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ORIGINAL ARTICLE

Color-selective holographic retroreflector array for
sensing applications

Rajib Ahmed1, Ali K Yetisen2,3, Seok Hyun Yun2,3 and Haider Butt1

Corner cube retroreflectors (CCRs) have applications in sensors, image processing, free space communication and wireless net-

works. The ability to construct low-loss wavelength filters embedded in CCRs can enable the development of wavelength multi-

plexing, tunable lasers and photonic integrated circuits. Here we created an ~10-μm-thick holographic corner cube retroreflector

(HCCR) array that acted as a color-selective wavelength filter and diffracted light at broad angles. Angle-resolved spectral mea-

surements showed that the Bragg peak of the diffracted light from the HCCR array could be tuned from 460 to 545 nm by vary-

ing the incident angle. The HCCR array also exhibited a wavelength-selective tuning capability based on the rotation angle in the

visible spectrum. HCCRs projected holographic images with the rotational property in the far field. The utility of the HCCR was

demonstrated as optical temperature and relative humidity sensors that produced a visible colorimetric response for rapid

diagnostics.

Light: Science & Applications (2017) 6, e16214; doi:10.1038/lsa.2016.214; published online 24 February 2017
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INTRODUCTION

Corner cube retroreflectors (CCRs) consist of three mutually perpen-
dicular intersecting flat surfaces that directly reflect incident light back
to its source1,2. The incident light is internally reflected three times in
CCRs, and their directional feature is independent of the incident
angle. CCRs have applications in satellite communication, laser
components and antennas3–5. In particular, the phase conjugation
property of a CCR array has been widely used for wavefront correction
and for enhancing the resolution in image processing6,7. The phase
conjugation property of CCR array surfaces can also be utilized in
wavefront sensing, phase-conjugated interferometry and Fourier trans-
form holography8–10. Recently, microelectromechanical retroreflectors
have been fabricated for miniaturized applications11,12. CCRs fabrica-
tions are typically based on micromechanical processing or
photolithography13–16. These fabrication approaches are costly, exper-
tise dependent and time-consuming, thus limiting their scalability for
practical applications in photonics.
Here we show the development of a three-dimensional HCCR array

using Denisyuk reflection recording. The HCCR array does not
exhibit all the analogous optical properties when compared with
CCRs. However, the HCCR array is planar and thinner, functions
as a narrow-band wavelength filter and exhibits the rotational
property. In this work, we analyze the directional reflection properties
of the CCR array through numerical modeling; their holographic
images are recorded using silver halide chemistry. We also present a
unifying view regarding the rotational property of HCCRs. Angle-

resolved reflection measurements of the HCCRs show a reasonable
diffraction efficiency (DE), along with the directional color filtering
of broadband light. Finally, we demonstrate the utility of HCCR
in colorimetric temperature and relative humidity (RH) sensing. This
work is the first report of the production of HCCR arrays, which
may have potential applications in compact optical systems and
sensors.

MATERIALS AND METHODS

Holographic retroreflector fabrication
The HCCR array was fabricated using Denisyuk reflection holo-
graphy. A HeNe laser beam (λ= 632.8 nm, 20 mW) was passed
through a beam expander (Ø= 6 cm) and a collimator. In
Denisyuk reflection mode, an image of an array of CCRs (object)
was recorded in a light-sensitive emulsion (Figure 1a). The
holographic plates (2 cm× 2 cm) consisted of a gelatin emulsion
containing light-sensitive silver bromide (AgBr) nanocrystals
(NCs) (Ø= 10–20 nm) conjugated to quinaldine blue (1,1'-
diethyl-2,2'-carbocyanine) dye. The sample was exposed to a laser
beam after being tilted (θ≤ 5°) from the mirror surface plane. The
tilt angle created a slanted interference pattern in the recording
medium, which separated the diffracted light from the specular
reflection (off the glass substrate). Low tilt angles reduced the
effect of the transmission grating and increased the DE17. An index
matching fluid was used to reduce the transmission grating effect.
The interference pattern formed in the holographic plate involved
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two beams: incident (reference) beam, λ1, and reflected (object)
beam, λ2. A corner cube reflector array (the dimension of each
CCR is ~ 0.2 cm) was used as an object to record the interference
pattern within the gelatin matrix.
The sample development was based on silver halide chemistry

(Figure 1b)18,19. The gelatin contained AgBr NCs that had been
optimized for high-resolution holography. Glass was used as a
substrate, and its surface was functionalized using (3-aminopropyl)-
triethoxysilane in acetone (1:100, v/v). Gelatin is a transparent
medium and has flexible pores that can accommodate AgBr NCs
and Ag0 nanoparticles (NPs). The gelatin holographic plates were pre-
swollen by immersing them in a bath of aqueous solution of
triethanolamine (10%, v/v) for 1 min and then dried in a cold airflow
at 60% RH for 1 h. Upon exposure to laser light, a latent image was
formed in the emulsion through the disruption of the AgBr ion-pair

with a laser light, that is, AgBr+hγ→Ag++Br−+e−, and subsequent
silver atom formation at an electron trap site in the AgBr NC, that is,
Ag++e− → Ag020. A photographic developer containing 4-(methyla-
mino)phenol hemisulfate (pH ~12) was used to amplify the latent
image in the AgBr NCs into silver metal (Ag0) NPs to form a
multilayer structure of the visual image. Bright fringes (antinodes) in
the standing wave were amplified as Ag0 NPs. The emulsion was
bleached (KBr and CuSO4) by converting the Ag0 NPs back to
transparent AgBr NCs. Bleaching increases the DE and reduces light
scattering18,21. After drying, the HCCR exhibited efficient green
diffraction, and the surface contained micropatterned arrays
(Figure 1c). The diffraction from the HCCR effect was due to the
periodic arrangement of AgBr NCs within the gelatin matrix, obeying
Bragg’s law, and the surface structures contributed to angular
anisotropy.
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Figure 1 Holographic recording of a HCCR array in light-sensitive media. (a) The experimental setup in Denisyuk reflection mode. Scale bars=1 cm.
(b) Holographic retroreflector array preparation: (i) using a gelatin matrix containing photosensitized AgBr NCs, photosensitization was performed in the
presence of quinaldine blue (QB); (ii) gelatin matrix with AgBr NCs was exposed to a laser beam (632.8 nm) to record an image of a retroreflector array;
(iii) photographic developer was used to reduce the exposed AgBr NCs to silver metal (Ag0) NPs; (iv) the hologram was bleached to increase DE, and
Ag0NPs were converted back to AgBr NCs. (i–iv) were performed under green safe lighting. (c) Top view of the holographic retroreflector and its surface
geometry, consisting of triangular sections on the surface and an internal multilayer structure. Scale bar=1 cm.
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Computational modeling, phase conjugation and rotational
property of CCR array
To understand the optical interference patterns, which produce the
HCCRs, optical simulations of an array of CCRs were performed
(Supplementary Information, Supplementary Fig. S2). The reflection
and directional properties of the CCRs arrays were analyzed using the
finite element method. The structure of the retroreflector was
considered as a two-dimensional triangular grating (Supplementary
Information, Supplementary Fig. S2). To obtain approximation
results, the triangular grating’s spacing and depth were considered
to be
~ 15–20 times larger than the incident wavelength, λ (d44λ). For
simplicity, a two-dimensional simulation was performed using trian-
gular meshes (the maximum mesh size was approximately one-tenth
of the input wavelength) with a fine domain structure, for a total of 23
698 meshing elements22,23.
The phase conjugation and rotation property of a CCRs/HCCR

array are based on wavefront analyses of incident and reflected/
diffracted light. Consider an arbitrary incident wave under paraxial
approximation (Kz ¼ K ¼ 2p

l ):

Eiðx; y; zÞ ¼ Aðx; yÞexpðijðx; yÞÞexpð�ikzÞ ð1Þ
The reflected light from the CCRs array is

ECC-Arrayðx; y; zÞ ¼
X

m;n

Að2mh� x; 2nh� yÞexpðijð2mh� x; 2nh� yÞÞ

expðþikzÞaCCðx; yÞrectðx �mh

h
;
y � nh

h
Þ

ð2Þ
where rect(x, y) is a rectangular function equal to 1, where abs(x, y)
o1/2, and is 0 otherwise; and acc(x,y) is a scalar quantity known as the
aperture function and indicates the reflected beam amplitude
(Supplementary Information ‘Directional, Phase Conjugation and
Rotational Property of CCR Array’). The wavefront reflected from
the CCR array surface showed a reversed phase but the same
amplitude sign as that of the incident wavefront. This might have
been due to the triangular surface of the CCRs array (side view), where
the reflected wavefront was disrupted, cut into segments and shifted
along the direction of propagation, showing analogous properties to
those of diffraction gratings and Fresnel lenses6. The rotation property
of CCRs, based on wavefront analyses of incident and reflected light,
was also studied (Supplementary Information ‘Directional, Phase
Conjugation and Rotational Property of CCR Array’). If the incident
holographic image rotates in the clockwise direction, the far-field
projected image from CCR and HCCR rotates in the reverse
direction (Supplementary Information, Supplementary Fig. S2 and
Supplementary Movie 1). The rotational property of the HCCR array
was based on light diffraction from the HCCR surface. If the sample
rotated (for a broadband light source) in the clockwise direction,
the diffracted color light from the HCCR array rotated in the
anticlockwise direction (Supplementary Information, Supplementary
Fig. S2 and Supplementary Movie 2). The rotational property was
found to be valid for the CCR and HCCR retroreflector.

RESULTS AND DISCUSSION

Optical characterization
The HCCR arrays were spectroscopically characterized in reflection
mode. The sample was illuminated using a broadband light source
(450–1100 nm). An Ocean Optics 2000 spectrometer (450–1100 nm,
0.2 nm resolution) was used to measure the reflected and diffracted
light. A goniometer setup was utilized to obtain spectra at different

incident angles to capture the maximum reflection and diffraction
peaks (Figure 2a). The reflection readout of the holographic retro-
reflector was found to be highly dependent on the incident angles
(Figure 2b). In response to incident light, an intense broadband
reflection signal (specular reflection from the substrate) was detected,
as was narrow-band diffraction. The properties of the diffracted light
were dependent on the incident angles and sample position.
The reflected broadband signal also displayed maximum peaks

(Figure 2b). The peak blueshifted linearly as the incident angle was
increased from the normal. This peak might represent the resonance
of Ag0 NPs within the gelatin. In addition, the narrow-band diffracted
light was analyzed by varying the incident angles and moving the
spectrophotometer probe to measure the maximum intensity
(Figure 2c). The holographic retroreflector acted as a sensitive color
filter by separating colors from the incident white light, depending on
the incident angles. For the reflected white light (zero order), the
incident and reflection angles were equal. However, for the diffracted
narrow-band light (higher orders), the incident angles were different
from the collection/diffraction angles, and the diffraction angles
increased nonlinearly for larger incident angles. This was due to the
volumetric multilayer structure in the HCCR array17. The separation
between the reflected and diffracted light was ~ 10°. However, this
separation increased with larger incident angles from 12° to 25°.
The reflected spectra mainly showed broadband light, with peaks in

the range of 506–562 nm (green) and 478–497 nm (blue) for incident
angles between 15° and 65°. The peak that was originally at 562 nm
(i= 15°) shifted linearly from 558 to 478 nm for i= 20°–65°, in 5°
increments, respectively. For larger incident angles, lower-intensity
peaks were measured, which could have been due to the decreasing
diffraction intensity. The HCCR array showed 20–40 nm lower Bragg
peaks because the lattice spacing of the multilayer grating contracts
due to bleaching and exposure in a swollen state. Figure 2c shows the
normalized diffracted light spectra as the incident angle was changed.
The peak blueshifted, and its intensity decreased at broad incident
angles. Diffraction also showed a linear trend at different incident
angles. The diffracted light’s peak wavelengths (λp) were measured at
different receiver positions, θr (= r) (Figure 2d). The diffracted light
shifted from green to blue and then to violet as the incident angle was
increased. The shift to shorter wavelengths was due to the venetian
blind effect24. At broad incident angles, the lattice spacing seen by the
white light may have been smaller compared with that at lower
incident angles. The intensity of the diffracted light was low for angles
465°.
Spectral measurements were performed using fixed incident angles

(i≤ 50° or ≥ 50°) and rotated positions. The Bragg peaks of the
diffracted light changed as the sample was rotated. With anticlockwise
rotation of the HCCR array, diffracted light rotated in the clockwise
direction (Figure 3a and 3b). This occurred for the diffracted green
light; the reflected white light remained in the same position (i≤ 50°).
In retroreflectors, white light also rotates in this position. Similar
results were also found with higher incident angle (i≥ 50°), the
clockwise rotation of the HCCR array, where diffracted light rotated in
the anticlockwise direction (Figure 3c and 3d). This rotation property
was due to the tilt of the multilayer grating recorded within the gelatin
matrix. The corner cube multilayer structure splits the wavefront and
reverses the phase at every point in the reflected wave (Equation 2). As
the HCCR array was rotated, the grating diffracted light at different
collection angles. The HCCR array filters and diffracts the green color
for incident angles less than 50°. However, it also diffracted different
color combinations (green, blue, violet and their mix colors) for
incidence angles 450° (Figure 3d). This is of interest as the HCCR
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array can be used as a tunable optical filter to select colors depending
on the incident and azimuthal angles.
Figure 3e shows the experimental setup used to characterize the

rotational property of the HCCR array. A red laser beam (632 nm,
20 mW) was holographically shaped to form an image of an ant and
was irradiated onto the HCCR array. A slight incident angle was
chosen to record the reflected image separately. The reflected
holographic image was projected onto a white screen with a centered
perforation (Ø= 10 mm). The reflected zero-order beam passed
through the opening, and the holographic phase conjugated image
(ant) was captured on the screen. Figure 3f shows the incident
holographic image (left side) from a laser beam and reflected image
(right side). The holographic projection also obeyed the rotational
property: upon the clockwise rotation of the incident image,
the reflected image also rotated anticlockwise (Supplementary
Information, Supplementary Movie 1). The rotational property of
the ant-hologram was also found to be valid with a single CCR/HCCR
and to work properly with other visible light sources (for example,
blue and green).
As the HCCR array diffracted various colors at different positions, an

angle-dependent Fraunhofer diffraction analysis was performed25,26.
The far-field diffraction patterns produced by the HCCR array in
response to red, green and blue laser beams were studied. Figure 4a
shows the experimental setup: the HCCR array was placed vertically
on top of a rotation stage, equidistant from the laser source and the
screen (~40 cm). The incident angle of the laser beam was varied from

0° to 60° by rotating the HCCR array. The diffracted light was
projected onto a semi-transparent screen. Figure 4b–4e shows far-field
diffraction patterns. The distance between the first-order and zero-
order decreased as the incident beam shifted to shorter wavelengths
from red to blue, thus obeying Bragg’s law.
At low incident angles, a highly intense green diffraction pattern was

produced compared with the red and blue light. This was due to the
overlap between the Bragg resonance of the HCCR array and the
incident green laser beam. However, as the incident angle was
increased, the blue diffraction pattern increased in intensity, which
agreed with the results in Figure 2c and 2d, showing a blueshift with
an increasing incidence angle. This capability showed that the HCCR
arrays worked on the basis of diffraction, producing various orders
compared to the conventional reflective CCRs and displaying an
angular wavelength-selective image projection.
Angular dependent diffraction measurements of the HCCR were

studied in response to red, green and blue laser light at rotational
angles from − 90° to +90° (Figure 4f–4i). The sample holder and light
source were supported by a stepper motor, which was rotated
horizontally by 360° (1° step size). An optical power meter was placed
normally to the rotational stage to measure the diffraction power.
Figure 4f–4i shows the DE and power as a function of the rotation
angles. Maximum power and efficiency was measured using a red laser
at the non-diffracted zero order. Symmetrical first-order diffraction
peaks were observed on each side of the zero-order. The DE was
measured as (Pdiff/Pin) × 100%, that is, the ratio of the diffracted power
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(Pdiff) and incident power (Pin)
27–29. The average diffraction power

and efficiency of the 1st-order peaks contributed approximately 8%
and 4%, respectively, to the overall diffraction power and efficiency for
the red laser compared with the non-diffracted zero-order. Similarly,
the average diffraction power and efficiency of the first-order green
and blue peaks contributed 5%, 4% and 6.6%, 7%, respectively.
Moreover, the average diffraction power of the first-order peaks
reduced to 50% and 80% for the green and blue laser, respectively,
compared with the first-order red diffraction (Figure 4i). The DE and
the diffracted power were reduced with shorter incident beam
wavelengths. Similarly, the angular spread of the non-diffracted spot
at the 3 dB point decreased as the wavelength increased (inset in
Figure 4f–4h). This might have occurred because the spectral range of
the gelatin matrix containing the AgBr emulsion was 580–650 nm and
the sample was recorded using a red laser30. Power fluctuations were
also measured between the symmetrical peaks (Figure 4i). Distortion
at lower order diffracted peaks was also found in the literature31. The

HCCR showed a lower diffraction efficiency compared with the
normal CCR array, but it presented the added advantage of being
flat and compact (~10 μm). The optical property of the HCCR is
similar to that of the other diffractive optical elements (for example,
Bragg grating) and shows less intense diffraction6,29. The first-order
diffracted red, green and blue light showed almost the same distance
(6°) from the zero-order. The difference was visible in the far field
(Figure 4b–4e). The resolution of the HCCR was measured
as 5052 lp mm− 1, with a maximum NC grain size of ~ 20 nm.
The resolution of the recorded hologram was calculated as
γ=(2nsin (δ/2))/λ, where γ is the spatial frequency, n is the refractive
index of the emulation (1.6), λ is the recording wavelength (632.8 nm)
and δ is the angle between the object and reference beam (175°). In
the present work, visible light diffraction and broadband light were
chosen because they were readily available and suitable for visual
detection by the eye. The diffraction property can be extended to the
ultraviolet (UV) and near-infrared (IR) region of the spectrum. For
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this, the hologram needs to be recorded at shorter or longer
wavelengths using UV or IR wavelengths, where the diffraction peak
of the multilayer gratings is limited by Bragg’s law. In addition, to tune
the Bragg peak, pseudo-color holograms can be produced by pre-
swelling or shrinking the recording media.

Temperature and RH sensing
To demonstrate the utility of the HCCR, we show an application in
sensing. Figure 5a shows the conceptual diagram of the HCCR
temperature and RH sensors. The Bragg peak of the diffracted color
light (αd) and reflected white light (αr) from AgBr NC multilayers of
the holographic polymer film responds to variation in temperature
and RH. The sensing principle is based on AgBr NC multilayer

structures that can swell or shrink in response to external stimuli. The
grating structure acts as an optical transducer and can quantify
the external stimuli by shifting the Bragg peak in the visible spectrum.
The HCCR sensor responds to the incident white light and diffracted
green (G) light at the steady-state condition (no stimuli); it acts as a
reference between transition conditions such as swelling or shrinking
period due to external stimuli. At high temperature and lower RH
values, the lattice spacing of the internal multilayer shrinks, which
shifts the Bragg peak to shorter wavelengths.
The AgBr multilayer lattice spacing became smaller for increasing

temperature/lower RH, and the response curve shifted to shorter
wavelengths (Blue, B), obeying Bragg’s law (λ= 2dsinα; α= incident
angle from sample normal, d= lattice spacing and λ= diffraction

Image screen

Laser

X -Y stage

50

0.00002

0.00002

0.00002
–2 –1 0 1 2

3dB
point

1.6°

612 nm (0.446 μW)45

D
iff

ra
ct

io
n 

ef
fic

ie
nc

y 
(%

)

T
ra

ns
m

is
si

on
 p

ow
er

 (
W

)

40

35

30

25

20

15

10

5

0

Angle (°)
–9

0
–8

0
–7

0
–6

0
–5

0
–4

0
–3

0
–2

0
–1

0 0 10

HCCR

Rotation
stage

1st order

Zero-order

0° 20°

40° 60°

Camera

a
b c

d e f

–2 –1 0 1 2

532 nm (0.465 μW)

D
iff

ra
ct

io
n 

ef
fic

ie
nc

y 
(%

)

T
ra

ns
m

is
si

on
 p

ow
er

 (
W

) 0.000012

0.000010

0.000008

1.8°

25

20

15

10

5

0

30

Angle (°)
–9

0
–8

0
–7

0
–6

0
–5

0
–4

0
–3

0
–2

0
–1

0 0 10

g

–2 –1 0 1 2

492 nm (0.260 μW)

D
iff

ra
ct

io
n 

ef
fic

ie
nc

y 
(%

)

T
ra

ns
m

is
si

on
 p

ow
er

 (
W

) 0.000002

1.9°

0.000001

0.000001

8

7

6

5

4

3

2

1

0

Angle (°)
–9

0
–8

0
–7

0
–6

0
–5

0
–4

0
–3

0
–2

0
–1

0 0 10

h

D
iff

ra
ct

io
n 

po
w

er
 (

W
)

0.0000010
–6° +6°

0.0000008

0.0000006

0.0000004

0.0000002

0.0000000
–8 –6 –4 –2 0 2 4 6 8

Angle (°)

Red
Green
Blue

i

Figure 4 Characterization of visible diffraction from the HCCR array. (a) Experimental setup used for shining laser light on the HCCR array at various angles
and projecting the diffracted light on a screen. (b–e) The diffraction patterns in response to red, green and blue laser light, irradiated at incidence angles
from 0° to 60°. Scale bars=2 cm. (f–i) Angular DE measurement of the HCCR. The DE and intensity in response to red, green and blue laser light at
rotation angles from −90° to +90°. The DE and intensity decrease as wavelength increases; however, the angular spread of the non-diffracted spot at the
3 dB point increases.

Color-selective holographic retroreflector array
R Ahmed et al

6

Light: Science & Applications doi:10.1038/lsa.2016.214

http://dx.doi.org/10.1038/lsa.2016.214


White
light

a

d

g h i

j

k l m

e f

b c

WR

WR

WG

WG

R

G

RG

G

B

B

�1 = 2 d1 Sin(�)

�0 = 2 d0 Sin(�)
1.0

0.8

0.6

0.4

Swelling

Normal

Shrinking

d2

d0

d1
0.2

0.0

1.0

0.8

0.6

0.4

0.2

0.0
450 500 550 600 650 700

Wavelength (nm)

450 500 550 600 650 700

750 525

520

515

510

505

500

495

490

700

(Reflection experiment)

(Reflection experiment)

Swelling Normal

Shrinking Normal

650

600

550

500

750 700
Temperature (°C)

650

600

550

500

450

700

650

600

550

500

450
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70

Relative humidity, RH (%)

Blue light
clockwise
rotation

Green light
clockwise
rotation

Red light
clockwise
rotation

RedGreen

White White

White light
(450–1100 nm)

White light
(450–1100 nm)

White light
(450–1100 nm)

Sample anticlockwise
rotation

Sample anticlockwise
rotation

Sample anticlockwise
rotation

Blue

White

Relative humidity, RH (%)

10 40 70 100
Time (s) Time (s)

P
ea

k 
w

av
el

en
gt

h 
(n

m
)

P
ea

k 
w

av
el

en
gt

h 
(n

m
)

P
ea

k 
w

av
el

en
gt

h 
(n

m
)

P
ea

k 
w

av
el

en
gt

h 
(n

m
)

130 160 190 0 100 200 300 400 500 600
Wavelength (nm)

450 475 500 525 550
Wavelength (nm)

N
or

m
. r

ef
le

ct
io

n 
(A

U
)

1

0.8

0.6

0.4

0.2

0

N
or

m
. d

iff
ra

ct
io

n 
(A

U
)

N
or

m
. d

iff
ra

ct
io

n 
( A

U
)

40 °C
23 °C

40 °C

23 °C

10 °C

23 °C

23°
28°
33°

R

RH
70%

10°
590 nm

23°
531 nm

40°
505 nm

RH
40%

RH
10%

G B

R G B

10 °C

�2 = 2 d2 Sin(�)

°C
�

�i �d

�r �i �d

�r

WB

WB

�i �d

�r

   = 30°  = 300
–O –O  = 300–O

Figure 5 Colorimetric HCCR temperature and RH sensors. (a) Conceptual diagram of the HCCR temperature and RH sensor. The temperature and RH
variation act as external stimuli for the sensor, swelling or shrinking the multilayer lattice spacing of the holographic matrix. (b–d) The normalized reflection
and diffraction intensity as a function of variation in temperature. White light illumination with incident angle was from 0° to 30° during the diffraction
experiment. (e, f) Reflected peak wavelength shift as a function of time during swelling/shrinking to initial conditions, respectively (Supplementary
Information,Supplementary Movie 3). (g, h) Reflected peak wavelength as a function of RH variation. (i) Holographic color variation with RH variation. Scale
bar=0.4 cm. (j) Far-field diffracted color with temperature variation (Supplementary Information,Supplementary Movie 4). Image projection screen was
30 cm away from the sensor. Scale bar=2 cm. (k–m) Rotation property as a function of RH/temperature variation.

Color-selective holographic retroreflector array
R Ahmed et al

7

Light: Science & Applicationsdoi:10.1038/lsa.2016.214

http://dx.doi.org/10.1038/lsa.2016.214


wavelength). Figure 5b–5d shows the reversible HCCR sensor
response as a function of temperature variation, which also holds
for RH variation. The HCCR tended to retain moisture at low
temperatures (10 °C), and the normalized peak wavelength shifted
from red to green while shrinking to the normal condition. Similarly,
HCCR shrunk at higher temperatures (40 °C) and shifted from blue to
green while shrinking to the normal condition. Figure 5e and 5f show
Bragg peak wavelength shifts as a function of time. Larger Bragg peak
shifts were found initially due to higher temperature difference
between the holographic polymer and environment. The sensitivity
of the HCCR sensor was measured using the gradient of the Bragg
peak shift response curve (Supplementary Information ‘Temperature
and Relative Humidity Sensitivity Measurement’). The sensitivity of
the sensor was measured as ~ 4 nm °C− 1 (23 °C) and 1 nm (40% RH).
Figure 5g and 5h illustrates the HCCR sensor response as a function

of RH variation. The peak wavelength shifted toward longer wave-
lengths as the RH increased. This was due to the swelling of the
recorded HCCR medium and the consequent increase in fringe
spacing (Figure 5g). In a real scenario, sensing complexity will be
increased when both the temperature and RH change simultaneously.
The peak wavelength shift-dependent function of temperature and RH
variation is

DlShif t
Dt

¼ kDEðT;RHÞ ð3Þ
where k is the proportionality constant, which is related to the heat
transfer coefficient between the recording medium (HCCR matrix)
and the environment, and ΔE(T, RH) is the change in the environ-
ment as a function of temperature and RH. The sensor showed a
longer wavelength shift with larger RH variation. To evaluate
temperature dependence, the peak wavelength shift was measured
with RH variation in a controlled environment chamber
(Supplementary Information ‘Temperature and Relative Humidity
Sensitivity Measurement’). The response curve showed (Figure 5h) a
small temperature dependence at lower RH values. A larger wave-
length shift occurred due to the increasing temperature and RH
variation. Hence, at higher temperatures, the HCCR matrix expanded
by a greater extent for the same RH change. The graphs of wavelength
shift vs RH are temperature-dependent; this can be used to sense both
temperature and humidity changes. Therefore, the HCCR showed
RGB visible color selectivity in response to the temperature or RH
variation that was visible to the naked eye (Figure 5i). The far-field
sensor readout projection also showed diffracted color change with a
variation in temperature (Figure 5j). Variation in the external stimuli
finely tuned the lattice spacing, which resulted in the Bragg peak in the
visible spectrum. The rotational property of HCCR was also tested
during the sensing experiments. The rotational property of the HCCR
based on the diffraction property was also valid with RH and
temperature variation. The diffracted red, green and blue light (based
on RH and temperature) rotated clockwise, with sample rotation in
the anti-clockwise direction (Figure 5k–5m). This property of the
HCCR sensor is unique, thus offering potential applications in
colorimetric sensing and sample tilt/rotation monitoring.

DISCUSSION

In a conventional CCR array, the directional property is imperative,
where an incident light experiences three mirror reflections and
returns toward the light source6. However, the HCCR array does
not produce the three-time reflection effect and return light toward
the light source; the light is instead diffracted, as occurs for diffraction
gratings and Fresnel lenses, which obey Bragg’s law6. Hence, unlike the

conventional CCRs, one cannot see the reflection of their own eye in
the fabricated HCCR plate. However, the rotation property of HCCR
based on the diffraction property was demonstrated to characterize the
HCCR array. An array of HCCRs was also fabricated without a tilt
angle during interference field exposure (Supplementary Information,
Supplementary Fig. S5). The holographic CCR array with a tilt angle of
5° from the surface plane and CCR array with no tilt angle exhibited
similar optical effects and spectral readouts.
Practically, distinct properties of the HCCR were found for

applications in photonic devices. First, the HCCR array showed
wavelength tunability in its diffraction at different incident angles.
Hence, it can be used as a visible color filter, wavelength-selective
diffraction grating, or printable optical device31,32. In addition, the
rotational property displayed by the HCCR offers opportunities as a
tunable and color-selective mirror in adaptive micro-optics, endo-
scopic tweezers and wavefront sensing8,33,34. The HCCR array can also
be used as a security hologram, with its phase conjugation/rotational
property being difficult to replicate and easy to verify35–38. Such
holograms can also be used as wide field of view optical biosensors by
fabricating them in functionalized hydrogels, which expand and
contract due to changes in analyte concentrations17,19.

CONCLUSIONS

The HCCR array (10 μm thick) has been developed using a simple
top-down fabrication approach. This is the first report of planar CCRs
and HCCR arrays produced with silver halide chemistry in Denisyuk
reflection mode, which can be used for the highly efficient diffraction/
filtering of particular colors depending on the incident angle. The
HCCR array is operated based on Bragg diffraction and exhibited
reflection properties and additional wavelength-selective filtering
compared with CCRs. The HCCRs exhibited wavefront conjugation,
along with tunable wavelength-selective filtering, and acted as a
colorimetric temperature and RH sensor whose readouts were visible
to the naked eye. The rotation property is proposed and showed
experimentally to characterize the HCCR array. The diffraction
intensity of the HCCR array varied with incident angle and wave-
length. The presented fabrication approach is simple and allows the
production of customized HCCR arrays for different wavelength
ranges by changing the recording beam wavelength and exposer tilt
angle. Furthermore, the demonstrated approach is also amenable to
scaling up using laser manufacturing. The holographic arrays can be
recorded using different objects (for example, lenses, diffusers,
mirrors), and different polymers can be chosen to diffract at different
Bragg peaks or act as a holography sensor. We anticipate that
wavelength-selective phase-conjugated HCCRs will lead to applications
in diffraction grating-based displays, biosensors and components for
photonic integrated circuits.
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