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ScienceDirect
The metabolome describes the full complement of the tens to

hundreds of thousands of low molecular weight metabolites

present within a biological system. Identification of the

metabolome is critical for discovering the maximum amount of

biochemical knowledge from metabolomics datasets. Yet no

exhaustive experimental characterisation of any organismal

metabolome has been reported to date, dramatically

contrasting with the genome sequencing of thousands of

plants, animals and microbes. Here, we review the status of

metabolome annotation and describe advances in the

analytical methodologies being applied. In part through new

international coordination, we conclude that we are now

entering a new era of metabolome annotation.
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Introduction
Metabolomics is the multidisciplinary field of research

concerned with the study of metabolomes, the comple-

ment of naturally-occurring and exogenous (e.g. environ-

mental pollutants), low-molecular-weight (typically

<1500 Da) metabolites present within biological systems

[1]. Comprising of precursors, intermediates and products

of biochemical pathways, metabolites constitute some of

the terminal products of higher cellular processes and

collectively provide a ‘fingerprint’ of the complex inter-

play between genome and environment. From an analyt-

ical perspective, both the measurement and identification

of whole metabolomes presents a considerable challenge,
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not least due to the vast structural heterogeneity of

metabolites, their large number (e.g. an estimated

200 000 structurally-distinct secondary metabolites across

the plant kingdom [2]) and their wide concentration

ranges (estimated to span 12 orders of magnitude [3]).

As a point of clarity, the formal definitions of metabolite

annotation and identification, as developed by the Chem-

ical Analysis Working Group of the Metabolomics Stan-

dards Initiative (MSI) [4], are shown in Table 1. The

categorical scoring system defines ‘identification’ as the

most rigorous (level 1) while ‘annotation’ does not require

such exhaustive analytical validation (levels 2 and 3).

Currently there are no completed lists of experimen-

tally-derived metabolites that describe the metabolome

of any model organism, not even as putative annotations.

Meaningful biological inferences may only be drawn from

metabolomics datasets where peaks can be structurally

identified as named metabolites, that is it is only when we

are empowered to move beyond discussing unidentified

peaks to rigorously identified metabolites that we can

fully engage in describing metabolic pathways and inte-

grate metabolism with other levels of biological hierarchy.

For over a decade, molecular identification has remained

the principal technical bottleneck in metabolomics [5,6].

Hence, for metabolomics to deliver its full potential in

fields from medicine to ecology, innovations in analytical

workflows are urgently required. Yet based on the liter-

ature, it is readily apparent that the core metabolomics

workflow has changed little over the past 15 years, typi-

cally comprising of sampling, measurement of metabo-

lites by mass spectrometry (MS) and/or nuclear magnetic

resonance (NMR) spectroscopy, data processing and sta-

tistical analyses, with a view to discovering peaks of

biological importance [7,8]. Those peaks are typically

searched against databases, providing limited putative

annotation. Rarely do investigators undertake the chal-

lenging and time consuming step of identifying peaks

that are not present in databases [9], using methods that

are common to natural products chemistry such as frac-

tionation, high resolution accurate mass MS, and 1D and

2D NMR for structure determination. Typically, a signif-

icant proportion of detected peaks are not annotated or

identified, dependent on the analytical platform used and

sample type. Hence it is appropriate to conclude that all

experimental metabolomics studies to date would have

generated additional biological insights were metabolite

identification a more tractable process, that in turn may

have allowed for more complete metabolome network
www.sciencedirect.com
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Table 1

Summary of levels of confidence in metabolite ‘identification’, as defined by the Chemical Analysis Working Group of the Metabolomics

Standards Initiative [4]

Level of confidence Description Requisite analytical data

Level 1 ‘Identified metabolites’ Two orthogonal analytical techniques applied to the analysis of both the metabolite of

interest and to a chemical reference standard of suspected structural equivalence, with all

analyses performed under identical analytical conditions within the same laboratory

Examples of appropriate orthogonal data: accurate mass via MS with retention time;

accurate mass MS and fragmentation data or isotopic pattern; 2D NMR spectra;

full 1H and/or 13C NMR spectra and so on

Level 2 ‘Putatively annotated

compounds’

As for levels 3 and 4, including spectral (NMR and/or MS) similarity with public or

commercial libraries

Level 3 ‘Putatively characterised

compound classes’

As for level 4, plus spectral and/or physicochemical properties consistent with a particular

class of organic compounds

Level 4 ‘Unknown’ A discernible spectral signal (NMR, MS or other) that can be reproducibly detected and

quantified
derivation. Metabolite identification remains a colossal

challenge and a step change is needed. Here, we review

the status of metabolome annotation, introduce the

important role of model organisms, and describe the

analytical methodologies being applied.

Can model organisms help metabolome
annotation?
A critical question is how such a transformative change

will occur in metabolomics, to address this more than

decade long problem. We believe a combination of

approaches is required, including new analytical strate-

gies, computational algorithms and database resources,

and also a concerted effort by the metabolomics commu-

nity to solve this bottleneck. This latter point has recently

been recognised with the formation, in 2015, of a scien-

tific task group of the international Metabolomics Society

to progress the characterisation of metabolomes by ini-

tially focusing on a few model organisms [10�]. The value

of model organisms across biology and medicine is huge

[11]. While seemingly disparate, research into bacteria,

yeast, insects, worms, fish, rodents and plants has shown

that the core biochemical operating principles have been

conserved across all living organisms. Hence findings

derived from non-mammalian model animals, for exam-

ple can shed light on biological processes in humans

(Table 2).

The Model Organism Metabolomes (MOM) task group’s

philosophy is to leverage upon the critical mass of

research activity and knowledge that exists for model

organisms, that is to encourage the community to focus

their metabolite identification efforts on systems we

know the most about already (i.e. have species-specific

metabolite databases [12–14]), that have sequenced gen-

omes (hence can create genome-wide metabolic recon-

structions to predict metabolism; [15]), and that when the

metabolomes are successfully identified this knowledge

will be of greatest value to the community [10�]. The two

primary aims of the MOM task group are to integrate
www.sciencedirect.com 
disparate model organism-focused research groups into an

interactive community, and to share, discuss and develop

the analytical and bioinformatics strategies to progress the

identification of model organism metabolomes, resulting

in best practice documents (Figure 1). Ultimately, this

task group has set a grand challenge: to identify and map all
‘system’ metabolites onto metabolic pathways, to develop quan-
titative metabolic models for model organisms, and to relate
organism metabolic pathways within the context of evolutionary
metabolomics, that is phylometabolomics [10�]. Efforts have

begun to optimise analytical methods for metabolome

identification, for example in Escherichia coli [16],

Saccharomyces cerevisiae [17��] and Caenorhabditis elegans
[18], as well as to mine the literature for existing

knowledge, for example in S. cerevisiae [19]. An atlas of

tissue-specific metabolomes has also been initiated

for Drosophila melanogaster, including both polar and

lipophilic metabolites [20].

Extending our analytical strategies to
progress metabolome identification
With the ambition to more deeply characterise the com-

plete metabolomes of model organisms, what recent

developments in analytical chemistry have been applied?

Unlike for genomics, where disruptive technologies are

relatively common [21], the analytical methods used in

metabolomics have changed relatively little over the last

decade. What has occurred recently is a considerable

growth of targeted methods for studying swathes of

metabolism, likely driven by the very frustration of lim-

ited peak annotation in non-targeted metabolomics, as

discussed above. For example, a number of targeted

LC–MS/MS assays have been developed to profile from

a few tens to a couple of hundred metabolites in rice

[22,23,24�] and mammalian samples [25,26]. While

benefitting from yielding metabolic data that is identified

and often quantitative, all of these studies only scrape the

surface of the thousands of metabolites estimated to com-

prise a metabolome. Hence, to an extent, this shift to

targeted assays is a distraction (except for cases where
Current Opinion in Chemical Biology 2017, 36:64–69
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Table 2

Species-specific metabolome databases available for the model organisms prioritised for deeper investigation by the Model Organism

Metabolomes task group [10�]

Latin name Common name Database Content

Escherichia coli – E. coli Metabolome Database (ECMDB)

http://ecmdb.ca/

3755 small molecules from textbooks, scientific journals,

metabolic reconstructions and electronic databases

Saccharomyces

cerevisiae

Yeast Yeast Metabolome Database (YMDB)

http://www.ymdb.ca/

16 042 small molecules from textbooks, scientific

journals, metabolic reconstructions and electronic

databases

Caenorhabditis

elegans

Nematode Small Molecule Identifiers (SMIDs)

http://smid-db.org/

ca. 180 experimentally identified metabolites

Daphnia magna Water flea None currently –

Drosophila

melanogaster

Fruit fly None currently –

Danio rerio Zebrafish None currently –

Mus musculus Mouse Mouse Multiple tissue Metabolome DataBase

(MMMDB) http://mmmdb.iab.keio.ac.jp/

Contains ca. 200 known metabolites per tissue and many

unknown peaks

Arabidopsis

thaliana

Thale cress AraCyc

http://www.plantcyc.org/databases/aracyc/14.0

Metabolic pathway reconstruction and experimental data,

contains 2802 compounds

Medicago

truncatula

Barrel medic MedicCyc 2.0 http://mediccyc.noble.org/ Metabolic pathway reconstruction, contains

>400 pathways with related genes, enzymes and

metabolites

Oryza sativa Rice OryzaCyc 4.0

http://www.plantcyc.org/databases/oryzacyc/4.0

Metabolic pathway reconstruction, contains

2487 compounds

Solanum

lycopersicum

Tomato TomatoCyc 2.0

http://www.plantcyc.org/databases/tomatocyc/2.0

Metabolic pathway reconstruction, contains

2550 compounds
the targets are already known) from solving the real chal-

lenge of metabolite identification and understanding biol-

ogy in greater detail utilising non-targeted metabolomics.

So what is the current status of non-targeted metabolo-

mics for fully characterising metabolomes? Both gas
Figure 1

Schematic workflow for the deep experimental characterisation of the meta

access metabolome databases would greatly accelerate the study of metab
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chromatography (GC) and liquid chromatography (LC)

methods continue to be developed, including multi-

dimensional chromatography and the application of mul-

tiple columns for the separation of different classes of

metabolites. For example, a ‘broad spectrum’ GC–MS

method has been developed to measure non-volatile
Extraction
e.g. liquid-liquid, SPE

Separation
e.g. lGC, LC, multi-

dimensional methods

Experimental
Metabolome Database

e.g. MetaboLights

Detection
e.g. 1D & 2D NMR, MS, MSn

Current Opinion in Chemical Biology

bolomes of model organisms. The creation of such knowledge in open-

olism in an evolutionary context, that is phylometabolomics.
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metabolites in tropical fruits [27]; a total of 92 peaks were

detected of which the authors identified only 45. Utilising

a comprehensive GCxGC approach, coupled with head-

space solid phase microextraction (HS SPME) and a time

of flight (ToF) MS, Alves et al. reported the identification

of 257 volatile metabolites from S. cerevisiae distributed

over more than a dozen chemical families [28]. For a

recent review of advanced multi-dimensional separations

in mass spectrometry, see Ref. [29]. The inherent

requirements of GC–MS for the thermal stability and

volatility of the analytes, or derivatives thereof, means

that, alone, this technique is unable to facilitate compre-

hensive metabolome annotation. Instead, the majority of

non-targeted metabolomics studies continue to employ

LC, and there is an increasing trend towards the applica-

tion of several column types in a given study; for example

Tufi et al. not only used two LC columns (C18 and HILIC)

but also GC–MS to study a freshwater snail Lymnaea
stagnalis [30�]. This more comprehensive analytical

approach was applied specifically to obtain a broader

picture of the hydrophilic and lipophilic metabolome.

The application of multiple analytical platforms, as

applied to L. stagnalis [30�] is an emerging trend in

metabolomics. Geier et al. [31�] applied three different

platforms to analyse C. elegans, including 1D 1H NMR

spectroscopy, GC/MS and UPLC–MS. The deeper inte-

gration of NMR and MS data in automated metabolite

identification pipelines is an emerging topic [32]. An even

broader range of metabolites were measured in 31 varie-

ties of rice using HS SPME GC–MS, primary polar

metabolites by GC-ToF-MS, both polar and semi-polar

compounds by 1H NMR and direct infusion MS, and

multi-elemental analysis using ICP-MS [33��]. While

more time intensive and costly, deeper characterisation

of organismal metabolomes currently requires such a

multi-platform strategy. Fortunately, as long as the met-

abolic knowledge is captured in relevant open access

databases, such as MetaboLights [34], then this strategy

only needs to be conducted once. A related project to

deeply annotate the metabolome of the NIH model

species Daphnia magna (waterflea) is underway in the

primary authors’ laboratory, applying multiple extraction

methods, LC–MS/MS and MSn methods, GC-Orbitrap

MS, and 1D and 2D NMR spectroscopy. Progress has also

been reported in the integration of several platforms to

enable metabolite identification by UHPLC–SPE–

NMR–MS [35]. In addition, approaches such as ion

mobility mass spectrometry [36] and ultrahigh resolution

mass spectrometry [37] hold considerable promise for

contributing to metabolome annotation projects.

Another methodology that has considerable potential for

aiding metabolite identification is stable isotope labelling,

for example to probe the sulfur metabolome of Arabidop-
sis [38,39]. Isotopic ratio outlier analysis (IROA) is another

isotope labelling technology that is designed to generate
www.sciencedirect.com 
specific 13C isotopic patterns in metabolites for both high

resolution LC–MS and GC–MS [17��,40–43]. Unlike

other stable isotope labelling methods, rather than

utilising natural abundance and 98–99% enrichment for

the control and experimental populations, respectively

[44–48], IROA uses an enrichment level of 95% and 5%
13C. This leads to more observable isotopic peaks in the

mass spectra in predictable and diagnostic patterns.

Recent studies have demonstrated the promise of IROA

for metabolic phenotyping in model organisms, including

for prototrophic S. cerevisiae [17��,49] and C. elegans [43];

the latter was grown in liquid culture with 13C-labeled E.
coli that was first grown in M9 minimal media on either

95% or 5% 13C glucose, creating labelled C. elegans. These

95% 13C and 5% 13C glucose labelling experiments, when

extracted and combined, show distinctive IROA patterns:
12C-derived molecules, 13C-derived molecules, artifacts

(lack IROA patterns) and derivatives of exogenously

applied compounds. Only metabolites of biological origin

will have mirrored 12C and 13C metabolite peaks at the

same retention time. Furthermore, the abundance of the

heavy isotopologues in the 5% 13C samples (M + 1, M + 2,

etc. the 12C envelope) or light isotopologues in the 95%
13C samples (M � 1, M � 2, etc. the 13C envelope), fol-

lows the binomial distribution for 13C in metabolite

products based on the initial substrate enrichment.

The mass difference between the 12C monoisotopic peak

and the 13C monoisotopic peak indicates the number of

carbons in the metabolite. Uniquely, the accurate mass

IROA–GC/MS protocol developed, using both chemical

ionization (CI) and electron ionization (EI), extends the

information acquired from the isotopic peak patterns for

molecular formulae generation. The process has been

formulated as an algorithm, in which the numbers of

carbons, methoximations and silylations are used as

search constraints, and an accurate mass CI IROA library

with retention times based on the Fiehn protocol has

been published [17��]. The combination of CI and EI

IROA protocols affords a metabolite identification pro-

cedure that can identify co-eluting metabolites [17��]. In

summary, non-targeted stable isotope metabolite profil-

ing using IROA reduces the complexity for global stable

isotope metabolite identification [50], and can extend

metabolome analysis by identifying ‘known unknowns’

with an IROA mirror pattern, and generating the number

of carbons in the unknown metabolite.

Conclusions
The hugely beneficial impact of the Human Genome

Project on 21st century science is undeniable [51,52]. No

such large-scale experimental characterisations of organ-

ism metabolomes have been reported and many of the

studies published to date describe only a fraction of the

estimated size of a metabolome. That said, efforts are now

underway from text mining to novel experimental

approaches that offer to accelerate this process, and

coordination of some of these activities is being achieved
Current Opinion in Chemical Biology 2017, 36:64–69
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through the Metabolomics Society’s task group. Activity

in metabolome identification is therefore expected to

increase over the next couple of years with significant

returns on this investment within 5–10 years. Looking

further ahead, challenges will include developing analyt-

ical strategies to quantify several thousand known metab-

olites (simultaneously) as well as the spatial localisation of

these compounds, for example using MS imaging [53,54].

Ultimately, a better understanding of the parts list is

going to facilitate growth of several fields, including

phylometabolomics, the study of organism metabolic

pathways in the context of evolution.
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