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Numerical studies on the effect of plan irregularities in the progressive 

collapse of steel structures 

This research examines the effect of plan irregularities on the progressive 

collapse of steel structures. The performance of four structures located in regions 

with different seismic activity designed in accordance with AISC (2010) and 

ASCE7 (2010) is determined. The plans of the first and second structure are 

irregular, whilst those of the third and fourth structures are regular. 

The collapse patterns of the four buildings are examined and compared under 

seven loading scenarios using non-linear dynamic and static analyses. In the non-

linear dynamic analyses, node displacements above the removed columns and the 

additional force on the columns adjacent to them are discussed. Furthermore, the 

strength and capacities of the columns are compared to determine their 

susceptibility to collapse. In the non-linear static analyses, the pushdown curve 

and yield load factor of the structures are obtained after column removal.  

The results indicate that an irregular structure designed in site class C seismic 

zone, collapses in most of the column removal scenarios. Moreover, when 

comparing regular and irregular structures designed in site class E seismic zone, 

the demand force to capacity ratio (D/C) of the columns in the irregular structures 

is on average between 1.5 and 2 times that of the regular ones.  

Keywords: progressive collapse, irregularity in plans, steel building, non-linear 

dynamic analysis, non-linear static analysis, pushdown 

1. Introduction 

In past years, blast load inside and around buildings have led to significant casualties 

and damage to structures due to progressive collapse (ASCE, 2005). Potential risks and 

abnormal loads which may lead to failure include plane crash, erroneous design or 

construction, fire, gas explosion, occasional overload, vehicle impact and blast 

(National Institute of Standard and Technology [NIST], 2007). Nonetheless, since the 

risk associated to the occurrence of those events is low, buildings are not designed to 



withstand abnormal loads nor their effects on structures are closely examined - hence 

constructions remain susceptible to various scales of damage. Mitigation measures to 

prevent progressive collapse however there exist. Those are provided by the Unified 

Facilities Criteria UFC (2009) and the GSA (2003, 2013), both addressing the 

Alternative Path Method (APM) which to date is the most common approach to combat 

progressive collapse. The correct parameterisation of the procedure is however still 

under scrutiny. For example, Powel (2005) compared linear static, non-linear static and 

non-linear dynamic analyses and found that using a load factor of 2 in static analyses 

can produce very conservative results. Similarly, Ruth, Marchand, and Williamson 

(2006) analysed 2D and 3D steel frames to show that using a load factor of 2 for non-

linear static analyses may be conservative. It was then found that a factor of ~1.5 is 

more accurate to capturing dynamic effects inferred from quasi-static analyses and that 

a load factor of 2 seems more appropriate for high ductility structures, provided the 

behaviour of the materials is not elastic-perfectly plastic and the materials exhibit 

hardening over a wide range of strains after yielding. The authors of the study hence 

recommended to use a load factor of 2 for ductile structures and one of 1.5 for other 

buildings.  

Over the last decades, the assessment of the sensitivity or insensitivity, to local 

damage, has also been widely researched. Gerasimidis and Baniotopoulos (2011) 

examined the problem of disproportionate collapse in steel moment frames and 

compared the APM with a numerical approximation based on the β -Newmark and 

linear Hilbert–Hughes–Taylor procedures. Following, a parametric study considering 

irregular steel frames subject to vertical geometric irregularity was reported in 

Gerasimidis, Bisbos, and Baniotopoulos (2012) whilst Gerasimidis, Bisbos, and 



Baniotopoulos (2013) discussed the sensitivity of structures to local damage and 

introduced the notion of partial damage to structural elements.  

In terms of lateral stability, Khandelwal, El-Tawil, and Sadek (2009) analysed the 

progressive collapse of seismically designed steel-braced frames using explicit transient 

dynamic simulations. The study used the APM on previously designed 10-storey 

prototype buildings and observed that eccentrically braced frames are much less prone 

to progressive collapse than its concentrically braced version. In 2012, Chen, Peng, Ma, 

and He investigated the effectiveness of horizontal bracing on a steel moment-resisting 

frame and concluded that displacements and rotation angles in the model with bracings 

were much smaller than those observed when bracing was not present. More recently, 

Kim and Park (2014) studied the progressive collapse-resisting capacity of special truss 

moment frames considering arbitrary column removal scenarios. It was pointed out that 

structures designed according to the AISC seismic provision collapsed as a result of 

plastic hinge formation at highly stressed regions, once a column was suddenly 

removed. Furthermore, Gerasimidis and Baniotopoulos (2014) studied the impact of 

various strengthening techniques for reducing progressive collapse in 2D steel moment 

frames whilst Gerasimidis, Deodatis, Kontoroupi, and Ettouney (2015) conducted a 

progressive collapse analysis of a tall steel frame following the removal of a corner 

column, according to the APM.  

The present paper builds on previous research and focus on the impact of plan 

irregularities on structural stability evaluated at two distinct seismic regions, which 

creates risk scenarios that have not received adequate attention from scholars. Hence the 

spread of damage induced by various column removal scenarios on four building 

prototypes is examined and discussed throughout. 

 



 

2. Model structures 

Four 15 m tall steel structures with plan irregularities were selected for the present 

investigation. Intermediate Steel Moment Frames were pre-designed according to the 

AISC (2010) and ASCE (2010) to study progressive collapse scenarios in structures 

showing plan irregularities. These are five-storey buildings modelled in ETABS and 

subject to dead load of 520 kg/m
2
 and live load of 192 kg/m

2
, as per the referred 

guidelines. 

The first two structures, shown in Figure 1a, have plan irregularities and are assumed in 

site class, C and E seismic regions, respectively. Structures 3 and 4 are regular in plan 

and have each six bays of 4 m wide (Figure 1b). These are also assumed in site class C 

and E, correspondingly. Further details of the four structures are provided in Table 1 

whilst sections of structural members for the regular and irregular structures are given in 

Tables 2 and 3, respectively. 

 

a)       b) 

Figure 1. Model structures, (a) Plan of structures 1 and 2, (b) Plan of structures 3 and 4. 



     Table 1. Analysis model structures 

Structure  
Seismic  

zone  
Type of Soil Regularity 

Number of 

storeys 

Structure 1 C very dense soil and soft rock Irregular 5 

Structure 2 E soft clay soil Irregular 5 

Structure 3 C very dense soil and soft rock Regular 5 

Structure 4 E soft clay soil Regular 5 

 

Table 2. Detail of sections used in irregular structures  

 Structure 1 Structure 2 

Floor 
Column (Box) Beam (PG) Column (Box) Beam (PG) 

b t bf tf bw tw b t bf tf bw tw 

First 200 12 150 8 250 8 
200 

200 

20 

15 

150 

150 

150 

15 

12 

10 

250 

250 

250 

8 

8 

8 

Second 200 10 150 8 250 8 200 15 

150 

150 

150 

15 

12 

10 

250 

250 

250 

8 

8 

8 

Third 200 10 150 8 250 8 200 12 

150 

150 

150 

12 

10 

8 

250 

250 

250 

8 

8 

8 

Fourth 200 10 150 8 250 8 200 10 150 8 250 8 

Fifth 200 10 150 8 250 8 200 10 150 8 250 8 

 

Table 3. Detail of sections used in regular structures 

 Structure 3 Structure 4 

Floor 
Column (Box) Beam (PG) Column (Box) Beam (PG) 

b t bf tf bw tw b t bf tf bw tw 

First 
200 

200 

12 

10 
150 8 250 8 

200 

200 

15 

12 

150 

150 

12 

10 
250 8 

Second 200 10 150 8 250 8 

200 

200 

200 

15 

12 

10 

150 

150 

12 

10 
250 8 

Third 200 10 150 8 250 8 
200 

200 

12 

10 

150 

150 

10 

8 
250 8 

Fourth 200 10 150 8 250 8 200 10 150 8 250 8 

Fifth 200 10 150 8 250 8 200 10 150 8 250 8 

 

3. Numerical modelling 

The 3D model structures were numerically analysed with OpenSees. Non-linear 

analyses were run considering a simple bi-linear material model with post-yield 

stiffness of 2% of the initial stiffness. Non-linear beam-column elements were used for 



modelling the cross-sectional areas as precisely as possible. The plastification over 

element length and cross-sections were also considered, whereas large displacements 

effects were also accounted for by the employment of the co-rotational transformation 

of the geometric stiffness matrix. The dynamic behaviour caused by sudden column 

removal was not a factor in the load reversal because, in structures subjected to 

earthquake loads, using a complicated hysteretic model is unnecessary. The fraction of 

damping was assumed to be 5% which is usually the case for structures with large 

deformations. 

4. Analysis method for progressive collapse 

Following the GSA (2013) guidelines, load combinations including 120% of 

dead load plus 50% of the total live load were gradually applied within a time frame of 

5 s. Then, and in order to account for non-linear dynamic effects, the load was 

maintained steady for the following 2 s. After the 7 s sequence, when gravity load 

effects are considered to be fully transferred to the structure, a pre-selected column was 

suddenly removed from the model and the structural response was examined.  

In parallel, non-linear static analyses were performed, following the GSA (2003, 

2013) recommendation for using a dynamic amplification factor of ~2. That, in order to 

reflect a ratio of 2 between the load that is applied to the spans that are adjacent to the 

removed column with respect to that applied on other spans. In this case, vertical 

loading is applied by following a step-wise increase until the maximum amplified loads 

are attained or the structure collapses. This vertical pushover analysis procedure, which 

is often called the 'pushdown analysis method', accounts for non-linear effects which 

approximate the non-linear dynamic response whilst providing a reliable estimation of 

the elastic and failure limits of the subject structure. 



Derived from the non-linear static analyses, the effective imposed load plotted 

against the node displacement of the removed column indicates the capacity of a 

structure against progressive collapse. If the load value is divided by the standard 

gravity load, the vertical axes of the pushdown capacity curve are converted into 

dimensionless load factors, as in Eqn. (1). This standardises the load ratio and makes it 

easier to establish generic observations. The load factor calculated in this way have thus 

been used herein as a criterion for assessing structural collapse. Namely, if the load 

factor corresponding to the displacement causing material yield is higher than 1, the 

structure can withstand the removal of a column, otherwise the structure will collapse. 

             
    

                    
 (1) 

5. Verification of dynamic analysis 

The inelastic performance of a single degree of freedom system can be obtained by 

numerically integrating its equation of dynamic equilibrium whose general form is 

given by Eqn. (2). 

                             

with                 

In Eqn. (2) m is the mass, c is damping coefficient, and           is the restoring 

force of the system. If the effective force p(t) is an arbitrary and/or complex function of 

time (t), then solving single degree of freedom system motion equation analytically is 

not impossible. In order to solve the differential equation of dynamic equilibrium, time 

step-by-step numerical methods, such as those discussed in Chopra (1995), may be 

used. In this case the Newton-Raphson algorithm was selected. In this method, the 



external force p(t) is divided into separate and consecutive forces   = p(  ), i= 0~N. 

Single degree of freedom system response, including motion, velocity and acceleration, 

  ,    ,    , were thus determined in separate points in time t (called the i-th time). The 

discreet response values satisfy Eqn. (3), accordingly.  

                          

For a linear elastic system, the restoring force satisfies           . However, 

for a non-linear and inelastic system, the value of the restoring force depends on the rate 

of motion. Using the numerical method quoted above, the values of                      in 

the         time were determined. The dynamic response obtained in this way thus 

satisfies Eqn. (4), being the dynamic motion of the system controlled by Eqs. (5). 

 

                                  

                                             

                                                         

 

In Eqs. (5)   and   define the rate of acceleration in a time step. Common values 

for these constants are   
 

 
 and 

 

 
 β  

 

 
. Eqs. (4) and (5) were combine to determine 

                       in (i+1) following the known values of   ,      and     estimated for 

time i. 

In order to calibrate the quasi-static analyses used here, a case study drawn from 

Chopra (1995) consisting of one degree freedom elasto-plastic system with a mass of 

253.3 kg, 5% damping and yield deformation of          , was analysed with 

OpenSees as well as with the algorithm outlined above. Figure 2a shows the load 



applied to the model whilst Figure 2b shows the discrepancy between the two 

procedures. The differences encountered seem to be caused by a numerical error in 

Chopra (1995) when estimating the tangent stiffness. This explains why the curves in 

Figure 2b coincide in the first half of the analysis but diverge in the second half. 

 

 

      

a)      b) 

 Figure 2. A case study analysis a) Load applied to the model b) Displacement in   

dynamic analysis 

 

Following, the two models were loaded with the time-varying load shown in 

Figure 3a. That load represents the load transfer process recommended by GSA (2003, 

2013), hence it is the one used to run the full analyses of the multi-storey buildings 

described in sections 2-4. The dynamic performance obtained for the single degree of 

freedom system for the initial 5 s is illustrated in Figure 3b.  

0 

20 

40 

60 

80 

100 

120 

0 0.5 1 

P
 (

kN
) 

time (s) 

0 

5 

10 

15 

20 

25 

30 

0 0.5 1 

D
is

p
la

ce
m

e
n

t 
(m

m
) 

time (s) 

Opensees 

Numerical Method (Chopra) 



          

a)      b) 

           Figure 3. Validation of the progressive collapse analysis a) Load b) Displacement 

 

6. Analysis results 

As outlined above, in this investigation, the potential collapse of the structures listed in 

Table 1 is studied under the scenarios set out in Table 4 and Figure 4. In all cases, the 

column removed correspond those located in the ground floor, as that induced the most 

critical conditions concerning structural stability. Additionally, a range of column-

removal scenarios have been identified in order to induce meaningful configurations of 

potential failure. In each of these scenarios, a column is suddenly removed and the 

response of the structure is examined through non-linear dynamic and static analyses, as 

described above. The columns selected for removal are shown in Figure 4. 
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Figure 4. Location of the columns removed for each of the four structures 

 

               Table 4. Column removal scenarios for each of the four structures 

Number 
location of removal column 

Scenario notation 
Storey Frame Pier 

1 1 1 A S1F1PA 

2 1 1 B S1F1PB 

3 1 1 D S1F1PD 

4 1 4 A S1F4PA 

5 1 4 D S1F4PD 

6 1 4 F S1F4PF 

7 1 7 A S1F7PA 

 

        Figure 5 shows the pushdown capacity curve reflecting the removal scenarios 1 

and 3 for each of the four structures, following non-linear static analyses. The vertical 

axis of these curves represents the load factor dimensionless parameter given by Eqn. 

(1). It can be seen in Figure 5 that the load factor of irregular structures is lower than the 

load factor in regular ones for either column-removal scenario. This was to some degree 

expected given the fact that irregular buildings do not exhibit simple alternate load paths 

hence extra-forces tend to be present. Load factors of regular structures are greater than 

1 which suggests there is some extra-capacity to withstand progressive collapse. 

Additionally, structure 1 and 3, which are designed in site class C, show less capacity 

than structure 2 and 4, assumed in site class E.  



  

a)       b) 

      Figure 5. Pushdown capacity curve of all the structures a) Scenario 1 b) Scenario 3 

 

Figure 6 shows the pushdown curves derived from non-linear static analyses 

represented in bi-linear form covering scneario 5 for structure 2. This curve can be used 

to identify the yielding load factor defined as the ratio between applied load and the 

identified yield capacity. 

 

Figure 6. Pushdown curve and its bilinear curve for the fifth scenario for the second 

structure 

 

 In Figure 7, the yield load factor is shown for all the stuctures and scenarios. It 

can be seen that structure 4, which is a regular structure designed in site class E, has the 

highest yield load factor. On the other hand, among all scenarios, scenario 5 which is 
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related to the structure’s centeral column, has a greater yield load factor and a reduced 

collapse potential. 

             

                   Figure 7. Yield load factors for all the structures and scenarios 

 

            On the other hand, non-linear dynamic analyses were used to calculate the peak 

displacement of the node above a removed column. Figure 8 shows the results obtained 

for scenarios 1 and 3 across all structures. As it can be inferred from the results, node 

displacements in structures 1 and 2 represent structural collapse of the region around the 

removed column. In contrast, the node displacement remains constant after 7 s from the 

removal in structures 3 and 4 which reveals a robust structural performance following 

the potential failure of the target column. 

 

a)       b) 

Figure 8. Vertical displacement of removal point, a) Scenario 1, b) Scenario 3 
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Another key aspect for assessing structural performance under progressive 

collapse is the force taken by columns that are adjacent to the removed column. In 

Figure 9 the demand to capacity (D/C) ratio of the columns adjacent to the corner 

columns in scenario 1 across all the structures is given. It can be seen in this figure that 

the D/C ratio associated to adjacent columns is around 1 in scenario 1 related to 

structures 3 and 4. This suggests that columns adjacent to the target-removal one may 

not be exposed to total damage as alternative load paths do not seem to directly 

redistribute to those spans. However, in structures 1 and 2 the strength demand for both 

adjacent columns in the progressive collapse analysis is between 1.2 and 1.8 times the 

column capacity, which indicates that these columns would have been damaged after 

the collapse of the target column. 

 

 

  

a) Column 1B 

0 

0.5 

1 

1.5 

2 

0 5 10 15 20 

D
/C

 

time (s) 

Structure 1 

Structure 2 

Structure 3 

Structure 4 



  

b) Column 2A 

Figure 9. The demand force to capacity ratio (D/C) of the adjacent columns in Scenario 

1, a) Column 1B, b) Column 2A on the ground floor 

 

Figure 10 shows the D/C ratio of adjacent columns in scenario 3. Structures 3 

and 4 exhibit D/C of 0.6 and 0.73, respectively. Therefore, these columns are not 

exposed to collapse under that column-removal scenario, but they would be damaged if 

belonging to structures 1 and 2. In Table 5, node displacement and maximum D/C ratio 

of adjacent columns is given for all the scenarios and structures.  

 

  

a) Column 1C 
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b) Column 2D 

Figure 10. The demand force to capacity ratio (D/C) of the adjacent columns in 

Scenario 3, a) Column 1C, b) Column 2D on the ground floor 

 

Table 5. Node displacment and maximum D/C ratio of adjacent columns for all the 

scenarios and structures 

Structure 4 Structure 3 Structure 2 Structure 1 

Scenario 
D/C 

Node 

Displacement 

(mm) 

D/C 
Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

D/C 

Node 

Displacement 

(mm) 

0.96 72.6 1.03 97 1.44 Fail 1.77 Fail S1F1PA 

0.57 19.4 0.71 56.5 0.92 86 1.29 Fail S1F1PB 

0.6 21 0.73 64.4 1.23 Fail 1.5 Fail S1F1PD 

0.56 19.3 0.71 56.3 0.87 84.9 1.15 Fail S1F4PA 

0.49 19.1 0.68 55.7 0.83 84 1.05 91 S1F4PD 

0.58 20 0.71 62.6 0.94 87.8 1.31 Fail S1F4PF 

0.96 72.6 1.03 97 1.38 Fail 1.67 Fail S1F7PA 

 

7. Conclusion 

In this study, four steel structures were designed in site class C and E according to the 

AISC (2010) and ASCE7 (2010). The effect of plan irregularities and type of seismic 

regionalisation on progressive collapse have been analysed under various column 
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removal scenarios. The results of the analyses reveal that in cases where the structural 

plans were similar, the structure designed in a region in site class E seismic risk has less 

collapse potential. Moreover, the potential for progressive collapse was identified to be 

higher for buildings with plan irregularities and or in site class C. It was also seen that 

the displacement of the node above the removed column and the D/C ratio of the 

columns adjacent to the one removed could provide a fair indication of the risk of 

overall collapse of structures. 

The comparison of structures 2 (irregular) and 4 (regular) revealed that, on 

average, the D/C ratio in the irregular structures is between 1.5 and 2 times larger than 

that of the regular structures. Moreover, in the scenario of the removal of columns in 

structure 4, the yield load factor is significantly higher than that in structure 2, 

indicating the high capacity of structure 4 to resist progressive collapse.  

By comparing the dynamic behaviour of structures 3 and 4 it is concluded that 

designing in site class E seismic region results in a 25% decrease in the displacement of 

the node above the corner columns and a 65% decrease in the displacement of the node 

above the middle columns. Finally, the D/C ratio of the columns in the structure in site 

class E decreases by between 10 and 20% in comparison to that of the structure located 

in site class C. 
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