

University of Birmingham

A Scalable Approach to Capacitated Arc Routing
Problems Based on Hierarchical Decomposition
Tang, Ke; Wang, Juan; Li, Xiaodong; Yao, Xin

DOI:
10.1109/TCYB.2016.2590558

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Tang, K, Wang, J, Li, X & Yao, X 2016, 'A Scalable Approach to Capacitated Arc Routing Problems Based on
Hierarchical Decomposition', IEEE Transactions on Cybernetics, vol. PP, no. 99, pp. 1-13.
https://doi.org/10.1109/TCYB.2016.2590558

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2016 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. Apr. 2024

https://doi.org/10.1109/TCYB.2016.2590558
https://doi.org/10.1109/TCYB.2016.2590558
https://birmingham.elsevierpure.com/en/publications/2b96df7d-4599-44a2-ac67-4c86219e4c5e

 1

Abstract—The Capacitated Arc Routing Problem (CARP)

is a challenging optimization problem with lots of

applications in the real world. Numerous approaches have

been proposed to tackle this problem. Most of these

methods, albeit showing good performance on CARP

instances of small and median sizes, do not scale well to

large-scale CARPs, e.g., taking at least a few hours to

achieve a satisfactory solution on a CARP instance with

thousands of tasks. In this paper, an efficient and scalable

approach is proposed for CARPs. The key idea of the

proposed approach is to hierarchically decompose the tasks

involved in a CARP instance into sub-groups and solve the

induced sub-problems recursively. The output of the

sub-problems at the lower layer in the hierarchy is treated

as virtual tasks and new sub-problems are formulated

based on these virtual tasks using clustering techniques. By

this means, the number of tasks (or virtual tasks) decreases

rapidly from the bottom to the top layers of the hierarchy,

and the sizes of all sub-problems at each layer can be kept

tractable even for very large-scale CARPs. Empirical

studies are conducted on CARP instances with up to 3584

tasks, which are an order of magnitude larger than the

number of tasks involved in all CARP instances

investigated in the literature. The results show that the

proposed approach significantly outperforms existing

methods in terms of scalability. Since the proposed

hierarchical decomposition scheme is designed to obtain a

good permutation of tasks in a CARP instance, it may also

be generalized to other hard optimization problems that

can be formulated as permutation-based optimization

problems.

Index Terms—Scalability, Hierarchical Decomposition,

Capacitated Arc Routing Problem, Combinatorial

Optimization, Clustering

I. INTRODUCTION

HE CAPACITATED Arc Routing Problem (CARP) [1] is a

classical combinatorial optimization problem that seeks

an optimal set of routes to cover a certain subset of edges and/or

 K. Tang and J. Wang are with the USTC-Birmingham Joint Research

Institute in Intelligent Computation and Its Applications, School of Computer

Science and Technology, University of Science and Technology of China,

Hefei, Anhui, China (e-mail: ketang@ustc.edu.cn; jingze@mail.ustc.edu.cn).

X. Li is with the Evolutionary Computation and Machine Learning Research
Group, School of Computer Science and Information Technology, RMIT

University, Melbourne VIC 3000, Australia (e-mail: xiaodong.li@rmit.edu.au).

X. Yao is with the Center of Excellence for Research in Computational
Intelligence and Applications, School of Computer Science, University of

Birmingham, Birmingham B15 2TT, U.K. (email: x.yao@cs.bham.ac.uk).

arcs in a given network subject to some specific constraints,

where each edge typically stands for a road in the real world [2,

3]. For its wide range of practical applications, such as winter

gritting [4], urban waste collection [5, 6] and snow removal [7,

8], CARP has drawn considerable attentions in the past few

decades and a large number of algorithms have been proposed

[2, 7, 9-16]. However, previous investigations are mostly

limited to relatively small scale CARPs. The largest CARP

instance that has been used in the literature, the EGL-G

benchmark set [17], consists of up to 375 edges and 375 tasks.

In contrast, with the ever growing of big cities, a real-world

CARP might involve much more roads and tasks. For example,

the central area of Beijing, China, consists of more than 3000

main roads. Hence, it is natural to ask whether existing

approaches can still tackle such large-scale CARP instances

satisfactorily.

In spite of its importance, the scalability issue of CARP

solvers has been rarely addressed in the literature. Prior to 2008,

most algorithms for CARP were only tested on small and

medium-scale CARP instances, e.g., the gdb [18], val [19], and

Beullens‟ benchmark sets [14], for most of which the optimal

solutions can be found by exact methods. The above-mentioned

EGL-G instances were proposed in 2008 and widely used as an

additional test set since then. Results obtained on these

instances show that the performance of existing approaches

clearly deteriorates with the increasing size of CARP instance,

both in terms of solution quality (no optimal solution can be

found for any EGL-G instance) and in terms of computational

cost (less than 10 seconds for a small-scale val instance but

about 30 minutes for an EGL-G instance) [2, 20, 21].

Motivated by the above observation, Mei et al. [22-24]

proposed several approaches to tackle large-scale CARPs.

These methods share a similar iterative search framework

called Cooperative Co-evolution (CC) [25-28]. That is, a

CARP instance is decomposed into a set of sub-problems

through dividing its tasks into groups. The sub-problems are

tackled separately. The obtained partial-solutions are combined

into a complete solution to the original CARP instance and

evaluated. The best-so-far complete solution is used to reset the

decomposition in the next iteration. In these approaches,

decomposition (i.e., grouping tasks) is conducted either

randomly [22] or based on a predefined route distance matrix

[23, 24], and different optimization techniques can be adopted

to solve the sub-problems. These CC-based approaches, e.g.,

the Route Distance Grouping scheme with Memetic Algorithm

with Extended Neighborhood Search (RDG-MAENS) [23],

perform significantly better than previous approaches on

EGL-G instances. Such advantages should mainly be credited

to solving the problem in a divide-and-conquer manner.

Nevertheless, these CC-based methods all decompose CARP in

Ke Tang, Senior Member, IEEE, Juan Wang, Xiaodong Li, Senior Member, IEEE, and Xin Yao, Fellow, IEEE

T

A Scalable Approach to Capacitated Arc Routing

Problems based on Hierarchical Decomposition

mailto:ketang@ustc.edu.cn
mailto:jingze@mail.ustc.edu.cn
mailto:xiaodong.li@rmit.edu.au
mailto:%20x.yao@cs.bham.ac.uk

 2

a linear way. That is, to keep the sub-problems at a tractable

size, the number of sub-problems needs to increase linearly

with the number of tasks. In this case, the complexity of

appropriate task groupings increases rapidly with the size of

CARP. Consequently, it is more likely that inappropriate

groupings of tasks will be obtained on large-scale CARPs and

mis-guide the search. Although Shang et al. proposed to

improve the CC-based RDG-MAENS [23] in [29], the

improved RDG-MAENS was not tested on the existing largest

CARP instances (i.e., the egl-large instances with up to 375

tasks). Thus, the CC-based methods may still encounter

scalability issues on large-scale CARPs.

This paper aims to develop a novel approach that can scale

well to large-scale CARPs. Specifically, we are interested in

CARPs that are at least an order of magnitude larger than the

existing benchmark instances, and aim to develop methods for

achieving good solutions to such CARPs within acceptable

time, e.g., less than half an hour. A Scalable Approach based on

Hierarchical Decomposition (SAHiD) is proposed for this

purpose. The key idea of SAHiD is to hierarchically (rather

than linearly) decompose the tasks involved in a CARP

instance into sub-groups. At the bottom layer of the hierarchy,

tasks are decomposed into a few groups and a sub-problem is

solved for each group. At each intermediate layer of the

hierarchy, the output of the sub-problems at the lower layer is

treated as virtual tasks and new sub-problems are formulated

based on these virtual tasks rather than the original tasks. The

final solution is obtained at the top layer of the hierarchy. With

such a hierarchical structure, the number of tasks (or virtual

tasks) exponentially decreases from the bottom to the top layers

of the hierarchy. Thus, the number of task groups required at

each layer, except for the bottom layer, is significantly less than

that required for linear decomposition schemes. As a result, the

complexity of grouping tasks can be better controlled and

inappropriate groupings are less likely to be obtained.

Furthermore, as will be shown by our empirical studies, a

solution to large-scale CARPs can be obtained efficiently in

such a hierarchical way, thus allowing repeating the process in

an iterative manner to achieve better solution quality than

existing methods in shorter runtime.

The rest of this paper is organized as follows. First, the

problem definition and notations of CARP are introduced in

Section II. After that, the hierarchical decomposition scheme

and detailed steps of SAHiD are described in Sections III and

IV, respectively. Empirical studies are presented in Section V

to assess the performance of SAHiD and compare it against

state-of-the-art CARP solvers. Finally, Section VI concludes

the paper and discusses directions for future research.

II. PROBLEM DEFINITION AND NOTATIONS

An undirected/directed CARP is defined on a connected and

undirected/directed graph , where and represent

the sets of vertices and edges respectively. A cost and

a demand are associated with each edge . The

edges with positive demands constitute the task set , i.e.,

 . A vertex is predefined as the

depot, in which a fleet of vehicles are located. The aim of

CARP is to determine a set of routes for the vehicles to serve all

the tasks with minimal total costs, subject to the following

constraints:

1) Each route must start and end at the depot;

2) Each task is served exactly once (but the corresponding edge

can be traversed more than once);

3) The total demand of tasks served in each route cannot exceed

the vehicle capacity .

A solution of CARP can be represented by a sequence of

vertices, which directly indicates the order of vertices for the

vehicles to visit. However, given a sequence of the tasks, the

minimum cost can be easily achieved by summing up the

shortest paths between the vertices of each pair of consecutive

tasks in the sequence in polynomial time [15]. Since the task

representation is more compact, it is adopted in this work. That

is a solution to CARP is represented by ,

where m is the number of routes, the th route

 , and 0 stands for a dummy task that separates

two routes. For each , and denote the th task and the

number of tasks served in route , respectively. More

formally, let and represent the endpoints of task ,

and the inverse direction of , i.e., ()

and () , a CARP can be formulated as

follows:

minimize (1)

s.t.:

 ∑

 (2)

 (3)

 (4)

 ∑

 () ; (5)

The objective function, i.e., Eq. (1), requires minimizing the

total cost :

 ∑

 (6)

 is the total cost of route and can be computed using

Eq. (7)

∑ () (())

∑ ()

 (7)

where stands for the deadheading cost induced

by traversing the shortest path from vertices to .

In constraints (3) and (4), the inequality

means that the two equalities and do not hold

simultaneously. These two constraints prohibit that a task to be

served more than once, either in the same route or different

routes. Thus, constraints (2) to (4) ensure that all the tasks are

served exactly once. Constraint (5) indicates that the total

demand of each route should not exceed the vehicle capacity .

The challenge of CARP can be viewed from two

perspectives. First, the optimal permutation of tasks

corresponds to the optimal solution of CARP, and the latter can

 3

be obtained from the former in polynomial time [15]. Second, if

the optimal assignments of tasks to vehicles are available, the

optimal solution of CARP can also be obtained by solving

several independent single-vehicle problems that are

considerably easier than CARP. This paper takes the first

perspective, i.e., the proposed approach aims to identify a good

permutation efficiently.

III. HIERARCHICAL DECOMPOSITION OF CARP

It can be observed that the scale of a CARP instance mainly

depends on the number of tasks to be served. Furthermore, a

CARP can be addressed in two steps, i.e., finding a permutation

of the task set and dividing this permutation into feasible routes.

The optimal permutation must correspond to an optimal

feasible solution, and vice versa [15, 30]. More importantly,

given a permutation of tasks, the corresponding best feasible

solution can be acquired in polynomial time [15]. Therefore,

the key challenge to CARP can be viewed as finding the

optimal permutation of tasks. The proposed Hierarchical

Decomposition (HD) scheme is essentially a method for

finding a good permutation of tasks efficiently. To be concrete,

HD introduces a number of virtual tasks to construct a

hierarchical structure, as demonstrated in Fig. 1. In the figure,

each node (in the th layer) of the hierarchy corresponds to a

virtual task
 , which is a permutation of several tasks.

represents the number of virtual tasks included in layer . It will

be discussed in detail in Section A. Each node at the bottom

layer (i.e., layer 1) corresponds to a real task. The node at the

top layer (i.e., layer) represents a permutation of all the tasks.

The hierarchy is built in a bottom-up way. At the bottom layer

(i.e., layer 1), tasks are grouped and ordered within each group.

The permutation of tasks in each group is treated as a virtual

task at layer 2. This procedure is executed on the obtained

virtual tasks recursively until only 1 virtual task remains, which

is a permutation of all the tasks. For example, suppose there are

4 tasks

 at layer 1, each 2 of them are connected

to a node at layer 2, the virtual task corresponding to this node,

denoted by
 is a permutation of the 2 tasks, e.g.,

 and

 .
 and

 are then grouped and

ordered, forming a virtual task at layer 3, e.g.,

 . By this means, a permutation of the 4 tasks is

obtained.

From the above description, for a given CARP instance, the

HD scheme starts from the bottom layer and recursively group

tasks into virtual tasks of a larger size until only 1 virtual task

remains. Each node at non-bottom layers requires solving a

sub-problem to find the optimal permutation of the tasks

(virtual tasks) assigned to that node, which is a partial-solution

to the problem of finding optimal permutation of all tasks.

Algorithm 1 demonstrates the general framework of the HD

scheme. The benefits offered by such a hierarchy are two-folds.

From the perspective of problem decomposition, a linear

decomposition scheme (e.g., as adopted by the CC-based

approaches) has to involve a large number of small-size

sub-problems to cope with large-scale CARPs. Meanwhile,

task grouping itself is a non-trivial problem, the complexity of

which increases exponentially with the number of task groups

(i.e., number of sub-problems). Hence, it is highly likely that an

inappropriate grouping will be obtained on large-scale CARPs,

or a significant computational cost is needed to identify a good

grouping of tasks. In other words, the performance of linear

decomposition will deteriorate rapidly with the problem-size of

CARP. As a result, the solution quality may also deteriorate

rapidly since the grouping of tasks significantly affects the

search course. In contrast, the HD scheme allows the number of

nodes (i.e., virtual tasks) to decrease exponentially from the

bottom layer towards the top layer. Thus, the cost for

identifying a suitable grouping of tasks increases slowly with

the scale of CARP. Hence, the scalability (in terms of the

quality of task grouping) of HD is expected to be better than

that of a linear grouping, and can lead to a better grouping of

tasks (and thereby solution quality) than linear decomposition,

especially when the total time budget for solving a CARP is

limited and task grouping needs to be done as fast as possible.

From the perspective of search effectiveness, since a

sub-problem (node) of an upper layer only takes the

partial-solutions obtained at the lower layers as its input, but

does not change the inner structure of the partial-solutions, the

hierarchical structure naturally allows searching at different

step-sizes by solving sub-problems at different layers and may

lead to a more effective search.

The HD strategy involves 2 design issues. That is, how to

group virtual tasks (i.e., line 2-3 in Algorithm 1) and how to

find the optimal permutation in a group of virtual tasks (i.e.,

line 4 in Algorithm 1). These will be detailed below.

A. Grouping Virtual Tasks

Intuitively, tasks close to each other are more likely to be

served successively in solutions with high quality. Hence, a

natural idea is to assign neighboring tasks to the same group.

Thus the closeness between two virtual tasks needs to be

defined in order to group the virtual tasks. An intuitive idea is to

take the deadheading cost between two virtual tasks as the

closeness. Since the deadheading cost is defined between two

vertices rather than two virtual tasks (paths) and 4 different

deadheading costs can be obtained by connecting different

pairs of endpoints of two virtual tasks, the closeness between

virtual task
 and

 is defined as the average deadheading

cost between them:

 (

)
 () () ()

 (8)

Fig. 1. The hierarchical structure of HD

… … …

… … …

…

… …

layer 1

layer 2

layer

…

 4

where and denote the start and end vertices of

 and

 , respectively. () is the deadheading cost

between vertices and . As a special case, the closeness

between virtual task
 and the depot is (

)

.

Given the closeness measure of two virtual tasks, grouping

virtual tasks can be formulated as a clustering problem. In

principle, any clustering method can be applied for this purpose.

We choose the well-known k-means algorithm [31] for its

simplicity. The k-means algorithm requires calculating the

centroid of each cluster. This can be easily done in a real-space

but cannot be directly computed in case of clustering virtual

tasks. Hence, in each iteration of k-means, the centroid of a

cluster is defined as the virtual task with minimal average

closeness to other virtual tasks in the same cluster.

The number of clusters, , is a user-defined parameter in

k-means and has a great influence on the clustering results. In

the HD scheme, since the clustering process is invoked at each

layer and the number of virtual tasks varies over layers, a fixed

value of for all clustering processes is inappropriate. Note

that each virtual task at layer corresponds to a cluster obtained

at layer . Hence, let denote the number of clusters

obtained at layer , we set it as an integer randomly generated

within , where is a pre-defined

parameter. For the bottom layer (i.e., layer 1), .
Another important issue related to the effectiveness of

k-means is the selection of initial cluster centroids. The initial

centroids can be selected randomly or by using specific

methods [32-34]. Here we use a simple heuristic that disperse

the centroids as widely as possible. Specifically, the heuristic

works by adding non-centroid virtual tasks into the centroid set

one by one such that the sum of the closeness between the

newly added virtual task and existing ones in the set is maximal.

It should be noted that the depot is regarded as a dummy virtual

task and added to the centroid set at the beginning.

B. Ordering virtual tasks

At each node of the hierarchical structure, the permutation of

a subset of tasks or virtual tasks needs to be optimized. Recall

that the capacity constraints are not considered when solving

these sub-problems, since the HD scheme aims to achieve the

optimal permutation of all tasks regardless of capacity

constraints. There exist lots of heuristic methods for finding

such a permutation-based problem. Since a number of such

sub-problems need to be solved for building the hierarchy, it is

not worth adopting a time-consuming method. For this

consideration, we employ a greedy search heuristic named Best

Insertion Heuristic (BIH). BIH firstly chooses the nearest

virtual task to the depot in terms of deadheading cost. Then, at

each iteration, the virtual task with the minimal deadheading

cost to the current endpoint of the path is added to the end of the

path. If multiple virtual tasks satisfy this condition, only one is

randomly chosen. The process terminates when all virtual tasks

have been added to the path.

C. Generating a solution to CARP based on hierarchical

decomposition

As mentioned before, the HD scheme seeks a good

permutation of all tasks in CARP regardless of capacity

constraint. Given a permutation of tasks, a solution (with

respect to this permutation) to CARP can be obtained by

splitting the permutation into a number of routes that satisfy

capacity constraints. This can be done with well-established

methods in polynomial time [15]. Herein we employ the

well-known Ulusoy‟s splitting procedure [10], an exact method

that has been proved to be capable of solving the problem

optimally. Thus, the combination of the HD scheme and the

Ulusoy‟s splitting procedure, namely HDU as demonstrated in

Algorithm 2, forms our approach to CARPs.

IV. THE SCALABLE APPROACH BASED ON HIERARCHICAL

DECOMPOSITION

The HDU described in the previous section obtains a solution

to a CARP in a constructive way. It can also be embedded into

an iterative search process, which allows the solution obtained

using HDU to be further improved. The proposed SAHiD is

developed following this idea. Briefly speaking, SAHiD is an

individual-based iterative search method. At each iteration, it

firstly employs HDU to obtain a solution to the CARP, and then

some traditional local search operator is applied to further

improve the solution obtained. Specifically, SAHiD involves

three phases, i.e., initialization, reconstruction, and local search,

as detailed below.

Initialization: At the first iteration, an initial solution, say ,

is obtained by applying HDU to the CARP instance. Then, the

local search operator is applied to for further improvement.

Reconstruction: In the reconstruction phase, HDU is applied

to generate new candidate solutions. But different from in the

initialization phase, HDU is not applied to achieve a solution

from scratch, i.e., based on the un-ordered set of tasks. Instead,

the solution obtained in the last iteration, say , is first

Procedure HD

Input: virtual task set

Output: a permutation of tasks

1: repeat

2: randomly choose the cluster number ;
3: divide into groups by using k-means;
4: order the virtual tasks within each group;

5: {permutation of tasks in each group};

6: until

7: return the permutation of tasks in ;

Algorithm 1 The Hierarchical Decomposition HD

Procedure HDU

Input: virtual task set

Output: a feasible solution ;

1: apply HD to generate a permutation of tasks ;

2: apply Ulusoy‟s splitting procedure to partition into a solution ;

3: return ;

Algorithm 2 The Hierarchical Decomposition and Ulusoy‟s splitting HDU

 5

randomly split into a number of virtual tasks. Specifically, each

route of is split into two virtual tasks with a predefined

probability , resulting in a set of virtual tasks. Then, HDU is

applied to this set to obtain a new solution. Since s is built based

on the original set of tasks and polished with local search, it is

expected to contain some useful pattern of a good solution.

Splitting the routes does not change the permutation of tasks in

the same virtual task, and thus are likely to keep the useful

patterns. Hence, by applying HDU to the virtual tasks rather

than the original tasks, the useful pattern in the previous

solution can be exploited, and thus benefit the search for a

better solution.

Local search: When a solution is obtained by HDU, either in

the initialization or reconstruction phase, a first improvement

local search procedure is applied to further improve it. The

local search starts with a reverse move operator similar to the

2-opt operator [15] for a single route, i.e., it reverses the

direction of a sub-route (i.e. part of a route). Suppose the

reverse operator is applied to a route consisting of tasks. At

each iteration, all possible sub-routes are enumerated with the

length of sub-route increasing from 1 to . During this

course, the current solution is updated once a solution with a

lower cost is found. This procedure terminates when all

sub-routes of each route is checked at least once, and the whole

local search procedure terminates if the solution obtained by

HDU is updated at least once.

If the reverse operator fails to improve the solution obtained

by HDU, the Merge-Split (MS) operator [16] is applied to

conduct a best improvement search. That is, at each step, all

solutions that can be reached by the MS operator from the

current solution are examined and the best and improved one is

chosen to replace the current solution. Compared to the reverse

operator, MS is a search operator with a larger step-size, and

thus is more likely to escape from the current solution, which is

a local optimum. Interested readers are referred to [16] for

detailed steps of MS. If the MS operator manages to find a

better solution, the reverse operator will be applied to the

improved solution again to exploit the new local region.

Otherwise, the whole local search procedure terminates with

the solution obtained by HDU remaining unchanged.

The pseudo-code of the local search procedure is presented

in Algorithm 3. Note that HDU always produces feasible

solutions, the reverse operator only changes the order of tasks

within a feasible route, and the MS operator also always

generates feasible routes. Hence, no infeasible solution will be

produced during the search process of SAHiD. For this reason,

only the total costs are taken into account when comparing two

solutions.

Algorithm 4 depicts the steps of SAHiD. It is noteworthy that

the best solution found so far is stored in an external archive

(line 10-12) and outputted as the final solution. It might be

inappropriate to keep the best solution in the search process of

SAHiD if it cannot be improved for a long time. Otherwise, the

search will be stuck at this local best solution. Hence, we adopt

the Threshold Accepting idea [35] in SAHiD. Given a solution

 , if no better solution is found after consecutive iterations, a

new solution worse than will still be accepted (i.e., replace)

as long as its quality is not worse than of that of the

best-found solution. Finally, the SAHiD can be terminated

either when a predefined time budget is used up or no better

solution is found for a predefined number of iterations.

V. EXPERIMENTAL STUDIES

To evaluate the effectiveness of SAHiD, two sets of

empirical studies have been conducted to compare SAHiD

against a number of state-of-the-art approaches to CARPs. In

the first study, the performance of different algorithms is

examined in terms of the time required to achieve a predefined

solution quality. In the second study, the algorithms are

compared from the perspective of solution quality obtained

using a predefined time budget. In addition, further empirical

analysis has also been conducted to assess the contribution of

the HD scheme to SAHiD.

Procedure LS

Input: solution

Output: potentially improved solution

1: repeat

2: for each sub-routes of each route in do

3: reverse to obtain a new solution ;
4: if is better than then

5: ;
6: break;

7: end if
8: end for

9: until remains unchanged

10: if is not updated then

11: apply MS operator to improve ;

12: if is updated then

13: repeat

14: for each sub-routes of each route in do

15: reverse to obtain a new solution ;
16: if is better than then

17: ;
18: break;

19: end if
20: end for

21: until remains unchanged

22: end if

23: end if

24: return ;

Algorithm 3 The local search procedure LS

Procedure SAHiD

Input: task set

Output: a feasible solution

1: generate an initial solution using HDU ;

2: apply LS to improve ;

3:
4: while stopping criteria are not met do

5: generate a virtual task set by splitting the routes of ;

6: generate a solution using HDU ;

7: apply LS to improve ;
8: if is acceptable then

9:
10: if is better than then

11:
12: end if

13: end if

14: end while

15: return ;

Algorithm 4 The pseudo code of SAHiD(T)

 6

A. Benchmark Set

Since this work mainly studies the scalability of search

methods, we are more interested in the performance on

large-scale CARPs rather than small scale ones. Furthermore,

as mentioned before, most of the existing small or median-scale

CARP benchmark instances can be solved near optimally in a

rather short time period (e.g., 10 seconds). Therefore, instead of

using the more traditional benchmark sets, two new sets of

CARP instances, namely Hefei and Beijing test sets
1
, are

generated. The Hefei set is generated from the map of the Hefei

city in China, which consists of 1212 main roads (i.e., edges).

The Beijing set is generated from the central area (the area

inside the 5
th

 ring road) of Beijing, China, which consists of

3584 main roads. For each set, 10 instances are generated by

randomly setting part of the edges as tasks. The number of tasks

for each set increases from 10% to 100% of the number of

edges with a step-size 10%. TABLE II shows the detailed

information of these two benchmark sets. It can be observed

that these two sets involves instances that are one order of

magnitude larger than the largest CARP benchmark instances

used in the literature, i.e., EGL-G, which consists of at most

375 edges and 375 tasks. Furthermore, since the major

challenge of CARP depends on the number of tasks rather than

the number of edges, the Hefei and Beijing sets allow assessing

1 Instances of the two test sets is available at

http://staff.ustc.edu.cn/~ketang/codes/LSCARPset.zip

the scalability of an algorithm in this regard. It should also be

noted that the performance of an algorithm on a CARP is also

affected by the capacity constraints. Thus the same capacity

constraints are set to all instances in the same set, so as to focus

our investigation on scalability. is the minimal number of

vehicles required to serve all the tasks, which is obtained as

follows:

 ⌈

⌉ (9)

B. Compared algorithms

Three algorithms, including Variable Neighborhood Search

(VNS) [7], Tabu Search Algorithm 1 (TSA1) [17] and

RDG-MAENS [23], are chosen for our comparative studies.

VNS and TSA1 are both individual-based search approaches

for CARPs. They have shown appealing performance not only

in terms of solution quality, but also (and more importantly in

the context of this work) in terms of efficiency. RDG-MAENS

is an approach dedicated to large-scale CARPs and has been

shown to outperform other population-based search methods,

e.g., MAENS [16], on large-scale CARP instances. Thus, it was

chosen as the state-of-the-art representative population-based

search methods for CARPs.

C. Experimental Protocol

To make a fair comparison, all algorithms involved in the

empirical studies are implemented in C++ and run on the same

computing platform, i.e., Intel® Core™ i7-4790 processor with

3.6 GHz. For all experiments presented hereafter, the results are

obtained by executing the algorithms for 25 independent runs.

Each of the tested algorithms consists of a few parameters to be

predefined.

SAHiD has 5 user-defined parameters, i.e., the scale

parameter in HD; the probability of partitioning a route in

the reconstruction phase; parameter introduced by the MS

operator [16] and and introduced by threshold accepting

strategy [35, 36]. Since the last three parameters are proposed

in previous works for local search, but are not introduced by the

HD decomposition scheme, the values suggested in the original

publications are directly adopted. For the parameters and , a

sensitivity analysis is carried out to test the performance of

SAHiD as well as choosing parameter values for more

comprehensive empirical studies. Specifically, five values (0.1,

0.3, 0.5, 0.7 and 0.9) were tested for both parameters, which led

to 25 combinations of parameters values. The sensitivity

analysis is conducted on four typical instances, including Hefei

1, Hefei 10, Beijing 1 and Beijing10. For each instance, SAHiD

is executed for 10 times with each of the 25 parameter

combinations (i.e., 250 runs in total). Fig. 2 depicts the heat

maps of the average results (over 10 runs) obtained by SAHiD

with different values of and . It can be observed that is

more critical to performance on larger instances (Hefei 10 and

Beijing 10), while mainly affects the performance of SAHiD

on smaller instances. The reason is that, HD is the core of

SAHiD, the tree size obtained by HD has a great influence on

the algorithm performance. Both and affect the size of tree,

 determines the number of leaf nodes and controls the upper

bound of number of intermediate nodes. As described in

TABLE II

THE INFORMATION OF INSTANCES IN Hefei AND Beijing TEST SET

Name |V| Proportion of tasks

Hefei-1 850 1212 121 10% 9000 7

Hefei-2 850 1212 242 20% 9000 14

Hefei-3 850 1212 364 30% 9000 19

Hefei-4 850 1212 485 40% 9000 28

Hefei-5 850 1212 606 50% 9000 35
Hefei-6 850 1212 727 60% 9000 42

Hefei-7 850 1212 848 70% 9000 49

Hefei-8 850 1212 970 80% 9000 56
Hefei-9 850 1212 1091 90% 9000 63

Hefei-10 850 1212 1212 100% 9000 69

Beijing-1 2820 3584 358 10% 25000 7

Beijing-2 2820 3584 717 20% 25000 11

Beijing-3 2820 3584 1075 30% 25000 18
Beijing-4 2820 3584 1433 40% 25000 23

Beijing-5 2820 3584 1792 50% 25000 30

Beijing-6 2820 3584 2151 60% 25000 36
Beijing-7 2820 3584 2509 70% 25000 41

Beijing-8 2820 3584 2868 80% 25000 47

Beijing-9 2820 3584 3226 90% 25000 52
Beijing-10 2820 3584 3584 100% 25000 58

TABLE I
THE PARAMETER SETTINGS OF HCOLS

Name Description Value

 Scale parameter in HD (Sub-Section III.A) 0.1

 Probability of partitioning a route (Section IV) 0.1

 Parameter of the MS operator (Section IV) 2

 Parameter of Threshold accepting (Section IV) 110%

Maximum number of idle iterations for accepting

an ascending move (Section IV)
10000

 7

Section III.A, the number of nodes in layer is within

 , where is the number of nodes in layer .

Hence, the number of intermediate nodes is not only affected by

 but also determined by the number of bottom nodes (leaf

nodes), which means plays a more important role than

when the problem size is large. On the smaller instances (Hefei

1 and Beijing 1), the number of routes is relatively small. Thus,

a larger is needed to ensure a sufficient number of leaf nodes

(virtual tasks), if there are very few leaf nodes, the role of the

hierarchy will be greatly reduced. For the larger instances (i.e.,

Hefei 10 and Beijing 10), on the other hand, a small value of

already led to splitting a large number of routes. In fact,

TABLE I indicates that the routes (i.e.，the number of vehicles,

) in a solution to Hefei 10 is about 10 times larger than that in

a solution to Hefei 1. Thus, setting to 0.9 and 0.1 for Hefei 1

and Hefei 10 actually resulted in comparable number of routes

being split. Hence, as a rule of thumb, is suggested to take the

value that will lead to the split of around 7 routes in the

reconstruction phase. Since does not appear to affect SAHiD

as much as , 0.1 can be used as the default value. The results

reported in this paper were all obtained with and

 .

 TABLE I summarizes the parameter settings for SAHiD.

For the compared VNS [7], TSA1 [17] and RDG-MAENS [23],

the best parameter settings reported in the original publications

are employed. By this means, we hope to keep the comparison

as fair as possible.

D. Comparison in terms of runtime

Runtime is one of the most important issues when

investigating the scalability of an algorithm. Ideally, the

runtime for an algorithm to achieve the optimal solution or a

solution within a given approximation ratio should be tested.

However, such an analysis cannot be done for large-scale

CARP instances used in this work, because the optimal solution

and the lower bound on the total cost are unknown for the

instances. Hence, we resort to a threshold of total costs as the

target for the compared algorithms. Specifically, for the Hefei

and Beijing sets, SAHiD is firstly run for 25 times. A time

budget of 30 seconds is given for each run on each instance of

Hefei and Beijing sets. For each instance, the total costs of the

25 final solutions are recorded. The largest one among these 25

Fig. 2. Heat map of average total cost obtained by SAHiD with different values of and on instances Hefei-1,Hefei-10,Beijing-1 and Beijing-10. Blue

indicates better results and red stands for worse results.

 8

values indicates the worst performance of SAHiD in the 25 runs.

Thus, it is used as the target for other compared algorithms. The

runtime for each of the other algorithms to achieve the same

solution quality for the first time is recorded. Since no matter

how the target solution quality is chosen, it is possible that an

algorithm may not reach this target or takes extremely long

time to reach it, the compared algorithms are terminated if a

larger time budget of 30 minutes is used up.

Fig. 3 depicts the average runtime for the compared

algorithms on the Hefei and Beijing sets. Each point in the

figure corresponds to the runtime of an algorithm on an

instance. Note that, since the worst total costs obtained by

SAHiD are used as the target, the average runtime required by

SAHiD on each instance is always not greater than 30 seconds

for Hefei and Beijing sets. From the figure, it can be observed

that VNS, TSA1 and RDG-MAENS all consume much more

runtime than SAHiD. In fact, some even fail to reach the target

solution quality in 30 minutes for some large-scale instances.

For example, RDG-MAENS fails in all 25 runs on all the

Beijing instances except for Beijing-1, on which the average

runtime consumed is still close to the given time budget. TSA1

also reaches the given time budget on 2 out of the 20 instances,

and always takes more than 500 seconds to reach the target

solution quality. VNS appears to be more efficient than

RDG-MAENS and TSA1, but the runtime consumed by it show

a growth trend with respect to the problem size and thus its

scalability is not as good as SAHiD. These observations clearly

demonstrate the superiority of SAHiD to the compared

algorithms.

E. Comparison in terms of solution quality

In addition to runtime, another important characteristic of an

algorithm is the solution quality that can be achieved with a

given time budget. This is evaluated by our second experiment.

Specifically, each algorithm is given 30 minutes to search for

the solution to a CARP instance in Hefei and Beijing

benchmark sets. Further, since the EGL-G benchmark set [17]

has been used to evaluate TSA1 and RDG-MAENS in the

original publications, this set of instances is also employed in

the experiment. The time budget is set to 15 minutes as the

scale of EGL-G is much smaller than Hefei and Beijing sets.

TABLEs III to V present the costs of the final solutions

obtained by the compared algorithms on the three test sets. The

first 5 columns present the basic information of instances. For

each compared algorithm, the columns headed “Best” and

“Average” provide the best and average costs among the 25

runs, respectively. The last column headed “Std” present the

standard deviations calculated over the 25 runs. The minimal

average results are marked with “*”. On each instance, SAHiD

is compared to RDG-MAENS, VNS and TSA1 by using

Wilcoxon rank-sum test with the level of significance 0.05 over

25 runs, results highlighted in bold/underline indicate that the

corresponding algorithm is significantly better/worse than

SAHiD on the corresponding instance. Results without any

symbol indicate that the difference between SAHiD and the

corresponding algorithm is statistically insignificant.

From TABLEs III and IV, it can be observed that SAHiD

significantly outperforms the other algorithms in terms of

solution quality. It achieves the smallest total costs on 7 out of

10 instances in Hefei and 9 out of 10 instances in Beijing.

Statistical tests also confirmed that the significant difference

between SAHiD and the other algorithms. The results in

TABLE V are more mixed. To be specific, SAHiD is not as

competitive as RDG-MAENS on the 10 EGL-G instances. In

comparison to TSA1, SAHiD performs better on 6 instances,

i.e., EGL-G1-D, EGL-G1-E, EGL-G2-B, EGL-G2-C,

EGL-G2-D and EGL-G2-E, while is inferior on the other 4

instances. SAHiD still outperforms VNS on all 10 instances.

The inferior performance of SAHiD to RDG-MAENS on the

EGL-G set is understandable, because the former is designed

with the aim to tackle large-scale CARPs. As the size of EGL-G

is relatively small, a more costly but more precise search

method like RDG-MAENS should be able to find a better

solution while the computational time is still acceptable. In

addition, unlike the Hefei and Beijing sets, different EGL-G

instances are subject to different capacity constraints. Thus,

Fig. 3. Average computational time (to achieve a predefined solution quality) versus the number of tasks over all the instances of Hefei and Beijing sets for each

compared algorithm.

 9

another interesting observation from TABLE V is that SAHiD

outperforms TSA1 mainly in the cases where the capacity

constraints are tighter. A possible reason might be that SAHiD

always visits feasible solutions during the search, while TSA1

may generate infeasible solutions and thus only part of the time

budget is used for searching in the feasible region.

Furthermore, the performance of the algorithm is also tested

using different time budgets less than the above given time

budgets. The average costs obtained over 25 runs are plotted in

Fig. 4. For the sake of brevity, only the results on 2 instances

are provided for each benchmark set. The results on other

instances follow a similar pattern and are made available in the

online appendix
2
. The figure further confirms the superiority of

SAHiD on large scale instances. For instance, the curve for

SAHiD is always beneath the curves of the other algorithms on

Hefei-10 and Beijing-10, indicating that SAHiD can always

2 Available at http://staff.ustc.edu.cn/~ketang/codes/SAHiDresults.pdf

perform the best among the 4 algorithms if a solution is needed

with a tighter time budget on a large scale instance. As for the

EGL-G instances, it can be found that curves of SAHiD drop

rapidly with time, but level off later. RDG-MAENS improves

the solution slower than SAHiD at the beginning, but continues

to improve it. This observation is consistent with the

expectation that RDG-MAENS is a more costly but more

precise method, which might achieve better solutions than

SAHiD if the problem size is moderate in comparison to the

time budget.

F. Analysis of the contribution of HD to SAHiD

Since the core component of SAHiD is the HD scheme. It is

also interesting to investigate whether the HD scheme is

indispensable for SAHiD. For this purpose, another algorithm

namely SArandom is developed. The only difference between

SAHiD and SArandom is that the latter does not use the HD

scheme in the reconstruction phase (line 6 in Algorithm 4).

TABLE III
RESULTS ON Hefei BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND AVERAGE RESULTS

OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH “*”. FOR EACH

INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM

TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF „W-D-L‟” SUMMARIZES THE NUMBER OF „WIN-DRAW-LOSE‟ OF SAHID VERSUS THE OTHER ALGORITHMS.

Name |V|
SAHiD RDG-MAENS VNS TSA1

 Best Average Std Best Average Std Best Average Std Best Average Std

Hefei-1 850 1212 121 9000 248048 251024 1820 246221 247341* 2293 245596 247819 2745 250155 252615 1591

Hefei-2 850 1212 242 9000 441574 445376 2476 436020 441539* 4142 436637 449979 5375 447853 456228 5539

Hefei-3 850 1212 364 9000 586880 590969 2305 583050 589152* 2697 588682 595263 3108 623795 637201 8003

Hefei-4 850 1212 485 9000 754015 759402* 2495 754855 761351 4362 763256 774323 6394 774182 791790 5481

Hefei-5 850 1212 606 9000 964772 976276* 4742 980153 991813 5755 984121 994794 6109 1019224 1042701 11496

Hefei-6 850 1212 727 9000 1095530 1106735* 5318 1119584 1132063 8966 1110030 1128667 9404 1134041 1162641 13806

Hefei-7 850 1212 848 9000 1299430 1309474* 4792 1329745 1361125 14356 1322290 1337353 6745 1339160 1353502 6235

Hefei-8 850 1212 970 9000 1474390 1483694* 4857 1526453 1550509 13695 1492790 1517151 12477 1521857 1537169 6709

Hefei-9 850 1212 1091 9000 1648840 1659700* 6103 1705381 1749079 18872 1675790 1694957 10164 1696706 1716256 9236

Hefei-10 850 1212 1212 9000 1793890 1808860* 7836 1837767 1923264 31697 1834860 1852622 10183 1873504 1901167 12679

of

“w-d-l”

 6-1-3 9-0-1 10-0-0

TABLE IV

RESULTS ON Beijing BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND AVERAGE RESULTS

OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH “*”. FOR EACH

INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM

TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF „W-D-L‟” SUMMARIZES THE NUMBER OF „WIN-DRAW-LOSE‟ OF SAHID VERSUS THE OTHER ALGORITHMS.

Name |V|
SAHiD RDG-MAENS VNS TSA1

 Best Average Std Best Average Std Best Average Std Best Average Std

Beijing-1 2820 3584 358 25000 775523 784727 5591 812647 829406 12688 774502 782415* 4452 813907 829132 6340

Beijing-2 2820 3584 717 25000 1167480 1183955* 8431 1303570 1337954 18939 1168190 1192292 10196 1353567 1401363 25378

Beijing-3 2820 3584 1075 25000 1586180 1605846* 9231 1777852 1847922 33258 1591540 1618484 11888 1678224 1709279 14801

Beijing-4 2820 3584 1434 25000 1910880 1936994* 11694 2126151 2193399 34159 1920330 1953892 16746 2053938 2070885 14532

Beijing-5 2820 3584 1792 25000 2273080 2298630* 16879 2581910 2639458 32481 2293120 2335915 23040 2396483 2440319 26726

Beijing-6 2820 3584 2151 25000 2664510 2707500* 18433 2968102 3047295 41112 2705060 2743677 18024 2774161 2814735 22018

Beijing-7 2820 3584 2509 25000 3013590 3038157* 15658 3331900 3388263 26081 3015790 3063813 25226 3147294 3186240 22426

Beijing-8 2820 3584 2868 25000 3283530 3313590* 21925 3584696 3697025 44951 3323850 3366215 24686 3415275 3456037 22381

Beijing-9 2820 3584 3226 25000 3621490 3684250* 32404 3934270 4061793 49504 3653630 3723830 45148 3890129 3943883 37089

Beijing-10 2820 3584 3584 25000 3935540 4004310* 29488 4206005 4353966 51063 4002040 4040694 27384 4066188 4103532 15501

of
“w-d-l”

 10-0-0 9-1-0 10-0-0

 10

Instead, SArandom randomly merges virtual tasks into

permutations. As in Sub-Section V.E, SArandom is applied to

the three benchmark sets and the results are summarized in

TABLE VI. The relative percentage of deviation (RPD) is

given in the last column for each instance. RPD is the ratio of

the difference between the average costs obtained by SAHiD

and SArandom to the average costs obtained by SArandom. It

measures the improvement that can be achieved by replacing

TABLE V

RESULTS ON EGL-G BENCHMARK SET IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND AVERAGE RESULTS

OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. THE MINIMAL AVERAGE RESULTS ARE MARKED WITH “*”. FOR EACH

INSTANCE, BOLD (UNDERLINED) RESULTS INDICATE THAT THE CORRESPONDING ALGORITHM IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM

TEST WITH THE LEVEL OF SIGNIFICANCE 0.05. “# OF „W-D-L‟” SUMMARIZES THE NUMBER OF „WIN-DRAW-LOSE‟ OF SAHID VERSUS THE OTHER ALGORITHMS.

Name |V|
SAHiD RDG-MAENS VNS TSA1

 Best Average Std Best Average Std Best Average Std Best Average Std

EGL-G1-A 255 375 347 28600 1017030 1033874 6588 1002347 1014177* 5898 1048220 1061032 8238 1017089 1034531 9933

EGL-G1-B 255 375 347 22800 1139860 1155899 7812 1124610 1133625* 5960 1160620 1191821 13372 1130096 1145438 10493

EGL-G1-C 255 375 347 19000 1270110 1281702 7131 1252061 1261541* 6933 1303100 1324484 12496 1263835 1287478 12070

EGL-G1-D 255 375 347 16200 1397490 1422693 7387 1386044 1397790* 6851 1430320 1465704 15134 1411361 1433744 14015

EGL-G1-E 255 375 347 14100 1549540 1565029 6856 1527473 1542491* 9543 1575240 1614683 12059 1563234 1597127 16095

EGL-G2-A 255 375 375 28000 1128040 1141925 8592 1108242 1122013* 7280 1142490 1166879 14840 1119328 1130786 9423

EGL-G2-B 255 375 375 23100 1238740 1253578 7236 1221077 1233611* 6088 1279280 1293706 8402 1242060 1258284 7418

EGL-G2-C 255 375 375 19400 1374000 1386629 7823 1355956 1369175* 7305 1411810 1439277 13400 1378920 1398971 14892

EGL-G2-D 255 375 375 16700 1505570 1529137 9698 1485341 1506033* 8679 1563960 1587437 14493 1522390 1555457 15661

EGL-G2-E 255 375 375 14700 1656860 1673222 7754 1637063 1649882* 7608 1694730 1724093 13871 1672677 1704553 21171

of „w-d-l‟ 0-0-10 10-0-0 6-2-2

TABLE VI
RESULTS OF SAHID AND SArandom ON ALL TEST SETS IN TERMS OF THE TOTAL SOLUTION COSTS. “BEST” AND “AVERAGE” STAND FOR THE BEST AND

AVERAGE RESULTS OBTAINED FROM 25 INDEPENDENT RUNS. “STD” STANDS FOR THE STANDARD DEVIATION. FOR EACH INSTANCE, BOLD (UNDERLINED)

RESULTS INDICATE THAT SArandom IS BETTER (WORSE) THAN SAHID BASED ON WILCOXON RANK-SUM TEST WITH THE LEVEL OF SIGNIFICANCE 0.05.

Name
 SAHiD SArandom-

RPD(%)
 Best Average Std Best Average Std

EGL-G1-A 1017030 1033874 6588 1038660 1051855 6843 1.74

EGL-G1-B 1139860 1155899 7812 1159420 1182700 10447 2.32
EGL-G1-C 1270110 1281702 7131 1298250 1312731 7861 2.42

EGL-G1-D 1397490 1422693 7387 1444100 1461256 7968 2.71

EGL-G1-E 1549540 1565029 6856 1594180 1613778 7966 3.11
EGL-G2-A 1128040 1141925 8592 1145130 1163482 10036 1.89

EGL-G2-B 1238740 1253578 7236 1263190 1282771 7966 2.33

EGL-G2-C 1374000 1386629 7823 1414250 1433035 9519 3.35
EGL-G2-D 1505570 1529137 9698 1562830 1577365 9240 3.15

EGL-G2-E 1656860 1673222 7754 1715300 1730814 8614 3.44

 2.65(mean)

Hefei-1 248048 251024 1820 246265 247401 776 -1.44

Hefei-2 441574 445376 2476 439437 445329 3580 -0.01
Hefei-3 586880 590969 2305 589521 598517 3321 1.28

Hefei-4 754015 759402 2495 778721 786735 4942 3.6

Hefei-5 964772 976276 4742 1005620 1024557 8398 4.95
Hefei-6 1095530 1106735 5318 1161690 1179338 8389 6.56

Hefei-7 1299430 1309474 4792 1376010 1399276 14850 6.86

Hefei-8 1474390 1483694 4857 1578120 1603242 11507 8.06
Hefei-9 1648840 1659700 6103 1777520 1808153 12278 8.94

Hefei-10 1793890 1808860 7836 1953270 1986672 17833 9.83

 4.86(mean)

Beijing-1 776379 784891 6223 767512 777961 5902 -0.86

Beijing-2 1180010 1188836 6589 1170610 1182402 7381 -0.13
Beijing-3 1593720 1610383 8198 1632690 1658375 16942 3.27

Beijing-4 1927850 1943053 9055 1985840 2036163 28357 5.12

Beijing-5 2273080 2298630 16879 2439860 2504124 38455 8.94
Beijing-6 2664510 2707500 18433 2885540 3004417 86641 10.97

Beijing-7 3013590 3038157 15658 3281750 3382513 77413 11.33

Beijing-8 3283530 3313590 21925 3564160 3728470 103502 12.52
Beijing-9 3621490 3684250 32404 3972310 4162260 128888 12.97

Beijing-10 3935540 4004310 29488 4292190 4515296 114710 12.76

 7.69(mean)

 11

the random permutation scheme with the HD scheme, i.e., a

larger RPD indicates a more significant influence of HD on

SAHiD.

TABLE VI shows that SAHiD outperforms SArandom on 28

out of 30 test instances and the gap between them shows a

growing trend with respect to the problem size (e.g., the

average RPD on EGL-G, Hefei and Beijing are 2.65%, 4.86%

and 7.69%, respectively). Moreover, comparing TABLE VI to

Tables III and IV reveals that the results of SArandom are

significantly worse than those of RDG-MAENS, VNS and

TSA1. Specifically, SArandom achieves worse performance

than TSA1 on 11 out of 20 instances in Hefei and Beijing sets

(the largest 5 of Hefei instances and 6 of Beijing instances).

When compared to RDG-MAENS, SArandom performs worse

Fig. 4. The convergence curves of SAHID, RDG-MAENS, VNS and TSA1 on instances EGL-G1-A, EGL-G2-E, Hefei-1,Hefei-10,Beijing-1 and Beijing-10.

 12

on all the Hefei instances and the largest 3 Beijing instances (i.e.,

Beijing-8, Beijing-9 and Beijing-10). The gap between

SArandom and VNS is more obvious, VNS beats SArandom on

16 out of 20 instances in Hefei and Beijing sets (8 of Hefei and 8

of Beijing). This fact confirms that the advantages of SAHiD

over the other compared algorithms should be credited to the

HD scheme.

VI. CONCLUSION AND FUTURE WORK

This paper presents a novel approach, namely SAHiD, to

CARPs. SAHiD distinguishes from previous methods in the

sense that it employs a hierarchical decomposition scheme,

which is capable of generating a good permutation of tasks, i.e.,

an intermediate solution to the CARP, in a very efficient way.

By employing the proposed hierarchical decomposition scheme

in an iterative search process, SAHiD can tackle CARP

instances of large scales. Empirical studies on two new CARP

benchmark sets that are one order of magnitude larger than the

existing ones show that SAHiD significantly outperforms

state-of-the-art methods in terms of both computational time

and solution quality (given a time budget less than 30 minutes).

Hence, SAHiD can better scale up to large-scale CARPs than

the compared methods, particularly in cases when a solution

needs to be obtained in a few minutes or even seconds.

The promising performance of SAHiD has pointed to several

future research directions. First, in addition to the HD scheme,

the other components of SAHiD, e.g., the methods of grouping

and ordering virtual tasks in HD and the local search procedure,

can be improved using alternative techniques in the literature.

Since instances generated from real-world maps may not

represent all instances that could be synthesized using the

mathematical formulation of CARP. The specific clustering

method used in HD might fail in some of the latter cases. Hence,

the interactions between them and the decomposition scheme

can be further investigated, so as to develop novel components

that suit SAHiD better. Second, the experimental results reveal

that the capacity constraints may also affect the scalability of an

algorithm on CARPs. Although this observation seems to be

obvious, it has never been systematically studied and it is

unclear how the scalability of CARP solvers can be enhanced in

this aspect. Finally, the hierarchical decomposition scheme

proposed in this work is in essence a method for efficiently

obtaining good permutations of tasks. It can be generalized to

other permutation-based optimization problems, e.g., vehicle

routing [37, 38], scheduling [39-41] and path planning [42, 43],

as long as a suitable closeness measure could be designed. Note

that, in practice, some of these problems may need to be solved

either in real-time [44, 45] or in dynamic environments [46],

which means efficiency is even more important for these

problems than for CARP. The idea of hierarchical

decomposition is expected to benefit the development of

scalable approaches in those domains.

ACKNOWLEDGMENT

This work was supported in part by the National Natural

Science Foundation of China (Grant 61329302), the Program

for New Century Excellent Talents in University (Grant

NCET-12-0512), EPSRC (Grant EP/K001523/1), the Royal

Society Newton Advanced Fellowship (Ref. No. NA150123)

and ARC Discovery grant (No. DP120102205). The work of X.

Yao was also supported by a Royal Society Wolfson Research

Merit Award.

REFERENCES

 [1] B. L. Golden and R. T. Wong, "Capacitated arc routing

problems," Networks, vol. 11, pp. 305-315, 1981.
 [2] R. W. Eglese, "Routeing winter gritting vehicles,"

Discrete Applied Mathematics, vol. 48, pp. 231-244, 1994.
 [3] V. Maniezzo, "Algorithms for large directed CARP

instances: urban solid waste collection operational support,"

Technical Report UBLCS-2004-16, Department of Computer

Science, University of Bologna, Italy 2004.
 [4] H. Handa, L. Chapman and X. Yao, "Robust route

optimization for gritting/salting trucks: A CERCIA

experience," Computational Intelligence Magazine, IEEE, vol.

1, pp. 6-9, 2006.
 [5] P. Lacomme, C. Prins and W. Ramdane-Cherif,

"Evolutionary algorithms for periodic arc routing problems,"

European Journal of Operational Research, vol. 165, pp.

535-553, 2005.
 [6] F. Chu, N. Labadi and C. Prins, "A scatter search for the

periodic capacitated arc routing problem," European Journal of

Operational Research, vol. 169, pp. 586-605, 2006.
 [7] M. Polacek, K. F. Doerner, R. F. Hartl, and V. Maniezzo,

"A variable neighborhood search for the capacitated arc routing

problem with intermediate facilities," Journal of Heuristics, vol.

14, pp. 405-423, 2008.
 [8] J. F. Campbell and A. Langevin, "Roadway snow and ice

control," in Arc Routing: Springer, 2000, pp. 389-418.
 [9] W. L. Pearn, "Approximate solutions for the capacitated

arc routing problem," Computers & Operations Research, vol.

16, pp. 589-600, 1989.
[10] G. Ulusoy, "The fleet size and mix problem for

capacitated arc routing," European Journal of Operational

Research, vol. 22, pp. 329-337, 1985.
[11] R. Hirabayashi, Y. Saruwatari and N. Nishida, "Tour

constructive algorithm for the capacitated arc routing problem,"

Asia-Pacific Journal of Operational Research, vol. 9, pp.

155-175, 1992.
[12] B. L. Golden, J. S. Dearmon and E. K. Baker,

"Computational experiments with algorithms for a class of

routing problems," Computers & Operations Research, vol. 10,

pp. 47-59, 1983.
[13] H. Longo, M. P. de Aragão and E. Uchoa, "Solving

capacitated arc routing problems using a transformation to the

CVRP," Computers & Operations Research, vol. 33, pp.

1823-1837, 2006.
[14] P. Beullens, L. Muyldermans, D. Cattrysse, and D. Van

Oudheusden, "A guided local search heuristic for the

capacitated arc routing problem," European Journal of

Operational Research, vol. 147, pp. 629-643, 2003.
[15] P. Lacomme, C. Prins and W. Ramdane-Cherif,

"Competitive memetic algorithms for arc routing problems,"

Annals of Operations Research, vol. 131, pp. 159-185, 2004.
[16] K. Tang, Y. Mei and X. Yao, "Memetic algorithm with

extended neighborhood search for capacitated arc routing

problems," Evolutionary Computation, IEEE Transactions on,

 13

vol. 13, pp. 1151-1166, 2009.
[17] J. Brand O and R. Eglese, "A deterministic tabu search

algorithm for the capacitated arc routing problem," Computers

& Operations Research, vol. 35, pp. 1112-1126, 2008.
[18] J. S. DeArmon, A comparison of heuristics for the

capacitated Chinese postman problem: Master's thesis,

University of Maryland, College Park, MD, USA, 1981.
[19] E. Benavent, V. Campos, A. Corberan, and E. Mota, "The

capacitated arc routing problem: lower bounds," Networks, vol.

22, pp. 669-690, 1992.
[20] R. W. Eglese and L. Y. Li, "A tabu search based heuristic

for arc routing with a capacity constraint and time deadline," in

Meta-Heuristics: Springer, 1996, pp. 633-649.
[21] L. Y. Li and R. W. Eglese, "An interactive algorithm for

vehicle routeing for winter-gritting," Journal of the

Operational Research Society, pp. 217-228, 1996.
[22] Y. Mei, X. Li and X. Yao, "Decomposing Large-Scale

Capacitated Arc Routing Problems using a Random Route

Grouping Method," in Evolutionary Computation (CEC), 2013

IEEE Congress on, 2013, pp. 1013-1020.
[23] Y. Mei, X. Li and X. Yao, "Cooperative coevolution with

route distance grouping for large-scale capacitated arc routing

problems," Evolutionary Computation, IEEE Transactions on,

vol. 18, pp. 435-449, 2014.
[24] Y. Mei, X. Li and X. Yao, "Variable Neighborhood

Decomposition for Large Scale Capacitated Arc Routing

Problem," in Evolutionary Computation (CEC), 2014 IEEE

Congress on, 2014, pp. 1313-1320.
[25] Z. Yang, K. Tang and X. Yao, "Large scale evolutionary

optimization using cooperative coevolution," Information

Sciences, vol. 178, pp. 2985-2999, 2008.
[26] M. N. Omidvar, X. Li, Z. Yang, and X. Yao, "Cooperative

co-evolution for large scale optimization through more frequent

random grouping," in Evolutionary Computation (CEC), 2010

IEEE Congress on, 2010, pp. 1-8.
[27] X. Li and X. Yao, "Cooperatively coevolving particle

swarms for large scale optimization," Evolutionary

Computation, IEEE Transactions on, vol. 16, pp. 210-224,

2012.
[28] W. Gao, G. G. Yen and S. Liu, "A dual-population

differential evolution with coevolution for constrained

optimization," Cybernetics, IEEE Transactions on, vol. 45, pp.

1108-1121, 2015.
[29] R. Shang, K. Dai, L. Jiao, and R. Stolkin, "Improved

Memetic Algorithm Based on Route Distance Grouping for

Multiobjective Large Scale Capacitated Arc Routing

Problems.," Cybernetics, IEEE Transactions on, pp. 1000-1013,

2015.
[30] P. Lacomme, C. Prins and W. Ramdane-Chérif, "A

genetic algorithm for the capacitated arc routing problem and

its extensions," Applications of Evolutionary Computing, pp.

473-483, 2001.
[31] J. MacQueen, "Some methods for classification and

analysis of multivariate observations," in Proceedings of the

fifth Berkeley Symposium on Mathematical Statistics and

Probability, 1967, pp. 281-297.
[32] M. R. Anderberg, "Cluster analysis for applications,"

Academic Press, New York, 1973.
[33] L. Bobrowski and J. C. Bezdek, "c-means clustering with

the l1 and l∞ norms," Systems, Man and Cybernetics, IEEE

Transactions on, vol. 21, pp. 545-554, 1991.
[34] S. S. Khan and A. Ahmad, "Cluster center initialization

algorithm for K-means clustering," Pattern Recognition Letters,

vol. 25, pp. 1293-1302, 2004.
[35] G. Dueck and T. Scheuer, "Threshold accepting: a general

purpose optimization algorithm appearing superior to simulated

annealing," Journal of Computational Physics, vol. 90, pp.

161-175, 1990.
[36] M. Polacek, R. F. Hartl, K. Doerner, and M. Reimann, "A

variable neighborhood search for the multi depot vehicle

routing problem with time windows," Journal of Heuristics, vol.

10, pp. 613-627, 2004.
[37] J. Luo, X. Li, M.-R. Chen, and H. Liu, “A novel hybrid

shuffled frog leaping algorithm for vehicle routing problem

with time windows,” Information Sciences, vol. 316, pp. 266–

292, 2015.

[38] L. Tan, F. Lin, and H. Wang, “Adaptive comprehensive

learning bacterial foraging optimization and its application on

vehicle routing problem with time windows,” Neurocomputing,

vol. 151, pp. 1208–1215, 2015.

[39] Z. Xiao and Z. Ming, “A method of workflow scheduling

based on colored petri nets,” Data & Knowledge Engineering,

vol. 70, no. 2, pp. 230–247, 2011.

[40] Z. Chen, M. Qiu, Z. Ming, L. T. Yang, and Y. Zhu,

“Clustering scheduling for hardware tasks in reconfigurable

computing systems,” Journal of Systems Architecture, vol. 59,

no. 10, pp. 1424–1432, 2013.

[41] J. Li, M. Qiu, J.-W. Niu, L. T. Yang, Y. Zhu, and Z. Ming,

“Thermal-aware task scheduling in 3d chip multiprocessor with

real-time constrained workloads,” ACM Transactions on

Embedded Computing Systems (TECS), vol. 12, no. 2, p. 24,

2013.
[42] Z.Zhu, J.Xiao, J.-Q.Li, F.Wang and Q.Zhang,“Global path

planning of wheeled robots using multi-objective memetic

algorithms,” Integrated Computer-Aided Engineering, vol. 22,

no. 4, pp. 387–404, 2015.

[43] A. Macwan, J. Vilela, G. Nejat, B. BenhabibA Multirobot

Path-Planning Strategy for Autonomous Wilderness Search and

Rescue,” Cybernetics, IEEE Transactions on, vol. 45(9):

1784-1797, Sept. 2015.

[44] H. Luo, J. Fang, and G. Q. Huang, “Real-time scheduling

for hybrid flowshop in ubiquitous manufacturing environment,”

Computers & Industrial Engineering, vol. 84, pp. 12–23, 2015.

[45] J. Li, M. Qiu, Z. Ming, G. Quan, X. Qin, and Z. Gu,

“Online optimization for scheduling preemptable tasks on iaas

cloud systems,” Journal of Parallel and Distributed Computing,

vol. 72, no. 5, pp. 666– 677, 2012.

[46] S. Nguyen, M. Zhang, M. Johnston and K. C. Tan,

“Automatic Programming via Iterated Local Search for

Dynamic Job Shop Scheduling,” Cybernetics, IEEE

Transactions on, 45(1): 1-14, Jan. 2015.

 14

Ke Tang (S‟05-M‟07-SM‟13) received

the B.Eng. degree from Huazhong

University of Science and Technology,

Wuhan, China, in 2002, and the Ph.D.

degree from Nanyang Technological

University, Singapore, in 2007,

respectively.

Since 2007, he has been with the

School of Computer Science and

Technology, University of Science and

Technology of China, where he is currently a Professor. He has

authored/co-authored more than 100 refereed publications. His

major research interests include evolutionary computation,

machine learning, and their real-world applications.

Dr. Tang is an Associate Editor of the IEEE Transactions on

Evolutionary Computation, IEEE Computational Intelligence

Magazine and Computational Optimization and Applications

(Springer), and served as a member of Editorial Boards for a

few other journals. He is a member of the IEEE Computational

Intelligence Society (CIS) Evolutionary Computation

Technical Committee and the IEEE CIS Emergent

Technologies Technical Committee. He is the recipient of the

Royal Society Newton Advanced Fellowship.

Juan Wang received her Ph.D. degree

from University of Science and

Technology of China, Hefei, China, in

2016. She is now an algorithm

engineer of a company in Shenzhen,

Guangdong, China.

Her research interests include

memetic algorithm and other

metaheuristics for solving capacitated

arc routing problems.

Xiaodong Li (M‟03-SM‟07) received

his B.Sc. degree from Xidian

University, Xi'an, China, and Ph.D.

degree in information science from

University of Otago, Dunedin, New

Zealand, respectively. Currently, he is

an Associate Professor at the School

of Computer Science and Information

Technology, RMIT University,

Melbourne, Australia. His research

interests include evolutionary

computation, neural networks, complex systems,

multiobjective optimization, and swarm intelligence. He serves

as an Associate Editor of the IEEE Transactions on

Evolutionary Computation, Swarm Intelligence (Springer), and

International Journal of Swarm Intelligence Research. He is a

founding member and currently a Vice-chair of IEEE CIS Task

Force on Swarm Intelligence, and a Vice-chair of IEEE Task

Force on Multi-modal Optimization, a former chair of IEEE

CIS Task Force on Large Scale Global Optimization. He was

the General

Chair of SEAL'08, a Program Co-Chair AI'09, and a

Program Co-Chair for IEEE CEC‟2012. He is the recipient of

2013 ACM SIGEVO Impact Award.

Xin Yao is a Chair Professor of

Computer Science and the Director of

CERCIA (the Centre of Excellence

for Research in Computational

Intelligence and Applications) at the

University of Birmingham, UK.

He is an IEEE Fellow and the

President (2014-15) of IEEE

Computational Intelligence Society

(CIS). His major research interests

include evolutionary computation and

ensemble learning. He published 200+ refereed international

journal papers. His papers won the 2001 IEEE Donald G. Fink

Prize Paper Award, 2015 and 2010 IEEE Transactions on

Evolutionary Computation Outstanding Paper Awards, 2010

BT Gordon Radley Award for Best Author of Innovation

(Finalist), 2011 IEEE Transactions on Neural Networks

Outstanding Paper Award, and many other best paper awards.

He received the prestigious Royal Society Wolfson Research

Merit Award in 2012 and the IEEE CIS Evolutionary

Computation Pioneer Award in 2013. He was the

Editor-in-Chief (2003-08) of IEEE Transactions on

Evolutionary Computation. He has published frequently on the

topic of capacitated arc routing problems (CARP) since his first

paper in 2006 (H. Handa, L. Chapman and Xin Yao, ``Robust

route optimisation for gritting/salting trucks: A CERCIA

experience,'' IEEE Computational Intelligence Magazine,

1(1):6-9, February 2006.).

