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Context: Vitamin D deficiency (25-hydroxyvitamin D [25D] €2ng/ml) disproportionately
affects non-Caucasian individuals. Controversyiptr®ver: 1) how to best restore low 25D
levels; and 2) how to best define vitamin D stgtatal [protein-bound + free] vs. free 25D).
Objective: To assess: 1) the effects of vitamin D3 (chole&adal, D3) vs. pharmacologic 25-
hydroxyvitamin D3 (calcifediol, 25D3) on total afrée 25D in a multi-ethnic cohort of adults;
and 2) whether change in parathyroid hormone (A3 Ifjore strongly associated with total vs.
free 25D.

Design: 16-week randomized controlled trial. Biochemistia®, 4, 8, and 16 weeks.

I ntervention: 60 mcg (2,400 IU)/day of D3 or 20 mcg/day of 25D3.

Setting: Academic medical center.

Participants: 35 adults 28 years with 25D levels <20 ng/ml.

Main Outcome Measures. Total and free 25D, PTH.

Results: Baseline total (16.2 8.7 vs. 17.0 2.5 ng/ml, p=0.4) and free (4.20t8 vs. 4.7 1.0
pa/ml, p=0.2) 25D were similar between D3 and 25PD31ps, respectively. 25D3 increased total
(+25.5 vs. +13.8 ng/ml, p=0.001) and free (+6.6#&5 pg/ml, p=0.03) 25D more than D3. By
4 weeks, 87.5% of 25D3 participants had total 2&ls 830 ng/ml, compared to 23.1% of D3
participants (p=0.001). These trends were congisienoss race/ethnicity. Change in PTH was
similarly associated with both total (p=0.01) areef25D (p=0.04).

Conclusions: 25D3 increased total and free 25D levels more hapichn D3, regardless of
race/ethnicity. Free and total 25D were similagga@ciated with change in PTH.

We studied the effects of 20 mcg/day of calcifediol vs. 60 mcg/day of cholecalciferol, and found calcifediol
to more rapidly and robustly raise total and free 25D levels in a diverse sample of adults.

INTRODUCTION

Low serum 25-hydroxyvitamin D (25D) is associatathvadverse skeletal health outcomes. In
particular, low 25D leads to decreased intestiadiam absorption, increased parathyroid
hormone secretion, and increased bone resorptjoiithe present time, controversy persists
over: 1) how to best restore low serum 25D levesis} 2) whether vitamin D status is best
assessed by measuring serum concentrations ofpotéin-bound plus free) vs. free 25D.
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When serum total 25D levels are low, cliniciansegafly recommend supplementation with
either ergocalciferol (D2) or cholecalciferol (D@). Most studies report that orally
administered D3 raises 25D levels to a greatemextan D2 (3-7), but even supplementation
with currently-recommended D3 doses may not refiaitrease total 25D levels >30 ng/ml (2).
While a 25D level of >20 ng/ml is likely adequate the general population (8), a threshold of
>30 ng/ml may be advisable for individuals with agterosis, especially if anti-resorptive
therapy is used (2, 9). While bolus D2 and D3 amegally effective at raising total 25D levels
>30 ng/ml, the safety of this approach has recdsgbn called into question because of its
association with increased risk of falls in eldgrbpulations (10, 11). An alternative approach
may therefore be required. Presumably owing tabibty to bypass carbon-25 hydroxylation in
the liver and its relative affinity for the circtilag vitamin D binding protein (DBP),
pharmacologic 25-hydroxyvitamin D3 (calcefidiol,[25) more rapidly and robustly raises
serum 25D levels than parent D3 (12-18). 25D3 adhtnation also suppresses PTH secretion
while D3 does not (18). All recent human trials gamng D3 to 25D3 were conducted in
predominantly Caucasian study populations (16-H8yever, since low 25D is more prevalent
among individuals with increased skin pigmentatibn2), it is important to identify optimal
approaches for restoring inadequate 25D storewimiduals of all racial/ethnic backgrounds.

In addition to questions relating to optimal apmto&o vitamin D supplementation, another
area of intensive research focuses on whetherstdiee 25D represents a superior marker of
vitamin D statusn vivo. In serum, 25D is primarily bound to DBP and alloumwith less than
1% of total 25D circulating in its free (unboundyr (19). In classical vitamin D physiology,
DBP-bound 25D is internalized by the renal epitiledell via megalin (a DBP receptor), and
then activated to 1,25-dihydroxyvitamin D (1,2503)the 1-alpha hydroxylase, CYP27B1 (20).
1,25D then acts in an endocrine fashion to fatditatestinal calcium absorption (21). Based on
this, one would theorize thaital 25D represents a better marker of vitamin D stafugassical
vitamin D bioactivity. In non-classical vitamin Dhpsiology involving tissues that do not
express megalin, it has been proposedftea25D is internalized by the target cell via simple
diffusion, and then converted to 1,25D by locakpeessed CYP27B1 (19, 22). Based on this,
one would hypothesize thiiee 25D represents a better marker of vitamin D stafusn-
classical vitamin D bioactivity.

The above paradigm, however, may be an oversiroglibin. In particular, it remains unclear
whether 25D only enters megalin-expressing tisboesid to DBP, or if some 25D enters the
target cell in free unbound form. For example, DBRnice placed on a vitamin D-containing
diet maintain normal serum PTH levels, and develmpnal skeletons (23). If 25D only enters
megalin-expressing renal epithelial cells boun®BP, one would expect these mice to be
incapable of producing adequate amounts of 1,2&@ihg to secondary hyperparathyroidism
and osteomalacia. This, however, was not seengstigg to us that, at least in mice, both DBP-
bound and free 25D enters the megalin-expressimgy epithelial celin vivo. In human clinical
trials, PTH is frequently used as a biomarker agsical vitamin D physiology. Some cross-
sectional analyses report that bioavailable or 2% is more strongly associated with PTH (24,
25), whereas others do not (26-28). Importantlgrehare limited longitudinal studies assessing
the associations between total vs. free 25Dchiadge in PTH. Finally, there are no data
reporting the effects of 25D3 supplementation soutating free 25D concentrations.

This study was therefore designed to address tbddallowing questions: 1) What are the
comparative effects of D3 vs. 25D3 on total anecatly measured free 25D levels in a multi-
ethnic cohort of healthy adults; and 2) does frfgle Bepresent a superiorvivo marker of
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vitamin D-mediated bioactivity in maintenance ofmal calcium balance above and beyond
total 25D7?

MATERIALSAND METHODS

Study Subjects

We recruited a total of 35 individuals from the \amisity of California, Los Angeles (UCLA)
student body, staff, and patient population. Recrent was carried out through e-mail
advertisements, social media postings, and dirgotmt contact. Inclusion criteria were age3>
years and a baseline 25D level <20 ng/ml. Exclusi@ieria included history of hypercalcemia,
hypercalciuria, nephrolithiasis, intestinal malaipsion, or dysregulated vitamin D metabolism
(from underlying comorbidity or medication). Paipiants agreed to refrain from changing their
dietary calcium intake, and from taking self-présed calcium or vitamin D supplements for the
study duration. All participants provided informeahsent. The study was approved by the
UCLA Institutional Review Board, and was registeoedClinicalTrials.gov under identifier
NCT02091219.

Study I ntervention

Study participants were randomized in blocks of f@tratified by race/ethnicity) to either D3
(60 mcg [2,400 IU]/day) or 25D3 (20 mcg/day) fordéeks. 20 mcg/day of 25D3 was selected
because it effectively and safely raises 25D lefrels <20 ng/ml to 80 ng/ml (16-18). 60
mcg/day of D3 was selected because it represdritequivalent dose (17), and corresponds to a
daily intake level that, in dose-response studresntains 25D levels30 ng/ml (29). D3 and
25D3 were obtained from DSM Nutritional Productpowder form. These were compounded
by the UCLA Investigational Pharmacy into capsdédistribution to study participants.
Expected D3 and 25D3 content was confirmed by diguniromatography-mass spectrometry
(LC/MS/MS) (Heartland Assays). Participants wereleated at baseline, and at 4, 8, and 16
weeks after initiation of D3 or 25D3 (4 visits thtaAt each visit, participants were asked about
possible adverse events. Adherence was assesgdtidoyint.

THE JOURNAL OF CLINICAL
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Measurements

Biochemical assessment was performed at all faglystisits. Serum measurements included
total 25D; free 25D; total 1,25-dihydroxyvitamin(D,25D); calcium; and intact parathyroid
hormone (PTH). Urinary measurements included duwalcreatinine excretion ratio on an early
morning fasting sample. Total 25D was measuredhieyniluminescence immunoassay
(Diasorin, Liaison) in the UCLA Department of Pdthgy and Laboratory Medicine; this
laboratory participates in the College of Ameri&athologists Accuracy-Based Vitamin D
Survey. Intra- and inter-assay CV were 2.1-2.2%40el4.5%, respectively. Total 1,25D was
measured by chemiluminescence immunoassay (Diadaaison). Intra- and inter-assay CV
were 2.4-3.9% and 4.5-7.8%, respectively. WhileM&/MS represents the gold standard for
measuring vitamin D metabolites, the Diasorin, $@ai assay has acceptable performance for
measuring D3 metabolites (relevant to this studygnmvcompared to LC/MS/MS (30). Free 25D
was measured using an antibody-based assay fraimeHDiagnostics as previously described
(28). The assay limit of detection is 1.9 pg/mithe range of concentrations measured, the CV
was <%. PTH was measured by electrochemiluminescencrimassay (Roche Cobas).
Intra- and inter-assay CV were 0.8-1.5% and 1.84] 1@spectively.
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Statistical analyses

Descriptive statistics of relevant continuous daticovariates and biochemical measurements
were generated and assessed for normality. Difée®in baseline characteristics between D3
vs. 25D3 groups were assessed by the independaptesat-test (continuous variables) or Chi-
square test (categorical variables). Changes ichbimical measurements within D3 and 25D3
treatment groups were examined by the paired tgg8erences in biochemical measurements
at weeks 4, 8, and 16 between D3 vs. 25D3 groups assessed by the independent samples t-
test. Associations between total or free 25D (prinpeiedictor in separate analyses) and change
in PTH from time of 25D measurement to next follagvisit (outcome variable) were assessed
using repeated-measures, mixed-effects regressibmodels were adjusted for factors that
may influence change in PTH, and include serumwalcage, BMI, race/ethnicity, and
supplementation regimen.

RESULTS

Patient characteristics

A total of 16 and 19 subjects were randomized teike D3 and 25D3, respectively. Age,
race/ethnicity, and BMI were not significantly difent between D3 and 25D3 groups. Baseline
total 25D (16.2 3.7 [D3] vs. 17.0 .5 [25D3], p=0.5), free 25D (4.2(:8 [D3] vs. 4.7 1.0
[25D3], p=0.2), 1,25D, calcium, and PTH were alsoilar between groups (Table 1).

Effects of D3 vs. 25D3 on serum vitamin D metabolites
At 16-week follow-up, total 25D increased to a gee&xtent with 25D3 (+25.5 ng/ml) than with
D3 (+13.8 ng/ml) (p=0.008). Final total 25D was#2 15.9 ng/ml with 25D3 supplementation,
compared to 29.6 4.1 ng/ml with D3 (p=0.007). Along these linegdr25D also increased to a
greater extent with 25D3 (+6.9 pg/ml) than with 33.6 pg/ml) (p=0.03). Final free 25D was
11.6 +5.6 pg/ml with 25D3 supplementation, compared.8+71.9 pg/ml with D3 (p=0.02)
(Figure 1). Total and free 25D were highly correth{Figure 2). Highlighting the rapidity with
which 25D3 restores 25D levels, total and free e already significantly higher in the 25D3
group by 4 weeks (p=0.004 for total 25D, p=0.02ffee 25D). Further, by 4 weeks, mean total
25D was greater than 30 ng/ml in the 25D3 groups(34L0.4 ng/ml), but not in the D3 group
(25.4 +4.3 ng/ml). In fact, by week 4, 14 of 16 25D3 papants had achieved total 25D levels
>30 ng/ml, compared to only 3 of 19 D3 participaipts0.001). Of note, at 16 weeks, mean total
25D remained30 ng/ml in the D3 group (29.64-1 ng/ml). All trends were similar across
race/ethnic groups.

From baseline to 16 weeks, total 1,25 increaseld both D3 (+15 pg/ml, p=0.005) and
25D3 (+11.5 pg/ml, p=0.09). Final 1,25D concentnasi were similar between groups (66.8 +
13.9 [D3] vs. 70.3 23.4 [25D3] pg/ml, p=0.6).

Association between change in PTH and vitamin D metabolites

The associations between higher total vs. free @xDsubsequent decrease in PTH were
examined in adjusted mixed-effects regression nsodelble 2). After adjusting for covariates
that may influence PTH level (i.e., age, BMI, ratkhicity, serum calcium, and supplementation
regimen), we found that both higher total and 26B were significantly associated with
declines in PTH from time of 25D measurement tat fetlow-up visit. More specifically, for
every ng/ml increase in total 25D, PTH decreased.8% over the ensuing four weeks

(p=0.01). Along the same lines, for every pg/mraase in free 25D, PTH decreased by 2.5%
over the ensuing four weeks (p=0.04). Of note, FlidHnot decrease significantly over the
course of the study with either supplementatiomneg (p>0.6 for all). However, PTH was
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already relatively low at study baseline (40.18:6 [D3] vs. 34.6 43.9 [25D3] pg/ml, p=0.4).
Higher 1,25D was not significantly associated vdécrease in PTH.

Adherence
Adherence to supplementation by pill count. Adheeewas 90.1% and 91.9% in the D3 and
25D3 groups, respectively.

Safety

Serum calcium and urinary calcium excretion did ct@nge significantly from baseline to 16
weeks with either D3 or 25D3 (p>0.4 for all). Therere no reports of hypercalcemia,
hypercalciuria, or nephrolithiasis.

DISCUSSION

The aims of this 16-week study were to: 1) complaeeeffects of D3 vs. 25D3 on circulating
levels of total and free 25D in a multi-ethnic cahaf healthy adults; and 2) determine if
increases in total or free 25D are more strongbpeisted with decrease in PTH, a marker of
vitamin D bioactivity. As hypothesized, we foun@t25D3 more rapidly and robustly increases
total and free 25D levels than D3; this was trugardless of race/ethnicity. Among those who
received 25D3, mean total 25D increased30 rg/ml by 4 weeks. In contrast, among those
who received D3, mean total 25D remained <30 nfgmtihe entire study. We also found that
higher levels of both total and free 25D were digantly associated with future decline in
serum PTH.

Our first key finding was that 20 mcg/day of 25D8reases total 25D levels more rapidly
and robustly than 60 mcg/day of D3. These data@amsistent with prior studies that have
compared the effects of D3 and 25D3 on total szt levels. In a 4-month trial of 20
postmenopausal women, 20 mcg/day of 25D3 increamsaoh serum total 25D levels t86
ng/ml by ~35 days. Final total 25D at study conipletvas 69.5 ng/ml. In contrast, 20 mcg (800
IU)/day of D3 did not reliably increase total 25&r¢éls to 30 ng/ml, as ~50% of participants
remained below this threshold at the end of 16 wekkal total 25D was 30.1 ng/ml (16).
Another 10-week trial of 56 adult®8 years compared placebo against 20 mcg (800dy 3l
D3, 7 mcg/day of 25D3, and 20 mcg/day of 25D3. AgadD mcg/day of 25D3 increased mean
total 25D to 30 ng/ml by 5 weeks; final total 25D at 10 weeks\w8.6 ng/ml. As was the case
in the prior study (18), 20 mcg/day of D3 did naise mean total 25D level86 ng/ml even by
the completion of the study presented here.

Our second key finding was that 25D3 increasesZb2 levels more quickly and to a
greater extent than D3, and that both free andl 266 were similarly associated with
subsequent decline in serum PTH. To our knowlefilge,25D response to 25D3
supplementation has not been previously reported.d@ta are consistent with prior cross-
sectional and longitudinal studies demonstratirag ttee and total 25D levels are strongly
correlated, such that changes in both track clasglgther (7, 26, 28, 31-33). With respect to the
guestion of whether free vs. total 25D is a supemiarker of vitamin D bioactivity, multiple
studies have assessed the cross-sectional assodativeen total vs. free 25D and markers of
skeletal health, e.g., serum PTH, bone turnovekenay and bone mineral density (24-27, 34,
35). Some studies have reported a stronger assocvaith free 25D levels (24, 25, 34), but
others have not (26, 35). These inconsistenciesregyt from differences in study populations
and methodologies for determining bioavailablereef25D levels. In particular, free 25D levels
can be directly measured by antibody-based asaaysd have done here) or indirectly



THE JOURNAL OF CLINICAL
ENDOCRINOLOGY & METABOLISM

=
L
W
-
L
-
S
—
o
<
L
O
Z
<
>
-
<

=NDOGIN=
SOCIETY

The Journal of Clinical Endocrinology & Metabolis@ppyright 2017 DOI: 10.1210/jc.2016-3919

calculated from total 25D, albumin, DBP quantitgddDBP isoform (which affects DBP affinity
for 25D) (19). Of note, recent studies have questioboth the accuracy of a commonly used
monoclonal antibody-based assay for measuring @B&l3, as well as the frequent practice of
using a single DBP affinity constant when calculgtiree 25D concentrations (31, 33, 36).
Given their cross-sectional nature, heterogenaitypéthodology for assessing free 25D levels,
and possibly biased approach for calculating ffele vels, these studies do not allow us to
draw cause-and-effect conclusions.

Here, oudongitudinal data show that higher total and free 25D levelseveanilarly
associated with future decline in PTH, and thagt 28D did not provide any additional
information above and beyond total 25D. PTH seonei regulated by two principle
mechanisms, the calcium sensing receptor (CaSRYyitardin D receptor (VDR) (37-39). CaSR
detects changes in circulating calcium concentnatiovhich are partly determined by 1,25D-
mediated intestinal calcium absorption (37). Unaenmal physiologic conditions, circulating
1,25D is principally produced by megalin-expressiagal epithelial cells (40). One would
therefore expect total 25D to be more strongly @ssed with decline in PTH. The parathyroid
cell also expresses CYP27B1 and VDR (38), sugggthiat it possesses the cellular machinery
necessary to convert internalized 25D to 1,250 lihdally-produced 1,25D then engages the
VDR, leading to suppression of PTH production. Siparathyroid cells also express megalin
(19, 40), one would similarly expect total 25D ®the physiologically relevant metabolite.
There is evidence, however, to suggest that meegalinessing tissues internalize not only DBP-
bound, but free 25D as well (23). For example, DBR-mice placed on a vitamin D-containing
diet have a normal serum PTH level and develop abskeletons (23). If the renal epithelial
cell exclusively internalizes DBP-bound 25D, onauldoexpect these mice to exhibit secondary
hyperparathyroidism and osteomalacia. Since thsed seen, we presume that, at least in
mice, both DBP-bound and free 25D enters megalpressing renal epithelial and/or
parathyroid cellsn vivo. Our current data do not definitively allow us ieakrn whether this is
similarly the case in humans. Of note, some ingastrs suggest that free 25D levels in the
range observed in this study are too minusculatoy®ut meaningful biological function (19,
41). This may be true for megalin-expressing tacgés, since DBP-bound 25D concentrations
far exceed free 25D. However, in non-megalin-exgnescells, free 25D may be more
biologically active because DBP-bound 25D doeshawe a mechanism for cellular entry.
Future studies will be required to determine whetmacentrations of circulating free 25D
achievedn vivo are adequate to influence either skeletal andjorgkeletal vitamin D
physiology.

Our study has several clinical implications. FiggD3 is more reliable at increasing total
25D levels 80 ng/ml. While a 25D level20 ng/ml is likely sufficient to maintain skeletal
health in the generally healthy population (8)5®2evel 330 ng/ml may be preferable among
those with osteoporosis, especially if anti-resggptherapy is prescribed (2, 9). In fact, some
even recommend restoring 25D levels to this threspieor to initiating osteoporosis
pharmacotherapy (9, 42). To this end, identifyingapproach for raising inadequate 25D levels
to target threshold levels reliably, and quickl/important for preventing delay of therapy and
possibly optimizing response to therapy. While ooeld argue that bolus D2 or D3 fills this
role adequately, this approach has recently belleddato question given its association with
increased risk of falls (10, 11). In this settidgjly 25D3 may be advantageous to D3. Despite
its more potent effects on raising serum 25D [e\@3®3 increased 1,25D concentrations to a
similar extent as D3. This suggests that pharmgmoRbD3 does not overwhelm the body’s
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compensatory mechanisms for maintaining normaiwalt©yomeostasis, and risk of developing
hypercalcemia may not be increased with 25D3. éisdearrant mention, however, that parent
vitamin D may have important physiological effetttat were not previously recognized (e.g.,
endothelial stabilization) (41, 43). When targetihgse tissues, D3 may be preferable. Future
studies are necessary to assess when D3 versus2bldated. Finally, our data suggests that
with respect to skeletal health, measuring free BSlikely not superior to measuring total 25D
in instances where DBP and/or albumin synthesieisltered (36).

Several weaknesses warrant mention. First, they Stamchple size was relatively small. This
however, would bias our results towards null. Teee the differences between D3 and 25D3,
and the associations seen between change in PTEhande in total and free 25D would likely
only be strengthened with increased sample sizsarfse our study participants were not
severely vitamin D deficient, as suggested by étatively low PTH levels observed at baseline.
This may be one reason that PTH did not decregsdisantly even with 25D3, as was
previously reported (18). Perhaps if we had exgklgiincluded patients with both low 25D
levels and frank secondary hyperparathyroidismpeerpronounced biomarker benefit would
have been seen. Finally, our study focused ongkec#ation between total vs. free 25D and a
marker of skeletal health/calcium homeostasis. &iman-skeletal vitamin D-mediated
bioactivity is generally carried out by cells tliat not express megalin, free 25D may be a
superior marker of these physiologic functions.

To conclude, this is the first study to comparedfiects of D3 to 25D3 on both total and
directly measured free 25D levels in a multi-etheobort of vitamin D deficient healthy adults.
Compared to D3, 25D3 more rapidly and robustly@ases serum concentrations of total and
free 25D, and more reliably increases total 25[2vels >80 ng/ml by week 4 of
supplementation. These findings may have clinicglications for both skeletal and non-
skeletal health outcomes. With respect to ostegmrasD3 may have an important therapeutic
role as higher 25D thresholds may be warrantedkaslly among those receiving
pharmacologic therapy. In terms of non-skeletalthemutcomes, 25D3 may be similarly
beneficial as higher 25D levels are likely necegsaoptimize local vitamin D bioactivity (22,
44). We also found that the association betweendnitptal and free 25D levels and subsequent
decline in PTH were similar, adding to the emergingsensus that free 25D may not provide
additional information above and beyond total 26Ddkeletal health measures. Future studies
will be necessary to determine if free 25D is aesiqu marker of non-skeletal vitamin-mediated
bioactivity.
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Figure 1. Changesin vitamin D metaboliteswith D3 vs. 25D3

Figure 2. Relationship between free and total 25D levels stratified by supplementation
regimen

Table 1. Baseline Characterisfics

Cholecalciferol (D3) N=16 Calcifediol (25D3) N=19 p-value

Age (years) 36.9 (12.7) 34.8 (8.6) 0.6
Race/Ethnicity

Caucasian 2 (12.5) 3 (15.8) 0.8

African American 6 (37.5) 5 (26.3) 0.5

Asian American 6 (37.5) 6 (31.6) 0.7

Hispanic/Latino 2 (12.5) 5 (26.3) 0.3
BMI (kg/m?) 25.7 (6.1) 27.4(7.4) 0.5
Total 25-hydroxyvitamin D (ng/ml) 16.2 (3.7) 172%) 0.4
Free 25-hydroxyvitamin D (pg/ml) 4.2 (0.8) 4.7 (1.0 0.2
1,25-dihydroxyvitamin D (pg/ml) 51.8 (14.2) 58.87(h) 0.2
Calcium (mg/dl) 9.3 (0.4) 9.6 (0.3) 0.1
Urinary calcium:creatinine 0.06 (0.04) 0.05 (0.04) 0.6
Parathyroid hormone (pg/ml) 40.1 (18.6) 34.6 (13.9) 0.3
1 Continuous variables presented as mean (SD)g@@tal variables presented as count (percentage).

Table 2. Adjustetlassociations between total vs. free 25D and pedssrease in PTH from

time of 25D measurement to next follow-up visit

Per cent decreasein PTH (95% CI) (from time of 25D measurement to
next follow-up visit) per unit increasein total vs. free 25D

B coefficient? (95% CI)

p-value

Total 25D

0.804 (1.475, 0.134) 0.01

Free 25D 2.512 (4.976, 0.048) 0.04

1 Adjusted for serum calcium, age, BMI, race/ethipiand supplementation regimen
2 Thep coefficient should be interpreted as follows: Each ng/ml increase in total 25D or pg/ml increase

in free 25D, PTH decreases Wy ‘percent.
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