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Abstract 

 

Background: Management of hypertension can lead to significant reductions in blood pressure, thereby reducing 

the risk of cardiovascular disease (CVD). Modelling the course of CVD is not without complications, and 

uncertainty surrounding the structure of a model will almost always arise once a choice of a model structure is 

defined. 

Objective: To provide a practical illustration of the impact on the results of cost-effectiveness of changing or 

adapting model structures in a previously published cost utility analysis of a primary care intervention for the 

management of hypertension (TASMIN-SR).  

Methods: Case study assessing structural uncertainty arising from model structure and from the exclusion of 

secondary events. Four alternative model structures were implemented. Long-term cost-effectiveness was 

estimated and the results compared to those from the TASMIN-SR model. 

Results: The main cost-effectiveness results obtained in the TASMIN-SR study did not change with the 

implementation of alternative model structures. Choice of model type was limited to a cohort Markov model 

and, due to lack of epidemiological data, only Model 4 captured structural uncertainty arising from the exclusion 

of secondary events in the case study model. 

Conclusion: The results of this study indicate that main conclusions drawn from the TASMIN-SR model of 

cost-effectiveness were robust to changes in model structure and the inclusion of secondary events. Even though 

one of the models produced results that were different to those of TASMIN-SR, the fact that the main 

conclusions were identical suggests that a more parsimonious model may have sufficed.  

 

Words: 243 
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Introduction  

 

High blood pressure (hypertension, defined as blood pressure (BP) persistently (140/90mmHg) is one of the 

most important but preventable causes of premature morbidity and mortality in the UK and worldwide (1-3). 

Hypertension is a major risk factor for ischaemic and haemorrhagic stroke, myocardial infarction (MI), heart 

failure (HF), chronic kidney disease (CKD), cognitive decline and premature death. It has been estimated that in 

England, a 2 mmHg reduction in average systolic BP for 40-69 year olds could save 1,500-2,000 lives per year 

(4). One of the most common interventions in primary care is the management of hypertension. Self-

management of hypertension, in which individuals monitor their own BP and adjust their own medication, has 

been shown to lead to significantly lower BP in hypertension, including individuals with higher cardiovascular 

risk (5-7).  

Economic evaluations can be undertaken alongside randomised controlled trials (RCTs) where costs and health 

outcomes are measured. The primary outcome of RCTs in hypertension is often a change in BP. However, a 

change in BP corresponds to an intermediate outcome, where the final outcome of interest in this case is the risk 

of CVD. As RCTs rarely follow patients over the long-term decision-analytic modelling (DAM) provides a 

vehicle to extrapolate the impact of a change in BP on the risk of CVD events in the long-term. Modelling the 

course of CVD can be challenging requiring CVD risk factors (smoking, cholesterol, and diabetes), interactions 

among the risk factors, adverse events and the resulting health states (e.g. stroke sequelae and angina) to be 

considered.  

 

The TASMIN-SR (6) trial aimed to determine the effect of self-monitoring with self-titration (self-management) 

of antihypertensive medication on systolic BP among hypertensive patients with suboptimal BP control and pre-

existing CVD, diabetes mellitus and CKD compared to usual care. An economic evaluation was undertaken to 

assess the cost-effectiveness of the self-management intervention compared with usual care (7). The main 

results indicated that self-management of BP in high risk patients with poorly controlled hypertension not only 

reduced BP compared to usual care, but also represented a cost-effective use of healthcare resources.  

The aim of this study is to assess structural uncertainty in the TASMIN-SR model-based cost-effectiveness 

analysis (7) and to provide practical illustration of the impact, on results of cost-effectiveness, of changing or 

adapting model structures in a model-based economic evaluation on the primary prevention of CVD. 
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Structural uncertainty  

We consider structural uncertainty as uncertainty associated with all aspects of model structure, i.e., health states 

and relationships between health states. This is in contrast to parameter uncertainty, which is very much focused 

on the parameters used in a model and their uncertainty. Structural uncertainty reflects the extent to which a 

given model differs from the real system it is intended to reflect (8, 9), and will almost always arise once a 

choice of model structure or choice of relationships between inputs and outputs is defined within the model 

development process (10). 

Differences in model structure are dependent on the importance given to various aspects of the process being 

modelled, allowing in some instances for model simplifications. In some cases, these originate when data are not 

available, although their inclusion could potentially still be relevant for the analysis.  

The nature of models being a simplification of reality means that many assumptions need to be adopted during 

the model building process (10-12). This can potentially lead to a wide variation in model predictions with 

potential impact on funding decisions (13).  

Various alternative statistical methods have been proposed to address the impact of structural uncertainty on the 

results of cost-effectiveness (8, 10, 13-23) whilst some other authors have provided examples on how to 

implement some of these methods in different clinical areas (24-26). However, it has been recognised that 

methods for quantifying structural uncertainty are less well described if compared to methods for characterising 

parametric or methodological uncertainty (8, 10, 13, 16). A main challenge in addressing structural uncertainty 

is posed by the many issues that have been identified as ‘structural uncertainty’ making it a complex task (which 

may not even be cost-effective) to address properly (27).  

Previous studies (16, 28-30) indicate that even though elements pertaining to structural uncertainty are 

occasionally considered, the assessment of structural uncertainty is not common practice and most modelling 

tends to omit testing for structural uncertainty. However, it is essential to assess the extent to which model 

predictions are influenced by such choices made within the model development process (28).  

Challenges posed by the assessment of structural uncertainty might be overcome if additional research is 

undertaken on an experimental basis. Case studies aimed at measuring the impact of changing or adapting 

chosen model structures on previous results of cost-effectiveness could provide insightful evidence of how 
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much results would be altered when alternative model structures are implemented. This would also provide 

evidence of what other elements, besides model structure, may be critical in affecting results of cost-

effectiveness 

 

Methods 

 

Taking the TASMIN-SR model as the case study, the research methods of this study are outlined as follows: i) 

description of the TASMIN-SR model; ii) alternative model structures to TASMIN-SR; iii) definition and 

implementation of changes to the structure of the TASMIN-SR model; iv) inclusion of secondary events in the 

TASMIN-SR model; and v) identification of alternative model inputs; and results.  

 

i) Description of the TASMIN-SR model  

 

A detailed description of the original Markov model can be found elsewhere (7). Briefly, the economic 

evaluation consisted of a model-based cost-utility analysis to assess the long-term cost-effectiveness of the self-

management intervention in a ‘high risk’ patient population compared with usual care, using a Markov model to 

extrapolate the results of the TASMIN-SR trial (6) given in terms of BP to the long-term risk of cardiovascular 

endpoints. The study considered a cohort of 70 year old patients (39% female) with sub-optimal hypertension 

(BP>= 130/80 mmHg at baseline), combined with a history of stroke, diabetes, CHD, and CKD. The model was 

run over a lifetime time horizon using a six-month time cycle, with results presented from a UK National Health 

Service (NHS) and Personal Social Services (PSS) perspective.  

The structure of the TASMIN-SR model is shown in Figure 1. Patients start in an initial ‘HR’ or high risk health 

state representing individuals with hypertension and a history of stroke, CHD, diabetes and CKD. The model 

simulates the lifetime of these patients until any of three possible events occur (stroke, myocardial infarction 

(MI) and unstable angina (UA)) or the patient dies from other causes. Individuals that survive an acute phase in 

any of the health states progress into a post event or chronic phase for that condition until death, with no 

recurrences of cardiovascular events being possible. A lower quality of life was permanently applied until death 

in all chronic health states.  
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The CVD history of patients entering the model was informed by the TASMIN-SR (6) trial data. Transition 

probabilities of suffering a stroke, MI, or UA were obtained from the literature for each of the high risk 

conditions. Age-related risk reductions from treatment for MI, UA, and stroke were estimated using trial based 

systolic BP reductions at 6 and 12 months (Appendix 1 Table 1). Resource use and costs were obtained from 

trial data and published studies (Appendix 1 Table 2).  

 

ii) Alternative model structures  

 

Structural uncertainty was addressed here by assessing issues such as the adequacy of the type of model used 

(Markov), the structure of the model (health states and transition probabilities) that translates into plausible 

alternative model structures, and data availability to inform input parameters, for example the risk of secondary 

events.  

A systematic review was used to inform plausible alternative model structures (30). The review identified 

model-based studies of interventions aimed at lowering the BP of patients with hypertension and at risk of CVD, 

where the management of hypertension was part of a primary prevention strategy (30). The aim of the review 

was to assess compliance of model-based economic evaluations to DAM guidelines (30). The review identified 

13 model-based economic evaluations from the literature that were used to inform the changes implemented to 

the TASMIN-SR model (30). Information on the inclusion or exclusion of potentially relevant comparators, type 

of model used, health states included, recurrence of events, choice of covariate effects used in the transition 

probabilities, and the inclusion or exclusion of any other assumption(s) pertaining to structural uncertainty were 

extracted (Appendix 1 Table 3).  

All 13 included studies used Markov models but only two justified their use. Kourlaba (31) justified the use of a 

Markov model in their own study by saying that it is ‘a conventional model that describes restricted transition 

probabilities between important health states’ (p.87). Kaambwa (5) indicated that ‘the Markov model overcame 

limitations associated with within-trial analyses’ (p.1527). In the TASMIN-SR (7) study, it was stated that 

‘arguably, a more complex model such as individual patient level simulation could be more appropriate’ (p.9) 

by incorporating patients' histories more efficiently. The use of Markov models can overcome limitations 

associated with within-trial analyses, specifically by allowing the modelling of effects and costs of long-term 

events and the assessment of the long term cost-effectiveness beyond the trial period (32). Even though 
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individual patient level simulation models have long been praised for their flexibility and ability to record 

patient attributes (33), because cardiovascular diseases are chronic with recurring events and often result in 

health states with persistently reduced quality of life, the use of a Markov model is often preferred as a more 

parsimonious approach (34, 35). 

The complexity of the model structures used varied, and this was due to the different approaches to the inclusion 

of the acute or post-event health states modelled. Model structures were most frequently a reflection of the 

course and history of CVD events or disease progression. The most common initial state was disease-free and 

the most common acute states modelled were stroke and MI followed by angina, heart failure and CVD. Few 

studies modelled only a single health state to describe an acute cardiovascular event (36-38). Some studies 

modelled additional states such as congestive HF (39), coronary artery disease (40), renal failure (41) or 

peripheral artery disease (42). Absorbing states consisted of death and non-CVD death. Some authors 

acknowledged they had excluded states (40, 41) or combinations of health states (HF and stroke) (43) due to 

data limitations. Compared to the TASMIN-SR model, the review identified a variety of model structures 

ranging from a simplistic (single CVD morbidity) (37, 38, 44) to more complex approaches (four states 

including stroke, MI, HF, angina) (39, 42, 43). 

The risk of secondary events was modelled in seven (36-40, 42, 43) of the studies reviewed. It could be argued 

that some of these studies adopted assumptions which would add extra uncertainty to the results. These included 

assuming that the risk of secondary events was equal to the risk of a first non-fatal event (38), assuming that the 

patient with a second event will be in a health state worse than the state prior to the event (43), or using expert 

opinion to inform risks of secondary events (37). Lack of epidemiological data was acknowledged as the main 

reason for the exclusion of secondary events by some authors (5, 44). The TASMIN-SR model assumed no 

recurrence of CV events due to the unavailability of data describing secondary events for a high risk population. 

The choice of modelling approach should be considered as part of the investigation into the impact of structural 

uncertainty. However in this study, based on the findings of this review, only the Markov model structure was 

considered.  

 

iii) Definition and implementation of changes to the structure of the TASMIN-SR model 
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Alternative Markov model structures were primarily identified based on the findings of the systematic review. 

Validation of the adequacy of this type of model over competing structures such as decision trees, DES or 

individual sampling model was checked using a framework to select an appropriate model type (34). The 

validation check indicated that Markov was just the right type of model, considering that estimating interactions 

between individuals was not necessary whilst modelling health states was important (patient pathways would 

not be adequately represented by probability trees) and we did not require an excessive number of states 

(excluding the option of individual sampling model).  

Alternative model structures were labelled Model 1 through Model 3 and were developed by varying the 

number of the health states used from a simplistic structure to one of increased complexity (Figure 2).  

Model 1 uses a simplified approximation of the TASMIN-SR model structure. It was informed by the study of 

Stevanovic (38) and consists of a single CVD state with progression to a chronic state (Figure 2). Following 

NICE Statin guidelines (45) it was assumed that CVD is a combined state consisting of CHD (MI and UA) and 

stroke. Assumptions were adopted to estimate transition probabilities, utilities, and costs due to lack of data in 

the literature to inform a single CVD health state (Table 1). Parameters for the CVD state correspond to a 

weighted average of input parameters used in the case study model for the states stroke, MI and UA (Table 1).  

Model 2 applied the assumption that if the costs and utilities for two health states are the same, then it may not 

be necessary to distinguish between those two states to estimate lifetime costs and effectiveness (Figure 2) (20). 

In the TASMIN-SR model, treatment effects and the long-term costs and utilities for states MI and UA were 

assumed to be the same due to lack of data on UA (Table 1). Under these circumstances, it may not be necessary 

to include a state UA. Model 2 reflects a restricted version of the TASMIN-SR model consisting of two health 

states Stroke and MI. The review identified studies using a model structure consisting of two states, named 

stroke and a MI (31, 46) or stroke and CHD (47). We implemented Model 2 consisting of health states stroke 

and MI with progression to a chronic phase for individuals who survive (Figure 2 and Table 1).  

Model 3 adopted an expanded structure that was informed by the structure of the most complex models (39, 42, 

43), using an increased number of health states (Table 1). In Model 3, high risk patients can move to one of a 

number of primary CVD events, MI, stroke, HF, UA and transient ischemic attack (TIA) or dead from CVD or 

other causes. Individuals that survive an acute CVD phase naturally progress to a chronic phase where quality of 

life is lower and where they remain until death. 
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iv) Inclusion of secondary events in the TASMIN-SR model  

 

TASMIN-SR did not consider recurrence of cardiovascular events due to the unavailability of suitable 

epidemiological data to reflect the transition of elderly and high risk patients after a primary cardiovascular 

event. After carefully reviewing sources of data and literature, including relevant NICE guidelines, no additional 

suitable data were identified. Therefore in this study assumptions based on expert clinical advice were adopted. 

In Model 4, individuals that survive a primary acute event can either move into a chronic post event phase 

(asymptomatic) or may experience a recurrent cardiovascular event one year after the first event. In Model 4 we 

assume that patients will experience only one cardiovascular event per year and following a primary event, 

patients may experience a second event one year after the first event with the same probability as for the first 

event. Transitions from a more severe health state (e.g. stroke) to a less severe state (e.g. unstable angina) are 

omitted from the model because such transitions would imply lower costs and improvements in quality of life 

that may not reflect clinical reality (Figure 1 and Table 1) (43). 

 

v) Identification of alternative model input parameters and analysis  

 

Information from the literature was sought to populate all input parameters for models 1 to 4 (Table 1) for a UK 

setting. When information on transition probabilities or age-related relative risks was not readily available, 

figures were estimated using a weighted average based on the distribution of patients to primary CVD events 

(48). Costs were derived from a combination of standard unit costs (49, 50) and previously published literature 

and models (48, 50), and were adjusted using the Hospital and Community Health Service index to the price 

year of 2014/15 (49). The acute and chronic cost of CVD were estimated using a weighted average based on the 

distribution of patients to primary CVD events (48). The probabilities of death due to CV events within a year of 

the event are reported in Table 1 and were applied to the first year after an event (first two cycles in the model). 

Life tables were used to determine the overall mortality for each model dependent on age and gender (51). Risks 

of death following a second event and utility values following a second event used in Model 4 were taken from 

the literature (Table 1). 

A cost-utility analysis was undertaken for all models to calculate the cost per quality-adjusted life year (QALY) 

gained. Results from each alternative model specification are presented as scenario analyses. Probabilistic 
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sensitivity analysis (PSA) was conducted to assess parameter uncertainty. The PSA was run with 10,000 Monte 

Carlo simulations allowing cost-effectiveness planes (CEP) and cost-effectiveness acceptability curves to be 

constructed to estimate the probability of self-management being cost effective at different willingness-to-pay 

thresholds.  

Additional sensitivity analyses (SA) were conducted to assess uncertainty in the results of each model 

(TASMIN-SR and Model 1-4). Deterministic sensitivity analysis was undertaken around key parameters and 

assumptions. All cost variables were increased or decreased simultaneously by 200% and 50% respectively. The 

time horizon for each model was varied from 30 years (lifetime) to 10, 5, 3, 2 and 1 year. In addition, the impact 

of doubling or halving the probabilities of having a second cardiovascular event was tested in Model 4.  

We present the impact of structural uncertainty in terms of the impact on the cost-effectiveness results of a 

model and the expected value of perfect information (EVPI). Including different parameters in the model can be 

expected to alter the extent of uncertainty captured in the EVPI calculation. Because the models have different 

parameter sets, comparisons of expected value of partial perfect information would not be helpful. 

 

Results  

 

The main cost-effectiveness results obtained in the TASMIN-SR study were found to be robust to changes in 

model structure (Table 2) and to the inclusion of secondary events. Self-management of BP remained dominant 

(more effective and cheaper than usual care) for all models.  

The highest QALY outcomes for both interventions were found by implementing Model 2 (restricted version). 

Higher incremental QALYs were found for Models 3 and 4 between self-management and usual care. 

Differences found between incremental QALYs for TASMIN-SR and Models 2 and 3 were marginal (0.0001 

and 0.0002 respectively) (Table 2).  

The CEP (Figure 2) shows the results from the Monte Carlo simulation for 10,000 replications. All the results 

were in the north-east and south-east quadrants indicating that self-management was always more effective but 

may be more or less costly. The cost-effectiveness acceptability curves (CEAC) shown in Figure 3 were derived 

from the joint density of incremental costs and incremental QALYs for the self-management of BP. Each CEAC 

presents the probability that the self-management intervention is cost-effective for the different model 

structures. For a willingness to pay of £20,000 per QALY, the proportion of model replications that were cost-
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effective was higher than 99% for all model structures (Figure 3). For Models 3 and 4, the proportion of model 

replications that were cost-effective was 100%.  

All sensitivity analyses undertaken appear to indicate that individual results for the various models remained 

aligned after increasing or decreasing total costs (Appendix 1 Table 4 and 5), varying the length of time 

horizons (Appendix 1 Table 6), and varying transition probabilities to secondary events (Appendix 1 Table 7). 

Self-management in Models 1-4 was found to be dominant if the time horizon was two years or more (Appendix 

1 Table 6). Lifetime EVPI for alternative model structures compared to TASMIN-SR was reduced substantially 

for Model 1 at all willingness to pay thresholds. For all other model structures, there was a smaller decrease, 

again observed at all thresholds (Figure 4). 

 

 

Discussion  

 

DAM represents an organised way to synthesise evidence currently available on the outcomes and costs of 

alternative health care interventions (52, 53). The results derived from a DAM will depend on how the model 

structure has been defined and the data used to populate the model. The analysis of uncertainty in DAM has 

mainly focused on parameter uncertainty, taking account of any uncertainties in the data inputs (8, 10, 13, 16, 

30). Such analyses are usually based on the premise that the model has been correctly specified. However, an 

inappropriate model structure can potentially invalidate estimates of cost-effectiveness and therefore, is also of 

little value to a decision maker (8, 13, 16). Although limitations in model structure are usually acknowledged, 

there is a lack of clarity about methods to evaluate structural uncertainty (8, 13, 16). 

This study identified competing and credible model structures in the assessment of the cost-effectiveness of 

primary care interventions for the management of hypertension in patients at risk of or with established CVD. 

The results of each alternative model specification, including EVPI were presented and compared.  

The main cost-effectiveness results obtained in the TASMIN-SR study did not change when alternative model 

structures (Model 1 to 3) were implemented or after adjusting TASMIN-SR model for the effect of secondary 

events (Model 4), suggesting that structural uncertainty was not important in this model. This case study showed 

similar results for EVPI across the range of model structures, except for Model 1, where the restricted parameter 

set meant that a large part of the decision uncertainty was not apparent in the model. 
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Our findings in terms of highest QALY outcomes found by implementing Model 2 may be explained by the fact 

that when compared with TASMIN-SR, the population entering Model 2 was exposed to an overall reduced risk 

of CVD due to the exclusion of the angina state, thus leading to increased QALYs. The lowest QALY gained for 

both interventions and higher self-management costs from Model 3 (expanded model) can be explained by the 

additional burden of mortality for patients presenting HF and TIA. Model 1 (single CVD state) produced lower 

QALYs compared to TASMIN-SR and this can be explained by the increased overall risk of CVD due to the 

added individual risks of stroke, MI and UA used to estimate the risk of CVD. The results of Model 4 show self-

management to be even more cost-effective than usual care when compared with results from the case study and 

alternative Models 1-3. This can be explained by the increased overall risk of CVD due to the occurrence of 

additional events, and therefore more scope for preventing these events.  

The main conclusions drawn from the cost-effectiveness analyses were not altered when alternative model 

structures were implemented or in the presence of secondary events. This result may lead to the conclusion that 

a simple model will suffice when examining the potential impact of anti-hypertensive strategies on the primary 

care prevention of CVD.  

This study may well be a reflection of the average level of complexities faced by current practice when 

undertaking an assessment of structural uncertainty. Currently, guidance regarding the assessment of structural 

uncertainty in DAM by bodies such as ISPOR or NICE in the UK go as far as recommending to parameterize 

uncertainties (19) and if this is not possible then the use of sensitivity analysis (19, 54). 

The wide variation in the model structures that were identified by our review supports the need for improved 

guidance to handle the implications of potential sources of structural uncertainty and, most importantly, the need 

for a disease-specific or generic model to examine the CEA of self-management of hypertension in patients with 

established CVD. Challenges across different disease areas are so varied that it may well be the case that only 

studies such as this can shed any light on the importance of model uncertainty in different settings.  

The illustration of various scenarios representing structural uncertainty offers the decision maker the opportunity 

to decide on which model structure or assumption(s) he/she believes and make policy decisions on that basis. 

However, it does not provide any explicit framework for quantifying the uncertainty or offer any guidance to 

decision makers that have no clear preferences over alternative model assumptions.  

The assessment of structural uncertainty shown in published studies in the area of primary prevention of CVD 

has mainly focused on assessing parameter uncertainty and there have been relatively few studies that have 
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attempted to examine structural uncertainty in the extend that this study has done. Studies that considered the 

assessment of structural uncertainty varied in scope (5, 37-39), however, none attempted to show the effect of 

different model structures on the cost-effectiveness of anti-hypertension treatments. 

Current practice seems bound by data availability whilst methods proposed to assess structural uncertainty have 

been borrowed from other disciplines oblivious to the needs in a health care setting where patient level data is 

most of the time not readily available.  

 

Strengths and limitations  

A weakness of our approach to assess structural uncertainty is that there are no established methods to formally 

assess the plausibility of alternative models and it is not clear which type of, or how many scenarios should be 

considered.  

Our choice of model type was limited to a cohort Markov model. Some may argue that a microsimulation or 

Discrete Event Simulation (DES) may offer some advantages such as flexibility in incorporating individual 

heterogeneity and tracking individual event history. However, our review indicated that all economic 

evaluations in this disease area had utilized Markov models, presumably based on the trade-off between model 

flexibility and analytical input (35). Furthermore, chronic and recurring diseases are often reflected by using 

Markov models in which individuals move between clinical states of interest in discrete time periods, and each 

state is associated with a cost and utility (32). Due to a lack of epidemiological data, Models 1 to 3 did not 

capture structural uncertainty arising from the exclusion of secondary events of CVD for high risk patients. 

However, using assumptions based on expert opinion, we assessed the risk of secondary events in Model 4. The 

exclusion of secondary events in Models 1 to 3 was a conservative assumption, as a reduction in BP was 

expected to reduce the risk of these events in addition to the primary events already considered, making self-

management even more cost-effective as demonstrated in Model 4.  

In this study we could not implement more sophisticated methods, for example, model selection, model 

averaging, or discrepancy approach to select the best model on the basis of how well the model’s output match 

observed data (commonly judged by the likelihood-based information criteria). This was because we only had 

single point estimates for key parameters (transition probabilities) taken from the literature which do not allow 

the estimation of the maximum likelihood of parameters for which, actual patient level data is required. 

Furthermore, results of previous research seem to indicate that standard likelihood-based approaches to choose 
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between may be unsuitable when underlying datasets are different (26). Renal failure and peripheral artery 

disease were not considered in this study as additional health states as they are part of the broader set of diseases 

that indirectly may lead to CVD and data to populate input parameters for these sates was not available. 

Finally, the results of cost-effectiveness for self-management of blood pressure in the case study, TASMIN-SR 

model, were of dominance. It may be that if the results were near the £20,000 threshold, changes in model 

structure could have led different results of cost-effectiveness and possible EVPI.  

The assessment of structural uncertainty shown in published studies in the area of primary prevention of CVD 

has mainly focused on assessing parameter uncertainty and there have been relatively few studies that have 

attempted to examine structural uncertainty in the extent that this study has done, showing the effect of different 

model structures on the cost-effectiveness of anti-hypertension treatments and implementing extensive 

sensitivity analyses and EVPI. 

 

 

Conclusions  

 

The results of this study indicate that the main conclusions from the TASMIN-SR model of cost-effectiveness 

are robust to changes in model structure. The cost-effectiveness results and the EVPI were not sensitive to 

model structure specification. 

Even though the results from Model 1 were not similar to those of TASMIN-SR, the fact that the main 

conclusions are the same raises the question whether, in this particular case study, a more parsimonious model 

would have sufficed. Currently there are no available guidelines indicating how structural uncertainty arising 

from the structure of a model, should be identified, assessed, and reported. Therefore, further research should 

focus on the development of general agreed guidelines on how to address issues pertaining to structural 

uncertainty and, more specifically, how to deal with challenges across different disease areas, perhaps 

incentivising the development of more studies such as the present study, focusing on disease specific areas. 

Based on the findings of this study, the following recommendations are put forward:  
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1. The assessment of structural uncertainty should not be ignored as it is an integral part of good practice 

DAM 

2. The reasons why an assessment of structural uncertainty is not possible or not needed should be always 

stated in the limitations section 

3. Data limitations to undertake an assessment of structural uncertainty should be clearly stated and 

discussed 

4. If there is a reason to believe that structural uncertainty is an issue that may have affected the results of 

CE, then an assessment of structural uncertainty should be included 

5. Ideally, sound statistical methods should be used in the assessment of structural uncertainty 

(discrepancy approach, model averaging, parameterization, model selection, scenario analysis) but if 

none of the above is possible due to data limitations, then at least appropriate sensitivity analysis 

should be routinely conducted, as per current ISPOR-SMDM guidelines  
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TASMIN-SR model 

 

 

 

 

 
 
Model 1 Single state structure  
 
 

 

 

 

    

 

Model 2 Two health state structure 

 

 

 

 

 

Model 3 Expanded structure 
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Model 4 TASMIN-SR and the inclusion of secondary events 

 

Figure 1: The model structures for the case study and models 1-4 

HR = High Risk, UA= Unstable Angina; MI= Myocardial Infarction; HF = Heart Failure; ST = Stroke;    
TIA = Transient Ischemic Attack; CVD = Cardiovascular Disease.  

All names preceded by a ‘P’, for example, PMI refers to a post event (chronic) health state for a 
patient surviving an event (MI)  

All names preceded by ‘2’, for example, 2UA refers to the occurrence of a second event consisting of 
a UA 

Patients can move to the ‘Dead’ state from any of the health states in the models  
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Table 1 Parameters used in the assessment of structural uncertainty for the case study and alternative model structures 

Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
Annual CVD events for patients with DM 

Stroke     
 

 
60-69 years old 0.0196  0.0196 0.0196 0.0196 

NICE, Diabetes guidelines(55) 70-79 years old 0.0262  0.0262 0.0262 0.0262 
80-89 years old 0.0298  0.0298 0.0298 0.0298 

MI       
60-69 years old 0.0089  0.0089 0.0089 0.0089 

NICE, Diabetes  
guidelines(55) 70-79 years old 0.0100  0.0100 0.0100 0.0100 

80-89 years old 0.0111  0.0111 0.0111 0.0111 
UA       

60-69 years old 0.0041   0.0041 0.0041 
NICE, Diabetes  
guidelines(55) 70-79 years old 0.0047   0.0047 0.0047 

80-89 years old 0.0052   0.0052 0.0052 
TIA     

 
 

60-69 years old    0.0053  
NICE, Diabetes  
guidelines(55) 70-79 years old    0.0059  

80-89 years old    0.0066  
HF     

 
 

60-69 years old    0.0197  
NICE, Hypertension 
Guidelines(3) 70-79 years old    0.0236  

80-89 years old    0.0264  
CVD     

 
 

60-69 years old  0.0323  
 

 Added risks* 
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
70-79 years old  0.0405  

 
 

80-89 years old  0.0456  
 

 
Annual CVD events for patients with CKD 

Stroke     
 

 
60-69 years old 0.0072  0.0072 0.0072 0.0072 

Kerr et al (2012)(56) 70-79 years old 0.0147  0.0147 0.0147 0.0147 
80-89 years old 0.0189  0.0189 0.0189 0.0189 

MI       
60-69 years old 0.0051  0.0051 0.0051 0.0051 

Kerr et al (2012)(56) 70-79 years old 0.0113  0.0113 0.0113 0.0113 
80-89 years old 0.0171  0.0171 0.0171 0.0171 

UA       
60-69 years old 0.0024   0.0024 0.0024 

Kerr et al (2012)(56) 70-79 years old 0.0054   0.0054 0.0054 
80-89 years old 0.0081   0.0081 0.0081 

TIA     
 

 
60-69 years old    0.0600  

Koren-Morag  
et al (2006)(57) 70-79 years old    0.1303  

80-89 years old    0.1867  
HF     

 
 

60-69 years old    0.0269  
Shiba et al (2011)(58) 70-79 years old    0.0585  

80-89 years old    0.0838  
CVD     

 
 

60-69 years old  0.0146  
 

 Added risks* 
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
70-79 years old  0.0311  

 
 

80-89 years old  0.0435  
 

 
Annual CVD events for patients with a previous stroke 

Stroke     
 

 
60-69 years old 0.0348  0.0348 0.0348 0.0348 

PROGRESS (1999) & NICE, Lipid 
modification guidelines(59, 60) 70-79 years old 0.0590  0.0590 0.0590 0.0590 

80-89 years old 0.0715  0.0715 0.0715 0.0715 
MI       

60-69 years old 0.0139  0.0139 0.0139 0.0139 
PROGRESS (1999) & NICE, Lipid 
modification guidelines(59, 60) 70-79 years old 0.0232  0.0232 0.0232 0.0232 

80-89 years old 0.0232  0.0232 0.0232 0.0232 
UA       

60-69 years old 0.0139   0.0139 0.0139 
PROGRESS (1999) & NICE, Lipid 
modification guidelines(59, 60) 70-79 years old 0.0232   0.0232 0.0232 

80-89 years old 0.0232   0.0232 0.0232 
TIA     

 
 

60-69 years old    0.5000  
Hankey GL (2003)(61) 70-79 years old    0.0848  

80-89 years old    0.1027  
HF     

 
 

60-69 years old    0.0115  
NICE, Hypertension 
guidelines(3) 70-79 years old    0.0193  

80-89 years old    0.0207  
CVD     

 
 

60-69 years old  0.0615   
 Added risks* 
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
70-79 years old  0.1022   

 
80-89 years old  0.1141   

 
Annual CVD events for patients with CHD 

Stroke     
 

 
60-69 years old 0.0348  0.0348 0.0348 0.0348 

NICE, Lipid modification and 
Hypertension guidelines(3, 59) 70-79 years old 0.0590  0.0590 0.0590 0.0590 

80-89 years old 0.0715  0.0715 0.0715 0.0715 
MI       

60-69 years old 0.0666  0.0666 0.0666 0.0666 
NICE, Lipid modification and 
Hypertension guidelines(3, 59) 70-79 years old 0.1112  0.1112 0.1112 0.1112 

80-89 years old 0.1112  0.1112 0.1112 0.1112 
UA       

60-69 years old 0.0528   0.0528 0.0528 
NICE, Lipid modification and 
Hypertension guidelines(3, 59) 70-79 years old 0.0882   0.0882 0.0882 

80-89 years old 0.0882   0.0882 0.0882 
TIA     

 
 

60-69 years old    0.0499  
NICE, Lipid modification 
guidelines(59) 70-79 years old    0.0820  

80-89 years old    0.1046  
HF     

 
 

60-69 years old    0.0304  
NICE, Lipid modification 
guidelines(59) 70-79 years old    0.0512  

80-89 years old    0.0653  
CVD     

 
 

60-69 years old  0.1467   
 Added risks* 
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
70-79 years old  0.2373   

 
80-89 years old  0.2475    

Probability of death for those who have suffered an event 
Fatal Stroke 0.23  0.23 0.23 0.23 Bamford et al (1990)(62) 
Fatal MI       

65-74 years old 0.23  0.23 0.23 0.23 
ONS, Deaths registry (2011)  &  
Kerr et al (2012)(51, 56) 75-84 years old 0.39  0.39 0.39 0.39 

85 and over 0.52  0.52 0.52 0.52 

Fatal TIA    0.11  Mant et al (2008) & Gattellary 
et al (2012)(63, 64) 

Fatal HF     
 

 
Male    0.17  

NorCAD model (2008)(65)  
Female    0.16  

Fatal CVD        
65-74 years old  0.20    

Weighted average† 75-84 years old  0.25    
85 and over  0.29    
Probability of death from a second cardiovascular event, one year after the first event 
Stroke after a first 
stroke    

 

0.34 

NICE, Statins guidelines(48) UA after first UA    
 

0.02 

MI after first MI    

 

Same as first 
year event 

Age-related relative risks at 12 months 
MI, UA and HF – self-management  
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
60-69 years old 0.63  0.63 0.63 0.63 

TASMIN-SR trial & Law et al 
(2009)(6, 66)  70-79 years old 0.69  0.69 0.69 0.69 

80-89 years old 0.75  0.75 0.75 0.75 
Stroke and TIA – self-management  

60-69 years old 0.54  0.54 0.54 0.54 
TASMIN-SR trial & Law et al 
(2009)(6, 66)  70-79 years old 0.59  0.59 0.59 0.59 

80-89 years old 0.75  0.75 0.75 0.75 
CVD – self-management  

60-69 years old  0.60   
 

Weighted average† 70-79 years old  0.65   
 

80-89 years old  0.75   
 

MI, UA and HF - usual care  
60-69 years old 0.82  0.82 0.82 0.82 

TASMIN-SR trial & Law et al 
(2009)(6, 66)  70-79 years old 0.85  0.85 0.85 0.85 

80-89 years old 0.88  0.88 0.88 0.88 
Stroke and TIA - usual care  

60-69 years old 0.76  0.76 0.76 0.76 
TASMIN-SR trial & Law et al 

(2009)(6, 66)  70-79 years old 0.81  0.81 0.81 0.81 
80-89 years old 0.88  0.88 0.88 0.88 

CVD - usual care  
60-69 years old 

 
0.80   

 
Weighted average† 70-79 years old 

 
0.83   

 
80-89 years old 

 
0.88   

 
Age-related relative risks at 6 months  
MI, UA and HF – self-management  
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
60-69 years old 0.71  0.71 0.71 0.71 

TASMIN-SR trial & Law et al 
(2009)(6, 66)  70-79 years old 0.75  0.75 0.75 0.75 

80-89 years old 0.80  0.80 0.80 0.80 
Stroke and TIA – self-management  

60-69 years old 0.62  0.62 0.62 0.62 
TASMIN-SR trial & Law et al 

(2009)(6, 66)  70-79 years old 0.68  0.68 0.68 0.68 
80-89 years old 0.80  0.80 0.80 0.80 

CVD – self-management  
60-69 years old  0.68   

 
Weighted average† 70-79 years old  0.72   

 
80-89 years old  0.80   

 
MI, UA and HF - usual care  

60-69 years old 0.83  0.83 0.83 0.83 
TASMIN-SR trial & Law et al 

(2009)(6, 66)  70-79 years old 0.85  0.85 0.85 0.85 
80-89 years old 0.89  0.89 0.89 0.89 

Stroke and TIA - usual care  
60-69 years old 0.77  0.77 0.77 0.77 

TASMIN-SR trial & Law et al 
(2009)(6, 66)  70-79 years old 0.81  0.81 0.81 0.81 

80-89 years old 0.89  0.89 0.89 0.89 
CVD - usual care  

60-69 years old  0.80   
 

Weighted average† 70-79 years old  0.84   
 

80-89 years old   0.89      
Costs (UK 2014/15 £) 
Costs of acute disease one-off cost  
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
Stroke 11,433  11,433 11,433 11,433 Youman et al (2003)(67) 
MI 5,693  5,693 5,693 5,693 Palmer et al (2004)(68) 
UA 3,416   3,416 3,416 Assumed 60% of MI 

TIA    1,715  NHS Reference costs 2013-
14(50) 

HF    2,797  NHS Reference costs 2013-
14(50) 

CVD   7,235    Weighted average‡ 
Costs for long-term (chronic) disease per year  
Stroke 2,823  2,823 2,823 2,823 Youman et al (2003)(67) 
MI 593  593 593 593 Cooper et al (2008)(69) 
UA 593   593 593 Cooper et al (2008)(69) 
TIA    333  NICE, Statins guidelines(48)  
HF    1,274  Stewart et al (2002)(70) 
CVD   1,432    Weighted average† 
Utilities 
Utilities for acute events 
UA  0.77   0.77 0.77 

NICE, Lipid modification, 
Hypertension and Statins 
guidelines; TASMIN-SR trial(3, 6, 
48, 59) 

MI 0.76  0.76 0.76 0.76 
Stroke 0.63  0.63 0.63 0.63 
TIA    0.90  
HF    0.68  
CVD   0.76  

 
 

Stroke after stroke     0.479 
Ara, et al (2011)(71) 

UA after UA     0.615 
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Parameter TASMIN-SR Model 1 Model 2 Model 3 Model 4 Sources 
MI after MI     0.700 
MI and Stroke     0.479 
Angina and Stroke     0.596 
Angina and MI     0.541 
Utilities for long term (chronic) disease 

UA  0.88   0.88 0.88 

NICE, Lipid modification and 
Statins guidelines, TASMIN-SR 
trial(6, 48, 59)  

MI  0.88  0.88 0.88 0.88 
Stroke 0.63  0.63 0.63 0.63 
TIA    0.90  
HF    0.68  

CVD   0.78  
 

 NICE, hypertension 
guidelines(3) 

Dead 0 0 0 0 0 By definition 
Annual discount 
rate for costs and 
utility 

0.035 0.035 0.035 0.035 0.035 Gray et al (2011)(72) 

*The probability of CVD was estimated as the added risks of the individual risk probabilities for stroke, MI and UA 
†Weighted averages were estimated based on the distribution of patients to primary event health states in the ScHARR economic model  
‡Weighted average using TASMIN-SR trial data 
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Table 2 Cost-Effectiveness results for the case study and each one of the alternative model 
structures 

 
Costs QALYs 

Incremental 
cost 

Incremental 
QALYs ICER 

 TASMIN-SR model  
     

Usual care 
        

9,860  7.0946 
   

Self-management 
        

8,997  7.4390 -864 0.3444 Dominant 

 Model 1  
     

Usual care 
        

9,452  6.9102 
   

Self-management 
        

8,813  7.2311 -639 0.3210 Dominant 

 Model 2  

     Usual care 
        

9,854  7.1612 
   

Self-management 
        

8,858  7.5057 -996 0.3445 Dominant 

 Model 3  

     Usual care 
        

9,696  5.9274 
   

Self-management 
        

9,156  6.2721 -539 0.3446 Dominant 

Model 4       

Usual care 11,651 7.0704    

Self-management 10,378 7.4207 -1,273 0.3503 Dominant  
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Figure 2 Cost-effectiveness plane for the case study and models 1 to 4  

Model 4 
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Figure 3 The cost-effectiveness acceptability curves (CEAC) for the probability that self-
management is cost-effective for different model structures 

 

 

 

Figure 4 Per-Patient Expected Value of Perfect Information (EVPI) across varying 
Willingness to Pay Values for the TASMIN-SR and Models 1 to 4 
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