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Abstract  1 

Interconnected electricity networks, or Supergrids, are considered as a possible solution to 2 

tackle challenges associated with near and far-future supply of electricity. These include, but 3 

are not limited to, reducing Green House Gas emissions and reliance on non-renewable fossil 4 

fuels. Supergrids can help to tackle these challenges, for example, by providing a reliable 5 

interconnection platform for wider application (and development) of renewable technologies. 6 

However, there is a range of risks and uncertainties associated with selecting appropriate 7 

interconnections. Heretofore these have been a hindrance to developing interconnections and 8 

therefore a Risk-Based Framework (RBF) which addresses these risks and uncertainties could 9 

encourage the wider uptake of Supergrids. 10 

This paper presents for the first time such a robust framework. The RBF comprises of four 11 

stages; (1) initial screening for selecting candidate countries, (2) risk identification, (3) risk 12 

semi-quantification and (4) risk quantification. In stage 4 the uncertainties associated with the 13 

identified risks are quantified using a cost-risk model under uncertainty based on a whole life 14 

appraisal approach. The usefulness of the approach, demonstrated using the UK as a case 15 

study, showed that greatest cost risks are associated with (a) regulatory framework, and (b) 16 

changes in energy policy. The most desirable interconnection option for the UK was 17 

identified as France.  18 

Keywords 19 

Interconnections; Risk assessment; Quantitative risk analysis; Trading electricity; Supergrid; 20 

Whole Life Appraisal. 21 

Abbreviations 22 

DP         Dynamic Positioning 23 

Ee    Interconnection Capacities  24 

HVDC    High-Voltage Direct Current 25 

NPV    Net Present Value 26 

RBF    Risk-Based Framework 27 

RE    Renewable Electricity  28 

STEEP    Social, Technical, Economic, Environmental and Political  29 

PERT     Program Evaluation and Review Technique 30 

PI     Profitability Index 31 

PPPs      Public Private Partnerships 32 

P80     80th percentile 33 

WLA    Whole Life Appraisal  34 
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1. Introduction 1 

Renewable energy is seen as a viable means of helping to tackle the global challenges of 2 

climate change whilst meeting a significant part of global energy demands (MacKay, 2009; 3 

Jacobson and Delucchi, 2011; WWF, 2011; DNV, 2014). However, in order to realise the full 4 

potential of these geographically dispersed and intermittent renewable energy supply 5 

resources it is necessary to provide a means of connection. An interconnected electricity 6 

network, utilising high capacity long transmission lines, is technologically feasible and can be 7 

economically competitive (Chatzivasileiadis et al., 2013; DNV, 2014). Such a system, known 8 

as Supergrid, is currently being developed in Europe, and will be capable of transmitting 9 

power from renewable sources using a High Voltage Direct Current (HVDC) grid across the 10 

European continent and beyond. 11 

Interconnections through this Supergrid are expected to provide a solution to many of the 12 

challenges associated with renewables. These include, for example, their intermittency, 13 

variability and cyclic nature (Chatzivasileiadis et al., 2013; Elliott, 2013; Edmunds et al., 14 

2014; Pöyry, 2016). In addition a Supergrid can improve security of energy supply issues 15 

through provisioning of multiple supply pathways that connect countries across different time 16 

zones with different (yet complimentary) electricity generating profiles, consumption 17 

demands and patterns (Van Hertem and Ghandhari, 2010; Hirschhausen, 2012; Torriti, 2014; 18 

Pöyry, 2016).  19 

However, there are a number of social and political barriers for the implementation of a 20 

Supergrid (Jacobson and Delucchi, 2011; Tobiasson and Jamasb, 2016). Not least, the 21 

decision-making process required for their implementation is often a protracted procedure. 22 

For example, lengthy negotiations between France and Spain were initiated in 1980 but the 23 

interconnection only started operating 35 years later (Tobiasson and Jamasb, 2016). Part of 24 

the reason is related to uncertainties associated with: changes in energy policy within 25 

countries concerned; availability of spare electricity; security of supply issues; comparatively 26 

lengthy construction periods and unsubstantiated predicted life-times for the physical 27 

interconnections (Great Britain Parliament, 2011a; Pöyry, 2016).  28 

A crucial early-stage decision regarding the development of interconnections is identifying 29 

the most appropriate country(ies) and region(s) with which to make an interconnection(s). A 30 

proven means of facilitating similar decisions in other industries is through utilising an 31 
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appropriate risk assessment process that enables early-stage risk identification, better 1 

understanding, and mitigation for potential impacts before they occur (Flyvbjerg et al., 2003; 2 

Read and Rizkalla, 2015). Within this context a common language and shared understanding 3 

between all engaging countries can help resolve disputes and shape common priorities 4 

(Tobiasson and Jamasb, 2016). However, such a Risk-Based Framework (RBF) to facilitate 5 

decision-makers is yet to be developed to encourage the uptake of Supergrids. 6 

To address this, the goals of this paper are to describe a robust RBF for selecting the most 7 

appropriate country(ies) with which to make grid interconnections and to describe its use via 8 

a case study. Even though the need for such an RBF has been identified, this paper presents 9 

for the first time the development, application and components of the RBF and is therefore a 10 

major contribution to the existing literature (Great Britain Parliament, 2011b; Great Britain 11 

Parliament, 2011a; Pöyry, 2016; Tobiasson and Jamasb, 2016).   12 

The RBF includes the identification, assessment, and quantification of uncertainties and 13 

whole life cost risks associated with electricity interconnections. Lifetime uncertainties and 14 

risks are incorporated, for the first time, within the newly developed risk cost-risk model 15 

under uncertainty. Therein, a quantitative risk analysis technique is utilised to compare 16 

candidate countries by incorporating the likelihood of the occurrence of identified risks and 17 

uncertainties together with their impacts associated with the construction and maintenance of 18 

interconnections. Lack of sufficient data can be one of the main reasons for not adopting a 19 

robust RBF. This paper shows how expert opinion can be utilised to fulfil such a shortfall. 20 

The successful implementation of the RBF in this paper, described through a case study, it is 21 

anticipated will encourage the development of interconnections and thereby maximise the 22 

utilisation of global renewable energy resources. 23 

The major findings of the research described here are: 24 

The proposed RBF provides a rigorous means of quantifying risks and uncertainties 25 

associated with making energy interconnections.  Data scarcity can be successfully addressed 26 

using a robust process which incorporates expert opinion. 27 

The greatest cost risks for the UK are associated with (a) regulatory framework, and (b) 28 

changes in energy policy. The most desirable interconnection option for the UK is with 29 

France.  30 

  31 
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2. Literature review: Risk assessment and its implication for 1 

interconnections 2 

Methodologies for addressing and dealing with risk and uncertainties have been utilised for 3 

over 40 years.  For example, Salter (1973) described a probabilistic forecasting methodology 4 

in which stochastic data and subjective probability estimates were used to achieve a 5 

probabilistically stated forecast of the USA’s electricity consumption in the year 2000.  Since 6 

then, similar analyses have been used to allocate probabilities to uncertainties regarding 7 

future energy supply/demand and the impact of climate change on energy supply among 8 

other things (see for example Song et al. (2013), Maleki et al. (2016), Kearns et al. (2012) 9 

and Hamlet et al. (2010)).   10 

The literature is less well developed with respect to the risks and uncertainties of 11 

interconnections. Whilst economists such as Parail (2010) have introduced probabilistic 12 

methodologies to address economic uncertainty associated with electricity trading by way of 13 

interconnections, this work was not extended to uncertainties associated with the social, 14 

technical, environmental and political aspect of developing and operating interconnections. A 15 

recent study by Pöyry (2016) explores the costs and benefits of potential interconnections for 16 

the UK and describes some of the associated risks but without any further analysis.     17 

Understanding the construction and maintenance risks of an interconnection requires 18 

comprehending their causes, likelihoods and consequences of occurrence to adopt appropriate 19 

mitigation measures. In conventional risk assessment these are typically considered as part of 20 

a framework which consists of three main processes, namely (BSI, 2010; Jutte, 2012; Bozek 21 

et al., 2015):  22 

1. risk identification;  23 

2. semi-quantification; and  24 

3. quantification. 25 

Risk identification is the process of finding, recognising and recording risks whilst semi-26 

quantification and quantification stages are to do with determining the consequences and 27 

likelihood of occurrence for identified risk events (BSI, 2010; Pritchard, 2014). Quantitative 28 

analysis is used to apportion values to consequences and their probabilities and thereby 29 

provide a quantified level of risk (BSI, 2010; Pawar et al., 2013; Pritchard, 2014).    30 
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In the case of interconnections, the identified risks are directly related to, or influenced by, 1 

project complexity, construction time (up to 10 years for some seabed interconnections), 2 

duration of asset use (40 years or more), and the involvement of various industries and 3 

stakeholders (Chatzivasileiadis et al., 2013). Allied to these, an interconnection project is 4 

notoriously risky because (at least) two countries, each with their own local priorities, 5 

conditions and policies, are involved.  6 

A major challenge of carrying out risk assessment within this field, which can significantly 7 

reduce the cost of projects, is obtaining reliable information (IRG, 2013). This includes 8 

identifying a range of risks and thereafter assessing their likelihood of occurrence and 9 

ultimately impact. This is not straightforward when interconnection construction projects are 10 

essentially one-off enterprises (Eskandari Torbaghan et al., 2015). In such cases knowledge 11 

obtained from a diverse range of experts in the field, who are well versed in terms of 12 

experience, judgement and application including rules-of-thumb can be usefully utilised 13 

(Dikmen et al., 2007; Yildiz et al., 2014). Such an approach has been used in the research 14 

described in this paper.  15 

3. Methodological Approach 16 

The developed RBF consists of 4 principal stages, summarised in Figure 1, and described 17 

below.  18 

 19 

3.1 Stage 1: Initial screening 20 

The screening stage was used to identify suitable and unsuitable candidate countries for 21 

interconnection. The procedure took into account the distance between countries in addition 22 

to Political, Economic, Environmental and Social factors. The outcome of this stage is shown 23 

for the UK case study application in Section 4.1. 24 

 25 

3.2 Stage 2: Risk identification 26 

This stage identifies the risks (and associated circumstances) that might affect the availability 27 

and security of interconnections and of trading electricity (BSI, 2010). The risks were 28 

identified from a review of the literature which was subsequently used to inform (and extract) 29 
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expert opinion through questionnaires and one-to-one interviews. The outcome of this stage 1 

is shown for the UK case study application in Section 4.2. 2 

3.3 Stage 3: Risk Semi-quantification 3 

Risk semi-quantification allows identified risks to be determined according to the common 4 

definition of risk; impacts multiplied by probabilities of occurrence, for each risk in each 5 

country (Chapman and Ward, 2004; BSI, 2010). Calculated exposures for all identified risks 6 

are then combined to determine an overall risk level for each country.  7 

 8 

The process includes mapping identified risks associated with activities to build and maintain 9 

interconnections. To measure the level of risk herein expert opinion is used to estimate the 10 

range of potential consequences that might arise from an event, situation or circumstance, 11 

(e.g. a power cut) and their associated probability of occurrence. Integer rating scales for 12 

impact and probability informed by expert opinion are used to produce a semi-quantified risk 13 

evaluation. The outcome of this stage is shown for the case study in Section 4.2.   14 

 15 

3.4 Stage 4: Risk Quantification 16 

Risk Quantification develops a measure of the cost of risks and uncertainties associated with 17 

a project, the so called project cost risk, using a combination of whole life appraisal (3.4.1) 18 

and risk modelling (3.4.2), to identify the most appropriate country for making an 19 

interconnection (Levander et al., 2009; Flanagan, 2015). Project cost risk being primarily 20 

caused by one (or both) of the following factors: 21 

1. Uncertainties associated with future revenues and costs ; 22 

2. Risks related to the construction and operational phases (which ultimately have impacts on 23 

both future revenue and cost steams) 24 

 25 

The least risky country with which to make an interconnection is that with the minimum, so 26 

determined, cost risk. 27 

3.4.1. Developing a cost model through Whole Life Appraisal (WLA) 28 

WLA is an economic tool which can be used to make an informed choice between various 29 

competing options (in this case for comparing candidate countries for interconnection).  30 
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The requirements of the WLA for task at hand are (Flanagan and Jewell, 2008): 1 

1. Identification of an overall useful life (i.e. whole life) for the interconnections 2 

2. Collection of costs and revenues associated with constructing, utilising and 3 

maintaining an interconnection 4 

3. Consideration only of those costs and revenues which have a direct impact on the 5 

project itself. Thereby excluding for example employment generated through the 6 

construction of interconnections. 7 

4. Consideration of time on the value of investment, this includes;  8 

a. The impact of inflation 9 

b. The opportunity cost of capital (i.e. by utilising a discount rate). 10 

 11 

The Net Present Value (NPV) methodology was chosen as the most appropriate tool to 12 

implement the WLA.   13 

3.4.2 Developing a Cost-Risk Model 14 

Risks and uncertainties were accommodated in the RBF as follows: 15 

1. Uncertainty with future cost estimation(s) identified by the literature together with a panel 16 

of experts  17 

2. Construction and operational risks identified from the literature and further informed by an 18 

expert panel. 19 

 20 

The cost risk model so developed is given in Equation 1.       21 

𝑁𝑃𝑉̂ = 𝐶𝐼̂ + ∑
𝐶𝑂𝑖̂ −𝑅𝐴𝑖̂

(1+𝑟̂)𝑖

𝑇

𝑖=1
                                                                                                   (1) 22 

Where:  23 

ĈI = Investment cost risk (£) (see Equation 2)  24 

ĈO = Annual operational cost (£) (see Equation 3) 25 

𝑅𝐴̂ = Annual revenue (£) (Equation 4) 26 

(^) signifies uncertainty (i.e. risks) 27 

Ĉ𝐼 = Ĉ𝐶 + Ĉ𝐶𝑇 − 𝑆 + ∑ (𝐼𝑗 × 𝑃𝑗)
𝑁

𝑗=1
                                                                                     (2) 28 
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Where:  1 

 2 

ĈC = Cable cost (£) [uncertainties associated with cable cost such as inflation rate and 3 

currency exchange rate], 4 

ĈCT = Converter station cost (£) [i.e. High Voltage DC (HVDC) cables and DC-AC 5 

convertor stations; an HVDC connection within an AC system requires two converter 6 

stations] 7 

S = savings equal to the equivalent cost of generating electricity [i.e. the savings accruing 8 

from supplying electricity from other countries compared to the average cost of various 9 

electricity generation technologies for the recipient country] 10 

Ij and Pj = impact and probability (respectively) of N identified construction risks, j 11 

 12 

Ĉ𝑂 = Ĉ𝑀 +  Ĉ𝐿 +  Ĉ𝑅𝐸 +  ∑ (𝐼𝑛 × 𝑃𝑛)𝐾
𝑛=1                                                                                (3) 13 

Where  14 

ĈM = Annual maintenance cost,  15 

ĈL = Annual cost of losing power due to heating of the line  16 

ĈRE = Cost of imported RE.  17 

In and Pn = Impact and probability of K identified operational risks 18 

 19 

𝑅𝐴 ̂ =  𝑅𝐴1 ̂  × 𝑟𝑅𝐺 ̂     20 
(4) 21 

Where  22 

ȒA1 = Revenue in the first year (i.e. 2030)  23 

ȓRG = Annual revenue growth rate   24 

Within Equation 1, cost uncertainties were represented as a range of possible cost values (i.e. 25 

impacts) with an associated likelihood of occurrence. The costs and their probabilities were 26 

determined from the literature and via consultation with the pool of experts and were 27 

modelled using statistical distributions, to accommodate the range of expert estimated values.  28 

ȒA1 in Equation 4 is determined by the likely supply capacity (i.e. surplus energy availability) 29 

of the interconnection (Ee) and was determined using a RE availability model [for more 30 

information see Eskandari Torbaghan et al. (2014)]. The RE model is related to:   31 
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i) the ability of the host country to sell spare renewable energy to the recipient 1 

country (after meeting its domestic demand);  2 

ii) CO2 related cost savings (e.g. through reduced carbon credit payments). 3 

Construction and operational risks were quantified by three point-estimates, derived from 4 

three defined scenarios; worst, most-likely and best case scenarios. 5 

Triangular and binomial distributions were used to model all cost uncertainties, risks and 6 

their likelihood (probability) respectively, except for the growth rate for which a normal 7 

distribution was used.   8 

4. Application of RBF to the UK 9 

The RBF developed in Section 3.0 is demonstrated here via a case study which identifies the 10 

most appropriate country (in terms of the minimum cost risk) for the UK with which to make 11 

an interconnection.  12 

4.1 Stage 1: Initial screening 13 

Nine feasible candidate countries (Belgium, Denmark, France, Germany, Ireland, 14 

Netherlands, Norway, Spain and Sweden) were identified by an initial screening exercise for 15 

making interconnections with the UK (Eskandari Torbaghan et al., 2015).  16 

4.2 Stage 2 and 3: Risk identification and Semi-quantification 17 

An initial extensive literature review, augmented by canvassing the opinion of a group of 18 

experts, through a series of structured interviews, identified 18 construction and 8 19 

maintenance risks (Table 1) which could impact costs. In brief the process involved 20 20 

experts, representing eight different European countries, with specialist skills and knowledge 21 

in electricity generation and distribution participated in the research.  22 

The risks were subsequently semi-quantified, as described above and using a risk matrix 23 

(Figure 2) where the probability and cost impact values were determined by consulting with 24 

the panel of experts.    25 

4.3 Stage 4: Risk Quantification  26 

Within the risk quantification stage the probabilities and impacts of the identified 27 

construction and operational risks on the costs and benefits of an interconnection with the UK 28 
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were evaluated using the cost risk model incorporating the NPV method as described above. 1 

The NPV for each interconnection was calculated according to Equation 1 for an assumed 40 2 

year period of operation. Construction and operational costs adopted for the study are shown 3 

in Tables 2 and 3. For the purposes of the risk quantification the triangular probability 4 

distributions were determined by using within the Monte Carlo Simulation (MCS) the 5 

minimum, maximum and most likely values obtained from the literature. N.B. The value of 6 

S, Equation 2, is assumed to be £1400/kW, based on  studies by Mott MacDonald (2011), 7 

Kannan (2009) and Parsons Brinckerhoff (2011).   8 

For the purposes of the case study values of 80th percentile (P80) Ee were used (Table 4) for 9 

the countries considered (i.e. the result of simulations for Ee shows that 80% of them 10 

produced values equal to or smaller than the value shown in the Table 4). Using these values 11 

of Ee the revenues were calculated by considering i) the revenue from selling the UK’s spare 12 

RE to the candidate country and ii) value of CO2 emission cost savings (i.e. saving the cost of 13 

CO2 emission taxation from generating electricity rather than importing it).   14 

As an example, the revenue component for Norway is presented in Table 5 which shows the 15 

minimum, most likely and maximum availability of RE.   16 

The uncertainty associated with estimating revenue growth (i.e. Equation 4) is based on an 17 

analysis by Nooij (2012) of the Norway-Netherland (NorNed) interconnection and assumes 18 

an annual 2 % growth rate with a standard deviation of 1 %. 19 

The discount rate used was an after-tax rate of interest that is expected to be earned on 20 

investments over the stated period. In this analysis a value of 9% was assumed for all 21 

countries based on work by Nooij (2011) for the NorNed interconnection. For the purpose of 22 

this case study the discount rate was not considered to be uncertain.   23 

The distribution of Norway revenue growth rate is shown as an example in Figure 3, from 24 

which it may be seen that there is a 5 % likelihood of achieving a growth rate of less than 25 

0.355% and a 5 % likelihood of achieving one over 3.645 %. This highlights the chance of an 26 

overestimation or underestimation of growth estimation for an interconnection project. 27 

Therefore any decision regarding building a new interconnection should be informed by this 28 

uncertainty and whether it is tolerable.       29 

In order to ensure a sufficiently accurate output 10,000 MCS iterations were undertaken to 30 

generate a frequency distribution of possible NPVs for each interconnection.  Following risk 31 
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analysis guidelines for the case study, the 80 percentile NPV (P80 NPV) was the chosen 1 

statistic with which to compare the possible interconnections (IRG, 2013; Oracle, 2009).  2 

5. Results 3 

5.1 Single point estimations - NPV (risks excluded) 4 

Table 6 shows the NPVs, calculated using the most likely values, when excluding identified 5 

risks for each country concerned. The chance(s) of achieving an NPV equal to or greater (i.e. 6 

closer to zero) than the NPV’s shown was calculated by running MCS. It can be seen that of 7 

the 9 candidate countries, only 5 have negative NPVs (i.e. the benefits are greater than the 8 

costs). An NPV score for the Netherlands could not be calculated as the projected ‘spare’ RE 9 

was not sufficient to consider an interconnection for this country (see Eskandari Torbaghan et 10 

al., 2014).  In contrast France was found to have the highest NPV (with a 70% probability of 11 

achieving it), whilst Spain had the lowest (with only a 53% probability of achieving it).    12 

When considering NPV (with risks excluded) the results suggest that France is the 13 

preferential country for the UK to make an interconnection with whilst Spain is the least 14 

preferred. Some of the reasoning for this is related to the proximity of France to the UK 15 

resulting in low construction costs (Table 6). In addition the interconnection capacity 16 

between the two countries is projected to be high (i.e. 4000 MW), because of France’s high 17 

projected spare RE, and the price of exported electricity is low. Conversely the comparatively 18 

large distance (Table 6) and expanse of ocean between Spain and the UK is a major factor in 19 

a connection between the two resulting in highest investment costs (£2.6b) and a relatively 20 

low NPV.   21 

The probabilities of achieving (as a minimum requirement) these initial NPV estimates are 22 

relatively low, for all countries. This demonstrates the uncertainties inherent in using a 23 

single-point cost estimation to appraise an interconnection project. This is one of the main 24 

reasons behind existing protracted decision-making processes.  25 

5.2 NPV (risks included)  26 

The P80 NPVs values when including identified risks and uncertainties associated with cost 27 

and revenue estimations for the 9 candidate countries are presented in Table 7. When 28 

comparing Tables 7 and 6 it can be seen that the hierarchy has remained relatively unchanged 29 

with the exception that Ireland is now placed above Denmark. P80 NPVs have however 30 
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worsened (i.e. NPV values are higher), not least for interconnection(s) between the UK and 1 

France and UK and Germany (increasing by 30% and 25% respectively).  2 

The higher position of Ireland with respect to Denmark is because of the lower risks impacts 3 

associated with an interconnection between Ireland and the UK, than between the UK and 4 

Denmark. The lower risks of a UK – Ireland interconnection are also to do with the 5 

comparatively short distance between Ireland and the UK, and broadly similar energy and 6 

distributing systems (physically and politically). Accordingly, an interconnection between 7 

Ireland and the UK was found to have low risk scores associated with identified electricity 8 

price and energy policy related risks.  9 

 10 

Figure 4 shows the 80 percentile NPVs of the candidate countries. The bars on the figure 11 

represent the range of possible NPVs between the 5 and 95 percentile values. For instance the 12 

range of NPVs for France is -£31 to £3 billion (Figure 5). Spain and Germany have the 13 

greatest range of NPVs of approximately £50 billion between their 5 percentile NPVs and 14 

their 95 percentile NPVs reveals the high level of uncertainties associated with those two 15 

countries. The large range of possible NPVs for Spain and Germany respectively 16 

demonstrates the high level of uncertainty associated with the two countries and is in part to 17 

do with the large distance between the countries and the UK. Supplementary material in form 18 

of an Excel file is provided in Appendix A.  19 

  20 

5.3 Profitability Index (PI) 21 

For the case study, the Profitability index (PI) was calculated to take into account the possible 22 

capital limitation for developing a new interconnection (since more costly projects are likely 23 

to have larger NPVs).  24 

The profitability index was defined as:  25 

PI =  
 𝑁𝑃𝑉[P80]

C
 

                                                                                                               (5) 26 

Where (units in italics):  27 

NPV[P80] = 80 percentile NPV (£) 28 
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CI = Investment cost (£) 1 

The calculated PIs are presented in Table 8. 2 

Comparing Tables 6 and 8 it can be seen that the hierarchy has remained relatively 3 

unchanged with the exception that Germany is fifth (moving from second place in Table 6). 4 

This is due to the added consideration of the high investment cost (£1.717 billion) associated 5 

with the interconnection between the UK and Germany caused by the comparatively large 6 

distance between the two countries (Table 6).  7 

The PI index for the France is the highest amongst the 9 candidate countries considered and 8 

shows that the interconnection could generate £12 for every pound invested. 9 

5.4 Sensitivity analysis  10 

In order to test the robustness of this approach, a sensitivity analyses was conducted to 11 

identify parameters that most influenced calculated NPVs, and therefore those which will 12 

require additional scrutiny.  13 

The sensitivity analyses revealed the 1
st
 Year Revenue and the Cost of Imported RE to be the 14 

most dominant contributors to the calculated NPVs for all candidate countries. This is due to 15 

the fact that yearly revenues are highly dependent on first year revenue and are a function of 16 

the growth rate. The cost of imported RE is one of the main components of the cost model 17 

with direct impact on the calculated NPVs. The other relative influences of the other 8 18 

parameters on NPV vary according to the country considered, but they are related to the cost 19 

of maintenance and growth rate. An example for France in the form of a Tornado graph is 20 

shown in Figure 6.  21 

Management efforts such as the development and adaptation of revenue and cost models 22 

which include various risks and uncertainties could be utilised to ensure that the 1st Year 23 

Revenue and the Cost of Imported RE will not jeopardise the viability of an interconnection.  24 

   25 
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6. Concluding Discussion 1 

The literature review presented within this paper set the context for the need for a Risk-Based 2 

Framework to identify the least risky region or country with which to make an electricity 3 

interconnection. As such this paper set forward a robust methodological process by which 4 

this could be developed. The underpinning methodology consisted of: 5 

(1) an initial screening process to identify countries to be excluded from further analysis,  6 

(2) a risk identification process, utilising expert opinion, to identify uncertainties associated 7 

with both building interconnections and importing electricity,  8 

(3) a risk semi-quantification stage which consisted of determining consequences and 9 

probabilities of occurrence to define a level of risk, and  10 

(4) a risk quantification stage to forecast the risk contingencies for capital expenditure and 11 

operational excellence. 12 

Once developed and in order to demonstrate the methodology fully, the RBF was applied to 13 

the UK as an example case study. After initial screening in Stage 1 the case study considered 14 

9 potential candidate countries and after final processing in Stage 4 it was shown that the 15 

country with the highest NPV[P80] was France. Therefore France was identified as the best 16 

countries for the UK to make interconnections with, when considering NPV, PI and the 17 

associated probabilities. Additionally France was shown to be the preferred option as an 18 

interconnection between the UK and France has a relatively low capital cost forecast, a lower 19 

risk in general and there is relatively large availability of RE. The findings for France are 20 

consistent with the past and current UK policy as the UK’s first interconnection to be built 21 

was with France and there are on-going discussions about building a second. An 22 

interconnection with Germany has also been recognised in this paper as potentially attractive, 23 

although with high capital costs. Indeed Germany has already been recognised as a potential 24 

option by the UK government, albeit without any apparent numerical evidence. Whilst the 25 

cost-risks associated with the large distance between German and the UK are relatively high, 26 

these are offset by Germany’s very large projected supply of RE. Spain is ranked as the least 27 

preferred country mainly because of the large distance between it and the UK which result in 28 

relatively high capital costs and associated risks.  29 
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The results of the sensitivity analysis emphasises the importance of interconnection revenue 1 

estimation, and in particular the component of the benefit associated with selling spare RE, as 2 

it was found to have the highest impact on the distribution of NPVs. The estimation of the 3 

accrued benefits of selling electricity has a high level of uncertainty as the analysis considers 4 

RE availability and price over a 40 year time horizon. This aspect was addressed by 5 

generating and including various plausible energy scenarios to estimate RE availability 6 

reported. Future development of a modified and updated energy scenario projection model 7 

for the involved countries is desirable.  8 

As far as the risk quantification process is concerned, a whole life appraisal (WLA) approach 9 

has been shown to work effectively when utilised within an MCS. The developed RBF has 10 

demonstrated the inherent need for such an approach and highlighted the benefits that can be 11 

reaped in terms of informed decision-making. The developed methodology can be used to 12 

encourage building new interconnections and can be used by any country, public or private 13 

organisation. This becomes readily apparent when it is being used to identify the highest and 14 

lowest NPVs, as an indicator for whole life economic benefit associated with construction 15 

and operation. 16 

The RBF should be considered as a precursor within any risk analysis project and should be 17 

applied occur in the initial stages of any interconnection works.  18 

One significant barrier to be overcome when adopting the proposed RBF is the availability of 19 

appropriate data for risk identification and for estimating the associated risk impacts and 20 

probabilities. A well-tried method of tackling this issue, as used in this paper, is to make use 21 

of expert opinion. The results of the analysis obtained however will ultimately depend upon 22 

the range and quality of the experts considered. Moreover it is important, where possible, 23 

when using experts’ opinion to mitigate any possible bias. To this end, in this study a pool of 24 

20 experts was drawn from across Europe, from both industry and academia, their opinions 25 

were recorded via targeted questionnaires and in-depth one-to-one interviews. This produced 26 

a well-balanced response making use of knowledge from experts who are well versed in 27 

terms of experience in electricity generation and distribution. However it is recognised also 28 

that the process of consultation could be improved further to help avoid any unintentional 29 

bias by involvement of a wider range of experts and other interview techniques, such as brain 30 

storming sessions, risk review meetings during workshops and/or Delphi technique(s).  31 
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Where possible the preliminary results should be verified against historical data in order to 1 

consider the relative weights (i.e. importance to stakeholder groups) of the identified risks 2 

(rather than identical weightages as considered here), allowing for more weighting to be 3 

placed against key identified risks.  4 

In general, a fundamental impediment that acts as a significant barrier for the development of 5 

interconnections is changing government energy policy. Interviews with experts revealed that 6 

this is a major reason for the current protracted procedures for governmental approvals and 7 

can be avoided (in part) through improved engagement with the private sectors. This can be 8 

achieved through mechanisms such as public private partnerships (PPPs) in order to facilitate 9 

both the procedure and by providing knowhow to help reduce some of the risks that occur 10 

when considering the public (or private sector) alone. The procedure developed herein can 11 

also help with this process by identifying the causes of significant risks (e.g. the pressure of 12 

public opinion) leading to appropriate mitigation measures (e.g. raising public awareness).  13 

The current trend for developing renewables can also help address the second major 14 

uncertainty found in this research, which related to the availability of tradable renewable 15 

electricity. This is also related to and affected by energy policy.  Engagement of the private 16 

sector could also help here and may enhance the development of interconnections to provide 17 

a larger market for renewables.    18 

The proposed RBF should also be utilised to model interdependencies and consequential 19 

impact of risks associated with construction and operational phases. Further, special attention 20 

should be given to develop the model to take into account highly disruptive risks (i.e. those 21 

with low likelihood and high impact), such as catastrophic failure, terrorist attacks and 22 

political instability of energy producing countries. 23 
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