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Abstract—The Capacitated Arc Routing Problem (CARP) 

is a challenging optimization problem with lots of 

applications in the real world. Numerous approaches have 

been proposed to tackle this problem. Most of these 

methods, albeit showing good performance on CARP 

instances of small and median sizes, do not scale well to 

large-scale CARPs, e.g., taking at least a few hours to 

achieve a satisfactory solution on a CARP instance with 

thousands of tasks. In this paper, an efficient and scalable 

approach is proposed for CARPs. The key idea of the 

proposed approach is to hierarchically decompose the tasks 

involved in a CARP instance into sub-groups and solve the 

induced sub-problems recursively. The output of the 

sub-problems at the lower layer in the hierarchy is treated 

as virtual tasks and new sub-problems are formulated 

based on these virtual tasks using clustering techniques. By 

this means, the number of tasks (or virtual tasks) decreases 

rapidly from the bottom to the top layers of the hierarchy, 

and the sizes of all sub-problems at each layer can be kept 

tractable even for very large-scale CARPs. Empirical 

studies are conducted on CARP instances with up to 3584 

tasks, which are an order of magnitude larger than the 

number of tasks involved in all CARP instances 

investigated in the literature. The results show that the 

proposed approach significantly outperforms existing 

methods in terms of scalability. Since the proposed 

hierarchical decomposition scheme is designed to obtain a 

good permutation of tasks in a CARP instance, it may also 

be generalized to other hard optimization problems that 

can be formulated as permutation-based optimization 

problems.  

 

Index Terms—Scalability, Hierarchical Decomposition, 

Capacitated Arc Routing Problem, Combinatorial 

Optimization, Clustering 

 

I. INTRODUCTION 

HE CAPACITATED Arc Routing Problem (CARP) [1] is a 

classical combinatorial optimization problem that seeks 

an optimal set of routes to cover a certain subset of edges and/or 
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arcs in a given network subject to some specific constraints, 

where each edge typically stands for a road in the real world [2, 

3]. For its wide range of practical applications, such as winter 

gritting [4], urban waste collection [5, 6] and snow removal [7, 

8], CARP has drawn considerable attentions in the past few 

decades and a large number of algorithms have been proposed 

[2, 7, 9-16]. However, previous investigations are mostly 

limited to relatively small scale CARPs. The largest CARP 

instance that has been used in the literature, the EGL-G 

benchmark set [17], consists of up to 375 edges and 375 tasks. 

In contrast, with the ever growing of big cities, a real-world 

CARP might involve much more roads and tasks. For example, 

the central area of Beijing, China, consists of more than 3000 

main roads. Hence, it is natural to ask whether existing 

approaches can still tackle such large-scale CARP instances 

satisfactorily.  

In spite of its importance, the scalability issue of CARP 

solvers has been rarely addressed in the literature. Prior to 2008, 

most algorithms for CARP were only tested on small and 

medium-scale CARP instances, e.g., the gdb [18], val [19], and 

Beullens‟ benchmark sets [14], for most of which the optimal 

solutions can be found by exact methods. The above-mentioned 

EGL-G instances were proposed in 2008 and widely used as an 

additional test set since then. Results obtained on these 

instances show that the performance of existing approaches 

clearly deteriorates with the increasing size of CARP instance, 

both in terms of solution quality (no optimal solution can be 

found for any EGL-G instance) and in terms of computational 

cost (less than 10 seconds for a small-scale val instance but 

about 30 minutes for an EGL-G instance) [2, 20, 21]. 

Motivated by the above observation, Mei et al. [22-24] 

proposed several approaches to tackle large-scale CARPs. 

These methods share a similar iterative search framework 

called Cooperative Co-evolution (CC) [25-28]. That is, a 

CARP instance is decomposed into a set of sub-problems 

through dividing its tasks into groups. The sub-problems are 

tackled separately. The obtained partial-solutions are combined 

into a complete solution to the original CARP instance and 

evaluated. The best-so-far complete solution is used to reset the 

decomposition in the next iteration. In these approaches, 

decomposition (i.e., grouping tasks) is conducted either 

randomly [22] or based on a predefined route distance matrix 

[23, 24], and different optimization techniques can be adopted 

to solve the sub-problems. These CC-based approaches, e.g., 

the Route Distance Grouping scheme with Memetic Algorithm 

with Extended Neighborhood Search (RDG-MAENS) [23], 

perform significantly better than previous approaches on 

EGL-G instances. Such advantages should mainly be credited 

to solving the problem in a divide-and-conquer manner. 

Nevertheless, these CC-based methods all decompose CARP in 
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a linear way. That is, to keep the sub-problems at a tractable 

size, the number of sub-problems needs to increase linearly 

with the number of tasks. In this case, the complexity of 

appropriate task groupings increases rapidly with the size of 

CARP. Consequently, it is more likely that inappropriate 

groupings of tasks will be obtained on large-scale CARPs and 

mis-guide the search. Although Shang et al. proposed to 

improve the CC-based RDG-MAENS [23] in [29], the 

improved RDG-MAENS was not tested on the existing largest 

CARP instances (i.e., the egl-large instances with up to 375 

tasks). Thus, the CC-based methods may still encounter 

scalability issues on large-scale CARPs. 

This paper aims to develop a novel approach that can scale 

well to large-scale CARPs. Specifically, we are interested in 

CARPs that are at least an order of magnitude larger than the 

existing benchmark instances, and aim to develop methods for 

achieving good solutions to such CARPs within acceptable 

time, e.g., less than half an hour. A Scalable Approach based on 

Hierarchical Decomposition (SAHiD) is proposed for this 

purpose. The key idea of SAHiD is to hierarchically (rather 

than linearly) decompose the tasks involved in a CARP 

instance into sub-groups. At the bottom layer of the hierarchy, 

tasks are decomposed into a few groups and a sub-problem is 

solved for each group. At each intermediate layer of the 

hierarchy, the output of the sub-problems at the lower layer is 

treated as virtual tasks and new sub-problems are formulated 

based on these virtual tasks rather than the original tasks. The 

final solution is obtained at the top layer of the hierarchy. With 

such a hierarchical structure, the number of tasks (or virtual 

tasks) exponentially decreases from the bottom to the top layers 

of the hierarchy. Thus, the number of task groups required at 

each layer, except for the bottom layer, is significantly less than 

that required for linear decomposition schemes. As a result, the 

complexity of grouping tasks can be better controlled and 

inappropriate groupings are less likely to be obtained.  

Furthermore, as will be shown by our empirical studies, a 

solution to large-scale CARPs can be obtained efficiently in 

such a hierarchical way, thus allowing repeating the process in 

an iterative manner to achieve better solution quality than 

existing methods in shorter runtime. 

The rest of this paper is organized as follows. First, the 

problem definition and notations of CARP are introduced in 

Section II. After that, the hierarchical decomposition scheme 

and detailed steps of SAHiD are described in Sections III and 

IV, respectively. Empirical studies are presented in Section V 

to assess the performance of SAHiD and compare it against 

state-of-the-art CARP solvers. Finally, Section VI concludes 

the paper and discusses directions for future research. 

II. PROBLEM DEFINITION AND NOTATIONS 

An undirected/directed CARP is defined on a connected and 

undirected/directed graph       , where    and    represent 

the sets of vertices and edges respectively. A cost        and 

a demand        are associated with each edge    . The 

edges with positive demands constitute the task set  , i.e., 

              . A vertex      is predefined as the 

depot, in which a fleet of vehicles are located. The aim of 

CARP is to determine a set of routes for the vehicles to serve all 

the tasks with minimal total costs, subject to the following 

constraints:  

1) Each route must start and end at the depot;  

2) Each task is served exactly once (but the corresponding edge 

can be traversed more than once);  

3) The total demand of tasks served in each route cannot exceed 

the vehicle capacity  . 

A solution of CARP can be represented by a sequence of 

vertices, which directly indicates the order of vertices for the 

vehicles to visit. However, given a sequence of the tasks, the 

minimum cost can be easily achieved by summing up the 

shortest paths between the vertices of each pair of consecutive 

tasks in the sequence in polynomial time [15]. Since the task 

representation is more compact, it is adopted in this work. That 

is a solution to CARP is represented by                , 

where m is the number of routes, the  th route    
             

 , and 0 stands for a dummy task that separates 

two routes. For each   ,      and    denote the  th task and the 

number of tasks served in route   , respectively. More 

formally, let       and       represent the endpoints of task  , 

and        the inverse direction of  , i.e.,   (      )        

and   (      )       , a CARP can be formulated as 

follows: 

minimize                                              (1) 

s.t.: 

 ∑   
 
         (2) 

                                 (3) 

                                      (4) 

 ∑  
  
   (    )              ;  (5) 

The objective function, i.e., Eq. (1), requires minimizing the 

total cost      : 

       ∑       
 
    (6) 

       is the total cost of route    and can be computed using 

Eq. (7) 

       

∑  (    )    (     (    ))  
  
   

∑   (                   )
  
               

       (7) 

where             stands for the deadheading cost induced 

by traversing the shortest path from vertices    to   .  

In constraints (3) and (4), the inequality                 

means that the two equalities       and       do not hold 

simultaneously. These two constraints prohibit that a task to be 

served more than once, either in the same route or different 

routes. Thus, constraints (2) to (4) ensure that all the tasks are 

served exactly once. Constraint (5) indicates that the total 

demand of each route should not exceed the vehicle capacity  . 

The challenge of CARP can be viewed from two 

perspectives. First, the optimal permutation of tasks 

corresponds to the optimal solution of CARP, and the latter can 
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be obtained from the former in polynomial time [15]. Second, if 

the optimal assignments of tasks to vehicles are available, the 

optimal solution of CARP can also be obtained by solving 

several independent single-vehicle problems that are 

considerably easier than CARP. This paper takes the first 

perspective, i.e., the proposed approach aims to identify a good 

permutation efficiently. 

III. HIERARCHICAL DECOMPOSITION OF CARP 

It can be observed that the scale of a CARP instance mainly 

depends on the number of tasks to be served. Furthermore, a 

CARP can be addressed in two steps, i.e., finding a permutation 

of the task set and dividing this permutation into feasible routes. 

The optimal permutation must correspond to an optimal 

feasible solution, and vice versa [15, 30]. More importantly, 

given a permutation of tasks, the corresponding best feasible 

solution can be acquired in polynomial time [15]. Therefore, 

the key challenge to CARP can be viewed as finding the 

optimal permutation of tasks. The proposed Hierarchical 

Decomposition (HD) scheme is essentially a method for 

finding a good permutation of tasks efficiently. To be concrete, 

HD introduces a number of virtual tasks to construct a 

hierarchical structure, as demonstrated in Fig. 1. In the figure, 

each node (in the  th layer) of the hierarchy corresponds to a 

virtual task   
 , which is a permutation of several tasks.      

represents the number of virtual tasks included in layer  . It will 

be discussed in detail in Section A. Each node at the bottom 

layer (i.e., layer 1) corresponds to a real task. The node at the 

top layer (i.e., layer  ) represents a permutation of all the tasks. 

The hierarchy is built in a bottom-up way. At the bottom layer 

(i.e., layer 1), tasks are grouped and ordered within each group. 

The permutation of tasks in each group is treated as a virtual 

task at layer 2. This procedure is executed on the obtained 

virtual tasks recursively until only 1 virtual task remains, which 

is a permutation of all the tasks. For example, suppose there are 

4 tasks    
    

    
    

   at layer 1, each 2 of them are connected 

to a node at layer 2, the virtual task corresponding to this node, 

denoted by   
  is a permutation of the 2 tasks, e.g.,   

  
   

    
   and   

     
    

  .   
  and   

  are then grouped and 

ordered, forming a virtual task at layer 3, e.g.,   
     

    
   

   
    

    
    

  . By this means, a permutation of the 4 tasks is 

obtained. 

From the above description, for a given CARP instance, the 

HD scheme starts from the bottom layer and recursively group 

tasks into virtual tasks of a larger size until only 1 virtual task 

remains. Each node at non-bottom layers requires solving a 

sub-problem to find the optimal permutation of the tasks 

(virtual tasks) assigned to that node, which is a partial-solution 

to the problem of finding optimal permutation of all tasks. 

Algorithm 1 demonstrates the general framework of the HD 

scheme. The benefits offered by such a hierarchy are two-folds. 

From the perspective of problem decomposition, a linear 

decomposition scheme (e.g., as adopted by the CC-based 

approaches) has to involve a large number of small-size 

sub-problems to cope with large-scale CARPs. Meanwhile, 

task grouping itself is a non-trivial problem, the complexity of 

which increases exponentially with the number of task groups 

(i.e., number of sub-problems). Hence, it is highly likely that an 

inappropriate grouping will be obtained on large-scale CARPs, 

or a significant computational cost is needed to identify a good 

grouping of tasks. In other words, the performance of linear 

decomposition will deteriorate rapidly with the problem-size of 

CARP. As a result, the solution quality may also deteriorate 

rapidly since the grouping of tasks significantly affects the 

search course. In contrast, the HD scheme allows the number of 

nodes (i.e., virtual tasks) to decrease exponentially from the 

bottom layer towards the top layer. Thus, the cost for 

identifying a suitable grouping of tasks increases slowly with 

the scale of CARP. Hence, the scalability (in terms of the 

quality of task grouping) of HD is expected to be better than 

that of a linear grouping, and can lead to a better grouping of 

tasks (and thereby solution quality) than linear decomposition, 

especially when the total time budget for solving a CARP is 

limited and task grouping needs to be done as fast as possible. 

From the perspective of search effectiveness, since a 

sub-problem (node) of an upper layer only takes the 

partial-solutions obtained at the lower layers as its input, but 

does not change the inner structure of the partial-solutions, the 

hierarchical structure naturally allows searching at different 

step-sizes by solving sub-problems at different layers and may 

lead to a more effective search. 

The HD strategy involves 2 design issues. That is, how to 

group virtual tasks (i.e., line 2-3 in Algorithm 1) and how to 

find the optimal permutation in a group of virtual tasks (i.e., 

line 4 in Algorithm 1). These will be detailed below.  

A. Grouping Virtual Tasks 

Intuitively, tasks close to each other are more likely to be 

served successively in solutions with high quality. Hence, a 

natural idea is to assign neighboring tasks to the same group. 

Thus the closeness between two virtual tasks needs to be 

defined in order to group the virtual tasks. An intuitive idea is to 

take the deadheading cost between two virtual tasks as the 

closeness. Since the deadheading cost is defined between two 

vertices rather than two virtual tasks (paths) and 4 different 

deadheading costs can be obtained by connecting different 

pairs of endpoints of two virtual tasks, the closeness between 

virtual task   
  and   

  is defined as the average deadheading 

cost between them: 

  (  
    

 )  
  (     )   (     )   (     )          

 
   (8) 

Fig. 1. The hierarchical structure of HD 

  
    

      
    

    
     

  

  
     

    
  

… … … 

  
  

… … … 

… 

… … 

layer 1 

layer 2 

layer   

… 
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where         and         denote the start and end vertices of 

  
  and   

 , respectively.    (     )  is the deadheading cost 

between vertices    and   . As a special case, the closeness 

between virtual task   
  and the depot    is  (     

 )  
                   

 
. 

Given the closeness measure of two virtual tasks, grouping 

virtual tasks can be formulated as a clustering problem. In 

principle, any clustering method can be applied for this purpose. 

We choose the well-known k-means algorithm [31] for its 

simplicity. The k-means algorithm requires calculating the 

centroid of each cluster. This can be easily done in a real-space 

but cannot be directly computed in case of clustering virtual 

tasks. Hence, in each iteration of k-means, the centroid of a 

cluster is defined as the virtual task with minimal average 

closeness to other virtual tasks in the same cluster. 

The number of clusters,  , is a user-defined parameter in 

k-means and has a great influence on the clustering results. In 

the HD scheme, since the clustering process is invoked at each 

layer and the number of virtual tasks varies over layers, a fixed 

value of   for all clustering processes is inappropriate. Note 

that each virtual task at layer   corresponds to a cluster obtained 

at layer    . Hence, let    denote the number of clusters 

obtained at layer  , we set it as an integer randomly generated 

within           , where         is a pre-defined 

parameter. For the bottom layer (i.e., layer 1),       . 
Another important issue related to the effectiveness of 

k-means is the selection of initial cluster centroids. The initial 

centroids can be selected randomly or by using specific 

methods [32-34]. Here we use a simple heuristic that disperse 

the centroids as widely as possible. Specifically, the heuristic 

works by adding non-centroid virtual tasks into the centroid set 

one by one such that the sum of the closeness between the 

newly added virtual task and existing ones in the set is maximal. 

It should be noted that the depot is regarded as a dummy virtual 

task and added to the centroid set at the beginning. 

B. Ordering virtual tasks 

At each node of the hierarchical structure, the permutation of 

a subset of tasks or virtual tasks needs to be optimized. Recall 

that the capacity constraints are not considered when solving 

these sub-problems, since the HD scheme aims to achieve the 

optimal permutation of all tasks regardless of capacity 

constraints. There exist lots of heuristic methods for finding 

such a permutation-based problem. Since a number of such 

sub-problems need to be solved for building the hierarchy, it is 

not worth adopting a time-consuming method. For this 

consideration, we employ a greedy search heuristic named Best 

Insertion Heuristic (BIH). BIH firstly chooses the nearest 

virtual task to the depot in terms of deadheading cost. Then, at 

each iteration, the virtual task with the minimal deadheading 

cost to the current endpoint of the path is added to the end of the 

path. If multiple virtual tasks satisfy this condition, only one is 

randomly chosen. The process terminates when all virtual tasks 

have been added to the path. 

C. Generating a solution to CARP based on hierarchical 

decomposition 

As mentioned before, the HD scheme seeks a good 

permutation of all tasks in CARP regardless of capacity 

constraint. Given a permutation of tasks, a solution (with 

respect to this permutation) to CARP can be obtained by 

splitting the permutation into a number of routes that satisfy 

capacity constraints. This can be done with well-established 

methods in polynomial time [15]. Herein we employ the 

well-known Ulusoy‟s splitting procedure [10], an exact method 

that has been proved to be capable of solving the problem 

optimally. Thus, the combination of the HD scheme and the 

Ulusoy‟s splitting procedure, namely HDU as demonstrated in 

Algorithm 2, forms our approach to CARPs. 

IV. THE SCALABLE APPROACH BASED ON HIERARCHICAL 

DECOMPOSITION 

The HDU described in the previous section obtains a solution 

to a CARP in a constructive way. It can also be embedded into 

an iterative search process, which allows the solution obtained 

using HDU to be further improved. The proposed SAHiD is 

developed following this idea. Briefly speaking, SAHiD is an 

individual-based iterative search method. At each iteration, it 

firstly employs HDU to obtain a solution to the CARP, and then 

some traditional local search operator is applied to further 

improve the solution obtained. Specifically, SAHiD involves 

three phases, i.e., initialization, reconstruction, and local search, 

as detailed below. 

Initialization: At the first iteration, an initial solution, say  , 

is obtained by applying HDU to the CARP instance. Then, the 

local search operator is applied to   for further improvement. 

Reconstruction: In the reconstruction phase, HDU is applied 

to generate new candidate solutions. But different from in the 

initialization phase, HDU is not applied to achieve a solution 

from scratch, i.e., based on the un-ordered set of tasks. Instead, 

the solution obtained in the last iteration, say  , is first 

Procedure HD     

Input: virtual task set    

Output: a permutation of tasks    

1: repeat 

2:   randomly choose the cluster number             ; 
3:   divide    into groups by using k-means; 
4:   order the virtual tasks within each group; 

5:       {permutation of tasks in each group}; 

6: until        

7: return the permutation of tasks in   ; 

 

 

 

 

 

Algorithm 1 The Hierarchical Decomposition HD     

Procedure HDU     

Input: virtual task set    

Output: a feasible solution  ; 

1: apply HD     to generate a permutation of tasks   ; 

2: apply Ulusoy‟s splitting procedure to partition    into a solution  ; 

3: return  ; 

 

 

Algorithm 2 The Hierarchical Decomposition and Ulusoy‟s splitting HDU     
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randomly split into a number of virtual tasks. Specifically, each 

route of   is split into two virtual tasks with a predefined 

probability  , resulting in a set of virtual tasks. Then, HDU is 

applied to this set to obtain a new solution. Since s is built based 

on the original set of tasks and polished with local search, it is 

expected to contain some useful pattern of a good solution. 

Splitting the routes does not change the permutation of tasks in 

the same virtual task, and thus are likely to keep the useful 

patterns. Hence, by applying HDU to the virtual tasks rather 

than the original tasks, the useful pattern in the previous 

solution can be exploited, and thus benefit the search for a 

better solution. 

Local search: When a solution is obtained by HDU, either in 

the initialization or reconstruction phase, a first improvement 

local search procedure is applied to further improve it. The 

local search starts with a reverse move operator similar to the 

2-opt operator [15] for a single route, i.e., it reverses the 

direction of a sub-route (i.e. part of a route). Suppose the 

reverse operator is applied to a route consisting of   tasks. At 

each iteration, all possible sub-routes are enumerated with the 

length of sub-route increasing from 1 to    . During this 

course, the current solution is updated once a solution with a 

lower cost is found. This procedure terminates when all 

sub-routes of each route is checked at least once, and the whole 

local search procedure terminates if the solution obtained by 

HDU is updated at least once.   

If the reverse operator fails to improve the solution obtained 

by HDU, the Merge-Split (MS) operator [16] is applied to 

conduct a best improvement search. That is, at each step, all 

solutions that can be reached by the MS operator from the 

current solution are examined and the best and improved one is 

chosen to replace the current solution. Compared to the reverse 

operator, MS is a search operator with a larger step-size, and 

thus is more likely to escape from the current solution, which is 

a local optimum. Interested readers are referred to [16] for 

detailed steps of MS. If the MS operator manages to find a 

better solution, the reverse operator will be applied to the 

improved solution again to exploit the new local region. 

Otherwise, the whole local search procedure terminates with 

the solution obtained by HDU remaining unchanged.  

The pseudo-code of the local search procedure is presented 

in Algorithm 3. Note that HDU always produces feasible 

solutions, the reverse operator only changes the order of tasks 

within a feasible route, and the MS operator also always 

generates feasible routes. Hence, no infeasible solution will be 

produced during the search process of SAHiD. For this reason, 

only the total costs are taken into account when comparing two 

solutions. 

Algorithm 4 depicts the steps of SAHiD. It is noteworthy that 

the best solution found so far is stored in an external archive 

(line 10-12) and outputted as the final solution. It might be 

inappropriate to keep the best solution in the search process of 

SAHiD if it cannot be improved for a long time. Otherwise, the 

search will be stuck at this local best solution. Hence, we adopt 

the Threshold Accepting idea [35] in SAHiD. Given a solution 

 , if no better solution is found after   consecutive iterations, a 

new solution worse than   will still be accepted (i.e., replace  ) 

as long as its quality is not worse than    of that of the 

best-found solution. Finally, the SAHiD can be terminated 

either when a predefined time budget is used up or no better 

solution is found for a predefined number of iterations. 

V. EXPERIMENTAL STUDIES 

To evaluate the effectiveness of SAHiD, two sets of 

empirical studies have been conducted to compare SAHiD 

against a number of state-of-the-art approaches to CARPs. In 

the first study, the performance of different algorithms is 

examined in terms of the time required to achieve a predefined 

solution quality. In the second study, the algorithms are 

compared from the perspective of solution quality obtained 

using a predefined time budget. In addition, further empirical 

analysis has also been conducted to assess the contribution of 

the HD scheme to SAHiD. 

Procedure LS    

Input: solution   

Output: potentially improved solution   

1: repeat 

2:    for each sub-routes    of each route   in   do  

3:        reverse    to obtain a new solution   ; 
4:        if    is better than   then 

5:                ; 
6:            break; 

7:        end if 
8:   end for 

9: until   remains unchanged 

10: if   is not updated then 

11:      apply MS operator to improve  ; 

12:      if   is updated then 

13:         repeat 

14:             for each sub-routes    of each route   in   do  

15:                 reverse    to obtain a new solution   ; 
16:                 if    is better than   then 

17:                        ; 
18:                    break; 

19:                 end if 
20:            end for 

21:        until   remains unchanged 

22:     end if 

23: end if 

24: return  ; 

 

 

 

Algorithm 3 The local search procedure LS    

Procedure SAHiD    

Input: task set   

Output: a feasible solution    

1: generate an initial solution   using HDU   ; 

2: apply LS    to improve  ; 

3:      
4: while stopping criteria are not met do 

5:     generate a virtual task set    by splitting the routes of  ; 

6:     generate a solution    using HDU    ; 

7:     apply LS     to improve   ; 
8:     if    is acceptable then 

9:              
10:         if    is better than    then 

11:                 
12:         end if 

13:    end if 

14: end while 

15: return   ; 

 

 

 

Algorithm 4 The pseudo code of SAHiD(T) 



 6 

A. Benchmark Set 

Since this work mainly studies the scalability of search 

methods, we are more interested in the performance on 

large-scale CARPs rather than small scale ones. Furthermore, 

as mentioned before, most of the existing small or median-scale 

CARP benchmark instances can be solved near optimally in a 

rather short time period (e.g., 10 seconds). Therefore, instead of 

using the more traditional benchmark sets, two new sets of 

CARP instances, namely Hefei and Beijing test sets
1
, are 

generated. The Hefei set is generated from the map of the Hefei 

city in China, which consists of 1212 main roads (i.e., edges). 

The Beijing set is generated from the central area (the area 

inside the 5
th

 ring road) of Beijing, China, which consists of 

3584 main roads. For each set, 10 instances are generated by 

randomly setting part of the edges as tasks. The number of tasks 

for each set increases from 10% to 100% of the number of 

edges with a step-size 10%. TABLE II shows the detailed 

information of these two benchmark sets. It can be observed 

that these two sets involves instances that are one order of 

magnitude larger than the largest CARP benchmark instances 

used in the literature, i.e., EGL-G, which consists of at most 

375 edges and 375 tasks. Furthermore, since the major 

challenge of CARP depends on the number of tasks rather than 

the number of edges, the Hefei and Beijing sets allow assessing 

 
1 Instances of the two test sets is available at 

http://staff.ustc.edu.cn/~ketang/codes/LSCARPset.zip 

the scalability of an algorithm in this regard. It should also be 

noted that the performance of an algorithm on a CARP is also 

affected by the capacity constraints. Thus the same capacity 

constraints are set to all instances in the same set, so as to focus 

our investigation on scalability.   is the minimal number of 

vehicles required to serve all the tasks, which is obtained as 

follows: 

   ⌈
        

 
⌉ (9) 

B. Compared algorithms 

Three algorithms, including Variable Neighborhood Search 

(VNS) [7], Tabu Search Algorithm 1 (TSA1) [17] and 

RDG-MAENS [23], are chosen for our comparative studies. 

VNS and TSA1 are both individual-based search approaches 

for CARPs. They have shown appealing performance not only 

in terms of solution quality, but also (and more importantly in 

the context of this work) in terms of efficiency. RDG-MAENS 

is an approach dedicated to large-scale CARPs and has been 

shown to outperform other population-based search methods, 

e.g., MAENS [16], on large-scale CARP instances. Thus, it was 

chosen as the state-of-the-art representative population-based 

search methods for CARPs.  

C. Experimental Protocol 

To make a fair comparison, all algorithms involved in the 

empirical studies are implemented in C++ and run on the same 

computing platform, i.e., Intel® Core™ i7-4790 processor with 

3.6 GHz. For all experiments presented hereafter, the results are 

obtained by executing the algorithms for 25 independent runs. 

Each of the tested algorithms consists of a few parameters to be 

predefined.  

SAHiD has 5 user-defined parameters, i.e., the scale 

parameter   in HD; the probability   of partitioning a route in 

the reconstruction phase; parameter   introduced by the MS 

operator [16] and   and   introduced by threshold accepting 

strategy [35, 36]. Since the last three parameters are proposed 

in previous works for local search, but are not introduced by the 

HD decomposition scheme, the values suggested in the original 

publications are directly adopted. For the parameters   and  , a 

sensitivity analysis is carried out to test the performance of 

SAHiD as well as choosing parameter values for more 

comprehensive empirical studies. Specifically, five values (0.1, 

0.3, 0.5, 0.7 and 0.9) were tested for both parameters, which led 

to 25 combinations of parameters values. The sensitivity 

analysis is conducted on four typical instances, including Hefei 

1, Hefei 10, Beijing 1 and Beijing10. For each instance, SAHiD 

is executed for 10 times with each of the 25 parameter 

combinations (i.e., 250 runs in total). Fig. 2 depicts the heat 

maps of the average results (over 10 runs) obtained by SAHiD 

with different values of   and  . It can be observed that   is 

more critical to performance on larger instances (Hefei 10 and 

Beijing 10), while   mainly affects the performance of SAHiD 

on smaller instances. The reason is that, HD is the core of 

SAHiD, the tree size obtained by HD has a great influence on 

the algorithm performance. Both   and   affect the size of tree, 

  determines the number of leaf nodes and   controls the upper 

bound of number of intermediate nodes. As described in 

TABLE II 

THE INFORMATION OF INSTANCES IN Hefei AND Beijing TEST SET 

Name |V|         Proportion of tasks     

Hefei-1 850 1212 121 10% 9000 7 

Hefei-2 850 1212 242 20% 9000 14 

Hefei-3 850 1212 364 30% 9000 19 

Hefei-4 850 1212 485 40% 9000 28 

Hefei-5 850 1212 606 50% 9000 35 
Hefei-6 850 1212 727 60% 9000 42 

Hefei-7 850 1212 848 70% 9000 49 

Hefei-8 850 1212 970 80% 9000 56 
Hefei-9 850 1212 1091 90% 9000 63 

Hefei-10 850 1212 1212 100% 9000 69 

       
Beijing-1 2820 3584 358 10% 25000 7 

Beijing-2 2820 3584 717 20% 25000 11 

Beijing-3 2820 3584 1075 30% 25000 18 
Beijing-4 2820 3584 1433 40% 25000 23 

Beijing-5 2820 3584 1792 50% 25000 30 

Beijing-6 2820 3584 2151 60% 25000 36 
Beijing-7 2820 3584 2509 70% 25000 41 

Beijing-8 2820 3584 2868 80% 25000 47 

Beijing-9 2820 3584 3226 90% 25000 52 
Beijing-10 2820 3584 3584 100% 25000 58 

 

TABLE I  
THE PARAMETER SETTINGS OF HCOLS 

Name Description Value 

  Scale parameter in HD (Sub-Section III.A) 0.1 

  Probability of partitioning a route (Section IV) 0.1 

  Parameter of the MS operator (Section IV) 2 

  Parameter of Threshold accepting (Section IV) 110% 

  
Maximum number of idle iterations for accepting 

an ascending move (Section IV) 
10000 
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Section III.A, the number of nodes in layer   is within 

          , where      is the number of nodes in layer    . 

Hence, the number of intermediate nodes is not only affected by 

  but also determined by the number of bottom nodes (leaf 

nodes), which means   plays a more important role than   

when the problem size is large. On the smaller instances (Hefei 

1 and Beijing 1), the number of routes is relatively small. Thus, 

a larger   is needed to ensure a sufficient number of leaf nodes 

(virtual tasks), if there are very few leaf nodes, the role of the 

hierarchy will be greatly reduced. For the larger instances (i.e., 

Hefei 10 and Beijing 10), on the other hand, a small value of   

already led to splitting a large number of routes. In fact, 

TABLE I indicates that the routes (i.e.，the number of vehicles, 

 ) in a solution to Hefei 10 is about 10 times larger than that in 

a solution to Hefei 1. Thus, setting   to 0.9 and 0.1 for Hefei 1 

and Hefei 10 actually resulted in comparable number of routes 

being split. Hence, as a rule of thumb,   is suggested to take the 

value that will lead to the split of around 7 routes in the 

reconstruction phase. Since   does not appear to affect SAHiD 

as much as  , 0.1 can be used as the default value. The results 

reported in this paper were all obtained with       and 

     . 

 TABLE I summarizes the parameter settings for SAHiD. 

For the compared VNS [7], TSA1 [17] and RDG-MAENS [23], 

the best parameter settings reported in the original publications 

are employed. By this means, we hope to keep the comparison 

as fair as possible.  

D. Comparison in terms of runtime 

Runtime is one of the most important issues when 

investigating the scalability of an algorithm. Ideally, the 

runtime for an algorithm to achieve the optimal solution or a 

solution within a given approximation ratio should be tested. 

However, such an analysis cannot be done for large-scale 

CARP instances used in this work, because the optimal solution 

and the lower bound on the total cost are unknown for the 

instances. Hence, we resort to a threshold of total costs as the 

target for the compared algorithms. Specifically, for the Hefei 

and Beijing sets, SAHiD is firstly run for 25 times. A time 

budget of 30 seconds is given for each run on each instance of 

Hefei and Beijing sets. For each instance, the total costs of the 

25 final solutions are recorded. The largest one among these 25 

 

 
Fig. 2. Heat map of average total cost obtained by SAHiD with different values of    and   on instances Hefei-1,Hefei-10,Beijing-1 and Beijing-10. Blue 

indicates better results and red stands for worse results. 
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values indicates the worst performance of SAHiD in the 25 runs. 

Thus, it is used as the target for other compared algorithms. The 

runtime for each of the other algorithms to achieve the same 

solution quality for the first time is recorded. Since no matter 

how the target solution quality is chosen, it is possible that an 

algorithm may not reach this target or takes extremely long 

time to reach it, the compared algorithms are terminated if a 

larger time budget of 30 minutes is used up.  

Fig. 3 depicts the average runtime for the compared  

algorithms on the Hefei and Beijing sets. Each point in the 

figure corresponds to the runtime of an algorithm on an 

instance. Note that, since the worst total costs obtained by 

SAHiD are used as the target, the average runtime required by 

SAHiD on each instance is always not greater than 30 seconds 

for Hefei and Beijing sets. From the figure, it can be observed 

that VNS, TSA1 and RDG-MAENS all consume much more 

runtime than SAHiD. In fact, some even fail to reach the target 

solution quality in 30 minutes for some large-scale instances. 

For example, RDG-MAENS fails in all 25 runs on all the 

Beijing instances except for Beijing-1, on which the average 

runtime consumed is still close to the given time budget. TSA1 

also reaches the given time budget on 2 out of the 20 instances, 

and always takes more than 500 seconds to reach the target 

solution quality. VNS appears to be more efficient than 

RDG-MAENS and TSA1, but the runtime consumed by it show 

a growth trend with respect to the problem size and thus its 

scalability is not as good as SAHiD. These observations clearly 

demonstrate the superiority of SAHiD to the compared 

algorithms.  

E. Comparison in terms of solution quality 

In addition to runtime, another important characteristic of an 

algorithm is the solution quality that can be achieved with a 

given time budget. This is evaluated by our second experiment. 

Specifically, each algorithm is given 30 minutes to search for 

the solution to a CARP instance in Hefei and Beijing 

benchmark sets. Further, since the EGL-G benchmark set [17] 

has been used to evaluate TSA1 and RDG-MAENS in the 

original publications, this set of instances is also employed in 

the experiment. The time budget is set to 15 minutes as the 

scale of EGL-G is much smaller than Hefei and Beijing sets.   

TABLEs III to V present the costs of the final solutions 

obtained by the compared algorithms on the three test sets. The 

first 5 columns present the basic information of instances. For 

each compared algorithm, the columns headed “Best” and 

“Average” provide the best and average costs among the 25 

runs, respectively. The last column headed “Std” present the 

standard deviations calculated over the 25 runs. The minimal 

average results are marked with “*”. On each instance, SAHiD 

is compared to RDG-MAENS, VNS and TSA1 by using 

Wilcoxon rank-sum test with the level of significance 0.05 over 

25 runs, results highlighted in bold/underline indicate that the 

corresponding algorithm is significantly better/worse than 

SAHiD on the corresponding instance. Results without any 

symbol indicate that the difference between SAHiD and the 

corresponding algorithm is statistically insignificant. 

From TABLEs III and IV, it can be observed that SAHiD 

significantly outperforms the other algorithms in terms of 

solution quality. It achieves the smallest total costs on 7 out of 

10 instances in Hefei and 9 out of 10 instances in Beijing. 

Statistical tests also confirmed that the significant difference 

between SAHiD and the other algorithms. The results in 

TABLE V are more mixed. To be specific, SAHiD is not as 

competitive as RDG-MAENS on the 10 EGL-G instances. In 

comparison to TSA1, SAHiD performs better on 6 instances, 

i.e., EGL-G1-D, EGL-G1-E, EGL-G2-B, EGL-G2-C, 

EGL-G2-D and EGL-G2-E, while is inferior on the other 4 

instances. SAHiD still outperforms VNS on all 10 instances. 

The inferior performance of SAHiD to RDG-MAENS on the 

EGL-G set is understandable, because the former is designed 

with the aim to tackle large-scale CARPs. As the size of EGL-G 

is relatively small, a more costly but more precise search 

method like RDG-MAENS should be able to find a better 

solution while the computational time is still acceptable. In 

addition, unlike the Hefei and Beijing sets, different EGL-G 

instances are subject to different capacity constraints. Thus, 

 
 

 
Fig. 3. Average computational time (to achieve a predefined solution quality) versus the number of tasks over all the instances of Hefei and Beijing sets for each 

compared algorithm. 
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another interesting observation from TABLE V is that SAHiD 

outperforms TSA1 mainly in the cases where the capacity 

constraints are tighter. A possible reason might be that SAHiD 

always visits feasible solutions during the search, while TSA1 

may generate infeasible solutions and thus only part of the time 

budget is used for searching in the feasible region.  

Furthermore, the performance of the algorithm is also tested 

using different time budgets less than the above given time 

budgets. The average costs obtained over 25 runs are plotted in 

Fig. 4. For the sake of brevity, only the results on 2 instances 

are provided for each benchmark set. The results on other 

instances follow a similar pattern and are made available in the 

online appendix
2
. The figure further confirms the superiority of 

SAHiD on large scale instances. For instance, the curve for 

SAHiD is always beneath the curves of the other algorithms on 

Hefei-10 and Beijing-10, indicating that SAHiD can always 

 
2 Available at http://staff.ustc.edu.cn/~ketang/codes/SAHiDresults.pdf 

perform the best among the 4 algorithms if a solution is needed 

with a tighter time budget on a large scale instance. As for the 

EGL-G instances, it can be found that curves of SAHiD drop 

rapidly with time, but level off later. RDG-MAENS improves 

the solution slower than SAHiD at the beginning, but continues 

to improve it. This observation is consistent with the 

expectation that RDG-MAENS is a more costly but more 

precise method, which might achieve better solutions than 

SAHiD if the problem size is moderate in comparison to the 

time budget.  

F. Analysis of the contribution of HD to SAHiD 

Since the core component of SAHiD is the HD scheme. It is 

also interesting to investigate whether the HD scheme is 

indispensable for SAHiD. For this purpose, another algorithm 

namely SArandom is developed. The only difference between 

SAHiD and SArandom is that the latter does not use the HD 

scheme in the reconstruction phase (line 6 in Algorithm 4). 

TABLE III  
RESULTS ON Hefei BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND AVERAGE RESULTS 

OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH “*”. FOR EACH 

INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM 

TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF „W-D-L‟” SUMMARIZES THE NUMBER OF „WIN-DRAW-LOSE‟ OF SAHID VERSUS THE OTHER ALGORITHMS. 

Name |V|           
SAHiD RDG-MAENS VNS TSA1 

 Best Average Std  Best Average Std  Best Average Std  Best Average Std  

Hefei-1 850 1212 121 9000  248048 251024 1820  246221 247341* 2293  245596 247819 2745  250155 252615 1591  

Hefei-2 850 1212 242 9000  441574 445376 2476  436020 441539* 4142  436637 449979 5375  447853 456228 5539  

Hefei-3 850 1212 364 9000  586880 590969 2305  583050 589152* 2697  588682 595263 3108  623795 637201 8003  

Hefei-4 850 1212 485 9000  754015 759402* 2495  754855 761351 4362  763256 774323 6394  774182 791790 5481  

Hefei-5 850 1212 606 9000  964772 976276* 4742  980153 991813 5755  984121 994794 6109  1019224 1042701 11496  

Hefei-6 850 1212 727 9000  1095530 1106735* 5318  1119584 1132063 8966  1110030 1128667 9404  1134041 1162641 13806  

Hefei-7 850 1212 848 9000  1299430 1309474* 4792  1329745 1361125 14356  1322290 1337353 6745  1339160 1353502 6235  

Hefei-8 850 1212 970 9000  1474390 1483694* 4857  1526453 1550509 13695  1492790 1517151 12477  1521857 1537169 6709  

Hefei-9 850 1212 1091 9000  1648840 1659700* 6103  1705381 1749079 18872  1675790 1694957 10164  1696706 1716256 9236  

Hefei-10 850 1212 1212 9000  1793890 1808860* 7836  1837767 1923264 31697  1834860 1852622 10183  1873504 1901167 12679  

# of 

“w-d-l” 
   

 
     6-1-3  9-0-1  10-0-0  

 

TABLE IV  

RESULTS ON Beijing BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND AVERAGE RESULTS 

OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH “*”. FOR EACH 

INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM 

TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF „W-D-L‟” SUMMARIZES THE NUMBER OF „WIN-DRAW-LOSE‟ OF SAHID VERSUS THE OTHER ALGORITHMS. 

Name |V|           
SAHiD RDG-MAENS VNS TSA1 

 Best Average Std  Best Average Std  Best Average Std  Best Average Std  

Beijing-1 2820 3584 358 25000  775523 784727 5591  812647 829406 12688  774502 782415* 4452  813907 829132 6340  

Beijing-2 2820 3584 717 25000  1167480 1183955* 8431  1303570 1337954 18939  1168190 1192292 10196  1353567 1401363 25378  

Beijing-3 2820 3584 1075 25000  1586180 1605846* 9231  1777852 1847922 33258  1591540 1618484 11888  1678224 1709279 14801  

Beijing-4 2820 3584 1434 25000  1910880 1936994* 11694  2126151 2193399 34159  1920330 1953892 16746  2053938 2070885 14532  

Beijing-5 2820 3584 1792 25000  2273080 2298630* 16879  2581910 2639458 32481  2293120 2335915 23040  2396483 2440319 26726  

Beijing-6 2820 3584 2151 25000  2664510 2707500* 18433  2968102 3047295 41112  2705060 2743677 18024  2774161 2814735 22018  

Beijing-7 2820 3584 2509 25000  3013590 3038157* 15658  3331900 3388263 26081  3015790 3063813 25226  3147294 3186240 22426  

Beijing-8 2820 3584 2868 25000  3283530 3313590* 21925  3584696 3697025 44951  3323850 3366215 24686  3415275 3456037 22381  

Beijing-9 2820 3584 3226 25000  3621490 3684250* 32404  3934270 4061793 49504  3653630 3723830 45148  3890129 3943883 37089  

Beijing-10 2820 3584 3584 25000  3935540 4004310* 29488  4206005 4353966 51063  4002040 4040694 27384  4066188 4103532 15501  

# of 
“w-d-l” 

   
 

     10-0-0  9-1-0  10-0-0  
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Instead, SArandom randomly merges virtual tasks into 

permutations. As in Sub-Section V.E, SArandom is applied to 

the three benchmark sets and the results are summarized in 

TABLE VI. The relative percentage of deviation (RPD) is 

given in the last column for each instance. RPD is the ratio of 

the difference between the average costs obtained by SAHiD 

and SArandom to the average costs obtained by SArandom. It 

measures the improvement that can be achieved by replacing 

TABLE V  

RESULTS ON EGL-G BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND AVERAGE RESULTS 

OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH “*”. FOR EACH 

INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM 

TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF „W-D-L‟” SUMMARIZES THE NUMBER OF „WIN-DRAW-LOSE‟ OF SAHID VERSUS THE OTHER ALGORITHMS. 

Name |V|           
SAHiD RDG-MAENS VNS TSA1 

 Best Average Std  Best Average Std  Best Average Std  Best Average Std  

EGL-G1-A 255 375 347 28600  1017030 1033874 6588  1002347 1014177* 5898  1048220 1061032 8238  1017089 1034531 9933  

EGL-G1-B 255 375 347 22800  1139860 1155899 7812  1124610 1133625* 5960  1160620 1191821 13372  1130096 1145438 10493  

EGL-G1-C 255 375 347 19000  1270110 1281702 7131  1252061 1261541* 6933  1303100 1324484 12496  1263835 1287478 12070  

EGL-G1-D 255 375 347 16200  1397490 1422693 7387  1386044 1397790* 6851  1430320 1465704 15134  1411361 1433744 14015  

EGL-G1-E 255 375 347 14100  1549540 1565029 6856  1527473 1542491* 9543  1575240 1614683 12059  1563234 1597127 16095  

EGL-G2-A 255 375 375 28000  1128040 1141925 8592  1108242 1122013* 7280  1142490 1166879 14840  1119328 1130786 9423  

EGL-G2-B 255 375 375 23100  1238740 1253578 7236  1221077 1233611* 6088  1279280 1293706 8402  1242060 1258284 7418  

EGL-G2-C 255 375 375 19400  1374000 1386629 7823  1355956 1369175* 7305  1411810 1439277 13400  1378920 1398971 14892  

EGL-G2-D 255 375 375 16700  1505570 1529137 9698  1485341 1506033* 8679  1563960 1587437 14493  1522390 1555457 15661  

EGL-G2-E 255 375 375 14700  1656860 1673222 7754  1637063 1649882* 7608  1694730 1724093 13871  1672677 1704553 21171  

# of „w-d-l‟          0-0-10  10-0-0  6-2-2  

 

TABLE VI  
RESULTS OF SAHID AND SArandom ON ALL TEST SETS IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND 

AVERAGE RESULTS OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. FOR EACH INSTANCE, BOLD (UNDERLINED) 

RESULTS INDICATE THAT SArandom IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. 

Name 
 SAHiD  SArandom-  

RPD(%) 
 Best Average Std  Best Average Std  

EGL-G1-A  1017030 1033874 6588  1038660 1051855 6843  1.74 

EGL-G1-B  1139860 1155899 7812  1159420 1182700 10447  2.32 
EGL-G1-C  1270110 1281702 7131  1298250 1312731 7861  2.42 

EGL-G1-D  1397490 1422693 7387  1444100 1461256 7968  2.71 

EGL-G1-E  1549540 1565029 6856  1594180 1613778 7966  3.11 
EGL-G2-A  1128040 1141925 8592  1145130 1163482 10036  1.89 

EGL-G2-B  1238740 1253578 7236  1263190 1282771 7966  2.33 

EGL-G2-C  1374000 1386629 7823  1414250 1433035 9519  3.35 
EGL-G2-D  1505570 1529137 9698  1562830 1577365 9240  3.15 

EGL-G2-E  1656860 1673222 7754  1715300 1730814 8614  3.44 

          2.65(mean) 
           

Hefei-1  248048 251024 1820  246265 247401 776  -1.44 

Hefei-2  441574 445376 2476  439437 445329 3580  -0.01 
Hefei-3  586880 590969 2305  589521 598517 3321  1.28 

Hefei-4  754015 759402 2495  778721 786735 4942  3.6 

Hefei-5  964772 976276 4742  1005620 1024557 8398  4.95 
Hefei-6  1095530 1106735 5318  1161690 1179338 8389  6.56 

Hefei-7  1299430 1309474 4792  1376010 1399276 14850  6.86 

Hefei-8  1474390 1483694 4857  1578120 1603242 11507  8.06 
Hefei-9  1648840 1659700 6103  1777520 1808153 12278  8.94 

Hefei-10  1793890 1808860 7836  1953270 1986672 17833  9.83 

          4.86(mean) 
           

Beijing-1  776379 784891 6223  767512 777961 5902  -0.86 

Beijing-2  1180010 1188836 6589  1170610 1182402 7381  -0.13 
Beijing-3  1593720 1610383 8198  1632690 1658375 16942  3.27 

Beijing-4  1927850 1943053 9055  1985840 2036163 28357  5.12 

Beijing-5  2273080 2298630 16879  2439860 2504124 38455  8.94 
Beijing-6  2664510 2707500 18433  2885540 3004417 86641  10.97 

Beijing-7  3013590 3038157 15658  3281750 3382513 77413  11.33 

Beijing-8  3283530 3313590 21925  3564160 3728470 103502  12.52 
Beijing-9  3621490 3684250 32404  3972310 4162260 128888  12.97 

Beijing-10  3935540 4004310 29488  4292190 4515296 114710  12.76 

          7.69(mean) 
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the random permutation scheme with the HD scheme, i.e., a 

larger RPD indicates a more significant influence of HD on 

SAHiD.   

TABLE VI shows that SAHiD outperforms SArandom on 28 

out of 30 test instances and the gap between them shows a 

growing trend with respect to the problem size (e.g., the 

average RPD on EGL-G, Hefei and Beijing are 2.65%, 4.86% 

and 7.69%, respectively). Moreover, comparing TABLE VI to 

Tables III and IV reveals that the results of SArandom are 

significantly worse than those of RDG-MAENS, VNS and 

TSA1. Specifically, SArandom achieves worse performance 

than TSA1 on 11 out of 20 instances in Hefei and Beijing sets 

(the largest 5 of Hefei instances and 6 of Beijing instances). 

When compared to RDG-MAENS, SArandom performs worse 

 

 

 

Fig. 4. The convergence curves of SAHID, RDG-MAENS, VNS and TSA1 on instances EGL-G1-A, EGL-G2-E, Hefei-1,Hefei-10,Beijing-1 and Beijing-10. 
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on all the Hefei instances and the largest 3 Beijing instances (i.e., 

Beijing-8, Beijing-9 and Beijing-10). The gap between 

SArandom and VNS is more obvious, VNS beats SArandom on 

16 out of 20 instances in Hefei and Beijing sets (8 of Hefei and 8 

of Beijing). This fact confirms that the advantages of SAHiD 

over the other compared algorithms should be credited to the 

HD scheme.  

VI. CONCLUSION AND FUTURE WORK 

This paper presents a novel approach, namely SAHiD, to 

CARPs. SAHiD distinguishes from previous methods in the 

sense that it employs a hierarchical decomposition scheme, 

which is capable of generating a good permutation of tasks, i.e., 

an intermediate solution to the CARP, in a very efficient way. 

By employing the proposed hierarchical decomposition scheme 

in an iterative search process, SAHiD can tackle CARP 

instances of large scales. Empirical studies on two new CARP 

benchmark sets that are one order of magnitude larger than the 

existing ones show that SAHiD significantly outperforms 

state-of-the-art methods in terms of both computational time 

and solution quality (given a time budget less than 30 minutes). 

Hence, SAHiD can better scale up to large-scale CARPs than 

the compared methods, particularly in cases when a solution 

needs to be obtained in a few minutes or even seconds.  

The promising performance of SAHiD has pointed to several 

future research directions. First, in addition to the HD scheme, 

the other components of SAHiD, e.g., the methods of grouping 

and ordering virtual tasks in HD and the local search procedure, 

can be improved using alternative techniques in the literature. 

Since instances generated from real-world maps may not 

represent all instances that could be synthesized using the 

mathematical formulation of CARP. The specific clustering 

method used in HD might fail in some of the latter cases. Hence, 

the interactions between them and the decomposition scheme 

can be further investigated, so as to develop novel components 

that suit SAHiD better. Second, the experimental results reveal 

that the capacity constraints may also affect the scalability of an 

algorithm on CARPs. Although this observation seems to be 

obvious, it has never been systematically studied and it is 

unclear how the scalability of CARP solvers can be enhanced in 

this aspect. Finally, the hierarchical decomposition scheme 

proposed in this work is in essence a method for efficiently 

obtaining good permutations of tasks. It can be generalized to 

other permutation-based optimization problems, e.g., vehicle 

routing [37, 38], scheduling [39-41] and path planning [42, 43], 

as long as a suitable closeness measure could be designed. Note 

that, in practice, some of these problems may need to be solved 

either in real-time [44, 45] or in dynamic environments [46], 

which means efficiency is even more important for these 

problems than for CARP. The idea of hierarchical 

decomposition is expected to benefit the development of 

scalable approaches in those domains.  
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