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Abstract—With the explosively increase of information and
products, recommender systems have played a more and more
important role in the recent years. Various recommendation
algorithms, such as content-based methods and collaborative
filtering methods, have been proposed. There are a number of
performance metrics for evaluating recommender systems, and
considering only the precision or diversity might be inappropri-
ate. However, to the best of our knowledge, no existing work has
considered recommendation with many objectives. In this paper,
we model a many-objective search-based recommender system
and adopt a recently proposed many-objective evolutionary
algorithm to optimize it. Experimental results on the Movielens
data set demonstrate that our algorithm performs better in terms
of Generational Distance (GD), Inverted Generational Distance
(IGD) and Hypervolume (HV) on most test cases.

I. INTRODUCTION

The last few years have witnessed explosive data which
is far beyond the users’ capability to extract the useful
information [1]. For example, electronic retailers, such as
Amazon, Alibaba, have a huge amount of products/items and
try to meet a large variety of users with different interests;
content providers, such Netflix, lastfm, and Douban, intend to
recommend huge amount of movies, songs, and books that
satisfy each user’s specific interest [2]. The dilemma between
the large amount of products and the relative low consuming
ability of the users has been a major challenge for these
companies. In order to deal with the dilemma, recommender
systems are proposed and become a hot topic in research
community[3], [4], [5]. Generally, recommender systems try
to provide personalized recommendation for all users with
various interests. Broadly speaking, recommender systems can
be categorized into two major classes: content-based methods
and collaborative filtering methods.

The content-based methods [6] try to create user profiles or
product profiles based on their natural attributes. For example,
a user profile might contain the age or gender of the user,
while a book profile might contain the price, writer, and
genre of the book. Since they have established the archive

for all users or products, making recommendations according
to the profile information seems to be direct by matching the
users and the products. Newly entered users or the inactive
users who have not contributed enough ratings. Improving
the recommendation results for new users and new items is a
challenging task, which is referred to as cold start [7].With the
collected profiles, the content-based methods can alleviate the
cold-start problem to some extent. Yet, the advantage comes
with the cost of collecting the information for creating the
profiles, which might not be trivial work since some domain-
specific knowledge might be needed.

The collaborative filtering methods, on the other hand,
provide the users with recommendation lists based on the
users’ behavior history [8], [9]. Here, a user’s behavior can be
his clicks, ratings, buying logs, or comments. The advantage
of this scheme is that the recommender system does not
bear the burden of collecting information for user profiles
and product profiles. Although when confronted with a new
user which does not provide enough behavior information,
the system might need more time to warm up before it
is able to provide a promising recommendation list for the
new user. This phenomenon is often referred to as the cold-
start problem. Generally speaking, there are two sub-classes
of collaborative filtering methods: the nearest-neighborhood-
based methods [10] and the model-based methods [6]. The
nearest-neighborhood-based methods build the system based
on the similarities between users and/or items according to the
obtained user-item ratings [10], [11], [12], [13]. The model-
based methods, on the other hand, perform the recommen-
dation task by mapping both the users and the items into a
low-dimensional latent factor space [6], [14]. Singular Value
Decomposition (SVD) is one popular technique for these
methods.

Recently, a series of hybrid methods are proposed to
combine the different classes/sub-classes of recommender
systems. Content-based Collaborative Filtering (CCF) [15]
combines the content-based approach and the collaborative



filtering approach by taking advantage of the rich contexts of
new topic recommendation and exploiting the long-tail users.
Factored Item Similarity Model (FISM) combines the nearest-
neighborhood-based method and the model-based method by
learning the similarities between items according to the latent
factors [9]. In addition to combining different methods, infor-
mation such as item usage context [16], expert opinion [17],
and social network information [18], can also be taken into
account during the recommendation.

It has been widely recognized that considering only the
precision of the recommender system might not be enough
for evaluating a recommender system [19], [20]. Other per-
formance metrics for recommender systems, such as diversity,
novelty, coverage, and serendipity, also need to be taken into
account [21], [16], [22]. The seemingly confliction between
different kinds of performance metrics make the recommen-
dation task a multi-objective optimization problem naturally
[20], [23]. There has been a number of works on multi-
objective optimization based recommender systems. Ribeiro et
al. [24] selected Pareto-efficient items according to multiple
recommender algorithms and tried to optimize the weighted
combination of multiple recommender systems using multi-
objective evolutionary algorithm. Zuo et al. [20] proposed
a personalized recommender system by optimizing the ac-
curacy and coverage of the recommendation lists for all
users. Agarwal et al. [25] considered both the clicks and the
post-click downstream utilities and proposed a multi-objective
programming approach based on a constrained optimization
framework to address the problem. Rodriguez et al. [26] also
introduced to consider multiple objectives in recommender
systems. However, similar to [25], the approach proposed in
[26] is a constrained optimization method.

Although there has been much related work on multi-
objective recommender systems, to the best of our knowledge,
no existing work has studied personalized recommendation
with many objectives (more than three objectives). In this pa-
per, we model top-N personalized recommendation as a many-
objective optimization problem and address the problem with a
recently proposed algorithm named Stochastic Ranking Algo-
rithm (SRA) [27]. The experimental results on the Movielens
data set demonstrate the effectiveness of our algorithm when
compared with three many-objective evolutionary algorithms.

The main contributions of this paper are listed as follows:
• A many-objective search based recommender system is

proposed based on performance metrics of recommender
systems.

• A recently proposed many-objective evolutionary algo-
rithm named Stochastic Ranking Algorithm (SRA) is
employed to tackle the search problem.

• The Stochastic Ranking Algorithm (SRA) is compared
with three popular many-objective evolutionary algo-
rithms on the Movielens data set. Experimental results
show that SRA performs better in terms of GD and IGD.

The rest of the paper is organized as follows: The many-
objective search-based recommender system is presented in
Section II. Section III describes our approach, which is based

on the Stochastic Ranking Algorithm (SRA). Section IV is
devoted to introduce the experimental studies. The last section
concludes this paper and points out some future research
directions.

II. MANY-OBJECTIVE SEARCH-BASED RECOMMENDER
SYSTEM

A. Many-objective Optimization
Without loss of generality, a minimization multi-objective

optimization problem can be stated as follows [28]:

minimize F(x) = (f1(x), f2(x), . . . , fm(x))T

subject to x ∈ Ω (1)

where x = (x1, x2, . . . , xn) is the decision vector, F: Ω→ Λ
is the objective vector, Ω is the (nonempty) decision space, Λ
is the objective space. m (m ≥ 2) is the number of objectives,
n is the number of decision variables. Usually, the objective
space Λ is a subset of Rm. Multi-objective problems with more
than 3 objectives are often called many-objective problems.

The Pareto dominance relation is critical in multi-objective
optimization, which is defined as follows:
Pareto dominance [29]: Given the objective vectors F(x),

F(y) ∈ Rm of two feasible solutions x, y ∈ Ωf , x is said
to dominate y (denoted as x ≺ y) if and only if ∀i ∈
{1, 2, ...,m}, fi(x) ≤ fi(y) and ∃j ∈ {1, 2, ...,m}, fj(x) <
fj(y) .
Pareto optimal solution: A solution x∗ ∈ Ωf is said to

be a Pareto optimal solution if and only if @x ∈ Ωf , x ≺ x∗.
Pareto set: The Pareto set PS consists of all the Pareto

optimal solutions, denoted as PS = {x ∈ Ωf |@y ∈ Ωf , y ≺
x}.
Pareto Front: The image of the Pareto set in the objective

space is called the Pareto Front (PF).
The goal of multi-objective optimization is to obtain an

approximation solution set A of the problem which satisfies
two sub-goals: 1) A is pushed towards the Pareto front as close
as possible. 2) The spread of objective vectors of the solutions
in A is as diverse as possible.

B. Performance Metrics for Recommender Systems
There has been a series of work on the performance evalu-

ation of recommender systems [30], [23], [31]. Maksai et al.
categorized the performance metrics into five different groups
[23], which are described as follows:

1) Accuracy/Error metrics indicate the precision of the rec-
ommendations or predictions in terms of users’ interest.

2) Diversity metrics measure the dissimilarities between
items in the recommendation list of one user (”intra-
list” diversity), or the lists of different users (”extra-list”
diversity).

3) Novelty metrics measure to what extent can a recom-
mender system provide new items to a user.

4) Coverage measures the range that a recommendation list
can cover.

5) Serendipity shows the quality of recommending both
interesting and new items to the users.



C. Many-objective Search-based Recommender System

In this paper, we study the top-N recommendation prob-
lem described as follows. Given a set of users denoted as
U = {u1, u2, . . . , unu

}, a set of items denoted as O =
{o1, o2, . . . , ono}, a nu ∗ no rating matrix R where each row
corresponds to a user’s ratings to all items and each column
corresponds to an item’s ratings from all users (most elements
of the matrix are un-rated, denoted as NaN), and recommen-
dation list length N , a recommender algorithm is supposed to
provide nu recommendation lists. Each list corresponds to a
user and consists of N items recommended to the user. The
pseudocode of the main framework of many-objective search-
based recommender system is shown in Algorithm 1.

Algorithm 1: Main Framework of Many-objective Search-
based Recommender System

input : user set U = {u1, u2, . . . , unu
},

object set O = {o1, o2, . . . , ono
},

nu ∗ no rating matrix R,
recommendation list length N
population size popSize

output: nu ∗N recommendation matrix A

1 Invoke some rating estimation methods to predict the
missing ratings and complete the rating matrix: R̂← R

2 Initialize population P with popSize solutions
3 Evaluate the solutions using matrix R̂
4 Call a many-objective optimization algorithm to search

for better solutions

As shown in the pseudocode, we tackle the recommendation
task in a two-step manner as [20]. First, some rating prediction
method is invoked to predict the missing ratings and complete
the rating matrix: R̂← R. In this paper, the ProbS algorithm
[13] is introduced to tackle the prediction task. Then, with
the full rating matrix, it is possible to compute the values
of the performance metrics. As a start-up, we choose one
metric from each of the metric groups introduced above.
Thus, the goal of recommendation is to maximize the F1
value, maximize the diversity metric value, maximize the
novelty metric value, maximize the coverage metric value,
and maximize the serendipity metric value. Those metrics are
defined as follows:

1) Accuracy/Error: As shown in Table I, an item falls into
one of the four categories. Given the recommendation list
LN (ui) for the i-th user ui, the precision P , recall R, and
the F1 value are defined as [5], [32]:

P (LN (ui)) =
#tp

#tp + #fp
(2)

R(LN (ui)) =
#tp

#tp + #fn
(3)

F1(LN (ui)) =
2P (LN (ui))R(LN (ui))

P (LN (ui)) + R(LN (ui))
(4)

The average F1 value for the recommendation lists of all
users are used as the first objective f1.

TABLE I
FOUR CATEGORIES OF POSSIBLE RESULTS WHEN AN ITEM IS

RECOMMENDED OR NOT RECOMMENDED TO A USER

Recommended Not recommended
Interested true-positive (tp) false-negative (fn)

Not interested false-positive (fp) true-negative (tn)

2) Diversity: Zhou et al. proposed a diversity metric called
personalization [12], which is defined as:

h(LN (ui), LN (uj)) = 1− q(LN (ui), LN (uj))

N
(5)

where q(LN (ui), LN (uj)) is defined as the number of dif-
ferent items in the recommendation lists for the i-th and
j-th user. The average h(LN (ui), LN (uj)) for all pairs of
recommendation lists is used as the second objective f2.

3) Novelty: The degree of an item oi (denoted as di) is
the times it has been rated/consumed, i.e. the number of non-
NaN elements in the i-th column of R. Thus the chance that a
random user has rated the item is di/nu. The self-information
[12] of the item is given by Ii,

Ii = log2

(
nu
di

)
(6)

where di is the degree of the item. The mean self-information
of all items in the top-N list of a user is used to measure the
self-information of the list. The average self-information of all
users’ recommendation lists is used as the third objective f3.

4) Coverage: The coverage-at-top-N is defined as the num-
ber of different items in all users’ top N lists [22]:

coverage-in-top-N =

∣∣∣∣ ⋃
ui∈U

LN (ui)

∣∣∣∣ (7)

In this paper, we divide coverage-in-top-N with the number
of items and the number of users and use this value as the
forth objective f4.

5) Serendipity: In order to measure the serendipity of a
recommendation list, we use SRDP introduced in [21]. A rec-
ommended item is considered unexpected if it is recommended
to the user by a primitive recommendation model PM. Thus
the unexpected set is defined as

UNEXP (uj) = LN (uj) \ PM(uj) (8)

where LN (uj) is the recommendation list for the j-th user
given by a recommender system (the targe algorithm to be
measured), PM(uj) is the recommendation list given by the
primitive recommendation model PM. Only the useful items of
the unexpected recommendations are effective. The usefulness
of the i-th item oi to the j-th user uj is defined as :

u(oi, uj) =

{
1 if R(i, j) > th
0 otherwise

where th is the threshold of the user’s interest. Recommending
the i-th item oi to the j-th user uj is said to be effective if the



predicted rating is above the threshold. Otherwise, the item
is useless to the user. In our implementation, th is set to 0.6.
The serendipity metric [21] for the recommendation list of the
j-th user is defined as follows:

SRDP (LN (uj)) =

∑
o∈UNEXP (uj)

u(o, uj)

N
(9)

The mean SRDP value of the recommendation lists for all the
users is used as the fifth objective f5.

III. SEARCH BASED RECOMMENDER SYSTEM USING SRA

A. SRA Many-objective optimization

Stochastic Ranking Algorithm (SRA) [27] is a many-
objective evolutionary algorithm based on multiple indicators
and aggregation functions. It uses stochastic ranking technique
[33] to balance the search bias of different indicators and
maintains an archive based on weight vectors. The pseudocode
of the main loop of SRA is shown in Algorithm 2. First,
the population and the archive are initialized using ramdom
solutions. The weight vectors are initialized to representing
search directions. During each iteration, an offspring popula-
tion is generated using the population and archive and then
merged with the parent population. After that, the Stochastic
Ranking based Enviromental Selection (SRES) is invoked to
select popSize solutions from 2 ∗ popSize solutions, where
the stochasting ranking technique is used to rank solutions
according to multiple indicators. At the end of each iteration,
the Archive Update Procedure (AUP) is called to update the
archive using the penalty-based boundary intersection (PBI)
[34] fitness function.

Algorithm 2: Main Loop of SRA
input : a many-objective problem
output: approximation set Aout

1 Initialize population, archive, and input weight vectors.
2 while t < MaxGen do
3 Create a new population Qt from At and Pt
4 Evaluate the new generation Qt

5 Merge the current population and the offspring
population: Ut ← Pt ∪Qt

6 Compute the indicator values I1(ui) and I2(ui) for all
ui ∈ Ut

7 Stochastic ranking based environmental selection:
Pt+1 ← SRES(Ut)

8 Update archive using selected population : At+1 ←
AUP(Pt+1)

9 t← t + 1
10 end
11 Return the set Aout which consists of the non-dominated

solutions of AMaxGen

B. Solution Representation

Here the many-objective optimization algorithm treats the
problem as a black-box function. The solution is denoted as a
matrix A = {ai,j} (1 ≤ ai,j ≤ no), where the ai,j is the id of
the j-th object recommended to the i-th user ui, 1 ≤ i ≤ nu,
1 ≤ j ≤ N , . The i-th row in A corresponds to the top-N
recommended objects for the i-th user ui, 1 ≤ i ≤ nu. In
our implementation, the matrix is transformed into a integer
vector with nu ∗N values.

C. Solution Variation

Since the solution is a integer vector with nu∗N values, we
use classic one point crossover operator and bit flip mutation
operator from the jMetal package [35] to create new solutions.
During one point crossover, two parent solutions are selected
and one crossover point is randomly chosen. Then the two
parts of the two parent solutions are interchanged to create
a new solution. For bit flip mutation operator, each value of
the decision variable is randomly changed to another feasible
integer value with a mutation rate pm.

IV. EXPERIMENTAL STUDIES

A. Data Set

In order to test the effectiveness of the stochas-
tic ranking algorithm, the Movielens benchmark data set
(http://www.grouplens.org/) [36] is studied. According to [20],
we divide the users into four clusters based on the cosine
distance of users using the k-means clustering algorithm.
Thus the data set results in four sub-problems, denoted as
SBRS1p5d—SBRS4p5d, including 200, 258, 227, 258 users
respectively.

B. Peer Algorithms

In order to test the algorithm, the following three many-
objective evolutionary algorithms (implemented in the jMetal
framework [35] on a 4-core 2.50 GHz Intel Core i5-3210M
CPU with 3.7 Gb RAM) are considered:

1) NSGA-III [37] is a hybrid algorithm based on domi-
nance and decomposition. The dominance-based sorting
pushes the population towards the Pareto front, while
the weight vector based niching maintains diversity of
the population. It has been shown that the algorithm
performs well on many-objective benchmark problems
as well as real-world test problems [37].

2) MOEA/D [34] is a popular decomposition based algo-
rithm. In MOEA/D, a many-objective problem is de-
composed into a series of single-objective sub-problems.
Since it adopts the neighborhood definition of sub-
problems, the convergence of the algorithm is quite
promising. The diversity is maintained using the weight
vector based search directions.

3) IBEA [38] is an many-objective evolutionary algorithm
based on the Iε+ indicator. It is the first indicator-based
algorithm and performs well in terms of convergence
quality. IBEA has been tested on various benchmark
problems [39].



C. Parameter Settings

The general and algorithm-specific parameter settings are
summarized as follows:

1) Population size. The population size for the algorithm
(MOEA/D, NSGA-III, SRA, IBEA) is set to 70 for
computational efficiency.

2) Reproduction operators. The one point crossover opera-
tor and bit flip mutation operator are used for reproduc-
ing offspring solutions. The mutation probability is set
to 0.1, and the crossover probability is set to 1.0.

3) The neighborhood size is set to 20 and the maximum
replacement number is set to 2 for MOEA/D and SRA
during the Archive Update Procedure (UAP).

4) Termination criterion. All algorithms are allowed for
a maximum of 35,000 fitness evaluations for all the
problem instances.

5) Number of runs. For all the problems instances, all the
algorithms are repeated 20 times independently.

6) Statistical test. In order to test the difference of algo-
rithms, the Wilcoxon rank sum test [40] (0.05 signifi-
cance level) is applied for analysis.

7) The parameter pc in SRA is set to [0.4, 0.6] based on
some preliminary experimental results in [27].

8) The recommendation list length is set to 10.

D. Performance Metrics

In order to compare SRA with other many-objective evo-
lutionary algorithms, the following performance metrics are
chosen for comparison.
• Inverted Generational Distance (IGD) [41], [42] is a

distance-based metric, which is defined as follows:

IGD(A,PF
′
) =

1

|PF ′ |
(∑|PF

′
|

i=1
distance(pi, A)p

) 1
p

(10)

where A ={a1, a2, . . . , a|A|} is the output approximation
set of a many-objective evolutionary algorithm, PF

′
=

{p1,p2, ...,p|PF ′ |} is a subset of the true Pareto front.
In our implementation, since the true Pareto front is
unknown, the non-dominated solutions from all runs of
all algorithms are merged into a solution set and used as
PF

′
. The distance between a solution p and a solution

set A is defined as follows:

distance(p, A) = min
a∈A

distance(p,F(a)) (11)

In our experiment, p in Equation (10) is set to 1 and the
Euclidean distance is used to compute distance between
solutions. The IGD metric can show the quality of the
solution set in terms of both convergence and diversity.
A smaller IGD value indicates a better solution set.

• Generational Distance (GD) [43] is also a distance-based
metric for many-objective optimization. It is defined as
follows:

GD =
1

|A|
(∑|A|

i=1
distance(F(ai), PF

′
)p
) 1

p

(12)

where A and PF
′

are described above. Roughly speak-
ing, GD indicates how good the convergence quality of
approximation set is.

• Hypervolume (HV) is defined as the volume of solutions
that solution set dominates [44], [45]. Given a reference
point z† and an approximation set A, HV (z†, A) is
defined as follows:

HV (z†, A) = L(
⋃

a∈A
{b ∈ Λ|a ≺ b ≺ z†) (13)

where L is the Lebesgue measure, z† is the reference
point in the objective space. It measures both convergence
and diversity of an approximation set. The higher the
hypervolume value is, the better the approximation set
is. In our experiments, the population is first normalized
using the 1.0 ∗ znadir 1. After that, the hypervolume is
computed using (1.0, . . . , 1.0)T as the reference point.

E. Experimental Results

First, the Wilcoxon rank sum test (0.05 significance level)
is shown in Table II. Each element in the table shows the
pairwise win-tie-loss counts of rows against columns. As the
table shows, SRA performs better than the peer algorithm
generally.

TABLE II
THE STATISTICAL TEST RESULTS ON SBRS1P5D-SBRS4P10D IN TERMS

OF GD, IGD, AND HV. EACH ELEMENT IN THE TABLE SHOWS THE
PAIRWISE WIN-TIE-LOSS COUNTS OF ROWS AGAINST COLUMNS.

GD MOEA/D IBEA SRA
NSGAIII 0-0-4 0-0-4 0-0-4
MOEA/D 0-0-4 0-1-3
IBEA 2-2-0
IGD MOEA/D IBEA SRA
NSGAIII 0-0-4 4-0-0 0-0-4
MOEA/D 4-0-0 0-0-4
IBEA 0-0-4
HV MOEA/D IBEA SRA
NSGAIII 4-0-0 4-0-0 0-0-4
MOEA/D 0-0-4 0-0-4
IBEA 0-0-4

In order to provide more details, the performance metric
values are shown in Tables III (GD), IV (IGD), and V (HV).
The best and second best results are highlighted in gray and
light gray. As the table demonstrates, SRA always ranks 1st
or 2nd place in terms of both convergence (GD, IGD, HV)
and diversity (IGD, HV) on most test cases of the Movielens
data set.

V. CONCLUSIONS AND FUTURE WORK

In this paper, we model a many-objective search-based
recommender system and adopt a recently proposed many-
objective evolutionary algorithm to optimize it. Experimental
results on the Movielens data set demonstrate that our algo-
rithm performs better in terms of GD, IGD and HV on most

1znadir is the nadir point which consists of the worst values for all objective
dimensions in the Pareto front.



TABLE III
GD. MEAN (IN LARGE FONT SIZE) AND STANDARD DEVIATION (IN SMALL FONT SIZE)

SRA NSGA-III MOEA/D IBEA
SBRS1p5d 3.08e− 038.4e−04 1.45e− 021.7e−03 4.86e− 034.8e−04 2.23e− 035.9e−04

SBRS2p5d 2.84e− 037.8e−04 1.30e− 021.2e−03 3.75e− 031.6e−03 2.50e− 034.8e−04

SBRS3p5d 2.63e− 037.3e−04 1.53e− 021.2e−03 4.26e− 035.3e−04 2.07e− 034.7e−04

SBRS4p5d 2.58e− 038.9e−04 1.38e− 021.5e−03 4.03e− 031.0e−03 2.17e− 035.1e−04

TABLE IV
IGD. MEAN (IN LARGE FONT SIZE) AND STANDARD DEVIATION (IN SMALL FONT SIZE)

SRA NSGA-III MOEA/D IBEA
SBRS1p5d 4.41e− 024.8e−03 6.65e− 017.1e−02 2.24e− 011.1e−02 1.35e+ 001.0e−02

SBRS2p5d 2.97e− 022.7e−03 7.02e− 015.5e−02 1.97e− 012.4e−02 1.49e+ 001.4e−02

SBRS3p5d 3.89e− 024.8e−03 6.53e− 015.7e−02 1.92e− 011.2e−02 1.37e+ 001.2e−02

SBRS4p5d 3.96e− 025.9e−03 7.32e− 015.2e−02 2.14e− 012.5e−02 1.40e+ 001.6e−02

TABLE V
HV. MEAN (IN LARGE FONT SIZE) AND STANDARD DEVIATION (IN SMALL FONT SIZE)

SRA NSGA-III MOEA/D IBEA
SBRS1p5d 3.00e− 011.5e−02 1.88e− 011.7e−02 1.61e− 025.9e−03 6.68e− 026.9e−03

SBRS2p5d 3.05e− 011.1e−02 2.23e− 011.2e−02 9.60e− 031.1e−02 1.06e− 012.5e−02

SBRS3p5d 2.97e− 011.4e−02 1.87e− 011.1e−02 1.52e− 024.9e−03 6.86e− 027.1e−03

SBRS4p5d 3.35e− 011.6e−02 2.37e− 011.4e−02 7.80e− 037.0e−03 8.89e− 021.4e−02

test cases. However, as a preliminary study, there are many
potential future directions:

1) Testing the algorithms on larger benchmark data sets
industial applications.

2) Comparing the algorithm with the single-objective algo-
rithms from the recommender system area in terms of
recommender system specific performance metrics.

3) Analyzing the parameter sensitivity of the algorithm.
4) Considering more performance metrics of recommender

systems as optimization objectives in our framework
may give us more thorough understanding of how good
a recommendation list is.

5) Trying to optimize the problem of filling scoring matrix.
6) Investigating how to use mutli-criteria decision making

methods to select a final recommendation list from the
solution set.
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