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ABSTRACT: Flexible imprinted photonic nanostructures which are able to diffract/focus 

narrow-band light have potential applications in optical lenses, filters, tunable lasers, displays, 

and biosensing. Nanophotonic structures through holography and roll-to-roll printing may reduce 

fabrication complexities, expenses and enable mass production. Here, 3D photonic 

nanostructures of a stacked ring array were imprinted on acrylate polymer (AP) over 

poly(ethylene terephthalate) (PET) substrate through holography and lift-off processes to create a 

microlens array (MLA). Surface structure of the array consisted of circular nonostepped 

pyramids and repeated patterns were in hexagonal arrangements. Stacked-ring based MLA 

(SMLA) on a flexible AP-PET substrate showed efficient bidirectional light focusing and 

maximum numerical aperture (NA = 0.60) with a reasonable filling-factor. The nanostructures 

produced a well-ordered hexagonally focused diffraction pattern in the far-field and power 

intensities were measured through angle-resolved experiments. The variation of nanostep 

dimensions (width and height) and the number of steps resulted in different photonic bandgaps, 

and the arrays produced distance dependent narrow-band light focusing. The validation of the 
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SMLA was demonstrated through the text, image and hologram projection experiments. It is 

anticipated that imprinted bidirectional SMLA over flexible substrates may find applications in 

optical systems, displays, and portable sensors.  

KEYWORDS: microlens array, photonics, stacked rings, bidirectional focusing, diffraction 

grating  

Microlens array (MLA) is an ordered collection of two/three-dimensional (2D/3D) photonic 

lenses having aperture sizes less than a few millimetres.
1,2

 Robert Hooke in 1665s first used 

melted rods as small lenses to study insects.
3
 In the 1940s, Dennis Gabor proposed an array of 

microscale lenses as superlenses to go beyond the diffraction limit.
4
 Gabor’s superlenses are now 

widely used as microlenses array having application in beam shaping, optical interconnections or 

coupling, photolithography, and imaging.
5,6

 Microlens arrays became essential components of 

many optical components such as charge-coupled devices (CCDs) cameras or sensors, fiber 

couplers, optical switches, and light-emitting-diodes (LEDs) or organic-LED (OLED) systems.
7,8

 

Microlens arrays can be fabricated by lithography, ion-beam writing, wet etching, stamping or 

embossing, photoresist reflow, and UV replication, or ink-jet imprinting.
9,10

 However, most of 

the microlenses manufacturers adopted lithography, ion exchange or diamond point tuning 

techniques to produce high quality lenses. However, the cost of these fabrication techniques are 

high, and the features of these microlenses are limited in diameter and focal length.
5,11

 

Microlenses have been also fabricated using graphene, liquid crystals, photonic crystals, 

hydrogels, and polymers.
12-19

 Microlens structures have been fabricated in square, circular, 

octagonal, diamond, stacked circle, and honeycomb arrangements.
13,15,20-23

  However, uniform 

and accurate geometries of MLAs is desired for efficient light focusing in optical applications.
24

 

Earlier reported MLA fabrication techniques including reflow or transfer method were limited in 
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light focusing capability and numerical aperture (NA) values (< 0.40).
25,26

 Therefore, it is 

challenging to produce high-resolution images from microscopic objects. Ink-jet printed MLAs 

(NA:< 0.50) were also reported.
27,28

 This approach required high-cost setups and polymer-coated 

substrates. Recently, MLAs (NA: < 0.56) were fabricated with laser ion-beam patterning and 

direct laser ablation.
1,29

 

Laser ablation based holographic laser interference lithography has been used to efficiently 

produce a surface-relief MLA.
30

 This approach is fast, eliminates complex and tedious pre-/post-

treatment of samples, is cost-effective, and does not require high technical expertise.
14,31

 Direct 

laser interference lithography (DLIL) is based on in-line or off-line laser interference techniques, 

and does not require masks for the 2/3D surface pattering.
32

 DLIL based pattering is mainly 

based on UV, femtosecond (fs) and nanosecond (ns) laser ablation techniques to create 

submicron nanophotonic structures.
33-37

 Surface pattering based on fs-laser involves short pulse 

duration to ablate a wide range of materials, where thermal conduction can be neglected (direct 

solid to plasma state).
38

 Laser ablation based on ns-laser patterning allows printing holographic 

devices, offering low cost and less production complexity.
31

  Single beam, or multibeam laser 

light has been utilized to produce interference patterns to ablate 2D/3D nanopatterns.
30,32,39-42

 

Laser ablation can be utilized to form nanophotonic devices in ink, gold, polymers, or 

functionalized substrates.
35,42-45

 The patterned geometries depend on the laser properties (ablation 

energy, laser wavelength, spot size), and structural parameters (distance, height, and recording 

angle).
31,35

 However, multibeam interference require precise exposure angles to create complex 

nanostructures.
39

    

Here, 3D stacked rings in a hexagonal arrangement were produced through multibeam 

interference based holography and copies were imprinted through roll-to-roll processing over 
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large areas of a flexible polymeric film. The patterned photonic nanostructures focused light and 

acted as SMLA. The optical focusing property of the SMLA was experimentally characterized 

and computational modeling was performed to understand their optical properties. The SMLA 

showed efficient bidirectional focusing property and maximum NA of ~0.60. The performance 

of the SMLA was analyzed through varying its structural parameters (step width, height, and 

number of steps). Far-field experiments showed focused multiorder diffraction patterns in a 

hexagonal configuration. Angle-resolved light intensity measurements were also performed 

through 3D rotation stages. The projection experiments with monochromatic (red, green, and 

blue) and broadband light illumination through text and holograms showed multiple images at 

the far field which verified that sample acted as a MLA. The uniformity of the surface roughness 

and truncated nanosteps ensured high quality and brightness of the focused images.  

RESULTS AND DISCUSSION   

SMLA Fabrication and Optical Parameters. The fabrication of the SMLA consisted of 

subsequent photoresist patterning stages.
32

 Positive photoresist (diazonaphthoquinone) was 

spincoated over a glass substrate (1.0 mm) at 100 rpm for 2 min and baked at 80 °C for 1 h 

(Figure 1a(i)). The nanostep surface patterning over the positive photoresist (thickness ~ 1.2 μm, 

n=1.65) was performed with (a) multilayer exposure (prism coupling) and (b) opening exposure 

steps. During prism coupling, the circular stepped holographic multilayer nanostep patterns were 

created with interference lithography in photoresist. A triangular prism (gadolinium gallium 

garnet) was placed over the glass substrate and an index matching liquid (xylene, n= ~1.50, 1 

mL) was deposited between them. An argon-ion laser beam (λ=458 nm, 100 mW, Ø=14 cm) was 

illuminated (exposure angle 50°, duration ~ 1 min) over the prism-coupled photoresist layer. 

Therefore, multilayer interference patterns in the photoresist were created due to total internal 
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reflection effect within the prism-photoresist-air interface (Figure 1a(ii)). Second opening 

exposure stage was used to create hexagonally arranged nanostep patterns. Three azimuthal 

beams (120°) were interfered over the photoresist for 1 min.
22,46

 The structural block diagram of 

the three-beam laser exposure system was also shown in Supporting Information (Figure S1).
22

 

The laser beam (λ=458 nm, 100 mW, Ø=14 cm) passes through a variable beam splitter, BS1 

(2/3:1/3). The BS1 divides the input beam in two paths (P): two-third light passes through P1 and 

finally through BS2 (1/3:1/3). The remaining one-third light passes through P2 through a series 

of mirror setups. The BS2 divide input light into two equal parts and pass through P3 and P4. 

Therefore, P2, P3, and P4 carry one-third of input laser light and pass through the pinhole of the 

spatial filters and lenses (FL). The light through P2 and P3 passes through optical phase-shift 

(PS) to provide three azimuthal beams (120°) laser interference onto the target material 

(photoresist sample). Therefore, lateral and horizontal interference patterns in hexagonal 

arrangements were created in the photoresist layer (Figure 1a(iii)). The photoresist patterns were 

etched using a photographic developer (Figure 1a(iv)). Photoresist pattern was deposited with a 

silver layer and a nickel master honeycomb hologram was created using electroplating for the 

replication of the nanostructures (Figure 1a(v-vi)).  Embossed master patterns were transferred 

on AP-PET substrate using nanoimprinting (Figure 1a(vii)). The replicated pattern consisted of 

circular nanostructures (Figure 1a(viii)). Finally a ~3 nm thin aluminum layer was deposited on 

the AP-PET substrate through an evaporation process (Figure 1a(ix)). 

The scanning electron microscope (SEM) image of the fabricated sample showed circular 

stepped structure, resembling pyramids found in Guachimontones, Mexico (Figure 1a-b). The 

atomic force microscope (AFM) image of the fabricated sample illustrated the depth (h, ~1μm) 

of the pyramids (Figure 1c-d). The SEM image of the sample cross section had a lens radius, r 
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~1.8 μm and 14 steps (Figure 1e). However, top 7-8 steps had heights of ~200 nm) and widths of 

~250 nm. The distance/pitch of lenses was ~2.5 μm (Figure 1f). The fabricated microlens size 

depended on the nanostep radius (r) and height (h), which were used to estimate lens parameters 

based on geometry and theory: the radius of curvature (R), focal length (f), f-number (f#), and 

numerical aperture (NA) using the following relations:
10,14,20

 

R= (h
2 

+ r
2
)/2h, f=R/(n – 1), f#= f/2r, and NA= D/2f                    (1) 

where D is the lens diameter (2r), n is the refractive index of the lens material, and h < r . For the 

fabricated SMLA, we had h=1.0 μm, D= 3.6 μm, n=1.49 for AP, and n=1.57 for PET, 

respectively. Therefore, estimated lens parameters were R=1.78 μm, f = 3.1 μm, f# =0.87, and 

NA=0.6, respectively. The focal length (f) of the fabricated SMLA was measured through optical 

microscopy (Supporting Information, Figure S2). The f-number indicates the light gathering 

capability of the MLA, where the lower the value the higher the capability to gather the light. 

Moreover, NA also shows the light gathering capability and resolving fine specimen detail at a 

fixed distance.
29

 MLA with high NA collect enough light to provide bright images; and 

therefore, higher values are desired. The fabricated SMLA showed lower f# and higher NA 

values as compared with other reported MLAs.
13,14,47

 Lower f# and higher NA values of the MLA 

strongly depend on width and height variation which can be controlled through laser exposure 

angle. Light focusing property of the fabricated MLA sample was computationally estimated 

before optical characterization. Fast Fourier Transform (FFT) of the sample showed far-field 

diffraction and the bright focusing (Figure 1g). Light intensity along horizontal and vertical axis 

had sharp focusing at the center of the lenses (Figure 1h-i).   

Computational Modelling of SMLA. The diffraction from the SMLA was modelled using 

finite element method (FEM) based on commercial COMSOL Multiphysics software.
48,49

 The 
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model consisted of a 2D geometry of stepped pyramids with spacing on the order of 3 μm 

(Figure 2a). The pyramids were made of AP on PET film coated with a 30 nm thick Al layer. 

The refractive index of the Al layer was 1.26+i7.27 (at 632nm). The bulk material of the 

pyramids was defined as PETAP having a refractive index of 1.49. The unit cell of the geometry 

consisted of two circular stepped pyramid structures with periodic boundary conditions placed 

across the edges.
35

 A hemisphere screen was placed on top of the grating layer, and the area 

within the hemisphere was defined as air. For simplicity, a 2D simulation was performed and 

maximum triangular mesh size was one tenth of the input light. The simulated mesh consisted of 

35,800 domain elements, 1,722 boundary elements, and the number of degrees of freedom 

solved was 25,162. A monochromatic light wave was normally illuminated from the left side 

toward the grating surface. Diffracted light from the nanostepped pyramids focused the light on 

the right side of the grating (Figure 2a). Simulated results showed well-ordered symmetric light 

intensity focusing for the red (632 nm), green (532 nm) and blue (492 nm) wavelengths (Figure 

2b). As the wavelength increased, the focal point of the lens and full width half maximum 

(FWHM) values (3 dB bandwidth) also increased (Figure 2b-d). The FWHM values linearly 

shifted to the larger values as the wavelength increased. The observation plane along the lateral 

axis showed high intensity focusing at focal points for the red, green, and blue wavelengths 

(Figure 2f-h). The magnified E-field intensity distribution showed that non-uniform focusing of 

the light along the axial-axis (Figure 2i-k). Moreover, normalized intensity distribution of the 

vertical axis was wider as compared to the lateral-axis (Figure 2i-k). Simulations were performed 

through front-side of the SMLA models, where the stepped rings faced the incident light. 

However, SMLAs also showed efficient light focusing at the back side (stepped rings opposite 
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side of the incident light) and acted as bidirectional SMLAs (Supporting Information, Figure S3-

4). 

The light focusing from the SMLAs was due to the stepped nanostructures. The structural 

parameters (step width, height, and number of steps) tailor light propagation properties and 

produce constructive interference at the focal point. Computational studies were performed for 

the focusing properties of SMLAs by varying its geometry. The focused light’s bandwidth (BW) 

became wider as the step width increased (Figure 3a). However, the BW decreased as the step 

height and the number of steps increased (Figure 3b-c). The peak-to-peak focused light distance 

(dpeak) increased as the width and number of steps increased (Figure 3d, f). However, dpeak 

increased up to a certain range than decreased as height increased (Figure 3e). The focused light 

intensity increased as the step width increased, but intensity decreased as the step height 

decreased (Figure 3g-h). Additionally, the intensity increased up to 7 steps, and it decreased as 

the number of steps increased (Figure 3i). Figure 3j-l shows FWHM and dpeak as functions of 

step width, height, and the number of steps.  

Optical Properties of SMLAs. Optical characterization of the patterned SMLA was 

performed through monochromatic and broadband light diffraction experiments. The far-field 

focused diffraction patterns were also visualized using an image screen setup (Figure 4a). Similar 

diffraction patterns from a hexagonal MLA were previously reported.
50

 The incident light 

normally illuminated the sample and an image screen was placed behind the sample. For the 

broadband light illumination, multiple rainbow patterns in a hexagonal arrangement were 

observed surrounding the non-diffracted broadband light (zero-order) (Figure 4b). Red and blue 

light on the rainbow pattern diffracted to the long and short distances, respectively. The 

diffracted rainbow patterns of the SMLA were analogous to a diffraction grating. The far-field 
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diffractions of the SMLA were demonstrated with red, green and blue beams (Figure 4c-e). The 

experiments performed by normally illuminating the SMLA from the front and back sides 

showed efficient bidirectional focusing.  

Hexagonal diffraction patterns were also observed for the monochromatic light beams. The 

diffraction distances from the center spot increased as the wavelength increased. Therefore, 

longer distances of the hexagonal diffraction patterns were observed for the red light illumination 

and blue laser showed shorter diffraction spots, obeying Bragg’s law (Λ= λ/2sinϴ, where Λ is 

the grating spacing, λ is the wavelength, and ϴ is the tilt angle from the surface plane). Each 

hexagonal diffraction spot showed 2D square patterns at longer distances (D2=7.5 cm). This may 

be due to 2D periodic variation of nanosteps and widths. Each of the stepped pyramid circles 

focuses light at the center, and at a glance the whole sample acts as a diffractive MLA. Focused 

diffraction spots were in hexagonal arrangement. This is due to the hexagonal arrangement of 

stepped circular pyramid lens concavities during device fabrication. Furthermore, far-field 

diffractions patterns were also observed on the hemi-spherical surface for red, green, blue light 

illumination. Hexagonal diffraction patterns of the focused light were observed at short distances 

(D2=1.5 cm).  

The focused diffraction property of SMLAs was computationally modeled. A 

monochromatic light illuminated the SMLAs normally from the top (Figure 5a). The diffracted 

light was collected from a hemi-spherical boundary surface. Finite-element simulations showed 

well-ordered symmetrical diffraction patterns for the red (632 nm), green (532 nm) and blue (492 

nm) light (Figure 5b). Shorter and longer diffraction distances were found with green and blue 

laser illumination of the stepped grating surface. The number of diffraction orders increased with 

blue laser illumination. The red beam showed less diffraction orders (second orders) as compared 
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to blue light (fourth orders). The diffracted light intensity color strongly depended on the step 

height of the pyramid. As the step height increased, the diffracted color wavelength linearly 

shifted to the longer wavelengths (Figure 5c). Furthermore, the angle-resolved diffraction 

measurements of the fabricated stepped grating were performed by using a 3D rotation stage 

(Figure 5d). Stepped grating was placed in the x-y position stage, and the incident light was used 

to perpendicularly illuminate the grating surface, where distance to a spectrophotometer probe 

was varied. The laser pointer and sample holder stage was controled with a stepper motor which 

could rotate 360° (1° step size). The optical powermeter probe was placed normal (0°) to the 

sample for intensity measurements. Figure 5e-h shows diffraction intensity as a function of 

rotation angle for red, green, blue, and broadband light illumination. The diffracted focused light 

intensity was measured along the x-axis (Figure 5e-h insets) through the optical powermeter. The 

diffraction distance from the central spot increased as the incident light wavelength increased. 

Therefore, the diffracted focused light in a hexagonal arrangement for the red light showed 

maximum radii as compared with blue light. Green and blue beams resulted in light diffraction 

up to three and four orders, respectively. Similarly, increased diffraction orders were also found 

at shorter wavelengths in the simulated model, agreeing with the experimental results (Figure 

5b). The diffraction efficiency (DE), which was the ratio between diffracted (Pdiff.) and incident 

(Pinc.) lights, was calculated for the red, green, and blue beams (Figure 5i).
31

 The maximum DE 

was found with green laser (70%) and red laser showed minimum DE (30%). 

The optical focusing property of the SMLA was tested with an optical microscope 

arrangement (Figure 6a). The microscope was in transmission mode and the SMLA was placed 

in a sample holder stage. The broadband light illuminated the sample from the backside of a 

glass slide. An objective lens (×20, NA = 0.40) of the microscope system was placed on the 



11 
 

opposite side of the light source. A CCD camera was used to capture the microscopic images. 

The sample stage was moved along the z-axis to measure the focal point, f = 3 μm (z=0), which 

was in agreement with the simulated diffraction model. The focal point was measured from the 

distance between the completely unfocused (+/-z) upper point and lower focus point (z=0) 

(Supporting Information Fig. S2).
21

 Transmission intensity of the SMLA was measured for the 

broadband light illumination (Figure 6b). Maximum transmission peaks were observed for the 

green and red wavelengths. For broadband light illumination, green light was mainly focused at 

the focal point (Figure 6c). However, red and blue colors were at the center of the stepped circles 

at unfocused conditions due to chromatic aberration effect (Figure 6d-e). During unfocused 

conditions, localized light polarization effect was also observed. Polarization-selective green 

hotspots were found between the stepped rings (Figure 6f). For the x-polarized light, green 

hotspots were at each point of the hexagonal cells. For y-polarized light, the green spots were at 

the middle points of each arm of the hexagonal cells. 

Optical property of the SMLA was demonstrated through the image projection experiments 

(Figure 7a). Monochromatic or broadband light from the source was passed through a shutter to 

eliminate unwanted scattering and focus on the selected locations of the fabricated SMLA. The 

hologram or patterned object was placed before the SMLA. The SMLA was illuminated through 

a single image/patterned hologram. An array of holographic images were passed through the 

microscope object lens (×20, NA = 0.40) and projected over the image screen. Here, honeycomb 

arrangement of the SMLA was utilized to project holographic images. The bidirectional focusing 

of the SMLA was valid in image projection experiments. The stepped nanostructure of the 

honeycomb arrangement enabled efficient light focusing. This was due to the Bragg effect from 

the surface relief nanostepped circular pyramid structures. The light diffracted from the edges of 
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the circles and focused at the center region through constructive interference. For broadband 

light illumination of an ‘A’ mask, far-field projected images before focusing, at focusing, and 

after focusing are shown on a screen (Figure 7b-d). For monochromatic light (red, green and 

blue), the far-field projected image of ‘A’ was also efficient. However, the light intensity using 

the blue beam was not clearly captured. Additionally, image projection experiments were also 

performed through other ‘insect’, ‘ball’, and ‘star’ holograms using monochromatic light 

illumination. The far-field projected hologram images on the screen were in uniform size and 

shapes which indicated the consistency of the SMLA and high-resolution image focusing. 

Discussion. We have demonstrated stacked rings having stepped nanostructures that acted as a 

bidirectional MLA and showed efficient optical focusing. The SMLA fabrication was based on 

azimuthal multibeam (120° exposure angles) laser interference holography and roll-to-roll 

nanoimprinting. The optical properties of the SMLA were characterized through computational 

modeling followed with experimental analyses. The computed SMLA parameters (f, f#, and NA) 

had agreement with experimental results. Moreover, the performance of the SMLA was 

comparable with other reported MLAs with lift-off or direct laser writing processes in 

polymers.
14,50

 The light focusing property of the SMLA were based on constructive interference 

from the stepped nanostructures and its focusing property changed as the step height, width and 

number of steps was varied. As the illumination wavelength increased, the FWHM of the 

focused light increased and linearly shifted to the larger values. Shorter bandwidth and high 

intensity of the focused light was achieved by decreasing the step height and increasing the 

number of steps. Moreover, the optical focusing parameters (NA, f, and f-number) were also 

functions of lens structural parameters.
1
 The aspect ratio (height/width) of the fabricated SMLA 

can be controled by varying the laser fluence, and exposure time. The bidirectional optical 
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focusing properties of the SMLA were also modeled with FEM analyses and experimentally 

studied (Supporting Information, Figure S3-4).  

 The optical focusing properties of the fabricated SMLA were demonstrated with broadband 

and monochromatic light illumination. Far-field diffraction results were analogous with the 

reported results.
50

 Optical microscope arrangement produced focused diffracted green light upon 

broadband light normal illumination. The focal distance (f = 3.5μm) of the SMLA was also 

measured through an optical microscope, which was in agreement with simulated model. The 

fabricated SMLA also showed maximum NA (0.60) as compared to other reported MLAs.
13,14,47

 

The resolution, R is an another important optical parameter that determine the image quality and 

a function of NA.
1
 Therefore, increases in NA values of the SMLA enable higher resolution 

imaging. Polarization-selective green hotspots were also observed at different points of the 

hexagonal cells on both sides. Analogous polarization-dependent hotspots were also recently 

reported.
51

  Therefore, the SMLAs also enable the polarization dependent focusing. The optical 

focusing properties of the fabricated SMLA were also validated through image projection 

experiments. However, previously reported MLAs showed focusing property and 

image/hologram projection experiments only with broadband light and unidirectional 

focusing.
13,14

 The optical focusing properties were also limited due to low NA values. In the 

present work, far-field projection experiments were performed with broadband and 

monochromatic lights, showing bidirectional focusing of the MLA (Supporting Information, 

Figure S3-4).The projection experiments of the SMLA showed multiple copies of text (‘A’) and 

holographic images (‘ant’, ‘ball’, and ‘star’) from a single copy. Therefore, the capability to copy 

multiple symbol/information of the SMLA may find applications in data communication and 

information processing. Each of the SMLA cells focused one image at focal points. The 



14 
 

projected images of the SMLA were well-organized and efficient, showing bright focusing that 

ensured high-resolution imaging capability. The focusing performance of the SMLA was 

comparable with reported devices.
13,14,21

 The projection results demonstrated the uniformity, 

accurate surface topography of the SMLA (Figure 1b-c). Therefore, the SMLA on flexible AP-

PET substrate is suitable for the high-resolution portable imaging applications. 

CONCLUSIONS 

In a summary, SMLAs have been fabricated in a close-packed hexagonal configuration on a 

flexible AP-PET substrate via holography and nanoimprinting and its optical bidirectional 

focusing properties were demonstrated for broadband and monochromatic light illumination. The 

performance of the bidirectional SMLA was demonstrated with computational modeling and 

optical characterization experiments. The optical microscope experiments ensured green light 

focusing for the broadband light illumination and polarization-dependent green hot spots during 

unfocused conditions. Far-field projection experiments for the text images or holograms ensured 

the SMLA acted as bidirectional lenses. Brightness and uniformity of the far-field projected 

images indicated highly accurate and well-ordered fabrication the SMLA. It is anticipated the 

bidirectional SMLAs may find applications in microscale optical devices and miniaturized 

sensors. 

MATERIALS AND METHODS  

Optical modeling. The computational modeling of the SMLAs was performed with COMSOL 

Multiphysics (v5.2) based on FEM. Light was illuminated on the nanostepped pyramids and 

focused light intensity was computed from the other side in a medium defined as air. The 

pyramid consisted of AP (n=1.49), where height, width, the number of steps were varied, but the 
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thickness of the pyramid was kept constant (30 nm). A hemispherical domain was designed to 

surround the SMLA. The continuity and scattering boundary conditions were considered for the 

pyramids and hemispherical surface. The incident light normally illuminated to the SMLA to 

reduce the angular reflection from the pyramids.  

Stepped pyramid fabrication and nanoimprinting. The fabrication of the nanostepped 

pyramid was based on (a) multilayer exposure based on prism coupling, (b) opening exposure, 

and (c) nanoimprinting from a master hologram. During prism coupling, multilayer interference 

pattern was created over the photoresist layer with laser interference (458 nm, maximum 

exposure angle 50°). Hexagonal stepped circular interference was created during opening 

exposure. Three azimuthal beams (458 nm, 100 mW) having 120° exposure angles created an 

interference pattern in the photoresist to produce stepped circular structures within 1 min. 

Finally, photographic developer was used to etch the photoresist. To produce multiple copies of 

the stepped pyramids, a nickel master hologram was used. Multiple copies of the samples were 

created through roll-to-roll nanoimprinting process from the nickel master hologram. UV 

nanolithography was used to print stepped circular pyramids onto AP (2 μm) over a PET 

substrate (100 μm).  

Optical characterization. Optical properties of the SMLA were characterized with a 

spectrophotometer (resolution ~0.1-100 nm FWHM) and a broadband light source (450-1100 

nm) purchased from Ocean Optics. Monochromatic red (635 nm, 4.5 mW, Ø11 mm), green (532 

nm, 4.5 mW, Ø11 mm), and blue (492nm, 2.6 mW, Ø11 mm) lasers were purchased from 

Thorlabs. A computerized stepper motor based 2D X-Y stage (Thorlabs) was used to measure 

power intensity 180° rotation (step size 1°). Far-field measurements were performed with an 

image screen (white A4 paper) and a hemispherical surface (semitransparent white, Ø30 cm). 
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Figure 1. Fabrication and characterization of SMLAs. (a) The fabrication steps of the SMLA. (b-

c) An SEM image of array and a single magnified cell consisting of circular stepped concavities. 

Scale bar = 2.0 and 0.4 μm. (c-d) An AFM image of the array and a single cell of the SMLA. (e) 

Surface (gray-value) profile of the steps and height of a single cell of a SMLA. (f) Gray value 

profile of a SMLA. (g) FFT of the fabricated single cell of a SMLA. Scale bar= 100 μm. (h-i) 

Simulated focused light along x and y axes of the fabricated sample. 

A

B

C

(b) (c)

(e) (f) (g)

0

50

100

150

200

250

0 2 4 6 8 10

G
ra

y
 v

a
lu

e

Distance (μm)

A B C

(d)

Bottom-side

12

14

.

0

40

80

120

160

200

0 0.4 0.8 1.2 1.6

G
ra

y
 V

a
lu

e

Distance (μm)

1
2

.

14

0 200 400 600 800
0

10

20

30

X-axis (µm)

In
te

n
s
it

y
(a

u
)

0 200 400 600
0

10

20

30

Y-axis (µm)

In
te

n
s
it

y
(a

u
)

(h) (i) (j)

(i) (iv)

(v)

(vi)

(vii)

(viii)

(ix)

Photoresist

PETAP

Glass

Exposed Photoresist

Ni0

Ag0

(ii)

(iii)

(a)



23 
 

 

Figure 2. Computational modeling of SMLA and their optical properties. (a) The geometry of a 

modeled SMLA designed with circular stepped concavities. (b-d) Electric field distribution of 

the focused light for red, green, and blue light illumination. (c) The FWHM of the focused light 

as a function of wavelength. (f-h) Normalized intensity (along lateral-axis) of the focused light 

for the monochromatric light illumination. (i-k) Magnified electric field distribution of the 

focused light for the monochromatic light illumination on a single cell of SMLA. (l-n) 

Normalized intensity (along axial-axis) of the focused light for monochromatic light 

illumination. 
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Figure 3. The optical properties (along lateral-axis) of SMLA with structural parameters 

variation (width, height, and number of steps). (a-c) The bandwidth of the focused light intensity 

as a function of structural parameters variation. (d-f) The peak-to-peak distance, dpeak of the 

focused light intensity as a function of structural parameters variation. (g-i) Diffracted 

normalized intensity as a function of structural parameters variation. (j-l) FWHM and dpeak as a 

function of structural parameter variation. 
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Figure 4. Far-field diffraction patterns of a SMLA. (a) Experimental setup for the far-field 

projection experiments. Distance (D), 10, 75 and 1.5 cm. (b-d) Hexagonal diffraction patterns 

with broadband, red, green, and blue laser illumination. Scale bars = 2.5 cm, and 10.0 cm, 

respectively. (e) Far-field diffraction experiments with monochromatic and broadband light in a 

hemispherical surface. Scale bar = 5 cm. 
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Figure 5. Computational modeling and experimental diffraction measurements of a SMLA. (a) 

The geometry of a modeled SMLA designed with circular stepped concavities for the diffraction 

analyses. (b) Simulated diffraction curves with red, green, and blue beam illumination. (c) 

Simulated far-field diffraction intensity as a function of step height. (d) Experimental setup for 

angle-resolved diffraction measurement of the SMLA. (e-h) Measured optical intensity as a 

function of angular rotation with monochromatic and broadband light illumination. (i) The DE 

measurements of a SMLA with monochromatic light illumination. 
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Figure 6. The optical properties of a SMLA with broadband light illumination. (a) The 

computational block diagram of the focusing property measurement of the SMLA. (b) The 

transmission properties of the SMLA with broadband light illumination. (c) Focusing green light 

with broadband light illumination using SMLA. Scale bar = 10 μm. (d-e) Red and blue light is at 

the center of each concavity of SMLA during unfocused conditions. Scale bars = 10 μm. (f) An 

electron microscope image of a SMLA and hot-spots areas. Scale bar = 2 μm. (g-h) Polarization-

dependent green hotspots during unfocused conditions. Scale bar = 2 μm. 
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Figure 7.  Far-field image/hologram projection experiments. (a) Conceptual block diagram of 

SMLA for far-field projection experiments. (b-d) For broadband light illumination, distance-

dependent far-field projection of text ‘A’ image with focusing (z = 0), before (-z), and after 

focusing (+z) of SMLA. Scale bars = 2 cm. (e-g) Far-field projection of text ‘A’ image with red, 

green and blue light illumination during focused condition of SMLA. Scale bars= 2 cm. (h-j) 

Far-field projection of holograms: ‘insect’, ‘ball’, and ‘star’ images with monochromatic light 

illumination during focused condition of SMLA. Scale bars= 5 cm. 
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