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Abstract
There is increasing demand for models that can accurately predict river temperature at the large

spatial scales appropriate to river management. This paper combined summer water temperature

data from a strategically designed, quality controlled network of 25 sites, with recently developed

flexible spatial regression models, to understand and predict river temperature across a 3,000 km2

river catchment. Minimum, mean and maximum temperatures were modelled as a function of

nine potential landscape covariates that represented proxies for heat and water exchange pro-

cesses. Generalised additive models were used to allow for flexible responses. Spatial structure

in the river network data (local spatial variation) was accounted for by including river network

smoothers. Minimum and mean temperatures decreased with increasing elevation, riparian

woodland and channel gradient. Maximum temperatures increased with channel width. There

was greater between‐river and between‐reach variability in all temperature metrics in lower‐

order rivers indicating that increased monitoring effort should be focussed at these smaller scales.

The combination of strategic network design and recently developed spatial statistical

approaches employed in this study have not been used in previous studies of river temperature.

The resulting catchment scale temperature models provide a valuable quantitative tool for under-

standing and predicting river temperature variability at the catchment scales relevant to land use

planning and fisheries management and provide a template for future studies.
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1 | INTRODUCTION

Water temperature (Tw) is an important control on the survival and

growth of freshwater fish, with consequences for species distribution,

abundance, demographic characteristics and production. This is partic-

ularly the case for cold water adapted species including salmonids
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(Comte, Buisson, Daufresne, & Grenouillet, 2013; Jonsson & Jonsson,

2009; McCullough et al., 2009; Ruesch et al., 2012). Rising Tw

has the potential to alter the thermal suitability of rivers for

salmonids (Isaak et al., 2010; Isaak, Wollrab, Horan, & Chandler,

2012; Mohseni, Stefan, & Eaton, 2003), which are often the focus of

environmental protection and management action. In addition to their

ecological importance, salmonid species are frequently associated with

a high cultural, social, conservation and economic value. For example,

in Scotland, there are 17 rivers designated as special areas of conserva-

tion (SAC) for Atlantic salmon (Salmo salar) under the European Union

Habitats Directive (Anon, 2009), and Atlantic salmon and sea trout
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(Salmo trutta) anglers are estimated to contribute over £73 million per

year to the Scottish economy (Radford, Riddington, & Anderson,

2004). There is therefore increasing interest in understanding and

predicting the spatio‐temporal variability of river thermal regime

(Webb, Hannah, Moore, Brown, & Nobilis, 2008), the likely effects of

climate change and opportunities for mitigation and management, such

as riparian tree planting, to inform fisheries management (Hrachowitz,

Soulsby, Imholt, Malcolm, & Tetzlaff, 2010; Malcolm et al., 2008).

Spatial statistical models represent the most promising approach

for understanding and predicting river temperature at larger spatial

scales and for informing and refining sampling network design. How-

ever, there have been relatively few studies at the catchment (Chang

& Psaris, 2013; Hrachowitz et al., 2010; Imholt et al., 2011, 2013;

McNyset, Volk, & Jordan, 2015; Steel, Sowder, & Peterson, 2016) or

regional (Hill, Hawkins, & Carlisle, 2013; Isaak et al., 2012; Ruesch

et al., 2012) scales necessary for management and fewer still have

provided a holistic assessment of thermal regime necessary for

improved understanding of ecological processes (Imholt et al., 2011;

Malcolm et al., 2008; Steel et al., 2016). In addition, most previous

studies have considered only linear responses between Tw and catch-

ment covariates, even though more complex asymptotic or modal

responses (i.e. smooth terms) may be required.

This paper uses temperature data collected from the summer of 2015

to produce spatial regression temperature models for the River Spey

catchment, an SAC for Atlantic salmon in the North East of Scotland.

The paper aims to improve understanding of the spatial variability in tem-

perature across the catchment, highlight areas of potential risk for Atlantic

salmon under climate change (i.e. hotter areas in the catchment) and

identify optimal locations for riparian tree planting based on model out-

puts and a conceptual understanding of energy exchange processes.

Secondly, the paper aims to characterise thermal heterogeneity for dif-

ferent river orders to inform future temperature sampling strategies.

These aimswere addressed through the following specific objectives:
1.1 | Objectives

1. Develop regression‐based models to predict temperature metrics

(minimum, mean and maximum) from landscape characteristics

representative of energy exchange processes.

2. Understand how catchment scale variability in landscape covari-

ates influences Tw and infer underlying processes.

3. Predict temperatures for unmonitored locations across the Spey

catchment and highlight the areas at greatest risk of high temper-

atures and identify areas suitable for riparian planting.

4. Characterise thermal heterogeneity at different spatial scales as

indicated by river order and assess consequences for monitoring.
2 | METHODS

2.1 | Study area

The River Spey is the second largest catchment in Scotland, at approx-

imately 3,000 km2 (Butler, Radford, Riddington, & Laughton, 2009).
The network length is around 36,500 km with the main stem constitut-

ing 180 km (Hastie et al., 2004). Heather moorland, rough pasture,

pastoral farming, both conifer and deciduous woodland and wetlands

are the dominant land covers (Hastie et al., 2004). The catchment is

relatively un‐impacted by artificial flow regulation (Scottish Natural

Heritage, 2001).

The Spey catchment is designated as a SAC for Atlantic salmon,

Otter, Sea Lamprey and Freshwater Pearl Mussel (Butler et al., 2009),

and the main stem is a Site of Special Scientific Interest (Scottish

Natural Heritage, 2001). The River Spey has been described as one

of Europe's premier salmon and trout rod fisheries (Sandison, 2001)

with a study from 2003 estimating the value to be around £10.1

million annum−1 to the local economy (Butler et al., 2009).
2.2 | Water temperature data and metrics

Water temperature was monitored at 25 sites, using cross‐calibrated

Gemini TinyTag Aquatic 2 (TG‐4100) dataloggers, during the summer

of 2015 (Figure 1). The sites are part of the Scotland River Tempera-

ture Monitoring Network (SRTMN) and designed to cover a wide envi-

ronmental range of potential landscape controls (Jackson, Malcolm, &

Hannah, 2016). The measurement precision of the temperature

dataloggers is 0.01°C. Further details on this network, its design and

quality control procedures, can be found in Jackson et al. (2016). Data

were collected at 15‐min intervals between 22/06/2015 and 31/08/

2015 and used to produce three summary metrics. These metrics were

(a) Tmin: the minimum 7‐day moving‐average of daily minimum tem-

peratures, (b) Tmean: the mean of daily mean temperatures, and (c)

Tmax: the maximum 7‐day moving‐average of daily maximum temper-

atures. Moving averages of Tmin and Tmax were used in preference to

single daily values, to indicate locations associated with sustained high

or low temperatures in agreement with previous studies (e.g. Moore,

Nelitz, & Parkinson, 2013). The combination of metrics will allow a

broader understanding of the hydrological processes influencing Tw

variability, extending beyond the more common focus on maximum

temperatures. This can be used to infer the likely consequences of

catchment scale Tw patterns on salmonid fish (e.g. growth, mortality)

using existing information on thermal preferences and thresholds

(see Elliott and Elliott (2010) for detailed discussion of the temperature

requirements for Atlantic salmon and brown trout).
2.3 | Model covariates

The Spey river network was characterised using a digital river network

(DRN; Centre of Ecology and Hydrology, 2014) consisting of a series of

line features connected at nodes. Nodes exist at all river sources and

confluences as a result of the digitisation process. In common with

other DRNs, additional “pseudo nodes” (i.e. nodes present on river seg-

ments which were not a source or confluence) were also present

throughout the catchment (Peterson & Ver Hoef, 2014). Additional

nodes were generated for each SRTMN monitoring site. Covariates

were calculated for all SRTMN sites (for model fitting) and nodes (for

prediction), except for source nodes, where it was not possible to

obtain covariates that required upstream information, for example,

channel gradient (see below).



FIGURE 1 Site map of the river Spey catchment with Scotland River Temperature Monitoring Network sites shown as black dots and salmon rivers
(where salmon are present or likely present) defined by (Gardiner & Egglishaw, 1986) in dark blue. Non‐salmon rivers are shown in light blue.
Woodland is overlaid in green
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To enable catchment wide prediction of Tw, a suite of landscape

characteristics was used to model river temperature. These repre-

sented proxies for the physical processes affecting Tw (Jackson et al.,

2016) and have often been used in previous regression‐based studies

(Chang & Psaris, 2013; Hrachowitz et al., 2010; Imholt et al., 2011).

These covariates were as follows: elevation (elevation), upstream

catchment area (UCA), percentage riparian woodland (%RW),

hillshading/channel illumination (HS), channel width (width), channel

gradient (gradient), channel orientation (orientation), distance to coast

(DC) and distance to the sea along the river (RDS). Detailed discussion

of the thermal processes represented by these proxies can be found in

Jackson et al. (2016).
2.3.1 | Covariate calculation

Covariates were characterised using R, version 3.2.3 (R Core Team.,

2015) except where specified. For each node, points were established

1,000 m upstream, by travelling up the DRN. Where the upstream path

encountered tributaries, it remained on the river line associated with

the greatest Strahler river order (order). Where the upstream path

encountered confluences with the same order, it proceeded up both trib-

utaries. A river “segment” line feature was established between the

nodes and the upstream points, and these segments were then snapped

to the nearest ordinance survey (OS) MasterMap river features (lines or

polygons). Finally, a buffer was extended 50m either side of the river fea-

tures. This combination of points, lines and buffers enabled various

covariates to be extracted in a meaningful way. In addition, the approach
did not require the removal of braids or complicated confluences (i.e. >2

tributaries joining in the same location) from the DRN.

Elevation was extracted as a point value for each node from the OS.

Terrain 10 digital terrain model, (DTM), 10‐m resolution, using the

“extract” function in the “raster” package (Hijmans, 2015). Gradient was

determined as the difference in elevation between nodes and the associ-

ated upstreampoints, divided by the segment length. Orientationwas cal-

culated using the x and y locations of the node and associated upstream

points using standard trigonometry. An average of the gradients and ori-

entations was obtained where there was more than one upstream loca-

tion, that is, where the 1‐km segment branched up tributaries.

A UCA raster was created in ArcGIS 10.2.1 using Arc Hydro Tools.

The river network was “burned in” to the DTM to improve correspon-

dence between the raster and DRN and thus catchment delineation

(Li, 2014; Peterson, Sheldon, Darnell, Bunn, & Harch, 2011). UCA

was obtained by returning the maximum observed UCA in a circular

buffer around each node. The size of the buffer corresponded to river

order, optimised to maximise the chances of including appropriate

values where the DTM and DRN were in poor agreement (e.g. flood

plains) or where braided rivers occurred.

Hillshading rasters that provided a metric of potential solar radia-

tion were created using the “terrain” and “hillShade” functions in the

“raster” package (Hijmans, 2015) and the available DTM. Solar azimuth

and altitude input values were obtained from the U.S. Naval Observa-

tory Astronomical Applications Department (Anon, 2001) for the cen-

tre point of the catchment, for every hour the sun was above the

horizon. The hillshading raster layers for each time period were then
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summed to create a single layer providing a metric of total potential

solar exposure. HS values were calculated for each node by averaging

the hillshading raster values in the OS MasterMap river polygons that

extended 1‐km upstream. If the river was characterised only by a line

in the OS MasterMap dataset (meaning they are smaller than the min-

imum width required for polygons), a 0.5 m buffer was extended either

side of river line features, to create a river polygon. Raster cells were

weighted by the proportion of the cell within the buffer.

The %RW was extracted by calculating the percentage of the

upstream buffers containing MasterMap polygons classified as wood-

land. The 1‐km buffer distances were chosen based on distances used

in previous regression‐based studies (Hrachowitz et al., 2010; Imholt

et al., 2011). Width was calculated by extracting the area of

MasterMap water polygons within the 1‐km upstream distance and

dividing this by the length of the river segment (which could be

>1 km in the case of river confluences). All areas were calculated using

“gArea” from the “rgeos” R package (Bivand & Rundel, 2016) and

lengths using the “SpatialLinesLengths” tools from the R “sp” package

(Pebesma & Bivand, 2005).The shortest DC was calculated for each

node, using “gDistance” from the “rgeos” R package (Bivand & Rundel,

2016). RDSwas calculated by inputting the DRN into the igraph R pack-

age and using the “shortest.paths” function (Csardi & Nepusz, 2006).

2.4 | Modelling

2.4.1 | Data preparation

Covariates were transformed as required to reduce skewness; this

resulted in logging of both UCA and width, taking the square root of

gradient, with all negative gradients (<0% change) being made 0. HS

was also centred, by subtracting the median from all values, to improve

the numerical stability of model fits. Before model selection, Pearson

correlation coefficients were used to assess the degree of correlation

between potential explanatory covariates. Where a correlation of

>0.75 was observed between covariates, one was removed. Given

the relatively linear structure of the River Spey, RDS and DC were

removed from the analysis due to high correlations with elevation

(0.89 and 0.84, respectively). UCA and width were also highly corre-

lated (0.94); thus, UCA was removed from the potential covariates list.

2.4.2 | Model fitting and river network smoothers

All analyses were undertaken using R, version 3.2.3 (R Core Team.

2015). Models were fitted using generalised additive models with

Gaussian errors where the amount of smoothing was estimated from

the data. The models were fitted by maximum likelihood.

Spatial structure in the data, which was not accounted for by the

covariates, was considered by fitting a smoother over the river net-

work, using a modified version of the methods described by O'Donnell,

Rushworth, Bowman, Scott, and Hallard (2014); herein referred to as

the river network smoother (RNS). O'Donnell decomposes a river net-

work into small stream segments and models changes in the response

variable between connected segments using penalized regression

splines. In particular, where two stream segments meet, smoothness

across the confluence is controlled by a penalty that depends on the

relative flows of the two joining units. Two modifications were made

for the Spey analysis. First, in the absence of spatially distributed
discharge data, smoothness across a confluence was controlled by

the proportional influence of upstream tributaries, weighted by

Strahler river order (Strahler, 1957). A unit increase in river order

corresponded to a doubling of flow (Hughes, Kaufmann, & Weber,

2011). River order provided a pragmatic and readily derived weighting

and was proposed by Ver Hoef, Peterson, and Theobald (2006) and

O'Donnell et al. (2014) for application when discharge data are unavail-

able. Second, dimension reduction techniques were used so that the

models could be fitted using the GAM function in the R “mgcv” pack-

age (Wood, 2001). Specifically, the full smoother matrix of the RNS

(as described in O'Donnell et al., 2014) was rotated, and the leading

eigenvectors, scaled by their eigenvalues, were used as a set of

“reduced rank” basis functions that span the river network, with their

coefficients penalized by a diagonal penalty (see Wood (2006), page

309). This RNS could then be fitted within the “mgcv” package using

a purpose built smooth constructor function, with the amount of

smoothing estimated by maximum likelihood.

Because the covariates included in the model selection were care-

fully chosen to represent physical processes and to ensure that the

RNS only incorporated variability that could not be explained by the

covariates, any RNS basis functions that were strongly correlated with

the covariate responses (>0.75) were excluded from modelling. As

such, RNS base 1 and 2 were disregarded due to correlation with ele-

vation, and the next 10 basis functions were then used for modelling.
2.4.3 | Model selection and performance

Given the limited size of the dataset and the expected simplicity of the

landscape response relationships, each landscape covariate was only

allowed up to 2 degrees of freedom, allowing for responses ranging

between linear and modal. The RNS was permitted up to 10 degrees

of freedom, which was the maximum that allowed the RNS and all

covariates to be fitted in a single model. In practice, this was plenty,

given that the effective degrees of freedom (those used by the RNS

in the fit) were always much less. No interactions were considered,

due to the size of the dataset. All possible model combinations were

explored, giving 126 possible models. Due to the small sample size,

corrected Akaike information criterion (AICc) was used for model

selection (Gallice, Schaefli, Lehning, Parlange, & Huwald, 2015;

Hurvich & Tsai, 1989) with the “best” model having the lowest AICc

value. AICc values were tabulated for the top 10 models for each met-

ric to identify other candidate models (models with similarly low AICc

values).Where smoothed terms in the selected models had an effective

degrees of freedom of 1, they were replaced with linear terms.

Semivariograms were produced (not shown) to check for residual spa-

tial correlation in the final models (McGuire et al., 2014) following Isaak

et al. (2014). The relative importance of terms in the final models was

assessed by systematically removing covariates and observing changes

in AICc (δAICc). The significance of terms in the final model was deter-

mined using an F‐test. Model performance was assessed using leave‐

one‐out‐cross‐validation providing an indication of bias and prediction

error (Table 2). Prediction error was indicted by the root mean square

prediction error. Bias was calculated by taking the mean of the predic-

tion errors. Mean and median absolute deviations were also calculated

as the sign independent mean and median of the prediction errors.
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2.4.4 | Visualising and interpreting spatial patterns in Tw

Maps of predicted Tmin, Tmean and Tmax were used to illustrate the

spatial variability of Tw. In particular, the map of Tmax provides an

indication of risk that can also be used to explore opportunities for

mitigation. To identify the level of thermal heterogeneity observed at

different spatial scales (Objective 4), the predictions for each node

and metric were summarised by river order (min, median, max 5th

and 95th percentiles) and illustrated in box plots.

The effect of individual covariates on Tw was illustrated using

plots and maps of partial effects, where Tw predictions were made

for each covariate with the others held at median values. Temperature

predictions were restricted to river nodes where the environmental

characteristics were within the environmental range observed at tem-

perature monitoring sites, thereby preventing extrapolation beyond

the range of the data (Jackson et al., 2016). In practice, this approach

constrained prediction to salmon rivers (Figure 1) which were the focus

of the network design and the likely target of future management

action (Isaak et al., 2010, 2012; Mohseni et al., 2003).
3 | RESULTS

The summer of 2015 was wetter than average, and this was reflected

in observed Tw. Regional data collected by the MET Office for Eastern

Scotland suggested that summer rainfall was 124% of the 1981–2010

mean and that maximum, minimum and mean air temperatures were

0.4°C, 0.5°C and 0.5°C lower than average over the same period.

The observed values of minimum, mean and maximum Tw varied by
FIGURE 2 Map of observed water temperature metrics, calculated betw
Monitoring Network sites (a) Tmin, (b) Tmean and (c) Tmax
5.7°C (6.6–12.3°C), 5.6°C (9.2–14.8°C) and 6.0°C (14.5–20.5°C) and

are shown in Figure 2.

3.1 | Temperature models

The top 10 models for each temperature metric are shown in

Appendix. The final models (lowest AICcs) were the following:

Tmin − s Elevationð Þ þ s %RWð Þ þ Gradient (1)
Tmean − s Elevationð Þ þ s %RWð Þ þ Gradient (2)
Tmax − s RNSð Þ þ s Widthð Þ (3)

Tmin and Tmean were highly correlated (0.97). It is therefore

unsurprising that the final model for both metrics was the same (Equa-

tions 1 and 2). The final Tmax model included a different suite of

covariates (Equation 3), and the correlations between Tmean and Tmax

(0.74) and Tmin and Tmax (0.57) were weaker.

Minimum and mean Tw were characterised by negative responses

to Elevation and %RW (Figure 3a,b,d and e). The response to elevation

was near linear; however, the response to %RW was minor below

ca. 40%, declining thereafter. Gradient had a negative linear effect

(Figure 3c and f). The Tmin and Tmean models explained 89.5% and

84.9% of the deviance, respectively. Elevation and %RW were the

more important of the covariates with the largest δAICc values and

greatest significance (Table 1). There was only weak evidence of an

effect of gradient (Table 1). Cross‐validation showed negligible bias,

small median absolute deviations (≤1°C) and root mean square predic-

tion error for the two models (Table 2). Plots of residuals against
een 22/06/2015 and 31/08/2015, at Scotland River Temperature



FIGURE 3 Selected models estimated partial effects. Row 1 is the Tmin model, row 2 Tmean model and row 3 Tmax model. The parameters are
ordered from largest to smallest effect size (a) Tmin elevation, (b) Tmin %RW, (c) Tmin gradient, (d) Tmean elevation, (e) Tmean %RW, (f) Tmean
gradient and (g) Tmax width

TABLE 1 Importance of each covariate for each temperature metric

Covariate removed δAICc F value (compared to final model) p‐value

Tmin model

Elevation 26.01 30.12 <.001

%RW 16.14 15.68 <.001

Gradient 0.58 4.23 .06

Tmean model

Elevation 20.12 23.58 <.001

%RW 11.97 12.34 <.001

Gradient 3.97 11.44 .01

Tmax model

River network smoother 25.64 22.34 <.001

Channel width 18.31 18.55 <.001
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fitted values (not shown here) did not suggest variable bias over the

temperature range.

Given the similarities between the Tmin and Tmean

models (Figure 3), the predicted patterns of spatial variability were also

very similar and varied by 7.3°C and 7.0°C across the catchment
(Figures 4a and 5a). The warmest Tmin and Tmean were predicted in

the mainstem reaches, predominantly near the river mouth and coolest

in the headwater tributaries (Figures 4a and 5a). This primarily

corresponded with lower elevations and channel gradients in the

lower mainstem areas of the catchment (Figure 3). Figures 4 and



FIGURE 4 Spatial patterns of Tmin (a) prediction of Tmin, (b) model standard errors, (c) partial effect of elevation, (d) partial effect of %RW and (e)
partial effect of gradient. Partial effects subplots are ordered from most to least important. The differences in line thickness represent river order
with the thickest lines being the highest river order, and grey lines are rivers where predictions were not made

TABLE 2 Model performance for each temperature metric

Model Bias Root mean square prediction error Median absolute deviation Mean absolute deviation

Tmin 0.02 0.77 1.04 0.67

Tmean 0.02 0.84 0.77 0.71

Tmax 0.04 0.71 0.81 0.56
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5c–e illustrate the partial effects of covariates on the spatial distribu-

tion of predicted Tw. Elevation had a strong and spatially consistent

effect on Tw predictions, lowering temperatures in the headwater

tributaries and increasing temperature in lower altitude mainstem

locations near the sea. Gradient had a smaller influence on Tw predic-

tions (Figures 4e and 5e), decreasing Tw in steeper tributary streams

and increasing Tw in the less steep valley bottom mainstem locations.

%RW had a moderate effect on Tw predictions reducing Tw where

there was a high proportion of riparian shading (Figures 4d and 5d).

The partial effect of %RW was “patchier,” than that observed for
elevation or gradient, reflecting the local distributions of trees (

Figure 1). For both models, the standard error of predictions was gen-

erally small (<0.5°C) across the catchment (Figures 4b and 5b). In the

absence of a RNS, this error related only to the error in estimating the

effects of the landscape covariates and increases at the extremes of

the environmental range (i.e. in smaller upland tributaries with high

gradient and elevation).

The final Tmax model included width and an RNS. The relationship

between width and Tw was positive and almost linear (Figure 3g). The

model explained 92.1% of the deviance and F tests showed width to be



FIGURE 5 Spatial patterns of Tmean (a) prediction of Tmean, (b) model standard errors, (c) partial effect of elevation, (d) partial effect of %RW and
(e) partial effect of gradient. Partial effects subplots are ordered from most to least important. The differences in line thickness represent river order

with the thickest lines being the highest river order and grey lines are rivers where predictions were not made
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highly significant (Table 1). The RNS was the more important of the

covariates based on δAICc (Table 1). The model performed well with a

median absolute deviation of 0.81 and no substantial bias (0.04;

Table 2). Plots of residuals against fitted values (not shown here) did

not suggest variable bias over the temperature range.

The headwaters of the mid catchment were predicted to have the

lowest Tmax, while headwaters in the south west and rivers in the

north east of the catchment were predicted to have the warmest Tw

up to ca. 21°C. The effect of river width was to increase Tw in the

mainstem areas, particularly in the lower catchment, near the mouth,

relative to the small tributary streams (Figure 6d). As expected, the

RNS (Figure 6c) shows complex patterns of spatial variability, explaining

residual variation not explained by the catchment covariates. The stan-

dard error in predictions was generally low (<1°C), especially when

monitoring sites were present in the relevant tributaries. However,

higher standard errors were observed where there was a large change
in river order (i.e. between largemain stem river sites and first or second

order streams) and no SRTMN sites on the tributary to inform the RNS.
3.2 | Thermal heterogeneity and spatial scale

Figure 7 shows how the predicted Tw varied with river order across

the three temperature metrics. A similar pattern of thermal heteroge-

neity was observed across metrics. The two highest Strahler river

orders (6 and 7) tended to have the highest mean values of Tmin,

Tmean and Tmax and the smallest temperature range. Thermal hetero-

geneity typically increased with decreasing river orders, at least as far

as second‐order streams. The range of Tmin and Tmean was 6.7°C

across second‐order streams and 3.5°C across seventh‐order streams.

The range of Tmax was greatest across third‐order streams (7.0°C) and

lower across higher‐order streams (5.6°C and 3.6°C in order 5 and 7,

respectively; Figure 7c).



FIGURE 6 Spatial patterns of Tmax (a) prediction of Tmax, (b) model standard errors, (c) partial effect of river network smoother and (d) partial
effect of width. Partial effects subplots are ordered from most to least important. The differences in line thickness represent river order with
the thickest lines being the highest river order, and grey lines are rivers where predictions were not made

FIGURE 7 Box and whisker plots of predicted temperature metric by
river order (a) Tmin, (b) Tmean and (c) Tmax
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4 | DISCUSSION

This study fitted spatial regression models to a strategically designed

and quality controlled Tw dataset to understand, characterise and
predict spatial variability in Tw at the catchment scale relevant to river

management. The findings, value and wider applicability of the study

are discussed in further detail below.
4.1 | Modelling approach

In contrast to data intensive process‐based models (e.g. Garner,

Malcolm, Sadler, Millar, & Hannah, 2015), statistical models of Tw that

incorporate landscape proxies for energy exchange processes have the

potential to predict Tw at the large spatial scales appropriate to river

management with limited field‐based data collection. Historically,

large‐scale spatial regression models have assumed only linear

responses between Tw and landscape covariates and have ignored,

or have not needed to deal with, spatial correlation in the data (e.g.

Hrachowitz et al., 2010; Imholt et al., 2011; Isaak & Hubert, 2001;

Isaak et al., 2010; Mayer, 2012; McNyset et al., 2015). More recently,

increasingly sophisticated geostatistical modelling approaches have

been developed and applied to Tw data (Isaak et al., 2014). These

models account for spatial correlation with the associated benefits

for model selection and Tw prediction but typically still assume linear

responses between Tw and covariates (e.g. Detenbeck, Morrison,

Abele, & Kopp, 2016; Roberts, Fausch, Peterson, & Hooten, 2013;

Ruesch et al., 2012; Steel et al., 2016). An alternative approach for

addressing spatial correlation involves the use of river network

smoothers (O'Donnell et al., 2014). The current study extends the

RNS approach to also include smoothed responses between Tw and

landscape covariates. As far as the authors are aware, this paper is the

first to incorporate these recent developments in a study of Tw with

consequent benefits for Tw process understanding and prediction.
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4.2 | Physical interpretation of temperature models
and spatial patterns of predictions

Elevation was a significant covariate in many previously published

regression‐based Tw models (Chang & Psaris, 2013; Hrachowitz

et al., 2010; Imholt et al., 2011; Isaak & Hubert, 2001; Ruesch et al.,

2012; Steel et al., 2016; Trumbo et al., 2014). In this study, elevation

had a significant negative effect on Tmin and Tmean, producing strong

and consistent spatial patterns. Elevation was also present in the sec-

ond best Tmax model (Appendix). Elevation represents adiabatic lapse

rates, which reduce air temperature (Ta) and thus Tw with increasing

altitude (Hrachowitz et al., 2010). Dry adiabatic lapse rates are ca.

9.8°C/km, and there are potentially Ta differences in the order of

12.8°C across the whole Spey catchment or 5.0°C across the SRTMN

sites used in this study. This is remarkably similar to the estimated ele-

vation effect size of 5.8°C and 4.4°C for the Tmin and Tmean models

respectively. Although Ta is not the main control on Tw, both are influ-

enced by similar controls and are therefore often strongly correlated

(e.g. Krider, Magner, Perry, Vondracek, & Ferrington, 2013).

Percentage riparian woodland was also a significant predictor of

Tmin and Tmean. Shading reduces the amount of incident shortwave

radiation reaching the river, decreasing rates of warming in shaded

reaches during daylight hours (Garner, Malcolm, Sadler, & Hannah,

2014; Hannah, Malcolm, Soulsby, & Youngson, 2008; Hill et al.,

2013; Moore, Spittlehouse, & Story, 2005). Shaded reaches also

experience reduced wind speeds, longwave and evaporative heat

losses relative to more open moorland locations, reducing thermal

variability and increasing nocturnal minimum temperatures (Hannah

et al., 2008; Moore et al., 2005). Consequently, %RW has also been

a significant covariate in a number of previous regression‐based Tw

models, particularly during summer months (Chang & Psaris, 2013;

Hrachowitz et al., 2010; Imholt et al., 2011; Isaak & Hubert, 2001;

Trumbo et al., 2014). Importantly, datalogger site selection for this

study incorporated a range of %RW values spread across the catch-

ment, thereby allowing this effect to be separated from other spatial

covariates (Jackson et al., 2016). At 2.6°C (Tmin) and 2.4°C (Tmean),

the effect size for %RW was also plausible and broadly comparable

to previous studies (Garner, Hannah, Malcolm, & Sadler, 2012;

Hannah et al., 2008; Malcolm et al., 2008; Simmons et al., 2014).

In contrast to previous investigations (e.g. Hrachowitz et al., 2010),

%RW did not appear in the best Tmax model, although it was pres-

ent in two of the top 10 models (Appendix). This could reflect the

overriding importance of other processes controlling maximum river

temperatures, a failure to precisely characterise %RW from available

mapping resources or an inability to allow for appropriate interac-

tions between covariates given the relatively limited availability of

data (monitoring sites).

The inclusion of gradient in the final Tmin and Tmean models is

again consistent with previous studies (Chang & Psaris, 2013; Hill

et al., 2013; Hrachowitz et al., 2010; Imholt et al., 2011; Mayer,

2012; McNyset et al., 2015) although the small δAICc and p‐values

give only relatively weak support for this effect. Nevertheless, the neg-

ative relationship between gradient and Tw in the Tmin and Tmean

models is physically interpretable as transit times are longer in lower

gradient channels (notably the mainstem), providing greater
opportunities for warming (Webb et al., 2008). In contrast to elevation,

the effect of gradient (which was moderately correlated with Eleva-

tion, 0.54) was more spatially variable locally, reflecting the presence

of landscape features such as bedrock outcrops and post‐glacial

moraines that create spatially heterogeneous gradients.

Width was the only significant landscape covariate in the final

model of Tmax. Although previous studies have discussed the potential

importance of width, or more precisely width‐depth ratios for energy

exchange processes (Imholt et al., 2011), they have not typically

characterised this potential covariate. This is presumably due to the

difficulties associated with obtaining suitable river size datasets and

extracting representative river width data. In this study, a spatial river

polygon dataset was used to characterise river width. However, it did

not allow characterisation of the widths of smaller rivers and thresh-

olds at which rivers were represented as lines was not spatially consis-

tent (e.g. <1 m in urban areas and <2 m in rural areas). Furthermore,

there was strong correlation between width and UCA in the Spey

catchment which meant that it was not possible to specifically attri-

bute spatial variability in Tmax to spatial variability in width. Rather,

the width metric should be considered as a composite measure of

width and UCA, which is in turn a proxy for discharge, water volume

and thermal capacity (Hannah et al., 2008; Ver Hoef et al., 2006).

Larger water volumes have a greater thermal capacity, taking longer

to warm but also retaining heat for longer (Imholt et al., 2011) making

larger waterbodies more thermally stable but susceptible to anteced-

ent conditions.
4.3 | Tw predictions, prediction accuracy and
sources of error

All three models were associated with good measures of fit and low

standard error that compare favourably with previous studies

(Hrachowitz et al., 2010; Imholt et al., 2011; McNyset et al., 2015).

As expected, higher standard errors were observed at the extremes

of the environmental range. The low and consistent bias was also

reassuring as some previous studies have found slight bias towards

under predictions at high temperatures (Isaak et al., 2010; McNyset

et al., 2015).

The lack of a RNS in the final models for Tmin or Tmean indi-

cates that there was no evidence of substantial residual spatial cor-

relation in these datasets (McGuire et al., 2014) and that covariates

explained much of the variation in Tmin and Tmean. However, an

RNS was included in the final Tmax model indicating substantial

spatial variability relating to river network structure that could not

be explained by the covariates (Steel et al., 2016). Accounting for

spatial structure within Tw models where present substantially

improves prediction accuracy where data exist (Isaak et al., 2010,

2014; Peterson & Urquhart, 2006). This is shown by the low stan-

dard errors on predictions for rivers and tributaries containing

SRTMN sites, but higher prediction errors for tributaries without

data where there was no information to constrain the smoother.

This was especially the case where there were large changes in river

order (e.g. 7 to 2), resulting in low RNS weightings, potentially

allowing rapid rates of change in Tw.
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Covariate characterisation was another potential source of uncer-

tainty in the Tw models (Gallice et al., 2015; Millar, Millidine,

Middlemass, & Malcolm, 2015). For example, differences in the scale

of characterisation between river lines and land use maps or imprecise

DTMs directly influence the covariate values (Gallice et al., 2015).

Detailed discussion of these potential errors and methods to correct

them can be found in Millar et al. (2015).
4.4 | Thermal heterogeneity across river orders:
implications for monitoring networks

There are two potential processes by which between‐stream variability

in Tw might depend on river order. Firstly, low‐order rivers are more

numerous and spatially extensive than high‐order rivers, thereby cover-

ing a greater part of the environmental range of landscape controls on

Tw. Secondly, high‐order rivers will have a greater thermal capacity,

reducing their thermal variability in response to local landscape controls

(Hrachowitz et al., 2010; Imholt et al., 2011; Isaak &Hubert, 2001). This

study shows that the greatest thermal variability occurred at river order

5 and below. Such information should inform future monitoring strate-

gies where the objective is to develop cost‐effective approaches for

characterising thermal variability across whole catchments. Specifically,

future networks may wish to target monitoring effort in line with the

variance observed in different river orders with more loggers deployed

in low‐order rivers and fewer in high‐order rivers.
4.5 | Opportunities for management and future
research

Riparian tree planting has often been suggested as a mechanism for

reducing maximum Tw under climate change. Using the temperature

maps produced in this study, it would be possible to identify sites that

are associated with the highest temperatures. This information could

be used as an initial assessment of where riparian planting should be

targeted. However, process‐based Tw studies have also shown that

riparian shading is most effective in reducing temperatures where gra-

dient is low, channel widths are narrow (Caissie, 2006; Hrachowitz

et al., 2010; Malcolm, Hannah, Donaghy, Soulsby, & Youngson, 2004;

Reiter, Bilby, Beech, & Heffner, 2015), thermal capacity is small

(Hrachowitz et al., 2010; Moore et al., 2005) and channel orientation

maximises the effects of bankside shading. Such information could pro-

vide a metric of “planting potential” to be considered alongside maps of

temperature variability. The decision on which tributaries have the

greatest planting potential could then be based on the available tem-

peraturemodels and resultingmaps. This would greatly improve on pre-

vious generalised suggestions of planting headwaters to reduce Tw

(Caissie, 2006; Hrachowitz et al., 2010) and ensure more targeted,

effective and thereby cost‐efficient management action.

To provide a more detailed quantitative assessment of planting

opportunities, further research is required. Given a larger dataset, it

should be possible to develop models that include interaction terms,

to account for different effects of riparian woodland depending upon

other local landscape factors such as width, orientation and gradient

(Garner et al., 2014; Hrachowitz et al., 2010; Moore et al., 2005).

Although the models developed in this study were physically plausible,
they still require additional expert knowledge to inform optimal

planting strategies. The incorporation of interaction terms offers the

potential of predicting optimal locations at large spatial scales within

a modelling framework.

Given the logistical and financial costs of temperature data collec-

tion, there is a need to extrapolate beyond individual catchments to

larger spatial scales. Future studies should therefore explore the trans-

ferability of models between catchments to support larger‐scale

national Tw modelling exercises. The development of large‐scale Tw

models would improve the understanding of large‐scale ecological pat-

terns (e.g. fish density, growth and demographic structure) and provide

the scientific basis for national scale management decisions in the face

of a changing climate.
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APPENDIX (Continued)

Model rank Model parametersa AICc δ AICc Effective degrees of freedom Percentage deviance

Tmean

1 s(Elevation) + s(%RW) + Gradient 63.2 / 4.99 84.9

2 s(RNS) + Width + Elevation 65.75 2.55 9.27 94.2

3 s(Elevation) + s(%RW) + Gradient + Width 65.99 2.79 5.93 85.6

4 s(Elevation) + s(%RW) + Width 66.21 3.01 5.3 83.9

5 s(Elevation) + s(%RW) + Gradient + HS 67.08 3.88 6.06 85.3

6 s(Elevation) + s(%RW) 67.17 3.97 4.53 80.9

7 s(Elevation) + s(%RW) + Gradient + Orientation 67.55 4.35 6.11 85.2

8 Elevation + s(%RW) + Gradient + s(RNS) 69.24 6.04 8.31 92.1

9 s(Elevation) + s(%RW) + Width + Orientation 69.92 6.72 6.25 84.1

10 s(Elevation) + s(%RW) + Orientation 70.18 6.98 5.5 81.4

Tmax

1 s(RNS) + s(Width) 66.27 / 8.48 92.1

2 s(RNS) + s(Width) + Elevation 67.33 1.06 9.40 93.1

3 s(RNS) + s(Width) + s(Gradient) 70.27 4.00 10.92 95.4

4 s(RNS) + s(Width) + Orientation 71.82 5.55 9.40 92.2

5 s(RNS) + s(Width) + Elevation + %RW 71.88 5.61 10.45 94.2

6 s(RNS) + Gradient 72.62 6.35 7.22 84.4

7 s(RNS) + s(Width) + HS 72.65 6.38 9.42 92.1

8 s(RNS) + Elevation + %RW 72.82 6.55 8.14 87.4

9 s(RNS) + s(Width) + Elevation + Orientation 73.48 7.21 10.38 93.4

10 s(RNS) + s(Width) + Elevation + HS 74.55 8.28 10.36 93.1

aRiver network smoother was given 10 degrees of freedom, and all other covariates were smooth terms with 2 degrees of freedom, if the effective degrees
of freedom was 1 or less, the term was subsequently made linear.
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