

University of Birmingham

Turning high-dimensional optimization into
computationally expensive optimization
Yang, Peng ; Tang, Ke; Yao, Xin

DOI:
10.1109/TEVC.2017.2672689

License:
Other (please specify with Rights Statement)

Document Version
Peer reviewed version

Citation for published version (Harvard):
Yang, P, Tang, K & Yao, X 2017, 'Turning high-dimensional optimization into computationally expensive
optimization', IEEE Transactions on Evolutionary Computation. https://doi.org/10.1109/TEVC.2017.2672689

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works.

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 18. Apr. 2024

https://doi.org/10.1109/TEVC.2017.2672689
https://doi.org/10.1109/TEVC.2017.2672689
https://birmingham.elsevierpure.com/en/publications/2c278230-c2dc-4846-8f58-a6385de62fd5

Turning High-dimensional Optimization into
Computationally Expensive Optimization∗

Peng Yang, Ke Tang, and Xin Yao†

February 16, 2017

Abstract

Divide-and-Conquer (DC) is conceptually well suited to deal with high-dimensional
optimization problems by decomposing the original problem into multiple low-
dimensional sub-problems, and tackling them separately. Nevertheless, the di-
mensionality mismatch between the original problem and sub-problems makes it
non-trivial to precisely assess the quality of a candidate solution to a sub-problem,
which has been a major hurdle for applying the idea of DC to non-separable high-
dimensional optimization problems. In this paper, we suggest that searching a
good solution to a sub-problem can be viewed as a computationally expensive
problem and can be addressed with the aid of meta-models. As a result, a novel
approach, namely Self-Evaluation Evolution (SEE) is proposed. Empirical stud-
ies have shown the advantages of SEE over 4 representative compared algorithms
increase with the problem size on the CEC2010 large scale global optimization
benchmark. The weakness of SEE is also analysed in the empirical studies.

1 Introduction
Evolutionary Algorithm (EAs) are powerful tools for complex optimization problems
[1–4]. However, it has been frequently reported that the performance of existing EAs
drops down dramatically as the dimensionality becomes high [5]. In the last decade,
this issue has attracted lots of research interests [6]. Basic ideas include improving
the search ability of existing EAs in high-dimensional solution space by re-balancing
the exploration and exploitation [7–9] and simplifying high-dimensional problems for
existing EAs via the Dimensionality Reduction techniques [10, 11] or the Divide-and-
Conquer (DC) methodology [12, 13].
∗This work has been accepted by IEEE Transactions on Evolutionary Computation on 03/02/2017.
†This work was supported in part by the National Natural Science Foundation of China under Grant

61329302 and Grant 61672478; in part by EPSRC under Grant EP/K001523/1 and EP/J017515/1, in part by
the Royal Society Newton Advanced Fellowship under Grant NA150123, and SUSTech. Xin Yao was also
supported by a Royal Society Wolfson Research Merit Award. Peng Yang and Ke Tang are with the USTC-
Birmingham Joint Research Institute in Intelligent Computation and Its Applications, School of Computer
Science and Technology, University of Science and Technology of China (USTC), Hefei, Anhui 230027,
China (e-mail: trevor@mail.ustc.edu.cn; ketang@ustc.edu.cn). Corresponding Author: Ke Tang. Xin Yao
is with Department of Computer Science and Engineering, Southern University of Science and Technology
(SUSTech), Shenzhen 518055, China, and CERCIA, School of Computer Science, University of Birming-
ham, Birmingham B15 2TT, UK (e-mail: x.yao@cs.bham.ac.uk)

1

In the context of evolutionary optimization, DC works by first dividing a high-
dimensional problem into multiple exclusive low-dimensional sub-problems. Then, an
existing EA is employed as the optimizer for each sub-problem. After that, the partial
solutions, i.e., the solutions to the sub-problems, are merged to form the solution to
the original problem. Since the partial solutions and the search space of the original
problem are of different dimensionality, a partial solution cannot be naturally evaluated
with respect to the original objective function. Such a mismatch in dimensionality
induces one of the major challenges for applying DC to EAs.

One way to address the problem of dimensionality mismatch is to complement
a partial solution to be a complete solution (to the original problem) before evaluat-
ing it with the original objective function. This type of works are ususally referred
to as Cooperative Coevolution (CC) in the literature [14–16]. Notice that, the mea-
sured qualities of partial solutions largely depend on the selected complements, which
may affect the rank of partial solutions and thereby the search biases. In case the
sub-problems can be made independent of each other via some proper decomposition
technique [13, 17–20], changes of complements will not perturb the rank of partial so-
lutions [14, 20–23]. Unfortunately, no existing decomposition techniques are guaran-
teed to obtain the desired sub-problems. Besides, many problems are non-separable in
essence. For this reason, the complements should be carefully chosen to correctly rank
the partial solutions. However, to guarantee the correct rank, one has to exhaustively
test all feasible samples in the whole solution space of the other sub-problems for each
single partial solution [24], which is computationally prohibitive. In practice, existing
CCs usually sample one or a few complements for each partial solution to alleviate the
computational burden, while the performance can be significantly compromised when
sub-problems are interdependent [13, 23, 25–27].

Since the dimensionality mismatch induces a computationally expensive problem,
we propose in this paper an efficient meta-model technique to tackle it. Different from
CC that complements partial solutions to match the dimensionality of the original ob-
jective function, we establish meta-models for each sub-problem. In this way, partial
solutions to a sub-problem, without being complemented, can be directly compared via
the corresponding meta-model. On this basis, a new approach, namely Self-Evaluation
Evolution (SEE), is developed for high-dimensional optimization.

The remainder of the paper is organized as follows. In Section II, the existing
works for high-dimensional optimization are briefly reviewed. Section III describes the
challenge of the DC framework and proposes to view it as a computationally expensive
problem. The proposed SEE is presented in details in Section IV and is empirically
studied in Section V against 4 representatives of exiting works. All the 20 problems
in the CEC’2010 large-scale optimization benchmark [28] are implemented with five
different dimensionalities (from 1000D to 5000D) as the tested functions. Finally,
conclusions will be drawn in Section VI.

2 Related Works
Generally, the major difficulty of EAs on high-dimensional optimization lies in that the
solution space of a problem expands exponentially with the dimensionality. Such an
expanded solution space quickly exceeds the search ability of existing EAs, and thus
cannot be fully explored within a reasonable time budget.

The most straight-forward way might be to improve the search efficiency of ex-
isting EAs by either explicitly or implicitly re-balancing the exploration and exploita-

2

tion [7–9], which has been widely acknowledged as the key to a successful search [29].
However, such balance may vary from problem to problem, and may particularly be
sensitive to the dimensionality, i.e., a refined computational resource allocation on a
problem with a given dimensionality can be ineffective on the same problem with an-
other dimensionality.

An alternative way is to simplify the original problem. Dimensionality Reduction is
one type of such techniques that aims to project the original high-dimensional solution
space onto lower dimensions where existing EAs are well-suited. Typical approaches
in this category, e.g., Random Projection [10] and Random Embeddings [11], have ob-
tained appealing performance in case the number of projected sub-spaces is sufficiently
large to jointly represent the solution space or the solution space is embedded with ef-
fective low dimensions. However, to determine such lower dimensions appears to be
non-trivial either in terms of the computational costs [10] or due to the unawareness of
the problem structure [11].

Another way to simplify the problem is based on the DC methodology. DC deals
with a high-dimensional optimization problem by first decomposing it into multiple
exclusive low-dimensional sub-problems, and solves them separately. Since the low-
dimensional sub-problems are expected to be solved more efficiently by existing EAs
than the original problem, DC is conceptually well-suited to deal with the high-dimensional
optimization problems. In the literature, the Cooperative Coevolution (CC) is a typi-
cal DC approach [14]. Given an appropriate sub-problem optimizer, CC works well
on the so-called separable problems, for which the global optimal optimum can be
found by optimizing one dimension at a time regardless of the values taken on the
other dimensions [14, 20, 21]. If this condition does not hold, the performance of CC
heavily relies on the decomposition method [13, 17–19, 23, 30], which aims to divide a
high-dimensional problem in such a way that the global optimum can still be obtained
by solving the sub-problems in a fully independent manner. In the past few years, a
large variety of decomposition methods have been proposed [6, 13, 31]. Despite the
performance enhancement brought by them, none of these methods are guaranteed to
achieve the desired sub-problems. Meanwhile, a practical problem of interest may be
fully non-separable such that the above-mentioned ideal decomposition does not even
exist. Therefore, CC often faces a difficulty while dealing with interdependent sub-
problems of correctly evaluating and ranking partial solutions in each sub-problem,
which will be detailed in the next section. Unfortunately, it has been formally proven
that performing such a task will consume prohibitive computational time [24]. Oth-
erwise, CC would highly likely prematurely converge to a sub-optimum [15, 24, 32].
Some researchers tried to achieve a proper balance between the computational burden
and the solution quality [25–27, 33], which, however, is another non-trivial task.

3 The Challenge of Divide-and-Conquer
In this section, we show that the challenge of DC mainly lies in the dimensionality mis-
match between partial solutions and the objective function, where the partial solutions
are difficult to be correctly ranked due to the overwhelming computational cost.

Before that, for clarity, the notations used in the rest of this paper will be intro-
duced. Let x denote a given set of complete candidate solutions to the original ob-
jective function F , xi denote the i-th complete solution, and x1:N denote the first N
complete solutions in this set. Suppose aD-dimensional problem has been divided into
M exclusive dj-dimensional sub-problems (

∑M
j=1 dj = D), then we denote the i-th

3

partial solution to the j-th sub-problem as xi,j . Similarly, the first N partial solutions
to the j-th sub-problem are denoted as x1:N,j . In this case, a complete solution xi can
also be expressed as the stacked version of D partial solutions with the same i-index,
i.e., xi,1:D. Accordingly, xi,j is also said to be the j-th component that belongs to the
complete solution xi.

It is clear to see that the original D-dimensional objective function F cannot be
used to directly evaluate the dj-dimensional partial solutions in the j-th sub-problem,
where j = 1, 2, ...,M . One straightforward way to address the dimensionality mis-
match is to complement a partial solution to be a complete solution before evaluating
it with the objective function. To complement a dj-dimensional partial solution xi,j , it
is actually to fix the values for the decision variables involved in the other M − 1 sub-
problems. Hence, for each partial solution, there are |X |D−dj candidate complements
available, where X ⊆ R denotes a bounded range of each decision variable. It should
be noted that, different complements will result in different objective function values
to a partial solution. Thus, the rank of multiple partial solutions might also change
over the complements. As the rank of partial solutions usually determines the search
direction in the corresponding sub-problem, it is of importance to select a correct com-
plement from |X |D−dj candidates for each partial solution so that they can be correctly
ranked, which, however, is a non-trivial task.

Given a set of partial solutions, the correct ordering of them must be unique in terms
of their real qualities in the solution space. Specifically, if a partial solution belongs
to a good complete solution, it is said to be with good real quality, which is usually
referred to as the building blocks hypothesis [34–38]. Hence, the correct rank of a set
of partial solutions should be obtained by comparing the function values of the best
complete solutions they belong to. More formally, in the j-th sub-problem, if the a-th
partial solution xa,j is said to be better than the b-th partial solution xb,j , the Eq.(1)
must be satisfied (considering the minimization case).

min
xc∈Sc
F(xa,j , xc) < min

xc∈Sc
F(xb,j , xc), (1)

where xc denotes the candidate complements, c = [1, ..., j − 1, j + 1, ...,M] denotes
all the sub-problems except the j-th one, F denotes the original objective function, and
Sc denotes the corresponding complement space XD−dj . Based on Eq.(1), each partial
solution xi,j has its own correct complement, as defined in Eq.(2).

x∗c = argmin
xc∈Sc

F(xi,j , xc). (2)

Unfortunately, there is no way to guarantee the correct complement for a partial solu-
tion xi,j , unless evaluating the combinations of xi,j with all possible complements in
XD−dj by F and returning the best one, which is computationally overwhelming. As
a result, the task of obtaining the correct rank of a set of partial solutions turns out to
be computationally expensive. Existing DC based works, e.g., CC, aim to approximate
the correct rank by heuristically sampling from the complement space.

Let us define a function G that can directly evaluate the real quality of a partial
solution xi,j as Eq.(3).

G(xi,j) = min
xc∈Sc
F(xi,j , xc). (3)

In this case, the correct rank of a set of partial solution can be obtained by directly com-
paring their function values in terms of G. Mathematically, given N partial solutions

4

Algorithm 1 SEE(F , Tmax, λ, µ, ...)

1: Divide F into M exclusive sub-problems.
2: For j = 1 to M
3: Initialize a meta-modelHj .
4: Initialize the search operators.
5: Initialize µ parent partial solutions xp1:µ,j randomly.
6: EndFor
7: For t = 1 to Tmax
8: For j = 1 to M
9: Generate λ offsprings xo1:λ,j based on xp1:µ,j .

10: Rank xo1:λ,j and xp1:µ,j in terms ofHj .
11: Update xp1:µ,j .
12: Collect the training data sampled from F forHj .
13: TrainHj .
14: Adjust the j-th sub-problem optimizer.
15: EndFor
16: EndFor
17: Output the best complete solution found so far.

x1:N,j to the j-th sub-problem, the correct rank of them is denoted asR, and is defined
as follows:

R(x1:N,j) = sort
1≤i≤N

G(xi,j). (4)

where sort() denotes a function that ranks the xi:N,j in an ascending order in terms of
their qualities G(xi,j), i = 1, 2, ..., N .

To summarize, calculating G(xi,j) is computationally prohibitive, heuristically sam-
pling the complement space in essence approximates G(xi,j). A natural alternative idea
would be to directly build a rule or surrogate as the approximation of each G(xi,j) or
evenR(x1:N,j), which motivates the method proposed in Section IV.

4 Self-Evaluation Evolution
According to the discussions above, we regard the task of correctly ranking the partial
solutions as a computationally expensive problem. In the literature, EAs handle the
computationally expensive problems often with the aid of the meta-model (surrogate
model) techniques [39, 40]. The underlying idea is to introduce a computationally less
expensive function to approximate the original function. Inspired by that, we propose a
novel DC based algorithm in this section, called the Self-Evaluation Evolution (SEE).

4.1 The framework of SEE
In SEE, the original objective function F is firstly divided into M sub-problems, each
of which exclusively contains dj decision variables. A meta-model is initialized for
each sub-problem to approximate the correct rank R, denoted as Hj , j = 1, 2, ...,M .
For each sub-problem, a sub-problem optimizer is constructed. The sub-problem op-
timizer can be any type of EAs. Without loss of generality, we consider a simple case

5

that the j-th sub-problem optimizer first uniformly randomly generates µ parent par-
tial solutions xp1:µ,j at the initial stage, and then λ offspring partial solutions xo1:λ,j are
reproduced based on the parents at each iteration.1 The offsprings xo1:λ,j and parents
xp1:µ,j are then ranked by the meta-model Hj , where the best µ partial solutions among
them are kept as the new parents for the next iteration.

In addition to the evolution of sub-problems, there are two important steps in SEE.
First, it is highly unlikely to obtain perfect meta-models that can always correctly rank
the partial solutions at the initial stage. Hence, the meta-models should be adjusted dur-
ing the optimization. Second, different stages in the search course may prefer different
search operators. Therefore, the search operators also would better be adjusted dur-
ing the search. Accordingly, the training data are required for the adjustments in both
steps, which are usually the samples of the original solution space. For illustration, the
framework of SEE is given in Algorithm 1.

4.2 An efficient meta-model for SEE
In the literature, different kinds of meta-models have been extensively studied [39,40].
Most of them do not explicitly rely on the problem structure. From this perspective,
those meta-models can be expected to work well in SEE. Nevertheless, when consid-
ering the computational efficiency, those existing sophisticated meta-models may not
be the best choices in SEE. To be specific, the effectiveness of traditional EAs are
mostly observed on problems whose dimensionalities do not exceed 50. To solve each
sub-problem well, the dimensionality of sub-problems should be manageable for the
sub-problem optimizers. Comparatively, the dimensionality of a high-dimensional op-
timization problem usually exceeds 1000, and can even be billions [41]. As a result,
there can be large numbers of meta-models to train at each iteration of the optimization,
which will induce huge computational costs by using the commonly used meta-models
like Support Vector Machine [42], Neural Network [43], and Gaussian Process [44].

Considering this, we specially design a very simple yet efficient rank-based meta-
model for SEE so that the computational cost of the meta-model is kept very low. Dif-
ferent from existing meta-models that aim to approximate the global landscape of the
solution space, the proposed meta-model only approximates the pairwise rank within
the local area of each 1-dimensional sub-space. With such a simpler goal, building a
good meta-model can be much easier and more efficient.

To describe the meta-model clearly, let us consider the rank between a parent partial
solution xp1,j and its offspring xo1,j , in the j-th sub-problem. In the 1-dimensional case,
xo1,j will be either smaller or larger than xp1,j according to their scalar decision variable
values. If the landscape changes either monotonously ascending or descending, the
rank of xp1,j and xo1,j can be obtained directly without explicitly calculating the real
qualities of them, i.e., G(xp1,j) and G(xo1,j). That is, for the minimization case, G(xo1,j)
is better than G(xp1,j), as long as xo1,j is smaller than xp1,j while the landscape there goes
ascending, or xo1,j is larger than xp1,j while the landscape there goes descending. Oth-
erwise, G(xo1,j) is worse than G(xp1,j). Although the global landscape does not appear
to be monotonous, especially for multi-modal problems, it is still optimistic to assume
the local landscape changes monotonously within the small interval between xp1,j and
xo1,j , as long as they are generated via some local search operator. Then the meta-model
needs to learn the likelihoods that the landscape goes ascending on the smaller side of

1The notations of parents and offsprings are distinguished with the superscript, where p is for parents and
o is for offsprings.

6

xp1,j and the landscape goes descending on the larger side of xp1,j . Formally, these two
likelihoods are respectively denoted as PS1,j and PL1,j and defined as probabilities
as below:

PS1,j = p(G(xo1,j) < G(x
p
1,j)|x

o
1,j < xp1,j)

PL1,j = p(G(xo1,j) < G(x
p
1,j)|x

o
1,j > xp1,j).

(5)

In case xo1,j equals to xp1,j , which is highly unlikely, xo1,j is re-sampled. According to
Eq.(5), given a pair of partial solutions xp1,j and xo1,j , it is predictable that G(xo1,j) is
better than G(xp1,j) with probability PS1,j (or PL1,j) if xo1,j is smaller (or larger) than
xp1,j . Therefore, the meta-modelHj is defined as follows:


G(xo1,j) ≤ G(x

p
1,j) if (xo1,j < xp1,j ∧ PS1,j ≥ r)

∨(xo1,j > xp1,j ∧ PL1,j ≥ r)

G(xo1,j) > G(x
p
1,j) otherwise

(6)

where r indicates a function that returns a random variable uniformly sampled in the
range of [0, 1].

In Eq.(6), PS1,j and PL1,j are simply initialized as 1.00, indicating that the ini-
tialized parent partial solution xp1,j is assumed to be worse than any of its neighbours.
PS1,j and PL1,j will vary during the search since the parent xp1,j moves during the
search course and the corresponding local landscape will be different. To train the
meta-model, i.e., adjusting PS1,j and PL1,j , we modify a well-known parameters
tuning technique, i.e., the 1/5 successful rule [45], as follows:

PS1,j = PS1,j · exp
1√
2 [Ixo

1,j<x
p
1,j
· (IF(xp1)≥F(xo1) −

1

5
)]

PL1,j = PL1,j · exp
1√
2 [Ixo

1,j>x
p
1,j
· (IF(xp1)≥F(xo1) −

1

5
)]

(7)

where Ia is an indicator function that returns 1 if a is true and 0 otherwise. The above
equations state that, if this prediction of the meta-model is correct, the corresponding
probability will be enlarged. Otherwise, the corresponding probability will be reduced.
To check whether the prediction is correct, we should have compared G(xo1,j) and
G(xp1,j) in Eq.(7), i.e., IG(xp

1,j)≥G(x
p
1,j)

, which is practically impossible. Instead, we
compare F(xo1) with F(xp1) to check whether the prediction is correct, where F(xo1)
and F(xp1) respectively denote the objective function values of the complete solutions
xo1 and xp1.2 Notice that, Eq.(7) adjusts PS1,j and PL1,j gradually with a constant fac-
tor. Eq.(7) works based on the assumption that the local landscape changes smoothly.
More specifically, only when the landscapes in local areas change smoothly, the meta-
model in previous iterations can be helpful for the current pairwise comparison. It
again requires the sub-problem optimizer to be local search.

2As a reminder, xo1 is the complete solution that xo
1,j belongs to, and can be expressed as

[xo
1,1, x

o
1,2, ..., x

o
1,D]. Similarly, xp1 denotes the complete solution that xp

1,j belongs to, and can be ex-
pressed as [xp

1,1, x
p
1,2, ..., x

p
1,D].

7

4.3 Detailed steps of SEE
As highlighted above, to facilitate the proposed meta-model better, the sub-problems
optimizers should be local search. By considering only one pair of parent and off-
spring in each sub-problem, as described above, one can easily establish a concrete
sub-problem optimizer, which is a (1+1)-EA [45]. This idea is further generalized
to the (1+λ)-EA based sub-problem optimizer for SEE. To be specific, SEE first ran-
domly initializes a single parent partial solution xp1,j in each j-th sub-problem. At each
iteration, λ offsprings xo1:λ,j are generated based on xp1,j with different local search
operators. And only the best one among the parent xp1,j and λ offsprings xo1:λ,j is
preserved. As described above, there are two important issues in SEE that should be
detailed: the local search operators and the update of the parent partial solution.

In this work, both the Gaussian mutation operator and the Cauchy mutation oper-
ator are employed as the local search operators. Specifically, in each sub-problem, n
new partial solutions (1 ≤ n ≤ λ) are generated in terms of the Gaussian mutation,
while the rest are generated by the Cauchy mutation. Given a parent solution xp1,j in
the j-th sub-problem, the Gaussian mutation operator generates an offspring partial
solution xoi,j , i = 1, 2, ..., n, using Eq.(8):

xoi,j = xp1,j + σi,j · N (0, 1), (8)

where N (0, 1) denotes a Gaussian random variable with zero mean and standard de-
viation 1. Analogously, the Cauchy mutation operator generates an offspring partial
solution xoi,j , i = n+ 1, n+ 2, ..., λ, using Eq.(9):

xoi,j = xp1,j + σi,j · C(0, 1), (9)

where C(0, 1) denotes a random variable subject to the standard Cauchy distribution. In
general, the Gaussian mutation has ”narrower” probability distribution than the Cauchy
mutation. This means that the Gaussian mutation may be more compatible with the pro-
posed meta-model while it searches slower than the Cauchy mutation [46, 47]. There-
fore, the parameter n is set to balance the effectiveness of the proposed meta-model
and the search efficiency. The σi,j in Eqs.(8)-(9) denotes the corresponding search
step-size. Generally, the value of σi,j can be adapted during the search and may also
vary over sub-problems optimizers. To keep it simple, all σi,j are initialized with a
same value, i.e., 1.00. Then, each σi,j is adapted for every iteration again in terms of
the 1/5 successful rule [45], as given in Eq.(10):

σi,j = σi,j · exp
1√
2 [Ixo

i,j 6=x
p
1,j
· (IF(xp1)≥F(xoi) −

1

5
)] (10)

Similar to Eq.(7), Eq.(10) states that, given xoi,j is different from xp1,j , if the search
process has successfully made a progress, the corresponding search step-size will be
enlarged. Otherwise, the corresponding search step-size will be reduced.

For the update of the parent, given the accuracy of the proposed meta-model implic-
itly relies on the distance between the parent and each offspring, one meta-model may
not work well for all offsprings, as the offsprings usually locate differently. Therefore,
λ meta-models, denoted as H1:λ,j , are built for each sub-problem. In a sub-problem,
each of the λ meta-models is used to compare a unique offspring and the parent par-
tial solution. Although such a strategy is expected to more accurately tell whether an

8

offspring is better than the parent, it cannot identify the best offspring partial solu-
tion. Thus, after finishing the lambda pairwise comparisons, those offsprings that are
predicted as better than the parent will be further compared in terms of the objective
functions values of their complete solutions, so as to find the best one out of them.

Technically, in the j-th sub-problem, each i-th offspring xoi,j is pairwise compared
with xp1,j via Hi,j . If xoi,j is predicted to be worse than xp1,j according to Eq.(6),
we discard it by letting let xoi,j = xp1,j , i.e., only the offsprings (to a sub-problem)
predicted to be better than the parent xp1,j will be kept. After executing this step for all
sub-problems, we evaluate the resultant λ offspring complete solutions xo1:λ with the
objective function F , and each partial solution xoi,j shares the same objective function
value with that of its corresponding complete solution, i.e.,F(xoi). After that, in each j-
th sub-problem, xp1,j is updated with its best offspring in terms of the objective function
values. Actually, for brevity, it is identical to directly replace the parent complete
solution with the best offspring complete solution. That is, let xp1 = argminxoi

F(xoi), if
F(xp1) > min

1≤i≤λ
F(xoi). Otherwise, keep xp1 unchanged.

To summarize, the detailed pseudo-code of SEE is presented in Algorithm 2 for
illustration3. As seen that, SEE generates new partial solutions at steps 11-16. After
that, the partial solutions are ranked in terms of the meta-models at step 18 and step
20. Then according to the predictions of the meta-models, the offsprings worse than
the parent are reset to the value of the parent, as seen in step 19 and step 21. The
xp1 is updated at steps 25-27. The training data are also collected while evaluating the
complete solutions. Lastly, the search step-sizes and the parameters of the meta-models
are updated at steps 28-34.

4.4 Different behaviors between SEE and CC
As both SEE and CC are motivated by the divide-and-conquer idea, the potential ad-
vantage of SEE over CC worth a few more discussion, from the following two aspects.

First, SEE consumes much less computational costs than CC based works. Suppose
there are λ offsprings generated in each sub-problem at each iteration, the proposed
meta-model costs D · λ times of Eqs.(6)-(7) and λ times of the objective function eval-
uations F . Since Eqs.(6)-(7) are simple scalar calculations, it can be computationally
much cheaper in comparison with the objective function evaluations. On the contrary,
as the counterpart under the DC framework, traditional CC costs at least λ ·M objec-
tive function evaluations at each iteration, where M is the number of sub-problems in
a CC based work. Hence, although the proposed meta-model still cannot guarantee the
correct rank of partial solutions, it gives an efficient way to produce an approximated
rank, which is around M times faster than that of CC based works.

Besides, SEE may be less sensitive to the separability of problems than the CC
based works. The reason is that the variables in different sub-problems of SEE are
still possible to be evolved together as they are evolved in parallel, while in CC based
works, the variables in different sub-problems will never be evolved together as they are
evolved sequentially. In consequence, once the interdependent variables are grouped
into different sub-problems, CC based work will not be able to optimize all of them in
the same iteration.

3The Java source code can be seen at: http://staff.ustc.edu.cn/˜ketang/

9

Table 1: 5 groups of problems with different configurations.

Group 1 Group 2 Group 3 Group 4 Group 5

D 1000 2000 3000 4000 5000

m 50 100 150 200 250

Tmax 6e5 1.2e6 1.8e6 2.4e6 3e6

5 Empirical Studies
In the experimental studies, SEE is first compared with 4 state-of-the-art algorithms
on 20 problems with 5 different dimensionalities. Then how the proposed meta-model
impacts the performance of SEE is also investigated.

5.1 Experiment protocol
The CEC’2010 large-scale optimization benchmark [28] is a widely used test suite to
assess the performance high-dimensional optimization algorithms [7, 10, 13,18, 19, 23,
48]. This test suite consists of four types of high-dimensional problems in terms of dif-
ferent degrees of separability. In each type of problems, both uni-modal problems and
multi-modal problems are included. Although this benchmark originally consists of 20
continuous problems with 1000 variables, it is flexible to adjust the dimensionality to
see how the tested algorithms scale on those 20 problems. Given the above features,
the CEC’2010 large-scale optimization benchmark is adopted in our empirical studies.
The test suite has two parameters that could be used to control the complexity of the
problems. The first parameter is the dimensionality of each problem, i.e., D. The sec-
ond parameter is the size of each group of interdependent variables in each problem,
denoted as m. They were initially set to 1000 and 50, respectively. In order to see how
SEE scales on those problems in comparison with the other 4 algorithms, we modified
these two parameters to produce 5 groups of problems as shown in Table I.

The time budget, i.e., total number of function evaluations, is set to 6e5, 1.2e6,
1.8e6, 2.4e6, and 3e6, respectively for each group of problems. All the compared al-
gorithms terminate when the time budget runs out. With this linearly increased time
budget, it is easy to see how an algorithm scale on a problem. If an algorithm obtains
the final solutions with the same quality on one problem with different dimensional-
ities, it is said to scale linearly with the dimensionality (see Figs. 1-2). The quality
of the final solution is measured with function errors, i.e., the difference between the
objective function value of the output solution and that of the optimal solution to the
problem (which are known for these benchmark problems as 0.0). In other words, the
smaller the function error is, the better the solution will be. If the function error is
smaller than 1e-13, the output solution will be regarded as the global optimum. All the
compared algorithms are repeated on each problem for 20 runs. The function errors of
the corresponding solutions were recorded and averaged over 20 runs. The averaged
function errors of all 5 algorithms on 20 problems with 5 different dimensionalities
are respectively shown in Tables II-VI, together with the standard deviations. The best
result on each problem is marked in gray. The two-sided Wilcoxon rank-sum test at
a 0.05 significance level is also conducted to see whether the performances of two
algorithms are statistically significantly different. The scalability curves of each algo-
rithm on 5 groups of problems are shown in Figs.1-2, where the slower the curve of

10

Table 2: The average and standard deviation of function errors on the 1000-dimensional
CEC’2010 large-scale global optimization benchmark.

Algo. Chain RPM DECC-D DECC-DG SEE

F1
Mean 3.09e+04 1.68e+07 3.33e+02 7.97e+06 6.99e-11
Std 1.03e+04 1.77e+06 2.41e+01 4.93e+06 1.98e-11

F2
Mean 2.74e+03 7.25e+02 3.13e+03 4.62e+03 8.77e+03
Std 1.11e+02 1.94e+01 6.99e+01 1.67e+02 2.99e+02

F3
Mean 3.82e+00 7.77e-05 6.54e-03 1.70e+01 1.99e+01
Std 2.32e-02 3.67e-06 2.57e-04 4.14e-01 1.61e-02

F4
Mean 6.08e+11 2.64e+12 3.02e+13 6.86e+13 2.58e+11
Std 4.48e+10 5.90e+11 7.64e+12 1.21e+13 6.41e+10

F5
Mean 8.50e+07 3.05e+08 2.68e+08 2.39e+08 5.85e+08
Std 2.02e+07 1.17e+07 7.57e+07 2.42e+07 1.37e+08

F6
Mean 2.13e+01 9.09e+01 1.00e+06 1.69e+01 1.99e+07
Std 5.88e-02 2.91e+00 4.49e+06 5.23e-01 6.01e+04

F7
Mean 5.68e+06 1.49e+09 1.76e+09 1.29e+09 3.14e-02
Std 3.49e+05 4.38e+08 7.41e+08 4.50e+08 1.56e-02

F8
Mean 1.33e+07 4.59e+07 1.30e+08 6.21e+07 1.82e+06
Std 5.87e+06 3.71e+05 5.54e+07 2.72e+07 2.11e+06

F9
Mean 7.14e+07 4.56e+07 4.52e+08 8.27e+08 2.67e+07
Std 4.82e+06 1.74e+06 4.71e+07 6.95e+07 2.13e+06

F10
Mean 3.00e+03 7.24e+02 1.33e+04 8.60e+03 1.27e+04
Std 1.57e+02 1.08e+01 3.02e+02 1.13e+02 5.06e+02

F11
Mean 4.97e+01 1.57e-04 3.74e+00 1.67e+01 2.19e+02
Std 1.91e+01 7.21e-06 1.39e+01 3.78e-01 2.44e-01

F12
Mean 4.75e+02 6.12e+02 4.82e+06 3.29e+05 2.60e+02
Std 2.86e+01 2.37e+01 2.30e+05 1.57e+04 4.81e+01

F13
Mean 9.01e+03 3.26e+04 5.75e+03 2.60e+10 7.12e+02
Std 6.68e+03 8.50e+03 5.14e+03 4.32e+09 2.61e+02

F14
Mean 1.44e+08 1.65e+08 1.52e+09 2.34e+09 9.88e+07
Std 5.01e+06 2.72e+06 1.22e+08 1.10e+08 7.61e+06

F15
Mean 5.43e+03 7.36e+02 1.63e+04 7.85e+03 1.50e+04
Std 3.57e+03 1.64e+01 3.62e+02 8.90e+01 3.10e+02

F16
Mean 1.13e+02 1.64e-04 3.37e+01 2.38e+01 3.97e+02
Std 2.85e+01 8.40e-06 8.91e+01 1.05e+00 2.92e-01

F17
Mean 2.73e+04 1.79e+04 8.39e+06 7.70e+05 7.40e+03
Std 9.27e+02 4.35e+03 5.39e+05 2.85e+04 9.59e+02

F18
Mean 1.32e+04 2.48e+04 3.02e+04 3.98e+11 3.14e+03
Std 8.37e+03 3.63e+03 7.08e+03 2.79e+10 1.00e+03

F19
Mean 1.38e+06 3.26e+06 2.22e+07 3.66e+06 7.13e+05
Std 4.00e+04 6.80e+03 1.68e+06 2.16e+05 4.24e+04

F20
Mean 1.12e+03 1.64e+03 5.75e+03 6.48e+10 1.43e+03
Std 7.22e+01 1.42e+03 4.65e+02 8.50e+09 1.85e+02

w-d-l 11-1-8 11-0-9 14-0-6 12-0-8 -

11

Table 3: The average and standard deviation of function errors on the 2000-dimensional
CEC’2010 large-scale global optimization benchmark.

Algo. Chain RPM DECC-D DECC-DG SEE

F1
Mean 7.39e+05 4.82e+09 1.34e+03 2.28e+08 2.19e-10
Std 9.50e+04 2.04e+08 1.05e+02 1.07e+08 3.51e-11

F2
Mean 6.66e+03 4.76e+03 6.29e+03 1.27e+04 1.81e+04
Std 2.62e+02 2.09e+02 1.15e+02 2.50e+02 4.93e+02

F3
Mean 7.57e+00 1.03e+01 9.74e-03 1.92e+01 1.99e+01
Std 3.13e-01 3.49e-01 3.56e-04 1.23e-01 1.02e-02

F4
Mean 8.07e+13 1.07e+15 7.08e+15 1.07e+16 4.89e+11
Std 5.11e+13 2.28e+14 1.82e+15 1.90e+15 1.10e+11

F5
Mean 4.34e+08 8.79e+07 1.20e+09 9.81e+08 1.23e+09
Std 1.01e+08 1.67e+07 1.49e+08 9.79e+07 2.16e+08

F6
Mean 2.01e+07 2.00e+07 2.09e+07 2.13e+07 1.99e+07
Std 9.86e+04 2.58e+04 7.57e+04 2.06e+04 6.40e+04

F7
Mean 1.17e+07 9.90e+08 1.94e+10 3.46e+10 7.33e+00
Std 3.51e+05 2.67e+08 2.94e+09 3.78e+09 2.97e+00

F8
Mean 7.47e+07 1.18e+08 1.77e+08 3.20e+08 9.99e+05
Std 6.83e+07 5.73e+07 5.61e+07 5.54e+08 1.77e+06

F9
Mean 1.10e+10 2.24e+11 1.25e+11 2.61e+11 6.95e+07
Std 9.91e+08 7.90e+09 7.85e+09 1.51e+10 4.97e+06

F10
Mean 2.54e+04 2.85e+04 2.74e+04 2.36e+04 2.49e+04
Std 3.14e+03 9.19e+02 1.07e+03 3.54e+02 4.33e+02

F11
Mean 2.23e+02 2.24e+02 2.37e+02 2.33e+02 2.19e+02
Std 5.13e-01 2.04e-01 2.79e-01 3.09e-01 1.22e-01

F12
Mean 2.26e+04 4.11e+06 1.24e+07 1.28e+06 1.68e+04
Std 8.79e+02 9.62e+04 4.79e+05 4.39e+04 2.49e+03

F13
Mean 1.50e+04 6.38e+06 1.08e+04 2.66e+10 1.43e+03
Std 4.04e+03 8.30e+05 5.21e+03 3.98e+09 3.27e+02

F14
Mean 1.95e+10 3.89e+11 2.38e+11 8.59e+11 2.61e+08
Std 1.39e+09 1.85e+10 1.40e+10 5.40e+10 1.16e+07

F15
Mean 3.70e+04 7.28e+04 3.46e+04 2.86e+04 3.08e+04
Std 3.07e+03 3.14e+03 7.69e+02 5.71e+02 8.11e+02

F16
Mean 4.04e+02 4.09e+02 4.32e+02 4.27e+02 3.98e+02
Std 1.00e+00 4.28e-01 1.32e-01 1.70e-01 2.56e-01

F17
Mean 3.15e+05 4.78e+06 2.55e+07 2.85e+06 1.59e+05
Std 1.52e+04 1.17e+05 1.25e+06 6.44e+04 1.15e+04

F18
Mean 3.97e+03 2.99e+09 2.38e+04 1.06e+12 4.65e+03
Std 1.36e+03 6.69e+08 5.40e+03 4.64e+10 1.09e+03

F19
Mean 4.55e+06 1.32e+07 6.15e+07 1.06e+07 2.61e+06
Std 1.31e+05 6.99e+05 4.27e+06 5.01e+05 1.15e+05

F20
Mean 2.33e+03 3.18e+09 7.20e+03 2.98e+12 3.19e+03
Std 1.56e+02 6.65e+08 3.84e+02 1.74e+11 2.25e+02

w-d-l 14-1-5 17-0-3 17-1-2 15-0-5 -

12

Table 4: The average and standard deviation of function errors on the 3000-dimensional
CEC’2010 large-scale global optimization benchmark.

Algo. Chain RPM DECC-D DECC-DG SEE

F1
Mean 3.17e+06 1.07e+10 1.92e+03 1.15e+09 6.37e-10
Std 3.41e+05 3.73e+08 1.37e+02 4.92e+08 9.64e-11

F2
Mean 1.10e+04 1.10e+04 9.39e+03 2.23e+04 2.74e+04
Std 3.81e+02 3.39e+02 7.61e+01 5.18e+02 6.19e+02

F3
Mean 1.05e+01 1.42e+01 9.65e-03 1.97e+01 1.99e+01
Std 3.95e-01 2.18e-01 3.32e-04 8.48e-02 1.22e-02

F4
Mean 1.36e+14 3.24e+15 1.58e+16 1.75e+16 6.25e+11
Std 5.20e+13 3.70e+14 2.86e+15 3.23e+15 1.56e+11

F5
Mean 9.73e+08 2.57e+08 2.48e+09 2.43e+09 2.03e+09
Std 1.90e+08 2.98e+07 3.01e+08 2.08e+08 2.78e+08

F6
Mean 2.01e+07 2.01e+07 2.10e+07 2.14e+07 1.99e+07
Std 9.25e+04 3.16e+04 3.18e+04 1.72e+04 3.96e+04

F7
Mean 1.74e+07 1.79e+10 4.01e+10 8.33e+10 4.21e+02
Std 4.10e+05 2.80e+09 7.75e+09 7.64e+09 2.01e+02

F8
Mean 1.17e+08 1.96e+09 1.85e+08 2.70e+08 8.63e+05
Std 2.83e+07 1.80e+09 5.04e+07 6.69e+07 1.63e+06

F9
Mean 2.38e+10 6.02e+11 2.71e+11 6.08e+11 1.33e+08
Std 1.85e+09 1.99e+10 1.60e+10 5.09e+10 1.02e+07

F10
Mean 5.02e+04 7.17e+04 4.65e+04 4.22e+04 3.78e+04
Std 4.96e+03 2.81e+03 2.14e+03 8.07e+02 7.06e+02

F11
Mean 2.23e+02 2.24e+02 2.37e+02 2.34e+02 2.19e+02
Std 6.23e-01 2.01e-01 2.07e-01 1.46e-01 2.04e-01

F12
Mean 1.18e+05 8.50e+06 2.30e+07 2.64e+06 9.34e+04
Std 5.06e+03 1.79e+05 9.56e+05 6.71e+04 9.15e+03

F13
Mean 4.62e+04 2.30e+08 5.91e+03 1.70e+11 1.97e+03
Std 7.46e+03 7.29e+07 2.87e+03 1.66e+10 3.98e+02

F14
Mean 5.17e+10 1.48e+12 5.99e+11 4.06e+12 4.91e+08
Std 3.38e+09 5.27e+10 2.64e+10 3.28e+11 6.25e+07

F15
Mean 1.14e+05 2.24e+05 6.01e+04 5.77e+04 4.64e+04
Std 2.99e+04 5.80e+03 1.59e+03 1.07e+03 1.14e+03

F16
Mean 4.03e+02 4.11e+02 4.33e+02 4.28e+02 3.98e+02
Std 3.17e+00 2.15e-01 3.66e-01 1.49e-01 2.43e-01

F17
Mean 9.65e+05 1.05e+07 4.74e+07 5.49e+06 5.74e+05
Std 8.76e+04 3.63e+05 2.44e+06 1.13e+05 3.21e+04

F18
Mean 3.63e+03 3.98e+10 2.64e+04 2.51e+12 6.57e+03
Std 1.87e+02 6.49e+09 7.07e+03 1.07e+11 6.88e+02

F19
Mean 8.91e+06 3.04e+07 1.15e+08 1.97e+07 5.16e+06
Std 3.82e+05 1.61e+06 9.68e+06 5.06e+05 1.51e+05

F20
Mean 3.62e+03 4.09e+10 1.11e+04 5.21e+12 5.10e+03
Std 1.66e+02 2.82e+09 1.26e+03 5.94e+10 3.07e+02

w-d-l 15-0-5 17-0-3 18-0-2 18-0-2 -

13

Table 5: The average and standard deviation of function errors on the 4000-dimensional
CEC’2010 large-scale global optimization benchmark.

Algo. Chain RPM DECC-D DECC-DG SEE

F1
Mean 8.14e+06 2.05e+10 2.45e+03 5.60e+10 1.55e-09
Std 5.34e+05 8.68e+08 1.15e+02 3.70e+09 2.66e-10

F2
Mean 1.53e+04 1.91e+04 1.25e+04 3.20e+04 3.72e+04
Std 3.59e+02 4.10e+02 1.64e+02 3.82e+02 7.59e+02

F3
Mean 1.32e+01 1.61e+01 9.33e-03 1.97e+01 1.99e+01
Std 8.13e-01 1.98e-01 2.51e-04 4.03e-02 9.59e-03

F4
Mean 2.25e+14 7.11e+15 2.73e+16 1.21e+16 1.16e+12
Std 5.67e+13 9.59e+14 5.29e+15 1.97e+15 2.74e+11

F5
Mean 1.61e+09 5.12e+08 4.15e+09 4.11e+09 2.85e+09
Std 2.70e+08 4.14e+07 5.12e+08 4.00e+08 2.70e+08

F6
Mean 2.01e+07 2.01e+07 2.10e+07 2.14e+07 1.99e+07
Std 6.83e+04 2.35e+04 5.88e+04 1.42e+04 4.90e+04

F7
Mean 2.34e+07 6.94e+10 8.38e+10 2.86e+11 1.02e+04
Std 4.48e+05 8.66e+09 1.14e+10 2.69e+10 3.86e+03

F8
Mean 1.56e+08 2.09e+08 2.31e+08 4.91e+08 1.20e+06
Std 1.30e+07 5.34e+05 4.21e+07 7.19e+07 1.84e+06

F9
Mean 3.86e+10 1.21e+12 4.74e+11 9.56e+11 2.01e+08
Std 3.89e+09 4.24e+10 1.86e+10 7.16e+10 1.12e+07

F10
Mean 8.04e+04 1.50e+05 6.69e+04 6.17e+04 5.03e+04
Std 4.92e+03 5.41e+03 3.44e+03 1.65e+03 1.11e+03

F11
Mean 2.23e+02 2.25e+02 2.38e+02 2.35e+02 2.19e+02
Std 5.83e-01 1.73e-01 1.58e-01 9.15e-02 1.06e-01

F12
Mean 3.28e+05 1.40e+07 3.47e+07 3.96e+06 2.49e+05
Std 5.24e+03 1.86e+05 1.37e+06 9.62e+04 1.63e+04

F13
Mean 6.06e+04 2.27e+09 8.36e+03 2.00e+11 2.90e+03
Std 6.53e+03 2.89e+08 3.46e+03 1.44e+10 5.17e+02

F14
Mean 9.40e+10 3.76e+12 1.03e+12 2.54e+12 7.67e+08
Std 7.19e+09 8.49e+10 3.70e+10 1.30e+11 4.31e+07

F15
Mean 2.98e+05 1.26e+06 8.40e+04 9.47e+04 6.14e+04
Std 3.44e+04 1.59e+05 1.63e+03 1.51e+03 1.18e+03

F16
Mean 4.03e+02 4.17e+02 4.33e+02 4.28e+02 3.98e+02
Std 1.75e+00 5.83e+00 5.29e-01 1.29e-01 2.51e-01

F17
Mean 1.85e+06 2.74e+07 7.50e+07 8.63e+06 1.22e+06
Std 2.88e+05 3.64e+05 3.66e+06 1.84e+05 4.80e+04

F18
Mean 6.05e+03 9.29e+11 2.54e+04 1.19e+12 9.03e+03
Std 2.80e+02 8.46e+10 5.44e+03 6.71e+10 9.15e+02

F19
Mean 1.40e+07 7.64e+07 1.58e+08 2.85e+07 8.28e+06
Std 8.05e+05 3.81e+06 6.25e+06 5.33e+05 3.32e+05

F20
Mean 4.53e+03 4.65e+11 1.65e+04 5.57e+12 7.17e+03
Std 1.60e+02 9.91e+09 2.79e+03 2.48e+11 3.65e+02

w-d-l 15-0-5 17-0-3 18-0-2 18-0-2 -

14

Table 6: The average and standard deviation of function errors on the 5000-dimensional
CEC’2010 large-scale global optimization benchmark.

Algo. Chain RPM DECC-D DECC-DG SEE

F1
Mean 1.60e+07 6.72e+10 3.09e+03 6.72e+10 3.44e-09
Std 1.47e+06 2.77e+09 1.64e+02 2.68e+09 3.95e-10

F2
Mean 1.99e+04 4.39e+04 1.57e+04 4.39e+04 4.64e+04
Std 5.65e+02 6.26e+02 1.64e+02 6.26e+02 9.76e+02

F3
Mean 1.42e+01 1.93e+01 9.58e-03 1.93e+01 1.99e+01
Std 4.27e-02 7.05e-02 2.73e-04 7.05e-02 5.34e-03

F4
Mean 2.16e+14 3.11e+16 4.29e+16 3.11e+16 1.29e+12
Std 2.10e+13 2.56e+15 5.36e+15 2.56e+15 2.15e+11

F5
Mean 2.73e+09 2.27e+09 5.76e+09 2.27e+09 3.27e+09
Std 1.13e+09 2.16e+08 7.89e+08 2.16e+08 1.92e+08

F6
Mean 2.02e+07 2.02e+07 2.11e+07 2.02e+07 1.99e+07
Std 4.43e+04 3.42e+04 3.91e+04 3.42e+04 2.54e+04

F7
Mean 2.83e+07 2.34e+11 1.33e+11 2.34e+11 1.14e+05
Std 5.21e+05 1.67e+10 1.25e+10 6.75e+10 4.49e+04

F8
Mean 1.93e+08 2.62e+08 3.74e+08 2.62e+08 6.26e+05
Std 1.39e+07 7.35e+05 7.06e+07 7.35e+05 1.45e+06

F9
Mean 5.36e+10 4.38e+12 7.86e+11 4.38e+12 3.07e+08
Std 1.45e+10 1.84e+11 3.86e+10 1.84e+11 1.72e+07

F10
Mean 1.18e+05 5.90e+05 9.17e+04 5.90e+05 6.34e+04
Std 7.85e+03 1.83e+04 5.46e+03 1.83e+04 8.89e+02

F11
Mean 2.23e+02 2.28e+02 2.38e+02 2.28e+02 2.19e+02
Std 2.57e-01 1.73e-01 2.94e-01 1.73e-01 1.26e-01

F12
Mean 6.72e+05 2.35e+07 4.70e+07 2.35e+07 4.78e+05
Std 5.63e+03 4.51e+05 2.03e+06 4.51e+05 2.54e+04

F13
Mean 1.34e+05 2.32e+11 1.55e+04 2.32e+11 3.47e+03
Std 2.01e+04 9.56e+09 5.95e+03 9.56e+09 4.11e+02

F14
Mean 1.37e+11 1.59e+13 1.59e+12 1.59e+13 1.08e+09
Std 6.68e+09 4.01e+11 4.65e+10 4.01e+11 3.70e+07

F15
Mean 5.62e+05 2.34e+06 1.15e+05 2.34e+06 7.67e+04
Std 4.70e+04 1.32e+04 1.66e+03 1.32e+04 1.56e+03

F16
Mean 4.04e+02 4.19e+02 4.32e+02 4.19e+02 3.98e+02
Std 5.05e-01 3.49e-01 6.16e-01 3.49e-01 1.89e-01

F17
Mean 3.03e+06 4.06e+07 1.07e+08 4.06e+07 2.11e+06
Std 5.54e+04 1.10e+06 4.03e+06 1.10e+06 5.75e+04

F18
Mean 6.82e+03 1.85e+12 4.13e+04 1.85e+12 1.15e+04
Std 8.40e+02 5.48e+10 8.15e+03 5.48e+10 1.07e+03

F19
Mean 1.94e+07 1.10e+08 2.58e+08 1.10e+08 1.15e+07
Std 5.61e+05 3.24e+06 7.44e+06 3.24e+06 3.78e+05

F20
Mean 5.60e+03 1.85e+12 1.72e+04 1.85e+12 9.40e+03
Std 9.62e+01 1.51e+11 4.38e+02 1.51e+11 3.59e+02

w-d-l 15-1-4 17-0-3 18-0-2 18-0-2 -

15

an algorithm increases with the dimensionality, the better its scalability will be on that
problem. Notice that, the curves describe the function errors at a log10 level. Hence,
the Y-axis of the figures actually denotes the orders of magnitude of the function errors.

5.2 Algorithms settings
As introduced in Section II, there are three major ways to deal with the high-dimensional
problems. That is, existing EAs with re-balanced exploitation and exploration, dimen-
sionality reduction based EAs, and divide-and-conquer based EAs. Although the pro-
posed SEE belongs to the last category, it would be more comprehensive to compare
SEE with methods from all categories. Hence, we select 4 representatives as the com-
pared algorithms, i.e., MA-SW-Chains [7], RP-Ens [10], DECC-D [48], and DECC-
DG [13]. To be specific, MA-SW-Chains, which won the IEEE WCCI2010 large-scale
global optimization competition, is a memetic algorithm that allocates a local search
intensity for each candidate solution in terms of its historical search behaviour. The
local search intensity is a parameter to balance the exploration and exploitation dur-
ing search. RP-Ens is a random projection based Estimation of Distribution Algorithm
(EDA) [49–51], where original problem is firstly projected onto a number of lower
dimensional sub-spaces with randomly generated matrix. After that, Gaussian distri-
bution based EDAs are employed to solve the lower-dimensional sub-problems. There
is one parameter that has immediate influence on the performance of RP-Ens, i.e., the
number of lower dimensional sub-spaces to be projected on. In general, large number
of lower dimensional sub-spaces can enhance the performance of RP-Ens, while it will
also induce more computational cost.

Both DECC-D and DECC-DG are cooperative coevolution based works that first
divide the original problem into a number of sub-problems in order to minimize the
interdependencies in-between. After that, SaNSDE [52], a self-adaptive variant of dif-
ferential evolution algorithms is employed to solve each sub-problem cooperatively by
sharing the partial solutions with best function values. Besides the similarity, DECC-D
differs from DECC-DG on the decomposition strategy. DECC-D suggests that if two
variables are interdependent, the performance improvement brought by optimizing one
of them is limited. With this insight in mind, DECC-D decomposes the variables into
multiple sub-problems on-line, i.e., the sub-problems vary from iteration to iteration.
On the contrary, DECC-DG decomposes the original problem in an off-line manner.
That is, DECC-DG solves a problem by two steps: first learning the interdependencies
between variables and dividing them into multiple sub-problems; second optimizing
those sub-problems by SaNSDE under the framework of CC. The decomposition strat-
egy of DECC-DG is based on that if two variables are independent, changing the value
of either variable will not perturb the rank of the corresponding complete solutions.

The source codes of the 4 compared algorithms are all available online and were
used to carry out the experiments. All the compared algorithms are configured accord-
ing to the suggestions in their original paper, except for RP-Ens. In [10], the number
of lower dimensional sub-spaces of RP-Ens was set to 1000. Though it works well on
1000-dimensional problems [10], it quickly freezes the workstation when the dimen-
sionality of problems becomes larger. According to the remarks in the source code of
RP-Ens, such parameter can be set to 200 if the memory of computer is insufficient
to store the matrices. Hence, we set the number of lower dimensional sub-spaces to
1000 for RP-Ens on the 1000-dimensional problems and 200 on the rest 4 groups of
problems. DECC-DG will consume the function evaluations during the learning stage,
which can be overwhelming on some problems and the total time budget (in terms of

16

Table 7: The features of six selected 1000-dimensional problems.

F1 F2 F7

Modality Uni-modal Multi-modal Uni-modal

Separability Fully sepa. Fully sepa. Partially sepa.

Smoothness Smooth Rugged Smooth

F11 F18 F20

Modality Multi-modal Multi-modal Multi-modal

Separability Partially sepa. Partially sepa. Fully non-sepa.

Smoothness Rugged Smooth Smooth

function evaluations) are not sufficient for completing the learning stage. In this com-
parison, the function evaluations consumed by DECC-DG during the learning stage is
simply omitted. That is, after decomposition, the whole time budget will be used to
optimize the sub-problems, which is the ideal case of DECC-DG. SEE has two param-
eters to set, which are all related to the sub-problem optimizer. The first parameter,
i.e., the population size λ, is set to 10. The second parameter n is used to allocate the
search resource for Gaussian mutation and Cauchy mutation. We simply set it to the
half of λ, i.e., 5. This means neither Gaussian mutation nor Cauchy mutation is biased
during the search of SEE.

5.3 Comparisons between SEE and four compared algorithms
A quick conclusion can be drawn from the results of Tables II-VI that SEE generally
performs better than the 4 compared algorithms on the tested problems set. Besides, the
advantages of SEE over the compared algorithms increase with dimensionality, which
means that SEE has better scalability than the compared algorithms, at least on the 20
problems. This can be also verified in Figs.1-2 that, on most of the 20 problems, the
function errors of SEE increase much slower than the curves of other 4 algorithms with
the dimensionality.

Specially, F1 is the shifted Elliptic function. Intuitively, as F1 is both fully-separable
and uni-modal, its global optimum can be easily obtained by separately optimizing one
dimension at a time, regardless of the values taken on the other dimensions. It can
be seen that the proposed SEE can always output good final solutions with function
errors around 1e-10, which is very close to the global optimum. On the contrary, all
the compared algorithms perform very poor on this problem that they fall at least 12
orders of magnitude behind SEE in terms of the function errors of final solutions. Such
advantage of SEE does not disappear on partially separable or non-separable problems.
For example, F4, F9, and F14 are variants of F1 that involve different degrees of ro-
tated variables, which make the whole problems no longer fully separable. On those
three problems, SEE is still significantly superior to the compared algorithms. Another
example is the Schwefel problem 1.2 based problems. The Schwefel problem 1.2 is
a fully non-separable problem. By combining it with the fully separable sphere func-
tion with different degrees, the F7, F12, F17, and F19 are constructed. To be specific,
F7 has one single group of m interdependent variables. F12 has D

2m groups of m in-
terdependent variables. F17 has D

m groups of m interdependent variables, and F19 is
fully non-separable that involves one group of D interdependent variables. It can be

17

(a) F1 (b) F2 (c) F3

(d) F4 (e) F5 (f) F6

(g) F7 (h) F8 (i) F9

(j) F10 (k) F11 (l) F12

(m) F13 (n) F14 (o) F15

Figure 1: The scalability curves of 5 algorithms on F1-F15 problems. The Y-axis denotes the orders of
magnitude of the function errors.

18

(a) F16 (b) F17 (c) F18

(d) F19 (e) F20

Figure 2: The scalability curves of 5 algorithms on F16-F20 problems. The Y-axis denotes the orders of
magnitude of the function errors.

seen in Figs.1-2 that the scalability curves of SEE always keep lower than those of the
compared algorithms, which means SEE performs the best on those 4 problems with
different dimensionalities. Similar phenomena can be also observed on the well-known
multi-modal Rosenbrock function based problems, i.e., F8, F13, F18, and F20. Notice
that, although the results of SEE on F18 and F20 are slightly less accurate than that
of the MA-WS-Chains, such differences can be insignificant when comparing with the
huge function errors received by the other algorithms.

On the rest problems, i.e., F2, F3, F5, f6, F10, F11, F15, F16, SEE performs poorer
than the compared algorithms in 1000-dimensional cases. The reason might lie in
that those problems are either Rastrigin’s function based or Ackley’s function based,
whose landscapes are rugged and the local areas change rapidly so that the proposed
meta-model becomes less effective. Nevertheless, the 4 compared algorithms also drop
their effectiveness down quickly when the dimensionality increases and even become
inferior to SEE.

The two CC based algorithms, i.e., DECC-D and DECC-DG, perform much worse
than SEE that their function errors on most of the 20 problems usually fall several or-
ders of magnitude behind SEE, especially when the dimensionality increases. This phe-
nomenon supports our suggestion that the DC methods can be facilitated better by self-
evaluation with trained meta-models than cooperative coevolution. MA-SW-Chains
and RP-Ens also obtain relatively good results on those 1000-dimensional problems.
However, their performances deteriorate as the dimensionality increases. For MA-SW-
Chains, the reason might be that the predefined local search intensity has well balanced
the exploration and exploitation in 1000-dimensional solution space, while it is not
suitable for higher dimensional problems. For RP-Ens, 1000 lower dimensions may
cover the original solution space very well. However, when setting it to 200 to trade-
off the computational cost, the performance of RP-Ens on the majority of the tested
functions drops down dramatically. The reason might be that the sub-problems pro-
duced by such small number of random projections may not jointly cover the original

19

(a) F1 (b) F2 (c) F7

(d) F11 (e) F18 (f) F20

Figure 3: The convergence curves of SEE and SEE-baseline on 6 problems. The Y-axis denotes the orders
of magnitude of the function errors.

solution space well.

5.4 Investigation of the meta-model
It is of importance to investigate how the meta-model impacts the performance of SEE.
The most intuitive way might be to check the relation between the accuracy of the
meta-model and the performance of SEE. However, as the ground truth of the rank of
any pair of partial solutions is computationally prohibited to obtain, it is infeasible to
calculate the accuracy of the meta-model. In this paper, we adopt an indirect method to
investigate this issue. That is, a baseline meta-model is constructed by fixing the PSi,j
and PLi,j as 0.5 along the whole optimization, which can be regarded as a random
guess for ranking any pair of partial solutions. By replacing the original meta-model
in SEE with this baseline meta-model, we obtain the resultant algorithm, denoted as
SEE-baseline. Then the SEE-baseline is compared with SEE on the above benchmark
problems. From their convergence curves on different problems, it will be easy to
see the importance of the proposed meta-model to SEE. For brevity, we only list the
comparisons on 6 selected 1000-dimensional problems in Fig.3, the comprehensive
results will be available online4. The listed problems are selected in terms of their
multimodality, separability, and landscape smoothness. The underlying idea is to show
that the proposed meta-model is less sensitive to the multimodality and separability but
heavily relies on the smoothness of the problem. These 6 problems are F1, F2, F7, F11,
F18, F20, and their features are listed in Table VII.

As seen in Fig.3, SEE outperforms SEE-baseline on all the 6 problems, which
means the proposed meta-model has a positive impact on the performance of SEE.
Furthermore, Fig.3 also shows that the meta-model is not heavily influenced by the
modality and separability of problem, which are both commonly concerned features of
high-dimensional optimization problems. On the contrary, the effectiveness of the pro-

4The comprehensive results can be seen at: http://staff.ustc.edu.cn/˜ketang/

20

posed meta-model deteriorates significantly when the landscape of a problem is rugged
(Fig.3(b) and Fig.3(d)), where the assumption of the meta-model that the landscape
changes smoothly does not hold.

6 Conclusion
This work investigated the general DC idea on high-dimensional optimization prob-
lems. We discussed that the major difficulty of DC in optimization lies in the dimen-
sionality mismatch, where the partial solutions to each sub-problem can hardly be cor-
rectly evaluated. Hence, we suggest that dimensionality mismatch can be tackled as a
computationally expensive problem. That is, we suggest evaluating partial solutions to
each sub-problem separately by employing computationally cheap meta-models, and
propose a novel SEE approach based on this idea. In SEE, the original objective func-
tion F is firstly divided into D 1-dimensional sub-problems. In each sub-problem, a
(1 + λ)-EA is employed as the local search operator. That is, a parent partial solu-
tion (to a sub-problem) generates λ offsprings partial solutions with either Gaussian
mutation or Cauchy mutation. A simple yet efficient meta-model is designed to pre-
dict the rank of a pair of partial solutions. Based on the rank and objective function
values, the best one among the (1 + λ) partial solutions is kept to the next iteration.
To verify its effectiveness, empirical studies have been conducted to compare the SEE
with 4 recently proposed representatives of high-dimensional optimization approaches.
The results have shown that our work becomes more superior to the compared algo-
rithms on the tested 20 functions with the increase of dimensionality. The impact of
the meta-model on the performance of SEE is also investigated.

The proposed meta-model in SEE is implicitly based on the assumption that the lo-
cal landscape of the solution space changes smoothly. Seen from the empirical results,
on the problems that meet the assumption of local smoothness, the meta-model posi-
tively impacts the performance of SEE, while on the other problems, the meta-model
loses its effectiveness. Besides, the proposed meta-model requires the sub-problem
optimizer to be local search. In the future, more sophisticated meta-models may be
incorporated into SEE to employ more powerful global optimization techniques as the
sub-problem optimizers, such as differential evolution, estimation of distribution algo-
rithms. By using more sophisticated meta-models, the assumption of local smoothness
of the landscape may be alleviated.

References
[1] M. H. Tayarani-N., X. Yao, and H. Xu, “Meta-heuristic algorithms in car engine

design: A literature survey,” IEEE Transactions on Evolutionary Computation,
vol. 19, no. 5, pp. 609–629, Oct 2015.

[2] Z. Vasicek and L. Sekanina, “Evolutionary approach to approximate digital cir-
cuits design,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 3,
pp. 432–444, June 2015.

[3] R. J. Preen and L. Bull, “Toward the coevolution of novel vertical-axis wind tur-
bines,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 2, pp. 284–
294, April 2015.

21

[4] W. B. Langdon and M. Harman, “Optimizing existing software with genetic pro-
gramming,” IEEE Transactions on Evolutionary Computation, vol. 19, no. 1, pp.
118–135, Feb 2015.

[5] D. M. Cabrera, “Evolutionary algorithms for large-scale global optimisation: a
snapshot, trends and challenges,” Progress in Artificial Intelligence, vol. 5, no. 2,
pp. 85–89, 2016.

[6] S. Mahdavi, M. E. Shiri, and S. Rahnamayan, “Metaheuristics in large-scale
global continues optimization: a survey,” Information Sciences, vol. 295, pp. 407–
428, 2015.

[7] D. Molina, M. Lozano, and F. Herrera, “MA-SW-Chains: Memetic algorithm
based on local search chains for large scale continuous global optimization,” in
IEEE Congress on Evolutionary Computation. Barcelona, Spain: IEEE, July
2010, pp. 1–8.

[8] R. Cheng and Y. Jin, “A competitive swarm optimizer for large scale optimiza-
tion,” IEEE transactions on cybernetics, vol. 45, no. 2, pp. 191–204, 2015.

[9] H. Wang, Z. Wu, and S. Rahnamayan, “Enhanced opposition-based differential
evolution for solving high-dimensional continuous optimization problems,” Soft
Computing, vol. 15, no. 11, pp. 2127–2140, 2011.

[10] A. Kabán, J. Bootkrajang, and R. J. Durrant, “Toward large-scale continuous eda:
A random matrix theory perspective,” Evolutionary computation, 2015.

[11] Z. Wang, M. Zoghi, F. Hutter, D. Matheson, N. Freitas et al., “Bayesian op-
timization in high dimensions via random embeddings,” in International Joint
Conferences on Artificial Intelligence (IJCAI), Beijing, China, Aug. 2013.

[12] W. Dong, T. Chen, P. Tiňo, and X. Yao, “Scaling up estimation of distribution al-
gorithms for continuous optimization,” IEEE Transactions on Evolutionary Com-
putation, vol. 17, no. 6, pp. 797–822, 2013.

[13] M. N. Omidvar, X. Li, Y. Mei, and X. Yao, “Cooperative co-evolution with differ-
ential grouping for large scale optimization,” IEEE Transactions on Evolutionary
Computation, vol. 18, no. 3, pp. 378–393, 2014.

[14] M. A. Potter and K. A. De Jong, “A cooperative coevolutionary approach to func-
tion optimization,” in International Conference on Parallel Problem Solving from
Nature. Jerusalem, Israel: Springer, Oct. 1994, pp. 249–257.

[15] R. P. Wiegand, “An analysis of cooperative coevolutionary algorithms,” Ph.D.
dissertation, Fairfax, VA, USA, 2004, aAI3108645.

[16] M. A. Potter and K. A. De Jong, “Cooperative coevolution: An architecture for
evolving coadapted subcomponents,” Evolutionary computation, vol. 8, no. 1, pp.
1–29, 2000.

[17] X. Li and X. Yao, “Cooperatively coevolving particle swarms for large scale op-
timization,” IEEE Transactions on Evolutionary Computation, vol. 16, no. 2, pp.
210–224, 2012.

22

[18] Z. Yang, K. Tang, and X. Yao, “Large scale evolutionary optimization using co-
operative coevolution,” Information Sciences, vol. 178, no. 15, pp. 2985–2999,
2008.

[19] Y. Mei, M. N. Omidvar, X. Li, and X. Yao, “A competitive divide-and-conquer
algorithm for unconstrained large-scale black-box optimization,” ACM Transac-
tions on Mathematical Software (TOMS), vol. 42, no. 2, p. 13, 2016.

[20] Y. Liu, X. Yao, Q. Zhao, and T. Higuchi, “Scaling up fast evolutionary program-
ming with cooperative coevolution,” in 2001 IEEE Congress on Evolutionary
Computation, vol. 2. Seoul, South Korea: IEEE, 2001, pp. 1101–1108.

[21] F. Van den Bergh and A. P. Engelbrecht, “A cooperative approach to particle
swarm optimization,” IEEE transactions on Evolutionary Computation, vol. 8,
no. 3, pp. 225–239, 2004.

[22] T. Jansen and R. P. Wiegand, “The cooperative coevolutionary (1+1) ea,” Evolu-
tionary Computation, vol. 12, no. 4, pp. 405–434, 2004.

[23] W. Chen, T. Weise, Z. Yang, and K. Tang, “Large-scale global optimization using
cooperative coevolution with variable interaction learning,” in International Con-
ference on Parallel Problem Solving from Nature. Krakow, Poland: Springer,
Sept. 2010, pp. 300–309.

[24] L. Panait, “Theoretical convergence guarantees for cooperative coevolutionary
algorithms,” Evolutionary computation, vol. 18, no. 4, pp. 581–615, 2010.

[25] L. Panait, S. Luke, and J. F. Harrison, “Archive-based cooperative coevolutionary
algorithms,” in Proceedings of the 8th annual conference on Genetic and evolu-
tionary computation. Seattle, USA: ACM, July 2006, pp. 345–352.

[26] L. Panait and S. Luke, “Time-dependent collaboration schemes for cooperative
coevolutionary algorithms,” in Proceedings of the 2005 AAAI Fall Symposium on
Coevolutionary and Coadaptive Systems, Virginia, USA, Nov. 2005.

[27] R.-L. Tang, Z. Wu, and Y.-J. Fang, “Adaptive multi-context cooperatively
coevolving particle swarm optimization for large-scale problems,” Soft
Computing, pp. 1–20, 2016. [Online]. Available: http://dx.doi.org/10.1007/
s00500-016-2081-6

[28] K. Tang, X. Li, P. N. Suganthan, Z. Yang, and T. Weise, “Benchmark functions for
the cec’2010 special session and competition on large scale global optimization,”
Nature Inspired Computation and Applications Laboratory, University of Science
and Technology of China, China, Tech. Rep., 2009.

[29] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploitation in evolu-
tionary algorithms: A survey,” ACM Computing Surveys (CSUR), vol. 45, no. 3,
p. 35, 2013.

[30] Y. Mei, X. Li, and X. Yao, “Cooperative coevolution with route distance grouping
for large-scale capacitated arc routing problems,” IEEE Transactions on Evolu-
tionary Computation, vol. 18, no. 3, pp. 435–449, June 2014.

23

[31] T.-L. Yu, D. E. Goldberg, K. Sastry, C. F. Lima, and M. Pelikan, “Dependency
structure matrix, genetic algorithms, and effective recombination,” Evolutionary
computation, vol. 17, no. 4, pp. 595–626, 2009.

[32] R. P. Wiegand and J. Sarma, “Spatial embedding and loss of gradient in coopera-
tive coevolutionary algorithms,” in International Conference on Parallel Problem
Solving from Nature. Birmingham, UK: Springer, Sept. 2004, pp. 912–921.

[33] R. P. Wiegand, W. C. Liles, and K. A. De Jong, “An empirical analysis of col-
laboration methods in cooperative coevolutionary algorithms,” in Proceedings of
the genetic and evolutionary computation conference (GECCO), vol. 2611, San
francisco, USA, July 2001, pp. 1235–1245.

[34] M. Iqbal, W. N. Browne, and M. Zhang, “Reusing building blocks of extracted
knowledge to solve complex, large-scale boolean problems,” IEEE Transactions
on Evolutionary Computation, vol. 18, no. 4, pp. 465–480, Aug 2014.

[35] R. A. Watson, “Analysis of recombinative algorithms on a non-separable
building-block problem,” Foundations of genetic algorithms, vol. 6, pp. 69–89,
2001.

[36] M. Munetomo and D. E. Goldberg, “A genetic algorithm using linkage identifica-
tion by nonlinearity check,” in IEEE International Conference on Systems, Man,
and Cybernetics, vol. 1. Tokyo, Japan: IEEE, Oct. 1999, pp. 595–600.

[37] D. E. Goldberg, K. Deb, H. Kargupta, and G. R. Harik, “Rapid accurate opti-
mization of difficult problems using fast messy genetic algorithms.” in Proceed-
ings of the 5th International Conference on Genetic Algorithms, vol. 5, Urbana-
Champaign, USA, June 1993, pp. 56–64.

[38] M. Munetomo and D. E. Goldberg, “Linkage identification by non-monotonicity
detection for overlapping functions,” Evolutionary computation, vol. 7, no. 4, pp.
377–398, 1999.

[39] M. Tabatabaei, J. Hakanen, M. Hartikainen, K. Miettinen, and K. Sindhya, “A sur-
vey on handling computationally expensive multiobjective optimization problems
using surrogates: non-nature inspired methods,” Structural and Multidisciplinary
Optimization, vol. 52, no. 1, pp. 1–25, 2015.

[40] Y. Jin, “Surrogate-assisted evolutionary computation: Recent advances and fu-
ture challenges,” Swarm and Evolutionary Computation, vol. 1, no. 2, pp. 61–70,
2011.

[41] K. Deb and C. Myburgh, “Breaking the billion-variable barrier in real-world opti-
mization using a customized evolutionary algorithm,” in Proceedings of the 2016
on Genetic and Evolutionary Computation Conference. ACM, 2016, pp. 653–
660.

[42] A. Ciccazzo, G. D. Pillo, and V. Latorre, “Support vector machines for surrogate
modeling of electronic circuits,” Neural Computing and Applications, vol. 24,
no. 1, pp. 69–76, 2014.

[43] Y. Tenne and S. W. Armfield, “A framework for memetic optimization using vari-
able global and local surrogate models,” Soft Computing, vol. 13, no. 8, p. 781,
2008.

24

[44] B. Liu, Q. Zhang, and G. G. E. Gielen, “A gaussian process surrogate model
assisted evolutionary algorithm for medium scale expensive optimization prob-
lems,” IEEE Transactions on Evolutionary Computation, vol. 18, no. 2, pp. 180–
192, April 2014.

[45] N. Hansen, D. V. Arnold, and A. Auger, “Evolution strategies,” in Springer Hand-
book of Computational Intelligence. Springer, 2015, pp. 871–898.

[46] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,” IEEE
Transactions on Evolutionary computation, vol. 3, no. 2, pp. 82–102, 1999.

[47] C.-Y. Lee and X. Yao, “Evolutionary programming using mutations based on the
levy probability distribution,” IEEE Transactions on Evolutionary computation,
vol. 8, no. 1, pp. 1–13, Feb. 2004.

[48] M. N. Omidvar, X. Li, and X. Yao, “Cooperative co-evolution with delta grouping
for large scale non-separable function optimization,” in 2010 IEEE Congress on
Evolutionary Computation. Barcelona, Spain: IEEE, July 2010, pp. 1–8.

[49] P. Larranaga and J. A. Lozano, Estimation of distribution algorithms: A new tool
for evolutionary computation. Springer Science & Business Media, 2002, vol. 2.

[50] J. Wang, K. Tang, J. A. Lozano, and X. Yao, “Estimation of the distribution al-
gorithm with a stochastic local search for uncertain capacitated arc routing prob-
lems,” IEEE Transactions on Evolutionary Computation, vol. 20, no. 1, pp. 96–
109, Feb 2016.

[51] A. Zhou, J. Sun, and Q. Zhang, “An estimation of distribution algorithm with
cheap and expensive local search methods,” IEEE Transactions on Evolutionary
Computation, vol. 19, no. 6, pp. 807–822, 2015.

[52] Z. Yang, K. Tang, and X. Yao, “Self-adaptive differential evolution with neigh-
borhood search,” in 2008 IEEE Congress on Evolutionary Computation. Hong
Kong, China: IEEE, June 2008, pp. 1110–1116.

25

Algorithm 2 SEE(F , Tmax, λ, µ = 1, n)

1: Divide F into D exclusive sub-problems.
2: For j = 1 to D
3: For i = 1 to λ
4: Initialize PSi,j and PLi,j as 1.00.
5: Initialize σi,j as 1.00.
6: EndFor
7: Initialize xp1,j randomly.
8: EndFor
9: For t = 1 to Tmax

10: For j = 1 to D
11: For i = 1 to n
12: xoi,j = xp1,j + σi,j · N (0, 1).
13: EndIf
14: For i = n+ 1 to λ
15: xoi,j = xp1,j + σi,j · C(0, 1).
16: EndIf
17: For i = 1 to λ
18: If xoi,j < xp1,j ∧ PSi,j < r
19: xoi,j = xp1,j .
20: Else xoi,j > xp1,j ∧ PLi,j < r
21: xoi,j = xp1,j .
22: EndIf
23: EndFor
24: EndFor
25: If F(xp1) > min1≤i≤λF(xoi)
26: xp1 = argminxoi

F(xoi)
27: EndFor
28: For j = 1 to D
29: For i = 1 to λ
30: σi,j = σi,j · exp

1√
2 [Ixo

i,j 6=x
p
1,j
· (IF(xp1)≥F(xoi) −

1
5)].

31: PSi,j = PSi,j · exp
1√
2 [Ixo

i,j<x
p
1,j
· (IF(xp1)≥F(xoi) −

1
5)].

32: PLi,j = PLi,j · exp
1√
2 [Ixo

i,j>x
p
1,j
· (IF(xp1)≥F(xoi) −

1
5)].

33: EndFor
34: EndFor
35: EndFor
36: Output xp1.

26

