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Abstract  11	

Decoupling the dependences between emission reduction technologies and engine fuel economy in 12	

order to improve them both simultaneously has been proven a major challenge for the vehicle 13	

research communities. Additionally, the lower exhaust gas temperatures associated with the modern 14	

and future generation internal combustion engines are challenging the performance of road transport 15	

environmental catalysts. Studying how fuel properties and fuel injection strategies affect the 16	

combustion characteristics, emissions formation and hence catalysts performance can unveil 17	

synergies that can benefit vehicle emissions and fuel economy and as well as guide the design of 18	

next generation sustainable fuels. The experimental work presented here was conducted using a 19	

modern single-cylinder, common rail fuel injection system diesel engine equipped with a diesel 20	

oxidation catalyst (DOC). The impact of the fuel post-injection strategy that is commonly used as 21	

part of the aftertreatment system function (i.e. regeneration of diesel particulate filters or activity in 22	

hydrocarbon selective reduction of NOX), combined with butanol-diesel fuel blend (B20) 23	

combustion on engine emissions formation, particulate matter characteristics (size distribution, 24	

morphology and structure) and oxidation catalyst activity were studied. It was found that post-25	

injection produced lower PM concentration and modified the soot morphological parameters by 26	

reducing the number of primary particles (npo), the radius of gyration (Rg), and the fractal dimension 27	

(Df). The results were compared with the engine operation on diesel fuel. The increased 28	

concentration of HC and CO in the exhaust as a result of the diesel fuel post-injection at the studied 29	

exhaust conditions (i.e. T= 300 °C) led in the reduction of the DOC activity due to the increased 30	

competition of species for active sites. This effect was improved the combustion of B20 when 31	

compared to diesel. 32	

Keywords: alternative fuels, diesel oxidation catalyst, gaseous emissions, particulate matter, post-33	
injection, butanol 34	
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1. Introduction 35	

With the view to improve the air quality, new engine and vehicle systems and technologies 36	

are under development in order to reduce pollutants emitted to the atmosphere especially in the very 37	

challenging transportation sector [1, 2]. In road transport, replacing fossil fuels with biofuels also 38	

provide cleaner combustion and consequently improve the efficiency of the catalytic aftertreatment 39	

systems and can be considered as a way to help vehicle manufacturers to achieve the emissions 40	

legislative limits such as the EURO 6 and CARB (LEV III) [3].  41	

Bioalcohols and other oxygenated fuels have been reported to reduce emissions, when 42	

replacing gasoline fuels in spark-ignition (SI) engines. More recently these fuels have been studied 43	

as substitute to diesel fuel [4-8] because of their oxygen content that contributes in the reduction of 44	

the engine out CO, UHC (unburned hydrocarbons), NOX (nitrogen oxides) and total PM emissions. 45	

It is reported that the hydroxyl group present in alcohols is more efficient in reducing diesel engine 46	

PM than other functional groups with the same oxygen content, especially at high engine loads [9-47	

11]. The combustion of diesel-ethanol blends for example has been widely reported to reduce PM 48	

emissions [4, 12]. However, there are also drawbacks [13, 14] such as the ethanol’s limited solubility 49	

in diesel fuel [15], the very low cetane number and the lower dynamic viscosity, parameters that can 50	

impact on the engine’s operation and combustion characteristics [4, 16, 17]. Butanol in diesel has 51	

shown more promising characteristics as an alternative fuel to ethanol [4] due to higher cetane 52	

number and better solubility in diesel fuel as a consequence of being less polar that other alcohols 53	

with shorter chain. Furthermore, it has higher heating value, lower volatility, and less hydrophilic 54	

character [18, 19]. 55	

Modern engine after-treatment systems consist of different components such as the diesel 56	

oxidation catalysts (DOC) and diesel particulate filters (DPF) [20]. DOCs have a honeycomb 57	

monolith shape with high cell density (large surface area) and suitable loadings of a catalytic 58	

material such as platinum and/or palladium that is able to almost eliminate CO, HC and much of the 59	

particulate organic fraction [16, 20, 21]. DOC also oxidise NO to produce NO2 that can then be 60	

utilised in the DPF to passively oxidise soot at low temperatures [16, 22, 23]. The DOC’s activity 61	

depends on exhaust gas temperature, residence time of the exhaust gas in the catalyst, level and 62	

nature of gaseous and particulate matter exhaust species and inhibitions/synergies between the 63	

different species contained in the exhaust gas [23, 24]. In the same way, DPF performance is also 64	

influenced by size and morphology [fractal dimension (Df), radius of gyration (Rg) and number of 65	

primary particles (npo)] of soot particles making understand their control challenging [16, 25]. 66	

Therefore, the effect of fuel and engine operating parameters such as injection settings (e.g. number 67	

of injections, injection timing, injection pressure, injection quantity) needs to be understood in order 68	

to improve not only the engine performance (power/torque) characteristics but also the function of 69	
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the aftertreatment system [26]. Several studies have shown that the post-injection in combination 70	

with the DOC is commonly used to increase the exhaust  gas temperature in order to aid the DPF 71	

regeneration (i.e. active regeneration) [27].   72	

The impact of fuel post-injection on engine out gaseous emissions and PM has also been 73	

investigated [28-30]. The temperature increase late in the combustion cycle due to the post-fuel 74	

injection, which can enhance soot  oxidation, produced during the main combustion event  [30-34], 75	

but this is reported to be dependent on the engine calibration and operation conditions. Some studies 76	

have reported PM increase with post-injection at high engine loads and speeds [28]. In some cases 77	

post-injection also contributes in the reduction of engine out NOX due to the formation of nitrated-78	

hydrocarbons through the reactions of NOx with HC radicals [35, 36]. It is reported that CO and 79	

THC are reduced with post-injection and sharply increased with later post-injection timing (after 70 80	

CAD ATDC) [27]. Late combustion caused by post-injection increases the level of  THC emissions 81	

as the late injected fuel is not burnt in the combustion chamber [26, 29, 37]. In this way, HCs are 82	

oxidized in the DOC, increasing considerably the temperature of the exhaust upstream of the DPF 83	

and trapping a high proportion of the soot flowing in the exhaust stream [27, 38, 39].  It is 84	

documented that the main-post-injection increases the rate of soot oxidation in the  combustion cycle 85	

due to the enhancement of the gas mean temperature and air/fuel mixing, which  leads to the 86	

reduction in number and diameter of primary particles [40, 41].   87	

Combined advances in alternative fuels and aftertreatment systems are required in order to 88	

fulfil the stringent emission regulations and also help in decoupling mutual dependences between 89	

pollutants control and engine fuel economy. Most of the studies on alternative fuels combustion 90	

published in the literature are focused on the effect of the fuel on the engine performance and on the 91	

engine emissions, including PM characteristics [17] which influences passive and active DPF 92	

regeneration [20] as well as DPF trapping efficiency [42, 43]. Recent studies have reported work on 93	

gaseous emissions interactions [22] and the influence of PM characteristics [16] (size and shape) 94	

emitted from the combustion of different fuels on the DOC performance. However, there is still 95	

scarce information regarding the effect of alternative fuels (e.g. alcohol blends) on both, PM 96	

characteristics and DOC activity with simultaneous use of fuel post-injection, strategy that is 97	

required in diesel vehicles for catalyst heat-up in active and DPF regeneration. Therefore, the aim of 98	

this research work focuses on the role of the fuel post-injection and diesel-butanol fuel blends 99	

combustion on PM characteristics (number, size, morphology) and the impact on the DOC activity. 100	

The DOC catalyst activity was assessed under the same temperature, space velocity and pressure 101	

conditions with the only comparative parameter being the exhaust gas composition.   102	
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2. Experimental setup and materials 103	

A modern single-cylinder, water-cooled, common rail fuel injection system, four-stroke 104	

experimental diesel engine was employed in this investigation. The engine used in this study is 105	

a  single cylinder research engine that was designed by the investigators and incorporates one of the 106	

cylinder heads of a V6 production engine. The main specifications of the test engine can be found in 107	

Table 1. A schematic diagram of the experimental set up is shown in Figure 1. The diesel oxidation 108	

catalyst studies were carried out using one inch in diameter monolith catalyst that was placed in a 109	

reactor inside a furnace where the temperature and the engine exhaust gas flow can be controlled by 110	

a thermocouple (located upstream the catalyst) and a flow meter respectively.	 111	

Table 1. Research engine specifications. 112	

Engine parameters Specifications 
Engine type Diesel 1- Cylinder  
Stroke Type  Four-Stroke  
Cylinder Bore x Stroke (mm)  84 x 90  
Connecting Rod Length (mm)  160  
Compression Ratio  16.1  
Displacement (cc)  499  
Engine Speed Range (rpm)  900 – 2000  
IMEP Range (bar)  < 7  
Fuel Pressure Range (bar)  
Number of Injections 

500 – 1500  
3 injection events 

 113	

 114	

Figure 1.	Schematic diagram of test platform and sampling system. 115	

The Ultra Low Sulphur Diesel (ULSD) fuel used for the study was supplied by Shell Global 116	

Solutions UK. Butanol was purchased from Fisher Scientific Company and used in this study for the 117	
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diesel-butanol blends. The ULSD, butanol and fuel blend properties are presented in Table 2. The 118	

particular diesel fuel used in this research as reference fuel was selected without any biodiesel 119	

(thereby with zero oxygen content) in its composition, in order to study the effect of the oxygen in 120	

the combustion process when diesel fuel is blended with butanol. The diesel-butanol blend (B20) is a 121	

mix of 80% diesel and 20% butanol (%Vol.). 122	

Table 2. Fuels specification [4, 16]. 123	

At significantly lower or higher that 300 °C exhaust gas temperatures; the impact of fuels and 124	

post  injection strategy on the DOC may not be as robust and conclusive as the catalyst may not light-125	

off   (low load) or the activity may not be affected (high loads).  All tests were performed under a 126	

constant engine speed of 1800 rpm with an engine load of 3 bar IMEP (Indicated Mean Effective 127	

Pressure). An AVL GH13P was used to record the in-cylinder pressure [44]. The charge from the 128	

pressure transducer (mounted in the cylinder head) was amplified by an AVL FlexiFEM 2P2 129	

Amplifier [45]. A digital shaft  encoder producing 360 pulses per revolution was used to measure the 130	

crank shaft position. The data  from the crank shaft position and pressure was combined to create an 131	

in-cylinder pressure trace. The engine is equipped with common-rail fuel injection system which 132	

allows the control of multiple injection events. The injection was split in pre, main, and post fuel 133	

injection with injection timing of 15 and 3 deg bTDC and 60 deg aTDC, injection pressure of 650 134	

bar, and post-injection duration of 0.1 ms. A bespoke experimental facility was used in this study 135	

that was designed to assess the performance of catalysts and combination of aftertreatment systems 136	

under real engine exhaust gas while providing flexibility with temperatures and reductants (i.e. 137	

hydrocarbons, ammonia, hydrogen) selection. The DOC used in this study was supplied by Johnson 138	

Matthey Plc and was positioned inside a mini reactor that was located inside a furnace and was fed 139	

 Properties Method ULSD  Butanol B20D80  
Cetane number ASTM D7668-14 50.2 17 41.98 
Latent heat of vaporization (kJ/kg)  243 585 - 
Bulk modulus (MPa)  1410 1500 - 
Density at 15 °C (kg/m3) EN 12185 840.4 809.5 833.2 
Upper heating value  (MJ/kg)   45.76 36.11 43.5 
Lower heating value  (MJ/kg)   43.11 33.12 40.91 
Water content by coulometric KF (mg/kg) EN 12937 40 170 389.4 
Kinematic viscosity at 40 °C (cSt) EN ISO 3104 2.564 2.23 2.27 
Lower Calorific Value (MJ/kg)  43.11 33.12 39.95 
Lubricity at 60 °C(µm) EN ISO 12156 424 571.15 444.5 
Fatty acid methyl ester % (v/v) NF EN 14078-A <0.05    
Cold filter plugging point (CFPP) ASTM D-6371 -18 <-51 -18 
C (wt %)  86.44 64.78 81.56 
H (wt %)  13.56 13.63 13.35 
O (wt %)  0 21.59 4.318 
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with real engine exhaust gas. The temperature upstream the DOC was monitored using K-type 140	

thermocouples. The temperature of the reactor inside a tubular furnace was set at 300 °C while 141	

maintaining constant gas hourly space velocity (GHSV) of 35000 h-1. The details of the catalyst 142	

(DOC) used in this study was a 4.237 kg/m3 with optimal platinum:palladium proportion (weight 143	

ratio 1:1) with alumina and zeolite washcoat (158.66 kg/m3 loading). The total dimensions of the 144	

DOC were 25.4 mm diameter, 91.4 mm length, and 4.3 mil wall thickness of the DOC [16, 22, 23].  145	

A MultiGas 2030 FTIR spectrometry based analyzer was employed for exhaust gaseous 146	

emissions measurement such as: carbon monoxide (CO), carbon dioxide (CO2), nitrogen oxide (NO 147	

and NO2), nitrous oxide (N2O), and individual hydrocarbons species such as methane (CH4), ethane 148	

(C2H6), ethylene (C2H4) . Particulate Size Distributions (PSD) were analysed using a TSI 3080 149	

scanning mobility particle sizer (SMPS). Exhaust gas part was sampled and diluted with air when 150	

using the rotating disk thermodiluter (TSI 379020A) to control the dilution ratio. The dilution ratio 151	

was set at 1:100 for all the tests and the thermodiluter temperature was 150 °C. The SMPS was 152	

connected downstream of the dilution system in order to extract a diluted sample for the particle size 153	

measurement. 154	

Soot particles were collected from the exhaust pipe on a 3.05 mm diameter copper grids 155	

attached to a sampling probe. The sampling tool and lines were cleaned with nitrogen before each 156	

test to remove deposited soot particles. A Philips CM-200 high resolution transmission electron 157	

microscopy (HR-TEM) with a resolution about 2 Å at an accelerating voltage of 200 kV was used to 158	

analyse the particles. A digital image analysis software in Matlab was designed to calculate the 159	

morphological parameters of the agglomerates (radius of gyration, Rg, number of primary particles, 160	

npo, and fractal dimension, Df) [46, 47] . The conversion from pixels to nanometres was calibrated by 161	

comparison with standard latex spheres shadowed with gold. For each condition, two grids and 162	

minimum 33 photographs were taken per fuel to calculate the morphology parameters as well as 163	

least 26 agglomerates were chosen for each condition and fuel to obtain the results. Furthermore, 164	

more than 200 primary particles were manually and randomly selected from different aggregates to 165	

determine an average diameter of primary particles and to produce the fitted normal distribution of 166	

primary particles at each fuel and condition. 167	

3. Results and discussions 168	

3.1 Combustion characteristics  169	

Figure 2 shows the effects of the injection strategy on the in-cylinder pressure and the rate of 170	

heat release (ROHR) versus crank angle degree (CAD) for the combustion of diesel and B20. It has 171	

to be noted that neither the post-injection nor the fuel properties notably affected the combustion 172	

events. It is though that this is due to the effect of the pre-injection which thermally conditioned the 173	
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in-cylinder, thus minimizing the effect of the worse autoignition properties (Table 2) of the B20 174	

blend with respect to diesel fuel. Small increase of the in-cylinder pressure and heat release was 175	

obtained from the combustion of B20 that may also explain the changes in emissions later on. 176	

 177	

 178	

Figure 2. Effect of fuel post-injection strategy and fuels structure on combustion characteristics.  179	

3.2 Influence of fuel post-injection and fuel structure on engine out PM and gaseous emissions 180	

The PSDs were obtained upstream the DOC in order to understand the influence of B20 and 181	

post-injection on the particle formation and oxidation processes. The combustion of the alcohol 182	

blend (B20) reduced the number of particles along the whole distribution with respect to combustion 183	

of the diesel fuel with and without  post-injection (Figure 3). A slight reduction is observed in the 184	

average particle diameter, from 94 nm for diesel down to 64 nm for B20 in the absence of post-185	

injection. These results are in agreement with previous studies of butanol-diesel blends combustion 186	

[16, 48] justified by the presence of the hydroxyl group in the butanol molecule [16] leading to lower 187	

rates of PM formation [4, 16] and to enhanced PM oxidation rates [16, 49].   Reductions of the soot in 188	

the exhaust are often reported when post-injection is introduced due to increased expansion 189	

temperature and enhanced mixing within the cylinder that increases oxidation of soot produced from 190	

the main injection [30, 32-34]. The maximum number concentration, MMD, and sigma g in Figure 3 191	

are presented in Table 3 for diesel fuel and B20. 192	

Table 3. Maximum number concentration, MMD and sigma g for diesel and B20. 193	

 194	
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 Diesel W/O PI Diesel with PI B20 W/O PI B20 with PI 
Max. number concentration (#/cm3) 6.23E6 4.45E6 3.90E6 3.10E6 
MMD (nm) 74.81 79.71 73.96 76.53 
Sigma g 6.41 5.82 4.76 4.13 

 195	

Figure 3.	Effect of post-injection on particle size distribution for diesel and B20 fuels . 196	

The particles emitted from diesel engine have a variety of shapes and sizes and consist of tens 197	

to hundreds of primary particles agglomerated together, forming irregular clusters [50, 51]. Figure 4 198	

depicts representative examples of HR-TEM micrographs from particles sampled from the exhaust 199	

gas at the different conditions studied in this research. PM morphological parameters (radius of 200	

gyration (Rg), number of primary particles (npo) and fractal dimension (Df)) for Diesel and B20 are 201	

calculated from the obtained HR-TEM images (Figure 4). Trends observed in these representative 202	

examples are in agreement with the statistical trends discussed below. Figure 5 shows the results of 203	

the average particles electrical mobility diameter obtained with SMPS jointly with soot’s average 204	

radius of gyration and number of primary particles. According to these results the average 205	

agglomerate size (quantified by radius of gyration and mobility diameter) and the number of primary 206	

particles are lower for B20 than for diesel fuel independently of the injection strategy. It is believed 207	

that for diesel combustion the enhanced net formation rate of particles increases the likelihood of 208	

collisions and further aggregation leading to higher number of primary particles. It is thought that 209	

oxygen content in butanol blend (B20) improves the soot oxidation [52] while the incorporation of 210	

the post-injection leads to enhanced oxidation resulting in the disappearance of a fraction of the 211	

primary particles already formed (Figure 5). The reduction in number of particles as measured by the 212	

SMPS and the reduction in number of primary  particles in the particle aggregate for B20 are also 213	

associated with the reduction in the formation of soot  precursors due to the chemical structure of 214	

butanol and the lack of PAH in butanol, besides the effect of  the oxygen content of butanol . 215	
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Figure 4. Typical examples of HR-TEM micrograph of particles matter collected at the exhaust gas 216	
for (a) diesel fuel, and (b) B20. 217	

 218	

Figure 5. Effect of fuel injection strategy and fuel characteristics on particle size from SMPS, radius 219	
of gyration (Rg) and number of primary particles (npo). 220	

W/O	PI	 With	PI	

W/O	PI	 With	PI	

(a)	

(b)	
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The influence of the fuel and injection strategy (with and without post-injection) on the 221	

fractal dimension (Df) is shown in Figure 6. The fractal dimension of the agglomerates produced 222	

from the diesel fuel is higher (by 0.09) than that from B20 for both injection strategies (Figure 6) and 223	

this is in agreement with the work described by both Fayad et al. [16] and Choi et al. [53]. As a 224	

general rule [54] a reduction of the fractal dimension should be expected when there is a high 225	

concentration of particles as a result of the increased likelihood of collisions between agglomerates. 226	

However, in the case of agglomerates from oxygenated fuels, despite the lower particle 227	

concentration (and the consequent reduced likelihood of collisions) fractal dimensions were not 228	

found to be higher, but were systematically lower instead, probably due to some internal oxidation of 229	

agglomerates occurring after being formed. Similarly, the fractal dimension is also lower when post-230	

injection was introduced for both fuels, despite the higher particle concentration also in this case 231	

(Figure 6). A conceptual model is suggested here to justify these trends. In the early stage of nuclei 232	

and primary particle formation fractal dimension is close to 3 and the primary particle size 233	

continuously increases (spherical nuclei and spherical primary particles). Collisions between 234	

particles and agglomerates and between agglomerates and agglomerates will increase the size of the 235	

agglomerate and reduce their fractal dimension (particle growth dominant over particle oxidation). 236	

This phenomenon will be more intense in the case of diesel without post injection conditions due to 237	

the higher rate of particle formation. Afterwards, the oxidation of particles will become dominant 238	

over the particle formation and the size of both primary particles and agglomerates could decrease, 239	

while the fractal dimension will deeply decrease, for the reason pointed out above. In this case, the 240	

decrease in fractal dimension will be more intense for the case of oxygenated fuels and post-241	

injection conditions. Therefore, it is speculated that the resultant agglomerates from oxygenate fuels 242	

and post-injection conditions will have lower fractal dimension as the oxidation will remain being 243	

the dominant mechanism in front of particle formation and growth for longer time, as a consequence 244	

of the enhanced reactivity of soot particles (in the case of oxygenated fuels/) or of the enhanced 245	

temperature conditions in the exhaust flow (in the case of post-injection). More research and some 246	

in-cylinder sampling techniques should be used for a more comprehensive justification. 247	

 248	
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Figure 6. Fractal dimensions of particulate matter from the HR-TEM images. 249	

The primary particle diameter (dpo) size distribution for both fuels with or without post-250	

 injection has been measured by selecting around 200 primary particles (more than 33 HR-TEM 251	

photographs for each condition and fuel) in order to  fit normal distribution as shown in Figure 7.  In 252	

Figure 7, the maximum number concentration, MMD, and sigma g for each condition and fuel are 253	

shown  in Table 4.  Figure 8 shows smaller size primary particles from the combustion of B20 for 254	

both injection setting (with and without post-injection) compared to diesel primary particles due to 255	

lower rate of production of soot precursors, soot formation and soot growth, and to the increase soot 256	

oxidation during the combustion of oxygenated fuel [16]. This result is in agreement with results 257	

obtained from biodiesel fuel [55] and butanol [16, 56] fuel blends without post-injection using other 258	

engine technologies [16, 56]. The size of primary particles is slightly reduced when post-injection 259	

was used for both fuels (Figure 8). It is believed this is due to an enhancement in the soot oxidation 260	

rate in the expansion stroke under post-injection conditions. 261	

Table 4. Maximum number concentration, MMD and sigma g for diesel fuel and B20. 262	

 Diesel W/O PI Diesel with PI B20 W/O PI B20 with PI 
Max. number concentration  29.04 28.87 26.41 24.12 
MMD (nm)  25 24 23 21 
Sigma g 7.25 6.45 5.86 5.82 

 263	

  
(a)	

W/O	PI	 With	PI	
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Figure 7. Primary particles size distributions for (a) diesel fuel, and (b) B20.  264	

 265	

Figure 8. Average size of primary particles (dpo) for diesel and B20. 266	

Figure 9 shows the CO, heavy HC, and THC engine-out emissions for the two studied fuels 267	

at both injection strategies. It can be noticed that THC emissions were lower from the combustion of 268	

the alcohol blend (B20) for both injection strategies. The higher HC emissions observed with diesel 269	

can be attributed to several reasons including absence of oxygen in the fuel molecule, and less 270	

efficient oxidation. The THC emissions in the case of post-injection are much higher compared to 271	

the case without post-injection. This confirms that the quantity and timing chosen for the post-272	

injection allows to keep most of them unburnt and available to be oxidised in the DOC. Yamamoto, 273	

et al. and Chen, [26, 30] reported that the late post-injection lead to high level of THC emissions. It 274	

is reported that the reason of the increase in CO emissions observed for B20, especially without 275	

post-injection, can be attributed to the expected lower local in-cylinder temperature (Figure 2) and 276	

less CO oxidation during the combustion process due to the higher enthalpy of vaporisation of 277	

(b)	

W/O	PI	 With	PI	
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butanol with respect to diesel fuel [27]. Therefore, it seems that at this engine load operation the 278	

oxygen content and high reactivity of the butanol molecule enables to partially oxidise most of the 279	

HC species to CO, but the colder in-cylinder conditions due to the enthalpy of vaporization of 280	

butanol hinders the complete oxidation from CO to CO2. 281	

 282	

Figure 9. Engine exhaust gaseous emissions.  283	

The concentration of HC species in the engine exhaust upstream the catalyst differs for diesel 284	

and B20 engine fuelling (Figure 10). The concentration of the light HC species studied including 285	

saturated (methane, ethane) and unsaturated (ethylene) species is higher for B20 with respect to 286	

diesel fuel combustion, conversely to the THC emissions presented earlier. It is thought that this is 287	

due to the thermal decomposition of the butanol component to light HC species and CO rather than 288	

forming heavy HC components as in the case of diesel fuel combustion. The level of HC emissions 289	

was lower from the combustion of B20 compared to the diesel fuel combustion. This can be due to 290	

improved combustion efficiency of the fuel in the presence of oxygen in the fuel as has also been 291	

described in [56] and due to the combustion patterns described in Figure 2, where a small increase in 292	

the in-cylinder pressure was obtained.  From the results it can be also observed that with the 293	

incorporation of the fuel post-injection, higher concentration of the total and selected HC species 294	

were measured for both fuels due to the late timing of the post-injection [26].  295	
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 296	

Figure 10. Engine exhaust hydrocarbon species measured upstream the DOC. 297	

A slight increase in NOX (NO+NO2) was measured for the B20 combustion with respect to 298	

diesel combustion for both injection strategies (Figure 11). This can be due to the slight increase of 299	

in-cylinder pressure as seen in Figure 2 and the presence of the chemically bound oxygen content in 300	

B20 as it has been previously reported in the case of oxygenated fuels [56]. In addition, the oxygen 301	

content and lower cetane number of butanol enhanced the burning rate (faster burning). Chen et al 302	

[57] reported similar trends in NOx emissions from the combustion of n-butanol-diesel blends and 303	

suggested that this was a result of the increased ignition delay that was then led to wider high-304	

temperature combustion region. In addition, the oxygen content and  lower cetane number of butanol 305	

enhanced the burning rate (faster burning)  .Although both fuels have similar NO concentration, it 306	

seems that B20 blend has higher oxidation from NO to NO2 than diesel fuel due to the oxygen in the 307	

molecule. When post-injection was utilised the emissions of NO were decreased with simultaneously 308	

increasing in NO2 for both fuels (Figure 11). This is can be explained because a portion of NO was 309	

oxidised to NO2 by hydroperoxy radical (HO2) formed during post combustion [58] and because of 310	

the reduction of NOX with some of the HCs post-injected. It was noted that the engine out NOx 311	

emissions decreased under post-injection due to the possible formation of nitrated-hydrocarbon by 312	

reacting NOx with radical HC [58]. 313	
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 314	

Figure 11. NOX species concentrations of each gas species for with and without post-injection. 315	

3.3 Brake specific fuel consumption and brake thermal efficiency 316	

 The brake specific fuel consumption (BSFC) and brake thermal efficiency (BTE) for both 317	

diesel and butanol blends  are  summarized in Table 5. It was noticed that post injection strategy 318	

increased the brake specific fuel  consumption   (BSFC) compared to that of main injection for both 319	

fuels. Moreover, BSFC  slightly increased with B20 for  both injection strategies when compared to the 320	

diesel fuel. The  mean increase in BSFC for B20 when compared to  the diesel under the same 321	

condition is 0.02811  and 0.02903 kg/kWh for without post-injection and with post- injection 322	

respectively. This is due to  the lower calorific value recorded for B20 (see Table 2) compared to the 323	

diesel  fuel. Lapuerta et al. [59] and Hajbabaei et al. [60] reported that the oxygenated fuels increases 324	

the BSFC mainly due to the reduced  calorific value when compared to the diesel.  Furthermore, the 325	

smaller increase in BSFC for B20 its compensated by its  lower calorific value resulting in an increase 326	

in brake thermal efficiency. This could be due to the  oxygen content in the B20 that improves the 327	

combustion efficiency and this is  consistent with other  researchers cited in introduction. It is clear 328	

from Table 5 that the post-injection reduce brake thermal efficiency and increase the  exhaust  gas 329	

temperature (EGT) for both fuels.  330	

Table 5. Brake specific fuel consumption and thermal efficiency. 331	

Fuel Diesel fuel B20 
Parameters W/O PI With PI W/O PI With PI 

Brake specific fuel consumption, BSFC 
(kg/kWh) 0.3484 0.3645 0.3765 0.3935 

Exhaust gas temperature, EGT (°C) 283 291 272 284 
Brake thermal efficiency (BTE)  23.97 23.25 25.44 24.83 
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3.4 Influence of fuel post-injection and fuel properties on DOC activity 332	

Combustion by-products in the exhaust gas are competing with each other to be adsorbed 333	

into the active sites of the catalyst [16, 22], effects that is highly depends on the temperature, flow 334	

conditions, space velocity and concentration and nature of the exhaust species. In active control 335	

aftertreatments such as diesel particulate filters (DPFs) the ability of the DOC to effectively oxidise 336	

the fuel and hydrocarbons and provide the required heat is important for the efficient operation of the 337	

engine system (including aftertreatment and engine fuel economy and emissions). The gas hourly 338	

space velocity (GHSV) and temperature of the DOC in this study were controlled and set at 35000 h-339	
1 and 300 °C, respectively in order to isolate the effect of exhaust gas composition.  340	

The DOC is very effective in reducing CO in the engine exhaust from the combustion of both 341	

fuels, with the catalyst’s CO conversion efficiency being higher for B20 blend. In the case of post-342	

injection, the catalyst’s CO oxidation efficiency was reduced (Figure 12), this is due to increased 343	

concentration of species that are now competing for the same number of active sites. The HC species 344	

presented in Figure 12 are light saturated (methane, ethane), light unsaturated (ethylene) and heavy 345	

HCs. The results confirm the differences in reactivity of the hydrocarbon species. Methane (CH4) as 346	

a short chain saturated hydrocarbon was the most difficult component to oxidise in the catalyst due 347	

to its low oxidation reactivity [23, 61]. Particularly, it can be observed that the conversion efficiency 348	

of methane over the catalyst was even lower than 10% at 300 °C for all the conditions studied. In 349	

addition, the increased concentration of heavier HCs and fuel in the exhaust that reaches the DOC 350	

leads to its non-selective poisoning (i.e. fouling or masking). The catalyst active sites are now 351	

occupied by the increased concentration of HCs and fuel that are interfering with the reactants 352	

transport phenomena to the catalyst active sites. This non-selective poisoning limits the catalytic 353	

surface area and obstructs access of the reactants to the pores. In this case the effect is reversible as 354	

for the B20 fuel combustion, the catalyst has the highest HC conversion efficiency at 300 °C 355	

compared with diesel fuel (Figure 12). This could be due to several reasons such as lower 356	

concentration of HC upstream the catalyst, higher reactivity of butanol and its derivatives, higher 357	

level of NO2 emissions to catalytically oxidise the HC species [16, 62], lower PM/soot levels that 358	

can be responsible for blocking the active sites. 359	
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 360	

Figure 12. DOC activity at 300 °C. 361	

4. Conclusions 362	

The effect of fuel post-injection and butanol-diesel fuel blends (B20) on PM characteristics 363	

(including size, fractal dimension, radius of gyration, and size of primary particles) and gaseous 364	

emissions were analysed and their influence on DOC activity was investigated at exhaust 365	

temperature of 300 °C. Due to reduced PM number concentration and HC emissions from the 366	

combustion of B20 the catalyst activity was improved. The HR-TEM analysis showed that the 367	

number of primary particles of PM agglomerates emitted from B20 combustion was lower than that 368	

from the combustion of diesel fuel. As B20 has oxygen-containing compounds, they contribute to 369	

inhibit the rate of soot formation and to increase the rate of oxidation, resulting in particles with 370	

smaller average size and fractal dimension. It is observed that the fuel post-injection has more clear 371	

benefits on PM reduction, resulting in enhanced soot oxidation with similar trends on the 372	

morphology of agglomerates as the presence of oxygenated compounds. HR-TEM analysis supports 373	

the results from SMPS and revealed that B20 produces particles with smaller average size compared 374	

to diesel fuel. 375	

The fuel components as has been highlighted from the use of primary alcohols in this study, 376	

can improve engine systems performance by providing a chain of beneficial effects; from the 377	

combustion process to emissions formation processes to their abatement processes in the 378	

aftertreatment systems. In this case the changes in fuels properties from the incorporation of butanol 379	
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into diesel fuel, led to cleaner combustion that eased species (i.e. HCs/fuel and engine out emissions) 380	

oxidation in the DOC. These trends will favour the active control strategies in the aftertreatment 381	

systems and will positively impact on their performance (i.e. increase activity, improve durability) 382	

and overall engine fuel economy.   383	
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ABBREVIATIONS 396	

aTDC = after top dead centre 397	

B20D80 = butanol 20 %, and diesel 80% 398	

bTDC = before top dead centre 399	

BSFC = brake specific fuel consumption 400	

CAD = crank angle degree 401	

CI = compression ignition 402	

CO = carbon monoxide 403	

CO2 = carbon dioxide 404	

dpo = size of primary particles 405	

DOC = diesel oxidation catalyst 406	

DPF = diesel particulate filter 407	

EGT = exhaust gas temperature 408	

GHSV = gas hourly space velocity   409	

HC = hydrocarbons 410	

IMEP = indicated mean effective pressure 411	

NO = nitric oxide 412	

NO2 = nitrogen dioxide 413	

NOX = nitrogen oxides 414	
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npo = number of primary particles 415	

Rg = radius of gyration  416	

SMPS = scanning mobility particle sizer 417	

PSD = particulate size distribution   418	

PI = post-injection 419	

PM = particulate matter 420	

TEM = transmission electron microscopy 421	

THC = total hydrocarbons 422	

ULSD = ultra low sulfur diesel 423	

M-I = main injection 424	

W/O PI = without post-injection 425	

BTE = brake thermal efficiency 426	
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