the latter are nowhere near the correct
result. It must be said, however, that this mistake is of relatively little consequences as
in the slender-jet approximation, to leading order, it is only the cross-sectional curvature
that plays a role.
As for the equations of motion, mistakes there in the published work (Wallwork et al.

2002; Decent et al. 2002; Părău et al. 2006, 2007; Decent et al. 2009) are simply too
numerous to list and we leave the comparison of the expressions one can find in the
literature with the entirely verifiable equations (4.20)–(4.22) to those interested. In (Ribe
2004), the equations of motion are not given explicitly and hence cannot be verified, nor
are they given in (Panda et al. 2008; Marheineke & Wegener 2009); in the latter, as
mentioned earlier, the derivation is based on the coordinate transformations between
orthogonal coordinate frames which have been applied to the systems one of which is
nonorthogonal.

5. Slender-jet approximation

Equations (4.4), (4.20)–(4.22) and boundary conditions (4.23), (4.24) are just (2.1)–
(2.3) written down in a scalar form in a curvilinear coordinate system (3.9) about
a yet undetermined and hence arbitrary steady baseline. In applications, one almost
invariably deals with jets with well-separated cross-sectional and longitudinal scales so
that, using the ratio of these scales as a small parameter, we can considerably simplify
the formulation, determine the shape of the baseline by considering a simple solution for
a steady flow and derive a one-dimensional model describing the most important class of
unsteady motions.

5.1. Non-dimensional equations

Let L and H be the characteristic length scales along and across the jet. In what
follows, we will be interested in jets for which the ratio H/L = ǫ ≪ 1 and consider the
problem in the asymptotic limit ǫ → 0. Scaling ξ with L and η, h with H , we have
from Frenet’s equations (3.5) that both the curvature κ1 and the torsion κ2 scale with
L−1 and hence, to leading order in ǫ as ǫ → 0, g11 = 1. Then, if we introduce U as
the scale for uξ and T = L/U as the scale for t, the continuity equation (4.4) and the
kinematic boundary condition (4.23) suggests that both uη and uθ should be scaled with
ǫU . The expression (3.20) for the free-surface curvature κs with the coefficients given in
Appendix B shows that it scales with H−1, so that from the dynamic boundary condition
(4.24) one has that p scales with σ/H . This nondimensionalization ensures that as ǫ → 0
the leading-order terms in the corresponding asymptotic expansions are nontrivial.
Now, after non-dimensionalisation, the continuity equation (4.4) becomes

∂

∂ξ

(

uξ√
g11

)

+
∂uη

∂η
+

1

η

∂uθ

∂θ
− ǫη cos θ

1− ǫηκ1 cos θ

dκ1

dξ

uξ√
g11

+

(

1− ǫηκ1 cos θ

1− ǫηκ1 cos θ

)

uη

η
+

ǫκ1 sin θ

1− ǫηκ1 cos θ
uθ = 0, (5.1)

and Euler’s equations (4.20)–(4.22) take the following form.
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In projection on τ :

(1− ǫκ1η cos θ)

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+ǫη
u2
ξ

g11

(

κ1κ2 sin θ − cos θ
dκ1

dξ

)

− 2ǫκ1
uξ√
g11

(uη cos θ − uθ sin θ)

= − 1

We (1− ǫηκ1 cos θ)

(

∂p

∂ξ
− κ2

∂p

∂θ

)

− 1

Fr2
τz

− 2ǫ

Rb

(

κ2η sin θ
uξ√
g11

− uη cos θ + uθ sin θ

)

(τxny − τynx)

− 2ǫ

Rb

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

(bxτy − byτx)

+
1

Rb2
[(X + ǫηnx cos θ + ǫηbx sin θ)τx + (Y + ǫηny cos θ + ǫηby sin θ)τy] . (5.2)

In projection on n:

−ǫκ2η sin θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+
u2
ξ

g11

(

κ1 − ǫη cos θ(κ2
1 + κ2

2)− ǫη sin θ
dκ2

dξ

)

− ǫ

(

2κ2
uξ√
g11

+
uθ

η

)

(uη sin θ + cos θuθ)

+ǫ cos θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

−ǫ sin θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)

= − 1

ǫWe

(

cos θ
∂p

∂η
− sin θ

η

∂p

∂θ

)

− 1

Fr2
nz −

2

Rb
(1− ǫκ1η cos θ)

uξ√
g11

(τxny − τynx)

− 2ǫ

Rb

(

κ2η cos θ
uξ√
g11

+ uη sin θ + uθ cos θ

)

(bxny − bynx)

+
1

Rb2
[(X + ǫηnx cos θ + ǫηbx sin θ)nx + (Y + ǫηny cos θ + ǫηby sin θ)ny] . (5.3)

In projection on b:

ǫκ2η cos θ

[

∂

∂t

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ

(

uξ√
g11

)

+ uη
∂

∂η

(

uξ√
g11

)

+
uθ

η

∂

∂θ

(

uξ√
g11

)]

+ǫ

(

2κ2
uξ√
g11

+
uθ

η

)

(uη cos θ − uθ sin θ) + ǫη
u2
ξ

g11

(

cos θ
dκ2

dξ
− κ2

2 sin θ

)

+ǫ sin θ

(

∂uη

∂t
+

uξ√
g11

∂uη

∂ξ
+ uη

∂uη

∂η
+

uθ

η

∂uη

∂θ

)

+ǫ cos θ

(

∂uθ

∂t
+

uξ√
g11

∂uθ

∂ξ
+ uη

∂uθ

∂η
+

uθ

η

∂uθ

∂θ

)
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= − 1

ǫWe

(

sin θ
∂p

∂η
+

cos θ

η

∂p

∂θ

)

− 1

Fr2
bz −

2

Rb
(1− ǫκ1η cos θ)

uξ√
g11

(τxby − τybx)

− 2ǫ

Rb

(

κ2η sin θ
uξ√
g11

− uη cos θ + uθ sin θ

)

(nybx − nxby)

+
1

Rb2
[(X + ǫηnx cos θ + ǫηbx sin θ)bx + (Y + ǫηny cos θ + ǫηby sin θ)by] . (5.4)

Here

We =
ρU2H

σ
, Rb =

U

ΩL
, Fr =

U√
gL

are, respectively, the Weber, Rossby and Froude number, and

g11 = (1 − ǫηκ1 cos θ)
2 + ǫ2(ηκ2)

2.

The kinematic and dynamic boundary conditions (4.23), (4.24) after non-dimensionalisation
have the form

∂h

∂t
+

uξ√
g11

∂h

∂ξ
+

uθ

η

∂h

∂θ
= uη at η = h, (5.5)

p = κs at η = h, (5.6)

where in the latter, for the time being, κs is simply the curvature from the first section
of Appendix B made dimensionless. Its asymptotic simplifications bringing in the second
section from this Appendix are considered below.

5.2. Leading order in ǫ as ǫ → 0: Preliminary step

To leading order in ǫ as ǫ → 0, the continuity equation (4.4) takes the ‘straight-jet’
form

∂uξ

∂ξ
+

∂uη

∂η
+

uη

η
+

1

η

∂uθ

∂θ
= 0, (5.7)

and Euler’s equations to become:

∂uξ

∂t
+uξ

∂uξ

∂ξ
+uη

∂uξ

∂η
+
uθ

η

∂uξ

∂θ
= − 1

We

(

∂p

∂ξ
− κ2

∂p

∂θ

)

− 1

Fr2
τz+

1

Rb2
(Xτx+Y τy), (5.8)

u2
ξκ1 = − 1

ǫWe

(

cos θ
∂p

∂η
− sin θ

η

∂p

∂θ

)

− 1

Fr2
nz −

2

Rb
uξ(τxny− τynx)+

1

Rb2
(Xnx+Y ny),

(5.9)

0 = − 1

ǫWe

(

sin θ
∂p

∂η
+

cos θ

η

∂p

∂θ

)

− 1

Fr2
bz−

2

Rb
uξ(τxby−τybx)+

1

Rb2
(Xbx+Y by). (5.10)

Note that structurally these equations are exactly the same as the projections on the
Frenet basis of the equations of motion for a material point (Butenin et al. 1979)
with the tangential and centripetal acceleration on the left-hand side of (5.8) and (5.9),
respectively, whilst the projection of the acceleration on the binormal is zero; the right-
hand sides of (5.8)–(5.10) feature the corresponding projections of the forces and it is
only the terms with the pressure gradient that make the difference compared with the
case of a material point. In a sense, the pressure gradient terms in (5.9), (5.10) could
be compared to reaction forces in the motion of a material point so that, given that we
have a free jet, one would expect these terms to turn out to be zero, so that the only
difference of principle is the presence of the pressure gradient in (5.8).
The kinematic boundary condition (5.5) to leading order in ǫ as ǫ → 0 simplifies very
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slightly, only due to g11 = 1 to this order, and now has the form

∂h

∂t
+ uξ

∂h

∂ξ
+

uθ

η

∂h

∂θ
= uη at η = h. (5.11)

In what follows, we will need the dynamic boundary condition (5.6) expanded to O(ǫ)
as ǫ → 0. Having in mind that after our non-dimensionalisation the leading terms on the
left-hand side and on the right-hand side are both of O(1), we substitute in (5.6) the
expansions

p = p0 + ǫp1 + . . . , h = h0 + ǫh1 + . . . ,

use the expansion of κs given in Appendix B (multiplied by ǫ since we use H , not L as
the scale in the cross-sectional direction) and evaluate the left-hand side at η = h0. As a
result, we obtain

p0(ξ, h0, θ, t) =
T0,0

G
3/2
0,0

, (5.12)

∂p0
∂η

(ξ, h0, θ, t)h1 + p1(ξ, h0, θ, t) = − κ1

G
1/2
0,0

(

sin θ
∂h0

∂θ
+ h0 cos θ

)

+

[

1

G
3/2
0,0

(

2h0 −
∂2h0

∂θ2

)

− 3h0T0,0

G
5/2
0,0

]

h1 +
1

G
3/2
0,0

∂h0

∂θ

(

4− 3T0,0

G0,0

)

∂h1

∂θ
− h0

G
3/2
0,0

∂2h1

∂θ2
,

(5.13)
where for brevity we introduced the notation

T0,0 = h2
0 + 2

(

∂h0

∂θ

)2

− h0
∂2h0

∂θ2
, G0,0 = h2

0 +

(

∂h0

∂θ

)2

(compare with T0, G0 used in Appendix B).
At this stage, when our equations are more observable, by examining them one can

easily see that in the slender-jet approximation ǫ → 0, besides specifying the asymptotic
behaviour of Fr and Rb for which we can assume without loss of generality Fr,Rb = O(1)
as ǫ → 0, we need to specify the asymptotic behaviour of We and there are two, not one,
meaningful distinct limiting cases. In the limit ǫ → 0, it is necessary to specify whether
it is We or ǫWe that remain finite. These two cases correspond to essentially different
physics.

5.3. Trajectory

To derive equations describing the jet’s trajectory (i.e. the baseline which we assume
to be going along the jet inside it), we will consider the asymptotic limit ǫ → 0 (with We
to be specified later) and look for a solution using the expansions of uξ, uη, uθ, p and h
in power series in ǫ:

uξ = uξ,0 + ǫuξ,1 + . . . , uη = uη,0 + ǫuη,1 + . . . , uθ = uθ,0 + ǫuθ,1 + . . . (5.14)

p = p0 + ǫp1 + . . . , h = h0 + ǫh1 + . . . ,

where, given our scaling, the leading-order terms will be non-zero unless we look for
a particular solution assuming otherwise. In the asymptotic analysis, expansions (5.14)
should be substituted into equations (5.1)–(5.4) with the appropriate truncations to
obtain equations for each order but since we will be interested only in the leading order,
it will be more convenient to deal with more observable equations (5.7)–(5.10) having in
mind, of course, that we need to check that no terms are lost when p1 comes into play.
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We will be looking for a solution assuming that (a) the flow is steady and that, to
leading order in ǫ as ǫ → 0 (b) the axial velocity is uniform across the jet (‘plug flow’)
and (c) the rotational component of velocity is zero:

uξ,0 = uξ,0(ξ), uθ,0 = 0. (5.15)

It might seem that this assumption of the plug flow is unnecessarily restrictive and
looking for a solution with a non-uniform velocity profile would be worthwhile but this
is not the case. The description of a jet in the framework of Euler’s equations makes
sense after viscosity has already unified the velocity profile, i.e. after the transition zone
if one considers, for example, the spinning disc atomization process schematically shown
in Fig. 1. Should one consider a non-uniform velocity profile, then, in reality, it will be
the fluid’s viscosity that will kick in and unify it, as it is viscosity that makes fluid layers
sliding by each other interact. Although, as with the flow in a straight pipe, Euler’s
equations can be formally applied and a solution with a non-uniform velocity profile
looked for (there are infinitely many such solutions for a pipe flow as the velocity profile
satisfying Euler’s equations and the impermeability conditions can be arbitrary), this
solution would not describe the physical reality and hence is simply irrelevant.
Substituting the expansions (5.14) in the continuity equation (5.7), we consider it to

leading order in ǫ as ǫ → 0. The above assumptions allow this equation to be integrated,
and, after applying the condition of regularity on the baseline, uη < ∞ at η = 0, we
obtain

uη,0 = −η

2

duξ,0

dξ
.

Substituting this into the kinematic boundary condition (5.11) turns it, to leading order
in ǫ, into

uξ,0
∂h0

∂ξ
+

h0

2

duξ,0

dξ
= 0,

so that, after integration, we have

uξ,0h
2
0 = Q1, (5.16)

where Q1 = Q1(θ) is the ‘constant’ of integration.
Now, we can turn to the equations of motion where we need to specify the order of

We as ǫ → 0.

5.3.1. Case 1: We = O(1) as ǫ → 0

For We = O(1), as we can see from equations (5.8)–(5.10), the term with the pressure
gradient is of the same order, i.e. of O(1), as other terms in the projection of equations of
motion on τ (5.8) whilst in normal and binormal projections (5.9), (5.10) it is dominant
(of O(ǫ−1)) so that the next-order approximation and hence the first-order corrections
to p and then to h will have to be brought in.
On substitution of expansions (5.14) into equations (5.9), (5.10), to leading order (i.e.

to order ǫ−1), these equations become

cos θ
∂p0
∂η

− sin θ

η

∂p0
∂θ

= 0, sin θ
∂p0
∂η

+
cos θ

η

∂p0
∂θ

= 0, (5.17)

giving that p0 = p0(ξ). Then, from the dynamic boundary condition for the 0th-order
terms (5.12) subject to periodicity conditions

h0(ξ, 0) = h0(ξ, 2π),
∂h0

∂θ
(ξ, 0) =

∂h0

∂θ
(ξ, 2π) (5.18)
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we have that the jet’s cross-section is a circle

h2
0 + η2c − 2h0ηc cos(θ − θc) = 1/p20, (5.19)

where ηc and θc are coordinates of the circle’s centre. It can be easily shown that this
is the general solution: h0 in (5.12) can be re-scaled to ‘absorb’ p0 since the numerator
and the denominator of (5.12) are homogeneous with respect to h0 and for the resulting
parameter-free equation h0 given by (5.19) (with 1 on the right-hand side) will be a
solution depending on two arbitrary constants, i.e. the general solution.
Now, since the ‘centre’ of the cross-section appears to be well defined as the centre of

the circle, we can without loss of generality choose our ‘baseline’ to be the ‘centreline’,
i.e. make ηc = 0, so that h0 satisfying (5.12), (5.18) now becomes h0 = h0(ξ) = 1/p0(ξ),
and hence from (5.16) one has Q1 = const, whilst the pressure is obviously given by

p0(ξ) =
1

h0(ξ)
. (5.20)

With Q1 = const and h0 = h0(ξ), we can now see that (5.16) is essentially a conservation
law stating that the volumetric flux, πQ1, remains constant along the jet.
Now, substituting (5.20) into the τ -projection of the equations of motion (5.8), ex-

pressing h0 in terms of uξ,0 from (5.16) and using (3.2) to write down explicitly the
Cartesian projections of τ , we obtain

uξ,0
duξ,0

dξ
= − 1

WeQ
1/2
1

du
1/2
ξ,0

dξ
− 1

Fr2
Z ′ +

1

Rb2
(XX ′ + Y Y ′).

After integrating this equation, we arrive at a depressed quartic in u
1/2
ξ,0 :

u2
ξ,0 +

2

WeQ
1/2
1

u
1/2
ξ,0 +

2

Fr2
Z − 1

Rb2
(X2 + Y 2) +Q2 = 0, (5.21)

where Q2 is the constant of integration. This equation specifies uξ,0 as a function of X ,
Y , Z. Although it can be solved analytically in a standard way (Korn & Korn 1968), in
practice for its application below it is more convenient to solve it numerically.
Now, considering equations of motion (5.9), (5.10) to O(1) as ǫ → 0, we have

cos θ
∂p1
∂η

− sin θ

η

∂p1
∂θ

= WeA(ξ, uξ,0), sin θ
∂p1
∂η

+
cos θ

η

∂p1
∂θ

= WeB(ξ, uξ,0), (5.22)

where for brevity we introduced the notation

A(ξ, uξ,0) = −u2
ξ,0κ1 −

1

Fr2
nz −

2

Rb
uξ,0(τxny − τynx) +

1

Rb2
(Xnx + Y ny), (5.23)

B(ξ, uξ,0) = − 1

Fr2
bz −

2

Rb
uξ,0(τxby − τybx) +

1

Rb2
(Xbx + Y by). (5.24)

In writing down the arguments of A and B we emphasize that there is a ‘direct’
dependence on ξ via X , Y , Z (and projections of τ , n, b expressible in terms of X ,
Y , Z via (3.2)–(3.4)) and also the ‘indirect’ dependence on ξ via uξ,0, which in this case
is given by (5.21) and also depends only on ξ.
We can take instead of (5.22) their linear combinations

∂p1
∂η

= We (A cos θ +B sin θ),
∂p1
∂θ

= We η(−A sin θ +B cos θ). (5.25)

After integrating the first of these equations, we obtain p1 = We η(A cos θ + B sin θ) +
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C(ξ, θ), where C(ξ, θ) is the ‘constant’ of integration. Substituting this expression into
the second equation (5.25) gives ∂C/∂θ = 0, i.e. C = C(ξ). Thus, we now have

p1 = We η(A cos θ +B sin θ) + C(ξ), (5.26)

which we need to substitute into the dynamic boundary condition for the 1st-order terms
(5.13) where for h0 independent of θ the right-hand side considerably simplifies:

We h0(A cos θ +B sin θ) + C = −κ1 cos θ −
1

h2
0

h1 −
1

h2
0

∂2h1

∂θ2
,

or, to write it in the standard form,

∂2h1

∂θ2
+ h1 = −h2

0(We h0A+ κ1) cos θ −Weh3
0B sin θ − Ch2

0. (5.27)

This is a linear ordinary differential equation with θ as the independent variable and ξ as
a parameter. Since both sin θ and cos θ satisfy the corresponding homogeneous equation,
(5.27) has 2π-periodic solutions for h1 only if the coefficients in front of sin θ and cos θ
on the right-hand side are both zero, i.e. if

Weh0A+ κ1 = 0, B = 0. (5.28)

These equations together with the second equation in (3.2), namely X ′2+Y ′2 +Z ′2 = 1,
form a closed set of ODEs describing the jet’s trajectory, i.e. the functions X(ξ), Y (ξ),
Z(ξ). To write down this set of equations explicitly, we recall expressions (3.2)–(3.4)
for the Cartesian components of τ , n, b, expression (3.6) for κ1, use equation (5.16) to
eliminate h0, and, to get rid of the square roots, multiply (5.28) by −κ1. Then, the set
of ODEs for the jet’s centreline takes the form
(

u2
ξ,0 −

u
1/2
ξ,0

WeQ
1/2
1

)

(X ′′2+Y ′′2+Z ′′2)+
1

Fr2
Z ′′+

2

Rb
uξ,0(X

′Y ′′−Y ′X ′′)− 1

Rb2
(XX ′′+Y Y ′′) = 0,

(5.29)

1

Fr2
(X ′Y ′′ − Y ′X ′′) +

2

Rb
uξ,0[X

′(Z ′X ′′ −X ′Z ′′)− Y ′(Y ′Z ′′ − Z ′Y ′′)]

− 1

Rb2
[X(Y ′Z ′′ − Z ′Y ′′) + Y (Z ′X ′′ −X ′Z ′′)] = 0, (5.30)

X ′2 + Y ′2 + Z ′2 = 1, (5.31)

where uξ,0(X,Y, Z) is specified by (5.21). To compute the centreline, one needs to specify
its initial point and slope, i.e. prescribe X(0), Y (0), Z(0) and X ′(0), Y ′(0), Z ′(0), of
which, obviously, only two can be specified independently, and, knowing uξ,0(0) and
h0(0) at this point, specify Q1 via (5.16) and, using uξ,0(0) together with X(0), Y (0),
Z(0), Q2 via (5.21).
Note that the analogy with the motion of a material point in the Frenet basis that we

pointed out in Section 5.2 here becomes even more transparent: as in the case of a material
point (Butenin et al. 1979), the τ -projection of the equation of motion determines the
velocity (5.21) whilst the fact that it is a free jet dictates that the “reaction” from the
pressure in terms of its gradient across the jet must be zero. The latter gives the two
solvability conditions (5.28), i.e. (5.29)–(5.30), which, together with the normalization
condition (5.31), determine the jet’s trajectory. In other words, the prescribed trajectory
of a material point (e.g. in the design of a roller-coaster track) determines the normal
and binormal components of the reaction forces (from the track) whilst for a free jet it is
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the other way round: the equality to zero of the normal and binormal “reactions” from
the pressure gradient gives the conditions that determine the jet’s trajectory.
It is worth noting here that numerical analysis of (5.21), (5.29)–(5.31) shows that for

the trajectory to be, as one expects, an outgoing spiral, i.e. the process to be dominated
by inertia rather than capillarity, the expression in the first bracket of (5.29) must be
positive.

5.3.2. Case 2: ǫWe = O(1) as ǫ → 0

For We = O(ǫ−1) we will be dealing only with the 0th-order terms of the expansions
(5.14) and, having in mind the results of the previous section, look for a solution where the
cross-section of the jet is circular, so that the baseline is again the centreline, h0 = h0(ξ)
(and hence Q1 = const), to see whether such a solution exists.
As one can see from equations (5.8)–(5.10), for We = O(ǫ−1) as ǫ → 0, the terms

with the pressure gradient are of the same O(1) as other terms in the normal and
binormal projections of the equations of motion (5.9), (5.10), whilst, to leading order,
the corresponding term drops out from the tangential projection (5.8), so that, instead
of (5.8), one now has

∂uξ

∂t
+ uξ

∂uξ

∂ξ
+ uη

∂uξ

∂η
+

uθ

η

∂uξ

∂θ
= − 1

Fr2
τz +

1

Rb2
(Xτx + Y τy). (5.32)

As before, using the definition of τ (3.2) and our assumptions (5.15), we can write down
this equation for uξ,0 as

uξ,0
duξ,0

dξ
= − 1

Fr2
Z ′ +

1

Rb2 (XX ′ + Y Y ′),

which, after integration, gives

uξ,0 =

[

− 2

Fr2
Z +

1

Rb2
(X2 + Y 2) +Q2

]1/2

, (5.33)

where Q2 is the constant of integration.
Considering equations (5.9), (5.10), which now have the form

cos θ
∂p0
∂η

− sin θ

η

∂p0
∂θ

= ǫWeA(ξ, uξ,0), sin θ
∂p0
∂η

+
cos θ

η

∂p0
∂θ

= ǫWeB(ξ, uξ,0), (5.34)

where A and B are defined by (5.23), (5.24), we can repeat the steps that led from (5.22)
to (5.26) arriving at

p0 = ǫWe η(A cos θ +B sin θ) + C(ξ). (5.35)

Substituting this expression into the dynamic boundary condition (5.12), which for a
circular cross-section has the form p0 = 1/h0 at η = h0, we obtain

ǫWeh0(ξ)[A(ξ, uξ,0(ξ)) cos θ +B(ξ, uξ,0(ξ)) sin θ] + C(ξ) =
1

h0(ξ)
.

Unlike (5.27), this is now an algebraic equation, and it can be satisfied only if

A(ξ, uξ,0) = 0, B(ξ, uξ,0) = 0, (5.36)

and C(ξ) = 1/h0(ξ). Thus, we have that the pressure is uniform across the jet,

p0 =
1

h0(ξ)
, (5.37)

and equations (5.36) together with the second equation (3.2), namely X ′2+Y ′2+Z ′2 = 1,
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form a system of three ODEs which, together with the appropriate boundary conditions,
determine X(ξ), Y (ξ), Z(ξ), i.e. the shape of the centreline. To write these equations
down explicitly, we again recall the expressions in terms of X , Y , Z for the components
of τ , n, b given by (3.2)–(3.4), for the curvature κ1 in (3.6) and expression (5.33) obtained
earlier for uξ,0, substitut6e all these expressions into the definitions (5.23), (5.24) for A
and B, and the obtained expressions for A and B into equations (5.36). Multiplying the
result by −κ1 to get rid of square roots, we finally arrive at the following set of equations
describing the shape of the centreline, i.e. the trajectory of the jet:

u2
ξ,0(X

′′2+Y ′′2+Z ′′2)+
1

Fr2
Z ′′+

2

Rb
uξ,0(X

′Y ′′−Y ′X ′′)− 1

Rb2
(XX ′′+Y Y ′′) = 0, (5.38)

1

Fr2
(X ′Y ′′ − Y ′X ′′) +

2

Rb
uξ,0[X

′(Z ′X ′′ −X ′Z ′′)− Y ′(Y ′Z ′′ − Z ′Y ′′)]

− 1

Rb2
[X(Y ′Z ′′ − Z ′Y ′′) + Y (Z ′X ′′ −X ′Z ′′)] = 0, (5.39)

X ′2 + Y ′2 + Z ′2 = 1, (5.40)

where

uξ,0 =

[

− 2

Fr2
Z +

1

Rb2
(X2 + Y 2) +Q2

]1/2

. (5.41)

This set of equations differs from equations (5.29)–(5.31) of Section 5.3.1 in two ways:
(i) the first term in (5.29) includes the influence of capillarity on the jet’s trajectory
whilst in (5.38) there is no such influence, and, more importantly, (ii) uξ,0 is calculated
differently, namely using (5.21) if We = O(1) and using (5.41) if ǫWe = O(1) as ǫ → 0.
It is noteworthy, however, that although the two cases involved different asymptotic
procedures, with the first one requiring two-term expansion of p and h, the end results
exhibit reassuring continuity: if we formally take the limit We → ∞ in (5.29) and (5.21),
the system (5.29)–(5.31), (5.21) will be reduced to (5.38)–(5.41).
To compute the jet’s trajectory using (5.38)–(5.40), one, again, needs to specify initial

conditions, i.e. X(0), Y (0), Z(0) and two of X ′(0), Y ′(0), Z ′(0), and, with the known
value of uξ,0(0) together with X(0), Y (0), Z(0), specify Q2 using (5.40).

Note that by looking for a solution with a circular cross-section we simply took a
shortcut and, by reducing the problem to a closed set of ODEs (5.38)–(5.41) from which
the flow parameters can be calculated via (5.33), (5.16) and (5.37), demonstrated that
such a solution exists. An alternative, less insightful and hence more cumbersome, way
would be, like in Section 5.3.1, not to make an assumption that the cross-section is
circular, substitute (5.26) into the dynamic boundary condition (5.12) and show that h0

as a 2π-periodic function of θ exists only if conditions (5.36) are satisfied and that the
cross-section is a circle. This is similar, for example, to the situation with the equilibrium
shapes of a liquid drop sitting on a solid substrate in the gravity field (Shikhmurzaev
1997): the linear (due to gravity) pressure distribution (5.26) results in a drop touching
the substrate at one point (i.e. with the cross-section being a circle) only if (5.36) hold,
i.e. if p is a constant across the drop; otherwise, the drop has a finite base on which it
sits, i.e. a 2π-periodic free-surface profile does not exist.

The analogy with the motion of a material point mentioned earlier is even more obvious
here than in the previous Section, as the fluid’s motion along the trajectory, as can be
seen from (5.41), is determined entirely by the body forces with no influence of the
pressure gradient. The two solvability conditions (5.38), (5.39), as before, come from the
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fact that it is a free jet and hence there is no “reaction” from the pressure in terms of
its gradient in the normal and binormal directions to the trajectory.

5.3.3. Typical mistakes

Setting aside the errors in the derivation of the governing equations and boundary
conditions mentioned earlier, here we will point out some mistakes of principle occurring
in the way by which equations for the jet’s trajectory are derived in the slender-jet
approximation.
As shown above, in either of the two cases specifying the behaviour of We as ǫ → 0,

the closed set of three ODEs for X , Y , Z is formed by (a) two solvability conditions,
which essentially state that we are dealing with a free jet and hence the pressure gradient
across it must be zero, and (b) the normalization equation X ′2 + Y ′2 + Z ′2 = 1 stating
that the independent variable ξ is the arclength. This set of equations remains the same
regardless whether gravity is included into consideration or not as the Froude number Fr
is just a parameter in two of these equations. It is also worth noting that even if gravity is
neglected, the jet’s trajectory can still have all three of its Cartesian coordinates varying
if the conditions at the outlet from which this jet is produced specify that the jet will not
lie in the horizontal coordinate plane — and hence one will still need all three equations
forX , Y , Z. This is invariably the case in all applications as no setup generating spiralling
jets is symmetric with respect to any horizontal plane.
In (Wallwork et al. 2002), where gravity is neglected, and its twin-paper (Decent et al.

2002), which differs only by the addition of gravity, the situation is different. In (Wallwork
et al. 2002), the vertical coordinate of the jet’s trajectory is assumed to be zero, so that
the authors formulate only equations for the two horizontal coordinates of the trajectory
(which somehow appear to be inseparably linked to an equation for the variation of the
radius of the jet’s circular cross-section along the trajectory). As a result of this ad-hoc
approach, when in (Decent et al. 2002) gravity is added into consideration and the jet’s
trajectory can no longer be assumed to remain in the horizontal plane, the authors,
as they admit, find themselves short of one equation. The way out appears to be, to
put it mildly, more than ad-hoc: Decent et al. (2002) take a linear combination of two
equation of motion (normal and azimuthal) and declare p1 of the form of our (5.26)
to be its solution from which one missing equation for the trajectory can be obtained
as the solvability condition. What should be noted in this regard is that this ‘solution’
satisfies neither of the equations of motion (33) and (35) of (Decent et al. 2002), as one
can easily see just from the dependence of the terms on the azimuthal angle, nor does it
satisfy even their linear combination (44) should this linear combination be written down
correctly. This is not to mention that two equations cannot be reduced to one (their linear
combination) as the number of equations should stay the same, and hence the solution
should satisfy both of them. Setting aside this departure from mathematics and the
passing of a non-solution for a solution, it is worth noting that, if p1 of the form (5.26)
is required to satisfy the (correct version of the) normal and azimuthal projections of
the equation of motion, this produces, as in the present paper, two solvability conditions
whereas in (Decent et al. 2002) only one ‘extra’ equation was required as otherwise the
system becomes overdetermined. This fact alone exposes a flaw of principle in the whole
procedure.

5.4. Peristaltic waves

Now, after finding X(ξ), Y (ξ), Z(ξ), i.e. the shape of the baseline/centreline, and
hence knowing the Cartesian components of τ , n, b from (3.2)–(3.4) and κ1, κ2 from
(3.6), (3.7), we can consider unsteady solutions describing the propagation of peristaltic
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disturbances that lead to the formation of drops. Non-peristaltic waves are of peripheral
importance to this topic as in jets, as has been shown for both ideal and viscous fluids
(see Lin & Webb (1994) and references therein), it is the peristaltic waves that drive
their capillary breakup.
It can be easily shown that equations (5.7)–(5.10) do not have such solutions. Indeed,

assuming that uξ,0 and other functions depends on t, we still have equations (5.9), (5.10)
not containing derivatives with respect to t and hence will arrive at (5.28) if We = O(1)
and (5.36) if ǫWe = O(1) as ǫ → 0, each giving that uξ,0 is independent of t. This result
is not surprising as otherwise we would have had waves with the wavelength comparable
with the radius of curvature of the jet’s trajectory.
Thus, we need to go back to (5.1)–(5.6) and re-scale ξ to account for waves with

wavelengths shorter than the radius of curvature of the jet’s trajectory/baseline but
longer than the cross-sectional scale for the slender-jet approximation to remain applica-
ble. Then, as the continuity equation (5.1) and the kinematic boundary condition (5.5)
suggest, at least one of the velocities in the plane normal to the baseline must be of
higher order as ǫ → 0 than that of a steady flow, and, to account for unsteadiness, t
should be re-scaled as well. We will be looking for peristaltic waves and assume that it is
the radial velocity that is of higher order as ǫ → 0 than the flow along the jet’s baseline
with the transversal velocity in such waves remaining of the same order. As before, we
will be looking for the plug-flow solution.
Considering an arbitrary point ξa of the jet’s baseline and an arbitrary moment ta, we

will use in the neighbourhood of this spatio-temporal point the following new variables

ξ̄ =
ξ − ξa

δ
, t̄ =

t− ta
δ

, ūη = δuη, (5.42)

where δ ≪ 1 is to be specified later. At this stage, we only require that ǫδ−1 = o(1) as
ǫ → 0 since δ = O(ǫ) would mean the wavelength asymptotically comparable with the
jet’s radius and hence the breakdown of the slender-jet approximation.
Since X , Y , Z are now regarded as known functions, in the limit δ → 0 these functions

and all functions of their derivatives, including κ1, κ2 and their derivatives, will, to
leading order, just take their values at ξ = ξa.
After re-scaling and multiplying (5.1) and (5.2) by δ and (5.3) and (5.4) by δ2, these

equations take the form:

∂

∂ξ̄

(

uξ√
g11

)

+
∂ūη

∂η
+

δ

η

∂uθ

∂θ
+

(

1− ǫηκ1 cos θ

1− ǫηκ1 cos θ

)

ūη

η

− δǫη cos θ

1− ǫηκ1 cos θ

dκ1

dξ

uξ√
g11

+
δǫκ1 sin θ

1− ǫηκ1 cos θ
uθ = 0, (5.43)

(1− ǫκ1η cos θ)

[

∂

∂t̄

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ̄

(

uξ√
g11

)

+ ūη
∂

∂η

(

uξ√
g11

)

+ δ
uθ

η

∂

∂θ

(

uξ√
g11

)]

+δǫη
u2
ξ

g11

(

κ1κ2 sin θ − cos θ
dκ1

dξ

)

− 2ǫκ1
uξ√
g11

(ūη cos θ − δuθ sin θ)

= − 1

We (1− ǫηκ1 cos θ)

(

∂p

∂ξ̄
− δκ2

∂p

∂θ

)

− δ

Fr2
τz

− 2ǫ

Rb

(

δκ2η sin θ
uξ√
g11

− ūη cos θ + δuθ sin θ

)

(τxny − τynx)
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− 2ǫ

Rb

(

δκ2η cos θ
uξ√
g11

+ ūη sin θ + δuθ cos θ

)

(bxτy − byτx)

+
δ

Rb2
[(X + ǫηnx cos θ + ǫηbx sin θ)τx + (Y + ǫηny cos θ + ǫηby sin θ)τy ] , (5.44)

−δǫκ2η sin θ

[

∂

∂t̄

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ̄

(

uξ√
g11

)

+ ūη
∂

∂η

(

uξ√
g11

)

+ δ
uθ

η

∂

∂θ

(

uξ√
g11

)]

+δ2
u2
ξ

g11

(

κ1 − ǫη cos θ(κ2
1 + κ2

2)− ǫη sin θ
dκ2

dξ

)

−δǫ

(

2κ2
uξ√
g11

+
uθ

η

)

(ūη sin θ+δuθ cos θ)

+ǫ cos θ

(

∂ūη

∂t̄
+

uξ√
g11

∂ūη

∂ξ̄
+ ūη

∂ūη

∂η
+ δ

uθ

η

∂ūη

∂θ

)

−δǫ sin θ

(

∂uθ

∂t̄
+

uξ√
g11

∂uθ

∂ξ̄
+ ūη

∂uθ

∂η
+ δ

uθ

η

∂uθ

∂θ

)

= − δ2

ǫWe

(

cos θ
∂p

∂η
− sin θ

η

∂p

∂θ

)

− δ2

Fr2
nz −

2δ2

Rb
(1− ǫκ1η cos θ)

uξ√
g11

(τxny − τynx)

−2ǫδ

Rb

(

δκ2η cos θ
uξ√
g11

+ ūη sin θ + δuθ cos θ

)

(bxny − bynx)

+
δ2

Rb2
[(X + ǫηnx cos θ + ǫηbx sin θ)nx + (Y + ǫηny cos θ + ǫηby sin θ)ny] , (5.45)

δǫκ2η cos θ

[

∂

∂t̄

(

uξ√
g11

)

+
uξ√
g11

∂

∂ξ̄

(

uξ√
g11

)

+ ūη
∂

∂η

(

uξ√
g11

)

+ δ
uθ

η

∂

∂θ

(

uξ√
g11

)]

+δǫ

(

2κ2
uξ√
g11

+
uθ

η

)

(ūη cos θ − δuθ sin θ) + δ2ǫη
u2
ξ

g11

(

cos θ
dκ2

dξ
− κ2

2 sin θ

)

+ǫ sin θ

(

∂ūη

∂t̄
+

uξ√
g11

∂ūη

∂ξ̄
+ ūη

∂ūη

∂η
+ δ

uθ

η

∂ūη

∂θ

)

+δǫ cos θ

(

∂uθ

∂t̄
+

uξ√
g11

∂uθ

∂ξ̄
+ ūη

∂uθ

∂η
+ δ

uθ

η

∂uθ

∂θ

)

= − δ2

ǫWe

(

sin θ
∂p

∂η
+

cos θ

η

∂p

∂θ

)

− δ2

Fr2
bz −

2δ2

Rb
(1− ǫκ1η cos θ)

uξ√
g11

(τxby − τybx)

−2ǫδ

Rb

(

δκ2η sin θ
uξ√
g11

− ūη cos θ + δuθ sin θ

)

(nybx − nxby)

+
δ2

Rb2
[(X + ǫηnx cos θ + ǫηbx sin θ)bx + (Y + ǫηny cos θ + ǫηby sin θ)by] . (5.46)

The kinematic boundary condition (5.5) now becomes

∂h

∂t̄
+

uξ√
g11

∂h

∂ξ̄
+ δ

uθ

η

∂h

∂θ
= ūη at η = h. (5.47)

In the dynamic boundary condition (5.6), we will need only the leading-order approxima-
tion, and, after re-scaling ξ as in (5.42) and going through the derivation of the second
section of Appendix B, one can easily verify that, for ǫδ−1 = o(1) as ǫ → 0, to leading
order, we end up with (5.12). This can be easily understood from the fact that there
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is no second-order derivatives with respect to ξ in the coefficients E, F , G of the first
fundamental form of the surface and it is only the coefficientN of the second fundamental
form that contributes to the leading-order κs so that, for ǫδ−1 = o(1) as ǫ → 0, all terms
with δ will feature at higher order. Physically, this is also clear: if ǫδ−1 = o(1) as ǫ → 0,
we still have a slender-jet approximation and hence, to leading order, it is only the cross-
sectional curvature that contributes to the mean curvature and hence appears in the
dynamic boundary condition. Thus, to leading order, we still have (5.12).
As one can see from (5.43)–(5.46), the meaningful limit we need to consider is δ ∝ √

ǫ,
i.e. ǫδ−2 = O(1) as ǫ → 0.
The substitution of the unknown functions expanded asymptotically in power series in√
ǫ into the equations (5.43)–(5.46) gives that, to leading order, the continuity equation,

as before, takes the form

∂uξ,0

∂ξ̄
+

1

η

∂ηūη,0

∂η
= 0, (5.48)

so that, as before, integrating it, using the condition of regularity on the baseline and
substituting the resulting expression for ūη,0 in the kinematic boundary condition (5.47),
where to leading order g11 = 1, we obtain

∂h0

∂t̄
+ uξ,0

∂h0

∂ξ̄
+

h0

2

∂uξ,0

∂ξ̄
= 0. (5.49)

5.4.1. Case 1: We = O(1) as ǫ → 0

If We = O(1) and ǫδ−2 = O(1) as ǫ → 0, then, from (5.45), (5.46) one has that the
leading, i.e. O(1), terms are those with the pressure gradient, so that one immediately
has p0 = p0(ξ, t). Used in the dynamic boundary condition (5.12), this means that the
curvature of the jet’s free surface in the cross-sectional plane is a constant and hence the
cross-section of the jet is a circle. Assuming that its centre remains on the baseline, we
have that h0 = h0(ξ, t) and hence

p0 =
1

h0
.

Using this in the leading-order equation obtained from (5.44), we arrive at

∂uξ,0

∂t̄
+ uξ,0

∂uξ,0

∂ξ̄
+

1

We

∂

∂ξ̄

(

1

h0

)

= 0. (5.50)

Equations (5.49), (5.50) form a closed system describing peristaltic waves in the slender-
jet approximation in the case We = O(1) as ǫ → 0. These equations are exactly the
ones derived by Ting & Keller (1990) for a straight axisymmetric jet. This is what one
should expect as in the case where the wavelength is much shorter than the radius of
curvature of the jet’s trajectory the latter will not feature at leading order in the slender-
jet approximation as, to put it simply, for such waves the jet is locally straight. The body
forces do not appear at this order also since their influence determines the jet’s trajectory
and on a much shorter scale they, to leading order, play no role.
In the case of a straight axisymmtric jet, corrections to (5.49), (5.50) corresponding

to shorter wave lengths have been considered by Markova & Shkadov (1972) and by
Papageorgiou & Orellana (1998) who included higher-order derivatives of h0 with respect
to ξ to account for the steeper slope of the free surface. Our equations (5.43)–(5.46)
together with the corresponding boundary conditions allow one to perform a similar
analysis for a spiralling jet which would bring in the curvature of the jet’s trajectory.
Another way of analyzing (5.43)–(5.46) could be via the radial coordinate expansions
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similar to the analysis presented by Garcia & Castellanos (1994) for a variety of models
for axisymmetric viscous jets.

5.4.2. Case 2: ǫWe = O(1) as ǫ → 0

If ǫWe = O(1) and ǫδ−2 = O(1) as ǫ → 0, at the leading-order, the first term on the
right-hand side of (5.44) drops out, so that we immediately have

∂uξ,0

∂t̄
+ uξ,0

∂uξ,0

∂ξ̄
= 0, (5.51)

and the two equations (5.49), (5.51) form a closed system. Note that, as with trajectories,
by formally taking the limit We → ∞ we turn equation (5.50) into (5.51). As with the
trajectory, the peristaltic disturbances in the case ǫWe = O(1) as ǫ → 0 do not involve
capillary essentially corresponding to the regime which could be labelled as ‘free flow’.
Thus, from the above analysis we can see that the non-existence of an unsteady solution

to (5.7)–(5.10) means that (a) the jet’s trajectory can be unsteady only due to the
conditions specifying how it is produced, e.g. at the orifice where it comes from should
its direction there vary with time, and (b) the body forces which determine the trajectory
should not feature in the equations describing the unsteady motion.

5.5. Typical mistakes

The most common mistake of principle with regard to the propagation of waves on
a curved jet is mixing up the scales assuming, on the one hand, that the wavelength
is asymptotically short compared with the radius of curvature of the jet’s trajectory
but, on the other hand, including the body forces which determine this trajectory into
the equations for the waves. For example, in (Părău et al. 2006) our equations (5.49),
(5.50) appear to be linked with the equations for the jet’s trajectory one of which, as
always, featuring the ubiquitous vertical component of the binormal X ′Y ′′ − Y ′X ′′ (in
our notation) and the other being X ′2+Y ′2 = 1 (the third equation is missing as the jet is
expected to stay in the horizontal coordinate plane, which it doesn’t in any application).
Effectively, this means that the lengthscale of the disturbances is comparable with the
lengthscale characterizing the shape of the jet’s trajectory. However, as shown above, the
system (5.7)–(5.10) operating on the scale of the radius of curvature of the jet’s trajectory
does not have unsteady solutions and, when a asymptotically shorter length and time
scales are considered, one has the system (5.43)–(5.46), which shows that, as ǫ, δ → 0,
the body forces become negligible.

6. Concluding remarks

The mathematical description of the spiralling jet phenomenon relies on the system-
atic handling of the local curvilinear nonorthogonal coordinate system. The completely
verifiable mathematical framework developed in the present paper is what this field
needed from the start, and it largely cleans the area of numerous erroneous equations
and boundary conditions, thus allowing the field to be developed further in a regular
way.
The derivation of equations in the curvilinear nonorthogonal coordinate system by

projecting all the vectors onto the orthonormal Frenet basis whose variation along the
baseline is described by the Frenet equations and brings in the baseline’s curvature and
torsion in an easy-to-handle way is an essentially new element which allows one to arrive
at the equations in their general form, i.e. without any simplifying assumptions, and hence
removes all question marks that invariably appear when the approach is asymptotic from
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the start. This general form makes it possible to consider different limiting cases, not only
those looked into in the present paper, and not only at leading order in the slenderness
or any other parameter.

The equations for the jet’s trajectory derived in the slender-jet approximation and
the one-dimensional models for nonlinear peristaltic disturbances obtained for different
relationships between the slenderness parameter ǫ and the Weber number We allow one
to study two main effects in the spiralling jet phenomenon, i.e. the jet’s form and the
propagation of waves leading to the formation of drops.

It is also worth pointing out that the use of a geometrically-defined ‘baseline’ as
opposed to the physically-determined ‘centreline’ in setting up the local coordinate
system offers an important degree of flexibility which allows one to consider even the
situations where the centreline-based description fails. Indeed, if the jet is curved with
the radius of curvature of the centreline becoming so small that the planes normal to the
centreline intersect inside the jet, thus making the local coordinates of the points there
not uniquely defined, the baseline for setting up the coordinate system, being independent
of the jet’s physics, can always be chosen such that this doesn’t happen.

The developed framework also allows one to extend the analysis to viscous jets as
the geometric elements needed to express ∇2v in the local curvilinear nonorthogonal
coordinate system centered on the jet’s baseline have been explicitly calculated and it is
now a matter of simple technique to use them. Taking this path, one should remember,
of course, that (a) to be compatible with the terms derived in the present paper, ∇2v

will also have to be projected on the Frenet basis and (b) the Laplacian of velocity in
the nonorthogonal coordinate system should be calculated using the obtained Christoffel
symbols and not ‘scaling factors’.

The analysis in the present work highlights one important issue which calls for a
collective research effort. The jet-specific local coordinate system we used is only a
slight variation on the cylindrical one, basically it is a cylindrical frame with an ar-
bitrarily curved axis. However, even this slight variation required algebraically intensive
calculations and, to make them observable and hence verifiable, we had to resort to
a rather nontrivial interplay between the local and the Frenet basis and still some of
the calculations had to be put into rather bulky appendices. As the same time, as we
remarked after the required coordinate system (3.9) was introduced, all what follows is
straightforwardly algorithmic. Even the calculation of the Christoffel symbols, which we
did by flipping between two bases, could’ve been done simply by using components of
the metric tensor in (7.3). In other words, the whole derivation could be handled by
a dedicated symbolic algebra software package should such package be available. This
poses an important problem of developing a symbolic software package that would be
able to produce the scalar version of a field equation of any type (e.g. of fluid mechanics)
in physical components of vectors/tensors using as inputs this equation in an invariant
vector/tensor form and the coordinate system into which this equation is to be cast
specified either with respect to Cartesian coordinates or, as in (3.9), with respect to a
frame with known characteristics. Such a package, besides addressing Leibniz’s remark
that “it is unworthy of excellent men [and women] to lose hours like slaves in the labour of
calculation which could safely be relegated to anyone else if machines were used”, would
bring into intensive analytical work a number of known curvilinear coordinate systems
(Korn & Korn 1968) which are currently of limited use as the amount of calculation
required to convert the equations of fluid mechanics into them by far exceeds the work
needed for the spiralling jet problem. The verifiable framework developed in the present
paper could then be used as one of the (many required) tests for this software.
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7. Appendix A: Christoffel symbols

To calculate the Christoffel symbols Γ k
ij , we can use their definition,

∂ei
∂ξj

= Γ k
ijek, (i, j = 1, 2, 3), (7.1)

and then (i) differentiate (3.11)–(3.13), which give ei (i = 1, 2, 3) in terms of the Frenet
basis τ , n, b; (ii) use, where necessary, Frenet’s formulae (3.5) to express the derivatives
of τ , n, b with respect to ξ in terms of the Frenet basis τ , n, b; (iii) apply (3.14) to
express τ , n, b back in terms of ei (i = 1, 2, 3) and finally (iv) use the definition (7.1) to
find Γ k

ij , (i, j, k = 1, 2, 3) as the coefficients in front of e1 e2, e3.
Specifically, differentiating e1 and following the above procedure we obtain:

∂e1
∂ξ

= (1− ηκ1 cos θ)
dτ

dξ
− η cos θ

dκ1

dξ
τ − ηκ2 sin θ

dn

dξ
− η sin θ

dκ2

dξ
n

+ηκ2 cos θ
db

dξ
+ η cos θ

dκ2

dξ
b

= (1− ηκ1 cos θ)κ1n− η cos θ
dκ1

dξ
τ − ηκ2 sin θ (−κ1τ + κ2b)− η sin θ

dκ2

dξ
n

+ηκ2 cos θ (−κ2n) + η cos θ
dκ2

dξ
b

=

(

−η cos θ
dκ1

dξ
+ ηκ1κ2 sin θ

)

τ

+

[

(1− ηκ1 cos θ)κ1 − η sin θ
dκ2

dξ
− ηκ2

2 cos θ

]

n

+

(

−ηκ2
2 sin θ + η cos θ

dκ2

dξ

)

b

=

(

−η cos θ
dκ1

dξ
+ ηκ1κ2 sin θ

)

e1 − κ2e3

1− ηκ1 cos θ

+

[

(1− ηκ1 cos θ)κ1 − η sin θ
dκ2

dξ
− ηκ2

2 cos θ

](

cos θ e2 −
sin θ

η
e3

)

+

(

−ηκ2
2 sin θ + η cos θ

dκ2

dξ

)(

sin θ e2 +
cos θ

η
e3

)

.

Then, from the definition (7.1), we have

Γ 1
11 =

(

− cos θ
dκ1

dξ
+ κ1κ2 sin θ

)

η

1− ηκ1 cos θ

Γ 2
11 = (1− ηκ1 cos θ)κ1 cos θ − ηκ2

2,

Γ 3
11 =

(

cos θ
dκ1

dξ
− κ1κ2 sin θ

)

ηκ2

1− ηκ1 cos θ
− (1− ηκ1 cos θ)

κ1 sin θ

η
+

dκ2

dξ
.

Similarly, differentiating e1 with respect to η yields

∂e1
∂η

= −κ1 cos θτ − κ2 sin θn+ κ2 cos θb
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= −κ1 cos θ
e1 − κ2e3

1− ηκ1 cos θ
− κ2 sin θ

(

cos θ e2 −
sin θ

η
e3

)

+κ2 cos θ

(

sin θ e2 +
cos θ

η
e3

)

,

so that

Γ 1
12 = − κ1 cos θ

1− ηκ1 cos θ
, Γ 2

12 = 0, Γ 3
12 =

κ1κ2 cos θ

1− ηκ1 cos θ
+

κ2

η
.

Differentiating e1 with respect to θ gives

∂e1
∂θ

= ηκ1 sin θτ − ηκ2 cos θn− ηκ2 sin θb

= ηκ1 sin θ
e1 − κ2e3

1− ηκ1 cos θ
− ηκ2 cos θ

(

cos θ e2 −
sin θ

η
e3

)

−ηκ2 sin θ

(

sin θ e2 +
cos θ

η
e3

)

,

and hence

Γ 1
13 =

ηκ1 sin θ

1− ηκ1 cos θ
, Γ 2

13 = −ηκ2, Γ 3
13 = − ηκ1κ2 sin θ

1− ηκ1 cos θ
.

Differentiating e2 with regard to ξ gives

∂e2
∂ξ

= cos θ
dn

dξ
+ sin θ

db

dξ
= cos θ (−κ1τ + κ2b) + sin θ (−κ2n)

= −κ1 cos θτ − κ2 sin θn+ κ2 cos θb,

= −κ1 cos θ

(

e1 − κ2e3

1− ηκ1 cos θ

)

− κ2 sin θ

(

cos θ e2 −
sin θ

η
e3

)

+κ2 cos θ

(

sin θ e2 +
cos θ

η
e3

)

,

and hence

Γ 1
21 = − κ1 cos θ

1− ηκ1 cos θ
, Γ 2

21 = 0, Γ 3
21 =

κ1κ2 cos θ

1− ηκ1 cos θ
+

κ2

η
.

Differentiating e2 with respect to η gives

∂e2
∂η

= 0,

and hence

Γ 1
22 = 0, Γ 2

22 = 0, Γ 3
22 = 0.

Differentiating e2 with respect to θ gives

∂e2
∂θ

= − sin θn+ cos θb = − sin θ

(

cos θ e2 −
sin θ

η
e3

)

+ cos θ

(

sin θ e2 +
cos θ

η
e3

)

,

and hence

Γ 1
23 = 0, Γ 2

23 = 0, Γ 3
23 =

1

η
.

Differentiating e3 with respect to ξ gives

∂e3
∂ξ

= −η sin θ
dn

dξ
+ η cos θ

db

dξ
= −η sin θ (−κ1τ + κ2b) + η cos θ (−κ2n)
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= ηκ1 sin θτ − ηκ2 cos θn− ηκ2 sin θb

= ηκ1 sin θ
e1 − κ2e3

1− ηκ1 cos θ
− ηκ2 cos θ

(

cos θ e2 −
sin θ

η
e3

)

−ηκ2 sin θ

(

sin θ e2 +
cos θ

η
e3

)

, (7.2)

and hence

Γ 1
31 =

ηκ1 sin θ

1− ηκ1 cos θ
, Γ 2

31 = −ηκ2, Γ 3
31 = − ηκ1κ2 sin θ

1− ηκ1 cos θ
.

Differentiating e3 with respect to η gives

∂e3
∂η

= − sin θn+ cos θb = − sin θ

(

cos θ e2 −
sin θ

η
e3

)

+ cos θ

(

sin θ e2 +
cos θ

η
e3

)

,

and hence

Γ 1
32 = 0, Γ 2

32 = 0, Γ 3
32 =

1

η
.

Differentiating e3 with regard to θ gives

∂e3
∂θ

= −η cos θn−η sin θb = −η cos θ

(

cos θ e2 −
sin θ

η
e3

)

−η sin θ

(

sin θ e2 +
cos θ

η
e3

)

,

and hence

Γ 1
33 = 0, Γ 2

33 = −η, Γ 3
33 = 0.

An alternative way of calculating Γ i
jk (i, j, k = 1, 2, 3), much more labour-intensive

but more suitable for a symbolic computer algorithm and applicable to any coordinate
system, is to use the formula

Γ i
jk =

gin

2

(

∂gnj
∂ξk

+
∂gnk
∂ξj

− ∂gjk
∂ξn

)

, (7.3)

which one can find in a textbook (Sedov 1997) or easily derive using the definition of
Christoffel symbols and components of the metric tensor.

8. Appendix B: Curvature of the free surface

8.1. General case. Dimensional

The curvature κs of the jet’s free surface is given by

κs =
EN +GL− 2FM

EG− F 2
, (8.1)

where E, F , G and L, M , N are coefficients of the first and second fundamental form to
be calculated as follows.
Let the free surface be parameterized in the local coordinate system (ξ, η, θ) as η =

h(ξ, θ, t), so that the radius-vector r of a point on the free surface is given by

r(ξ, θ, t) = R(ξ) + h(ξ, θ, t) cos θ n(ξ) + h(ξ, θ, t) sin θ b(ξ). (8.2)

Having the free surface parameterized with ξ and θ, we can calculate tangent vectors
to the free surface, using Frenet’s formulae (3.5) for the derivatives of τ , n and b with
respect to ξ:

∂r

∂ξ
=

dR

dξ
+

(

∂h

∂ξ
n+ h

dn

dξ

)

cos θ +

(

∂h

∂ξ
b+ h

db

dξ

)

sin θ
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= τ +

(

∂h

∂ξ
n+ h (−κ1τ + κ2b)

)

cos θ +

(

∂h

∂ξ
b− hκ2n

)

sin θ

= (1− κ1h cos θ) τ +

(

∂h

∂ξ
cos θ − κ2h sin θ

)

n+

(

κ2h cos θ +
∂h

∂ξ
sin θ

)

b, (8.3)

∂r

∂θ
=

(

∂h

∂θ
cos θ − h sin θ

)

n+

(

∂h

∂θ
sin θ + h cos θ

)

b. (8.4)

Coefficients of the first fundamental form are, by definition, the scalar products of the
tangent vectors:

E =
∂r

∂ξ
· ∂r
∂ξ

= (1− κ1h cos θ)
2
+

(

∂h

∂ξ

)2

+ (κ2h)
2
, (8.5)

F =
∂r

∂ξ
· ∂r
∂θ

=
∂h

∂ξ

∂h

∂θ
+ κ2h

2, (8.6)

G =
∂r

∂θ
· ∂r
∂θ

=

(

∂h

∂θ

)2

+ h2. (8.7)

The unit normal vector m to the free surface is

m =

∂r

∂ξ
× ∂r

∂θ√
EG− F 2

. (8.8)

Calculating separately the numerator and using that τ × n = b, n× b = τ , b× τ = n,
we obtain

∂r

∂ξ
× ∂r

∂θ
=

[

(1− κ1h cos θ) τ +

(

∂h

∂ξ
cos θ − κ2h sin θ

)

n+

(

κ2h cos θ +
∂h

∂ξ
sin θ

)

b

]

×
[(

∂h

∂θ
cos θ − h sin θ

)

n+

(

∂h

∂θ
sin θ + h cos θ

)

b

]

= h

(

∂h

∂ξ
− κ2

∂h

∂θ

)

τ − (1− κ1h cos θ)

(

∂h

∂θ
sin θ + h cos θ

)

n

+(1− κ1h cos θ)

(

∂h

∂θ
cos θ − h sin θ

)

b.

The denominator of (8.8) takes the form

EG− F 2 = (1− κ1h cos θ)
2

[

h2 +

(

∂h

∂θ

)2
]

+ h2

(

∂h

∂ξ
− κ2

∂h

∂θ

)2

. (8.9)

Thus, m = mττ +mnn+mbb, where

mτ =

(

h
∂h

∂ξ
− κ2h

∂h

∂θ

)

(EG− F 2)−1/2,

mn = − (1− κ1h cos θ)

(

∂h

∂θ
sin θ + h cos θ

)

(EG− F 2)−1/2,

mb = (1− κ1h cos θ)

(

∂h

∂θ
cos θ − h sin θ

)

(EG− F 2)−1/2.

To calculate coefficients L, M , N of the second fundamental form, we have to find
the second derivatives of r with respect to ξ and θ. Differentiating (8.3), (8.4) and using
Frenet’s formulae (3.5) to express derivatives of τ , n and b with respect to ξ, we arrive
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at

∂2r

∂ξ2
=

∂

∂ξ

(

∂r

∂ξ

)

= −
(

dκ1

dξ
h+ κ1

∂h

∂ξ

)

cos θτ + (1 − κ1h cos θ)κ1n

+

[

∂2h

∂ξ2
cos θ −

(

dκ2

dξ
h+ κ2

∂h

∂ξ

)

sin θ

]

n+

(

∂h

∂ξ
cos θ − κ2h sin θ

)

(−κ1τ + κ2b)

+

[(

dκ2

dξ
h+ κ2

∂h

∂ξ

)

cos θ +
∂2h

∂ξ2
sin θ

]

b+

(

κ2h cos θ +
∂h

∂ξ
sin θ

)

(−κ2n)

=

(

κ1κ2h sin θ −
dκ1

dξ
h cos θ − 2κ1

∂h

∂ξ
cos θ

)

τ

+

[

(1− κ1h cos θ)κ1 +
∂2h

∂ξ2
cos θ −

(

dκ2

dξ
h+ 2κ2

∂h

∂ξ

)

sin θ − κ2
2h cos θ

]

n

+

[

∂2h

∂ξ2
sin θ +

(

dκ2

dξ
h+ 2κ2

∂h

∂ξ

)

cos θ − κ2
2h sin θ

]

b

= rξξ,ττ + rξξ,nn+ rξξ,bb, (8.10)

∂2r

∂ξ∂θ
=

∂

∂θ

(

∂r

∂ξ

)

= κ1

(

h sin θ − ∂h

∂θ
cos θ

)

τ

+

[

∂2h

∂ξ∂θ
cos θ −

(

∂h

∂ξ
+ κ2

∂h

∂θ

)

sin θ − κ2h cos θ

]

n

+

[

∂2h

∂ξ∂θ
sin θ +

(

∂h

∂ξ
+ κ2

∂h

∂θ

)

cos θ − κ2h sin θ

]

b

= rξθ,ττ + rξθ,nn+ rξθ,bb, (8.11)

∂2r

∂θ2
=

∂

∂θ

(

∂r

∂θ

)

=

(

∂2h

∂θ2
cos θ − 2

∂h

∂θ
sin θ − h cos θ

)

n

+

(

∂2h

∂θ2
sin θ + 2

∂h

∂θ
cos θ − h sin θ

)

b

= rθθ,nn+ rθθ,bb, (8.12)

where we introduced notation rξξ,τ , rξξ,n etc for the coefficients in front of τ , n, b.

Then, coefficients of the second fundamental form can be calculated as

L =
∂2r

∂ξ2
·m = rξξ,τmτ + rξξ,nmn + rξξ,bmb, (8.13)

M =
∂2r

∂ξ∂θ
·m = rξθ,τmτ + rξθ,nmn + rξθ,bmb, (8.14)

N =
∂2r

∂θ2
·m = rθθ,nmn + rθθ,bmb. (8.15)

Now, to obtain the free surface curvature κs, one has to substitute (8.5)–(8.7), (8.13)–
(8.15) into (8.1).

(Note that, as will be clear from the asymptotic analysis below, the obtained curvature
is positive, as it is required to be in (2.3). This results from the order of coordinates
(ξ = ξ1, η = ξ2, θ = ξ3) being a cyclic permutation of the order of coordinates in
the standard cylindrical coordinate system of which the system (ξ, η, θ) is a natural
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generalization. Then, once the free surface is parameterized by ξ and θ (in this order)
the standard procedure used above gives m as an inward normal and κs > 0.)

8.2. Slender-jet approximation. Dimensionless

In the slender-jet approximation where ξ is scaled with L and consequently κ1 and
κ2 are scaled with L−1 whilst h is scaled with ǫL, where ǫ → 0, the expression for
the curvature can be simplified as follows. Below, all expressions are dimensionless;
they come from the dimensional expressions in the previous section where, after non-
dimensionalisation, one has ǫ as a factor in front of (dimensionless) h in all expressions.

8.2.1. Leading order

Expressions (8.5)–(8.7) take the form

E = (1− ǫκ1h cos θ)
2
+ ǫ2

(

∂h

∂ξ

)2

+ ǫ2 (κ2h)
2
= 1− 2ǫκ1h cos θ +O(ǫ2), (8.16)

F = ǫ2
[

∂h

∂ξ

∂h

∂θ
+ κ2h

2

]

, (8.17)

G = ǫ2

[

(

∂h

∂θ

)2

+ h2

]

. (8.18)

Then,

EG− F 2 = ǫ2(1− 2ǫκ1h cos θ)

[

h2 +

(

∂h

∂θ

)2
]

+O(ǫ4) = ǫ2

[

h2 +

(

∂h

∂θ

)2
]

+O(ǫ3)

(8.19)
and consequently, as ǫ → 0,

mτ = ǫ

h
∂h

∂ξ
− κ2h

∂h

∂θ
[

h2 +

(

∂h

∂θ

)2
]1/2

+O(ǫ2),

mn = −
(1− ǫκ1h cos θ)

(

∂h

∂θ
sin θ + h cos θ

)

{[

h2 +

(

∂h

∂θ

)2
]

(1− 2ǫκ1h cos θ) +O(ǫ2)

}1/2
= −

∂h

∂θ
sin θ + h cos θ

[

h2 +

(

∂h

∂θ

)2
]1/2

+O(ǫ2),

mb =

(1 − ǫκ1h cos θ)

(

∂h

∂θ
cos θ − h sin θ

)

{[

h2 +

(

∂h

∂θ

)2
]

(1− 2ǫκ1h cos θ) +O(ǫ2)

}1/2
=

∂h

∂θ
cos θ − h sin θ

[

h2 +

(

∂h

∂θ

)2
]1/2

+O(ǫ2).

The formulae (8.10)–(8.12) yield

rξξ,τ = ǫ

(

κ1κ2h sin θ −
dκ1

dξ
h cos θ − 2κ1

∂h

∂ξ
cos θ

)

, (8.20)

rξξ,n = (1− ǫκ1h cos θ)κ1 + ǫ
∂2h

∂ξ2
cos θ − ǫ

(

dκ2

dξ
h+ 2κ2

∂h

∂ξ

)

sin θ − ǫκ2
2h cos θ

= κ1 +O(ǫ),
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rξξ,b = ǫ

[

∂2h

∂ξ2
sin θ +

(

dκ2

dξ
h+ 2κ2

∂h

∂ξ

)

cos θ − κ2
2h sin θ

]

,

rξθ,τ = ǫκ1

(

h sin θ − ∂h

∂θ
cos θ

)

rξθ,n = ǫ

[

∂2h

∂ξ∂θ
cos θ −

(

∂h

∂ξ
+ κ2

∂h

∂θ

)

sin θ − κ2h cos θ

]

,

rξθ,b = ǫ

[

∂2h

∂ξ∂θ
sin θ +

(

∂h

∂ξ
+ κ2

∂h

∂θ

)

cos θ − κ2h sin θ

]

,

(8.21)

rθθ,n = ǫ

(

∂2h

∂θ2
cos θ − 2

∂h

∂θ
sin θ − h cos θ

)

,

rθθ,b = ǫ

(

∂2h

∂θ2
sin θ + 2

∂h

∂θ
cos θ − h sin θ

)

.

After substituting the obtained expressions into (8.13)–(8.15), it follows that

L = rξξ,τmτ + rξξ,nmn + rξξ,bmb = rξξ,nmn +O(ǫ) = O(1),

M = rξθ,τmτ + rξθ,nmn + rξθ,bmb,= O(ǫ),

N = rθθ,nmn + rθθ,bmb = O(ǫ)

as ǫ → 0 and, given that from (8.16)–(8.18) E = 1 +O(ǫ), F = O(ǫ2) and G = O(ǫ2) as
ǫ → 0, we have that, as ǫ → 0,

EN +GL− 2FM = N +O(ǫ2) = rθθ,nmn + rθθ,bmb +O(ǫ2)

= ǫ

{

−
(

∂2h

∂θ2
cos θ − 2

∂h

∂θ
sin θ − h cos θ

)(

∂h

∂θ
sin θ + h cos θ

)

+

(

∂2h

∂θ2
sin θ + 2

∂h

∂θ
cos θ − h sin θ

)(

∂h

∂θ
cos θ − h sin θ

)}

[

h2 +

(

∂h

∂θ

)2
]

−1/2

+O(ǫ2)

= ǫ

[

h2 + 2

(

∂h

∂θ

)2

− h
∂2h

∂θ2

][

h2 +

(

∂h

∂θ

)2
]

−1/2

+O(ǫ2).

Then, finally,

κs =
EN +GL− 2FM

EG− F 2
=

1

ǫ

[

h2 + 2

(

∂h

∂θ

)2

− h
∂2h

∂θ2

][

h2 +

(

∂h

∂θ

)2
]

−3/2

+O(1).

(8.22)
For a circular cross-section, ∂h/∂θ ≡ 0, we expectedly have κs = 1/(ǫh).
Note that if κs is scaled with H−1 = (ǫL)−1, as in the main text of this paper, the

right-hand side of (8.22) must be multiplied by ǫ.

8.2.2. Two-term expansion

If the free surface is looked for in the form h = h0 + ǫh1 + O(ǫ2), it is necessary to
consider the first two terms in the asymptotic expansion of the curvature. This expansion
can be conveniently obtained in two steps: first, we obtain the O(1) term in (8.22) and
then put there h0 instead of h whilst in the first term we substitute h = h0 + ǫh1 and
expand it keeping the terms of O(ǫ−1) and O(1) in the expansion to obtain a correction
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to the leading-term curvature linear in h1. Specifically, using for convenience the notation

G0 = ǫ−2G = h2 +

(

∂h

∂θ

)2

, T0 = h2 + 2

(

∂h

∂θ

)2

− h
∂2h

∂θ2
= ǫ−1G

1/2
0 N,

so that now G = ǫ2G0 and N = ǫT0G
−1/2
0 , we have

EN +GL− 2FM = EN +GL +O(ǫ3)

= ǫ(1− 2ǫκ1h cos θ)T0G
−1/2
0 − ǫ2κ1G

1/2
0

(

sin θ
∂h

∂θ
+ h cos θ

)

+O(ǫ3)

= ǫT0G
−1/2
0 − ǫ2κ1

[

2hT0G
−1/2
0 cos θ +G

1]2
0

(

sin θ
∂h

∂θ
+ h cos θ

)]

+O(ǫ3).

Now, using (8.19), we obtain

κs =
EN +GL − 2FM

EG− F 2

=

ǫT0G
−1/2
0 − ǫ2κ1

[

2hT0G
−1/2
0 cos θ +G

1/2
0

(

sin θ
∂h

∂θ
+ h cos θ

)]

+O(ǫ3)

ǫ2(1− 2ǫκ1h cos θ)G0 +O(ǫ4)

=
T0

ǫG
3/2
0

− κ1

(

sin θ
∂h

∂θ
+ h cos θ

)

G
−1/2
0 +O(ǫ). (8.23)

The first term is the curvature from (8.22) and the second one is a correction that depends
on the curvature of the baseline κ1. Now, we can substitute h0 for h in the second term
of the above expression and h = h0+ ǫh1 in the first term which then has to be expanded
in ǫ as ǫ → 0. Keeping for brevity in the calculation only the two leading terms in ǫ, we
obtain

T0

ǫG
3/2
0

=
1

ǫ

[

h2 + 2

(

∂h

∂θ

)2

− h
∂2h

∂θ2

][

h2 +

(

∂h

∂θ

)2
]

−3/2

=
1

ǫ

{

h2
0 + 2

(

∂h0

∂θ

)2

− h0
∂2h0

∂θ2
+ ǫ

[

h1

(

2h0 −
∂2h0

∂θ2

)

+ 4
∂h0

∂θ

∂h1

∂θ
− h0

∂2h1

∂θ2

]

}

×
[

h2
0 +

(

∂h0

∂θ

)2
]

−3/2






1− 3ǫ

(

h0h1 +
∂h0

∂θ

∂h1

∂θ

)

[

h2
0 +

(

∂h0

∂θ

)2
]

−1






=
1

ǫG
3/2
0,0

{

T0,0 + ǫ

[

h1

(

2h0 −
∂2h0

∂θ2

)

+ 4
∂h0

∂θ

∂h1

∂θ
− h0

∂2h1

∂θ2

]} [

1− 3ǫ

G0,0

(

h0h1 +
∂h0

∂θ

∂h1

∂θ

)]

=
T0,0

ǫG
3/2
0,0

+h1

[

1

G
3/2
0,0

(

2h0 −
∂2h0

∂θ2

)

− 3h0T0,0

G
5/2
0,0

]

+
∂h1

∂θ

1

G
3/2
0,0

∂h0

∂θ

(

4− 3T0,0

G0,0

)

− h0

G
3/2
0,0

∂2h1

∂θ2
,

(8.24)
where

T0,0 = h2
0 + 2

(

∂h0

∂θ

)2

− h0
∂2h0

∂θ2
, G0,0 = h2

0 +

(

∂h0

∂θ

)2

.
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Now, using h0 in the second term of (8.23) and combining it with (8.24), we arrive at

κs =
T0,0

ǫG
3/2
0,0

− κ1

G
1/2
0,0

(

sin θ
∂h0

∂θ
+ h0 cos θ

)

+ h1

[

1

G
3/2
0,0

(

2h0 −
∂2h0

∂θ2

)

− 3h0T0,0

G
5/2
0,0

]

+
∂h1

∂θ

1

G
3/2
0,0

∂h0

∂θ

(

4− 3T0,0

G0,0

)

− h0

G
3/2
0,0

∂2h1

∂θ2
+O(ǫ).

In particular, if ∂h0/∂θ ≡ 0 and hence T0,0 = G0,0 = h2
0, for the first two terms one

has

κs =
1

ǫh0
− κ1 cos θ −

1

h2
0

h1 −
1

h2
0

∂2h1

∂θ2
. (8.25)

For a circular cross-section, i.e. ∂h1/∂θ ≡ 0, the mean curvature is lowest where the
normal n punctures the free surface and highest on the opposite side. This is what one
should expect given the signs of the principal curvatures at these two points.
Note that in the above derivation we scaled the curvature with L−1, so that when we

scale it with H−1 = (ǫL)−1 as in the body of the paper, the right-hand side of the above
results must be multiplied by ǫ.
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