

University of Birmingham

An Isbell Duality Theorem for Type Refinement
Systems
Melliès , Paul-André ; Zeilberger, Noam

DOI:
10.1017/S0960129517000068

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Melliès , P-A & Zeilberger, N 2018, 'An Isbell Duality Theorem for Type Refinement Systems', Mathematical
Structures in Computer Science, vol. 28, no. 6, pp. 736-774. https://doi.org/10.1017/S0960129517000068

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
© Cambridge University Press 2017

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•Users may freely distribute the URL that is used to identify this publication.
•Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.
Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 25. Apr. 2024

https://doi.org/10.1017/S0960129517000068
https://doi.org/10.1017/S0960129517000068
https://birmingham.elsevierpure.com/en/publications/c7cc8832-fda4-468d-9b58-1cc9d1f077b0

Under consideration for publication in Math. Struct. in Comp. Science

An Isbell Duality Theorem for Type Refinement
Systems

P A U L - A N D R É M E L L I È S1 and N O A M Z E I L B E R G E R2

1 CNRS, Université Paris Diderot, Sorbonne Paris Cité, Paris, France.
2 School of Computer Science, University of Birmingham, Birmingham, UK.

Received 31 January 2017

Any refinement system (= functor) has a fully faithful representation in the refinement
system of presheaves, by interpreting types as relative slice categories, and refinement
types as presheaves over those categories. Motivated by an analogy between side effects in
programming and context effects in linear logic, we study logical aspects of this “positive”
(covariant) representation, as well as of an associated “negative” (contravariant)
representation. We establish several preservation properties for these representations,
including a generalization of Day’s embedding theorem for monoidal closed categories.
Then we establish that the positive and negative representations satisfy an Isbell-style
duality. As corollaries, we derive two different formulas for the positive representation of a
pushforward (inspired by the classical negative translations of proof theory), which
express it either as the dual of a pullback of a dual, or as the double dual of a pushforward.
Besides explaining how these constructions on refinement systems generalize familiar
category-theoretic ones (by viewing categories as special refinement systems), our main
running examples involve representations of Hoare logic and linear sequent calculus.

1. Introduction

This paper continues the study of type systems from the perspective outlined in (Melliès
and Zeilberger 2015). There, we suggested that it is useful to view a type system as a
functor from a category of typing derivations to a category of underlying terms, and that
this can even serve as a working definition of “type system” (or what we call a refinement
system), as being (in the most general case) simply an arbitrary functor.

Definition 1.1. A (type) refinement system is a functor t : D→ T .

Definition 1.2. We say that an object P ∈ D refines an object A ∈ T (notated P @ A) if
t(P) = A.

Definition 1.3. A typing judgment is a triple (P, c,Q), where c is a morphism of T such
that P @ dom(c) and Q @ cod(c) (notated P =⇒

c
Q). In the special case where P and

Q refine the same object P,Q @ A and c is the identity morphism c = idA, the typing
judgment (P, c,Q) is also called a subtyping judgment (notated P =⇒ Q).

P-A. Melliès and N. Zeilberger 2

Definition 1.4. A derivation of a (sub)typing judgment (P, c,Q) is a morphism α : P→ Q

inD such that t(α) = c (notated
α

P =⇒
c

Q).

As a typical example of a refinement system, we might take T to be a cartesian closed
category freely-generated on a finite number of base types, andD to be a larger cartesian
closed category equipped with a cartesian closed functor t : D → T . This models the
common situation of a type refinement system built over the simply-typed lambda
calculus “à la Church”, extending it with more precise and sophisticated specifications
(Pfenning 2008). On the other hand, simply-typed lambda calculus itself can also be
modelled “à la Curry” as a refinement of pure lambda calculus: in that case we define T
as the freely-generated cartesian closed category containing a reflexive object D, andD
as a certain cartesian closed category generated over the full hierarchy of simple types,
with t : D → T the functor which maps every simple type to D (see §6.1 of (Melliès
and Zeilberger 2015) for details). These two fundamental examples of type refinement
systems are traditionally treated differently. However, they share a common property:
both are defined by a cartesian closed functor between cartesian closed categories.

The type-theoretic intuitions conveyed by Definitions 1.1 to 1.4 compel us to think
about functors in different ways. On the one hand, a functor t : D → T can be seen
as a “generalized fibration” over T (Bénabou 2000, §7). On the other hand, a functor
t : D→ T can be seen as endowing the categoryD with an extra labelling of its objects
and morphisms. It is useful to think of any categoryC as a trivial example of a refinement
system in at least two ways: either as the identity functor idC : C → C (where every
object refines itself) or as the terminal functor !C : C → 1 (where every object of C refines
the unique object of 1). In the sequel we will describe several general constructions on
refinement systems, which reduce to classical constructions on categories seen as such
degenerate refinement systems.

One motivation for studying type refinement at this abstract level comes from Hoare
logic (Hoare 1969), which is naturally modelled as a refinement system:

— Take T to be a category with a single object W representing the state space and
morphisms c : W →W corresponding to state transformers.

— Take D to be a category whose objects P,Q ∈ D are predicates over the state space
W and whose morphisms (c, α) : P→ Q are commands c : W → W equipped with a
verification α that c will take any state satisfying P to a state satisfying Q.

— Take t : D→ T to be the evident forgetful functor.

In this case, a typing judgment is nothing but a Hoare triple {P}c{Q}, and what the example
highlights is that a typing judgment can describe not just a logical entailment but also a
side effect (here the transformation c upon the state).

Another one of our original motivations for studying this framework came from
apparent connections between side effects and linear logic, and in particular its proof
theory (Girard 1987; Andreoli 1992). Let us illustrate this idea by considering the right-
rule for multiplicative conjunction (“tensor”) in intuitionistic linear logic:

Γ ` A ∆ ` B
Γ,∆ ` A ⊗ B ⊗R

An Isbell Duality Theorem for Type Refinement Systems 3

Following the tradition of (Gentzen 1935), it is common to call A⊗B the principal formula
of the ⊗R rule, and A and B its side formulas. The letters Γ and ∆ then stand for arbitrary
sequences of formulas (called contexts) which are carried through from the premises into
the conclusion. Now, one can try to internalize the fact that the inference rule is parametric
in Γ and ∆ by first organizing contexts into some categoryW. Assuming a reasonable
definition of morphism (between contexts) inW, any formula C then induces a presheaf
C+ :Wop

→ Set by considering all the proofs of C in a given context:

C+ = Γ 7→ {π |
π

Γ ` C }

For example, we could takeW as a category whose objects are lists (or multisets) of linear
logic formulas and whose morphisms are linear substitutions, i.e., where a morphism
∆→ Γ is given by a list of proofs

π1
∆1 ` A1 · · ·

πn
∆n ` An

such that ∆ = ∆1, . . . ,∆n and Γ = A1, . . . ,An. With that definition of W, the functorial
action of C+ is just to perform a multicut: given a proofπ of Γ ` C and a linear substitution
σ : ∆ → Γ, one obtains a proof C+(σ)(π) of ∆ ` C by cutting the proofs σ = (π1, . . . , πn)
for the assumptions Γ = A1, . . . ,An in π.

Next, we note that for any pair of presheaves

φ1 : Cop
1 → Set and φ2 : Cop

2 → Set

one can construct their external tensor product as the presheaf φ1 • φ2 : (C1 × C2)op
→ Set

defined by

(φ1 • φ2)(x1, x2) = φ1(x1) × φ2(x2).

So, we might hope to represent the fact that the ⊗R rule is parametric in Γ and ∆ by
interpreting⊗R as a natural transformation from the external tensor product A+

•B+ to the
“internal” tensor product (A⊗B)+. The difficulty is that this is not well-typed! The point
is that A+

• B+ is a presheaf over the product categoryW×W, whereas (A ⊗ B)+ is a
presheaf overW, and so, literally interpreted, it does not make sense to speak of natural
transformations between them. What is missing is that the ⊗R rule also has an implicit
“context effect”, namely the operation of concatenating (or taking a multiset union of) Γ

and ∆. If we make this operation explicit as a functor

m :W×W→W

then we can literally interpret the ⊗R rule as an honest natural transformation: not
directly between the two presheaves A+

• B+ to (A ⊗ B)+, but rather from A+
• B+ to the

presheaf (A ⊗ B)+ precomposed with the functor m.
The idea of interpreting formulas as presheaves of derivations has a long tradition

in categorical logic and type theory, but what this example exposes is the danger of
limiting one’s attention to a single presheaf category. At the same time, the analogy
between context manipulation in linear logic and state manipulation in Hoare logic
suggests taking an alternative approach: to use the language of type refinement to speak
directly about presheaves living in different presheaf categories. Concretely, there is a

P-A. Melliès and N. Zeilberger 4

refinement system defined as the forgetful functor u : Psh → Cat, which sends a pair
(C, φ) of a categoryC equipped with a presheafφ : Cop

→ Set to the underlying category
C. Our tentative interpretation of the ⊗R rule of linear logic as a “natural transformation
with side effects” can now be given a concise formulation, simply stating that ⊗R can be
interpreted as a derivation of the typing judgment

A+
• B+ =⇒

m
(A ⊗ B)+ (1)

in the refinement system u : Psh→ Cat.
It turns out, moreover, that this presheaf interpretation of the sequent calculus of linear

logic may be vastly generalized: in fact, any refinement system t : D → T can be given
a presheaf interpretation, as a morphism of refinement systems t → u which is fully
faithful in an appropriate sense. The idea of representing logical formulas as presheaves
over varying context categories was one of our original motivations for studying the
notion of type refinement, and we believe that this embedding theorem sending any
refinement system into u : Psh → Cat justifies that point of view. In particular, the
embedding theorem applies both to Hoare logic and to linear logic.

With that in mind, the aim of the present article is a careful mathematical study of the
embedding of an arbitrary refinement system into the refinement system of presheaves
u : Psh → Cat, which has many interesting properties. First of all, there are really two
embeddings: one covariant and one contravariant. After presenting some background
in Section 2, we describe the “positive” representation (−)+ : t→ u of a refinement sys-
tem together with an associated “negative” representation (−)− : top

→ u in Section 3.
Besides proving that these embeddings are full and faithful, we also establish several
important preservation properties for the two embeddings (e.g., that (−)+ preserves
pullbacks), while noting the failure of other preservation properties in general (e.g., (−)+

need not preserve pushforwards). Then, in Section 4 we show that the two presheaf
representations P+ and P− of a refinement type P @ A satisfy a form of duality gener-
alizing Isbell duality (the duality between the covariant and contravariant representable
presheaves associated to an object of a category under the Yoneda embedding). Finally,
by combining this duality theorem with the preservation properties of the two presheaf
representations, we show that the positive representation (c P)+ of a pushforward of
a refinement P @ A (in t : D → T) along a morphism c : A → B can be explicitly
computed (in u : Psh→ Cat) using either of two “negative translation”-style formulas,
which express (c P)+ both as the dual of a pullback of a dual and as the double dual of a
pushforward.

Although our overall approach is formal, we come back to the examples of Hoare logic
and linear logic at different points in order to illustrate how these various constructions
expose interesting phenomena of non-trivial refinement systems (see Examples 1 to 4 in
Section 3 and Examples 5 to 7 in Section 4), while at the same time recovering familiar
category-theoretic constructions when one views categories as special refinement sys-
tems (see Remarks 3.11, 3.18, 4.3 and 4.4). The final example (Example 7) returns to the
decomposition (1) of linear logic’s ⊗R rule – since this analysis was a major motivation
for our work, we give here a preview. Recall that for any category C with a monoidal

An Isbell Duality Theorem for Type Refinement Systems 5

product m : C × C → C, the presheaf category [Cop,Set] is equipped with a monoidal
product called the Day tensor product (or convolution product), which can be defined as
the pushforward along m of the external tensor product,

φ1 ⊗C φ2
def
= m (φ1 • φ2)

or equivalently by the coend formula:

(φ1 ⊗C φ2)(x) =

∫ x1,x2

C(x,m(x1, x2)) × φ1(x1) × φ(x2)

Now, the context concatenation functor m :W×W→W induces a Day tensor product
on presheaves overW, so that (1) induces a canonical natural transformation:

A+
⊗W B+ =⇒ (A ⊗ B)+ (2)

However, in general this canonical inclusion need not be an isomorphism. In fact, (A⊗B)+

is the double dual of the Day tensor product of A+ and B+:

(A ⊗ B)+
≡
⊥((A+

⊗W B+)⊥) (3)

To better understand the significance of (3), the reader should contrast it with the corre-
sponding isomorphism for the ordinary Yoneda embedding

y(X ⊗ Y) ≡ yX ⊗C yY (4)

where X and Y are any pair of objects of a monoidal category C with tensor product
⊗ : C×C → C, and where yX = C(−,X). The formula (4) says that the Yoneda embedding
is a strong monoidal functor (Day 1970). The difference between (3) and (4) (which is
only visible because we are working with a non-trivial refinement system rather than
a category) boils down to the fact that the monoidal product of A and B in W is not
defined as the formula A ⊗ B but rather as the two-element context Γ = (A,B). Indeed,
the fundamental reason why A+

⊗W B+ may be smaller than (A ⊗ B)+ is that it is not
always possible to split a proof of A ⊗ B

π
Γ ` A ⊗ B

into a pair of proofs of A and B
π1

Γ1 ` A
π2

Γ2 ` B

where Γ1 and Γ2 are contexts such that Γ = (Γ1,Γ2). Consider, for instance, the case
Γ = A ⊗ B, and a proof of A ⊗ B starting from initial axioms on A and B:

A ` A B ` B
A,B ` A ⊗ B ⊗R

A ⊗ B ` A ⊗ B ⊗L

This proof-theoretic observation accounting for the strict inclusion (2) is familiar from
the study of focusing for linear logic (Andreoli 1992), while the double-dualization
applied in equation (3) lies at the heart of phase semantics (Girard 1987). The fact that

P-A. Melliès and N. Zeilberger 6

such phenomena may be naturally reconstructed in the categorical setting of refinement
systems demonstrates, we believe, the inherent interest of the development leading up to
Example 7 (and in particular Thm. 4.13). Conversely, from a purely formal perspective,
this example is also useful because it exercises the full extent of the technical machinery,
and demonstrates its conceptual unity. As a guide to the reader, we include here a partial
graph of the dependency structure of Example 7:

Example 7

Thm. 4.13

Thm. 4.12

Lemma 4.10

Prop. 4.6

Thm. 4.8

Lemma 4.7

Prop. 3.16

Prop. 3.15

Prop. 3.19

Prop. 3.17

Prop. 3.10Prop. 3.3Prop. 2.4Prop. 2.1

1.1. Related work

A central theme of this paper is the rich logical structure which emerges when a functor
is both monoidal closed and a bifibration at the same time – what we call a monoidal
closed bifibration. However, in many applications, this structure appears to be too specific,
and for this reason we proposed in (Melliès and Zeilberger 2013) (which later evolved
into (Melliès and Zeilberger 2015)) that type refinement systems should be systemati-
cally studied as general functors. Here, in particular, we look at what happens when a
refinement system t : D → T which may or may not have all of this logical structure is
embedded into u : Psh→ Cat, which is a monoidal closed bifibration.

The idea of beginning with arbitrary functors provides a contrast with much of the
literature on the categorical semantics of dependent type theory, which would rather
take fibrations as a starting point (Jacobs 1999). This generality is motivated in part by
our desire to view free constructions of type refinement systems as objects of study
in their own right (giving a clear mathematical status to basic type-theoretic concepts
such as typing judgments and subtyping), and in part by the necessity of studying
morphisms of refinement systems (see Section 2.2) which are not necessarily morphisms
of fibrations (or to put it differently, to treat fibrations and opfibrations on equal footing).
Nonetheless, refinement types bear a close resemblance to dependent types, and there
are many formal similarities between our approach and the fibrational approach to
dependent type theory. For example, our approach is quite related in spirit to the work of
(Atkey, Johann, Ghani 2012), who speak of dependent types as refinements of inductive

An Isbell Duality Theorem for Type Refinement Systems 7

types, as well as some of the earlier work on fibrational induction upon which they build
(Hermida and Jacobs 1998; Ghani, Johann, Fumex 2013).

As already alluded to in the introduction, the idea of viewing functors as “general-
ized fibrations” has some precedent in the work of Bénabou. In a more recent paper
(Melliès and Zeilberger 2016), we turn to another one of Bénabou’s ideas (the concept of
distributor) in order to give a bifibrational reconstruction of Lawvere’s original presheaf
hyperdoctrine (Lawvere 1969; Lawvere 1970). That paper can be read as a companion to
this one, making clearer the relationship between our general approach to the study of
type refinement systems and the traditional approach to categorical logic after Lawvere.

Our main object of study in this paper is the dual pair of embeddings of an arbitrary
refinement system into the refinement system of presheaves, which can be seen as
a generalization of the dual (covariant and contravariant) Yoneda embeddings of a
category. The Yoneda embedding is ubiquitous throughout category theory, and has
been studied in type theory particularly in connection with normalization-by-evaluation
(Čubrić, Dybjer, Scott 1998; Fiore 2002). This connection was another one of our original
motivations for studying type refinement, and something which we hope to clarify in
the future.

Other than the shift from fibrations to general functors, in many respects, our approach
is in line with ideas of Hasegawa and Katsumata, who used monoidal closed bifibrations
to model logical predicates for linear logic (Hasegawa 1999) and to study >>-lifting
for computational effects (Katsumata 2005). In turn, their work builds on Hermida’s
thesis (Hermida 1993), which introduced the idea of using cartesian closed fibrations
to model logical predicates. One key observation of this paper is that the construction
of Isbell duality between covariant and contravariant presheaves is deeply related to
the structure of u : Psh → Cat as a monoidal closed fibration (by which we mean a
functor which is both monoidal closed and a fibration at the same time). In particular,
we show (see Section 4.1) that Isbell duality can be seen as an instance of a certain
abstract construction in monoidal closed fibrations. This abstract construction can also
for example be instantiated in a different way to obtain >>-closure.

Finally, we think that the definitions of the particular refinement systems applied here
in connection with Hoare logic and linear logic are very natural, although we are not
aware of these deductive systems being considered in this way as functors in other work
(the refinement system for Hoare logic was introduced in (Melliès and Zeilberger 2013),
and (Melliès and Zeilberger 2015) also considered its extension to Separation Logic).
Certainly, there is at least a superficial resemblance between our view of Hoare logic as
a type refinement system and Hoare Type Theory (Nanevski, Morrisett, Birkedal 2008),
which is based on a refinement of the state monad. However, our paper is not intended
as a comprehensive study of Hoare logic or of linear logic, and we use these examples
primarily to build intuitions for the technical results, and to show that these two different
examples can be treated in a uniform way.

P-A. Melliès and N. Zeilberger 8

2. Preliminaries

2.1. Basic conventions and definitions

We recall some conventions from (Melliès and Zeilberger 2015) for working with functors
as type refinement systems. Given a fixed functor t : D → T , we refer to the objects of
T as types, to the morphisms of T as terms, and to the objects ofD as refinement types (or
refinements for short). Since these notions are relative to a functor t, to avoid ambiguity
one can speak of t-types, t-refinements, and so on. We say that a judgment (P, c,Q) is valid
in a given refinement system t if it has a derivation in the sense of Defn. 1.4, i.e., there
exists a morphism α : P→ Q inDwhich is mapped to c by the functor t. More generally,
we say that a typing rule is valid when there is an operation transforming derivations of
the premises into a derivation of the conclusion. For example, the rule

P =⇒
c

Q Q =⇒
d

R

P =⇒
c;d

R
;

is valid for any refinement system as an immediate consequence of functoriality: given
a morphism α : P→ Q such that t(α) = c and a morphism β : Q→ R such that t(β) = d,
there is a morphism (α; β) : P→ R and moreover t(α; β) = (t(α); t(β)) = (c; d).

We consider t-typing judgments modulo equality of terms (i.e., equality of morphisms
inT), but often we mark applications of an equality by an explicit conversion step (which
can be seen as admitting the possibility thatT is a higher-dimensional category, although
we will not pursue that idea rigorously here). For example, the rule of “covariant sub-
sumption” of subtyping (also called “post-strengthening” in Hoare logic)

P =⇒
c

Q Q =⇒ R

P =⇒
c

R

can be derived from the composition typing rule (;) just above by

P =⇒
c

Q Q =⇒ R

P =⇒
c;id

R
;

P =⇒
c

R
∼

where at ∼we have applied the axiom c = (c; id) which is valid in any category.
The notions of a cartesian morphism and of a fibration of categories (Borceux 1994) may be

naturally expressed in the language of refinement systems by first defining a pullback
of Q along c as a refinement c∗Q

c : A→ B Q @ B
c∗Q @ A

equipped with a pair of typing rules

c∗Q =⇒
c

Q Lc∗
P =⇒

d;c
Q

P =⇒
d

c∗Q Rc∗

An Isbell Duality Theorem for Type Refinement Systems 9

satisfying equations

P
β

=⇒
d;c

Q

P =⇒
d

c∗Q Rc∗ c∗Q =⇒
c

Q Lc∗

P =⇒
d;c

Q
;

= P
β

=⇒
d;c

Q

and

P
η

=⇒
d

c∗Q =

P
η

=⇒
d

c∗Q c∗Q =⇒
c

Q Lc∗

P =⇒
d;c

Q
;

P =⇒
d

c∗Q Rc∗

Dually, a pushforward of P along c is defined as a refinement c P

P @ A c : A→ B
c P @ B

equipped with a pair of typing rules

P =⇒
c;d

Q

c P =⇒
d

Q Lc P =⇒
c

c P Rc

satisfying a similar pair of equations. Note that pullbacks and pushforwards are always
determined up to vertical isomorphism, where we say that two refinements P,Q @ A
of a common type are vertically isomorphic (written P ≡ Q) when there exists a pair of
subtyping derivations

α
P =⇒ Q

β
Q =⇒ P

which compose to the identities on P and Q. We record the following type-theoretic
transcriptions of standard facts in the categorical literature:

Proposition 2.1. Whenever the corresponding pullbacks and/or pushforwards exist:

1) the following subtyping rules are valid:

Q1 =⇒ Q2

c∗Q1 =⇒ c∗Q2

P1 =⇒ P2

c P1 =⇒ c P2

2) we have vertical isomorphisms

(d; c)∗Q ≡ d∗ c∗Q (c; d) P ≡ d c P id∗Q ≡ Q id P ≡ P

A functor t : D → T is a fibration (respectively opfibration) if and only if a pullback
c∗Q (pushforward c P) exists for all compatible c and Q (c and P). It is a bifibration
if it is both a fibration and an opfibration. The definition of a fibration (originally due
to Grothendieck) is to a large extent motivated by the fact that there is an equivalence
between fibrations D → T and (pseudo)functors T op

→ Cat, and similarly between
opfibrations D → T and (pseudo)functors T → Cat. The reader will observe that one

P-A. Melliès and N. Zeilberger 10

direction of these equivalences is contained in Prop. 2.1: for example, the validity of the
subtyping rule

Q1 =⇒ Q2

c∗Q1 =⇒ c∗Q2

corresponds to the existence of a pullback functor

c∗ : DB →DA

for each morphism c : A→ B in T , where the fiber categoriesDA andDB are defined as
the subcategories ofD lying over idA and idB, respectively. As the definitions of pullback
and pushforward make plain, though, it is possible to speak of specific pullbacks and
pushforwards, even if t is not necessarily a fibration and/or opfibration.

Recall that a category is monoidal if it is equipped with a tensor product and unit
operation

• : C × C → C I : 1→ C

which are associative and unital up to coherent isomorphism, and that it is closed if it is
additionally equipped with left and right residuation operations

\ : Cop
× C → C / : C × Cop

→ C

which are right adjoint to tensor product in each component:

C(Y,X \ Z) � C(X • Y,Z) � C(X,Z / Y)

A (closed) monoidal refinement system is a refinement system t : D → T such thatD
andT are (closed) monoidal, and t strictly preserves tensor products (and residuals) and
the unit. By our conventions, a monoidal refinement system thus admits the following
refinement rules and typing rules

P1 @ A1 P2 @ A2

P1 • P2 @ A1 • A2 I @ I

P1 =⇒
c1

Q1 P2 =⇒
c2

Q2

P1 • P2 =⇒
c1•c2

Q1 •Q2
•

I =⇒
I

I I

(we are overloading notation for the monoidal structure on D and T) while a closed
monoidal refinement system admits the following additional rules:

P @ A R @ C
P \ R @ A \ C

R @ C Q @ B
R /Q @ C / B

P • (P \ R) =⇒
leval

R leval
P •Q =⇒

m
R

Q =⇒
λ[m]

P \ R λ (R /Q) •Q =⇒
reval

R reval
P •Q =⇒

m
R

P =⇒
ρ[m]

R /Q
ρ

Moreover, derivations built using these typing rules satisfy a few equations, which
we elide here (Melliès and Zeilberger 2015, §3). Finally, we remark that the notion of
a closed monoidal refinement system can be generalized by allowing the residuation
operations to be partial, i.e., by weakening the requirement that D and T be closed,
while maintaining the requirement that the functor t : D → T preserves any residuals
which may exist inD. We call such a functor a logical refinement system. Whenever the
corresponding residuals exist, a logical refinement system can be treated in essentially

An Isbell Duality Theorem for Type Refinement Systems 11

the same way as a closed monoidal refinement system, and in particular all of the above
rules are valid.

2.2. Morphisms of refinement systems

Given a pair of refinement systems t : D → T and b : E → B, by a morphism of
refinement systems from t to b we mean a pair F = (FD,FT) of functors FD : D→ E and
FT : T → B such that the square

D
FD //

t
��

E

b
��

T
FT
// B

commutes strictly. Omitting subscripts on the functors F, a morphism from t to b thus
induces a pair of rules

P @ A
F[P] @ F[A]

P =⇒
c

Q

F[P] =⇒
F[c]

F[Q] F

transporting t-refinements to b-refinements and derivations of t-judgments to deriva-
tions of b-judgments.

Given a pair of morphisms of refinement systems F = (FD,FT) : t → b and G =

(GD,GT) : b → t, an adjunction of refinement systems F a G consists of a pair of
adjunctions of categories FD a GD and FT a GT such that the unit and counit of the
adjunction FD a GD are mapped by t and b onto the unit and counit of FT a GT .

D

FD
''

GD

gg ⊥

t

��

E

b

��
T

FT
''

GT

gg ⊥ B

Writing ι and o (without subscripts) for the unit and counit of both adjunctions FD a GD
and FT a GT , an adjunction of refinement systems thus induces a pair of typing rules

P =⇒
ι

GF[P]
ι

FG[Q] =⇒
o

Q
o

in addition to the typing rules F and G, and we remark moreover that typing deriva-
tions constructed using these four rules are subject to various equations implied by the
definition of an adjunction of categories, such as the triangle laws.

Finally, we say that a morphism of refinement systems F : t→ b is fully faithful if the
induced typing rule

P =⇒
c

Q

F[P] =⇒
F[c]

F[Q] F

P-A. Melliès and N. Zeilberger 12

is invertible, in the sense that to any b-derivation

β
F[P] =⇒

F[c]
F[Q]

there is a unique t-derivation
F∗ β

P =⇒
c

Q

such that

β
F[P] =⇒

F[c]
F[Q] =

F∗ β
P =⇒

c
Q

F[P] =⇒
F[c]

F[Q] F
.

Equivalently, a morphism of refinement systems F : t → b is fully faithful when the
induced functor D → E ×B T to the pullback of FT and b is fully faithful in the
traditional categorical sense.

2.3. Right adjoints preserve pullbacks

We begin by proving a basic result about adjunctions of refinement systems, analogous
to the well-known fact that in an adjunction of categories the right adjoint functor
preserves limits. Although this elementary observation appears already in Hermida’s
thesis (Hermida 1993, Lemma 3.3.3(ii)) (a more restricted version for the specific case of
two fibrations over the same base is also proved in (Ghani, Johann, Fumex 2013)), we
give an explicit proof here both as an illustration of the flexibility of the type-theoretic
notation, and because the result itself is of fundamental importance in the following
development.

Proposition 2.2. If G : b → t is a right adjoint, then G sends b-pullbacks to t-pullbacks, i.e.,
for all c : A→ B and Q @ B, whenever the b-pullback c∗Q exists, then the t-pullback G[c]∗ G[Q]
exists, and moreover we have that G[c∗Q] ≡ G[c]∗ G[Q].

Proof. We need to show that G[c∗Q] is a pullback of G[Q] along G[c]. By definition, this
means constructing a pair of typing rules

G[c∗Q] =⇒
G[c]

G[Q]
LG[c]∗

P =⇒
d;G[c]

G[Q]

P =⇒
d

G[c∗Q]
RG[c]∗

satisfying the β and η equations. The left-rule is derived immediately from the left-rule
for c∗Q by applying G:

c∗Q =⇒
c

Q Lc∗

G[c∗Q] =⇒
G[c]

G[Q] G

The right-rule can be derived in a few more steps from the right-rule for c∗Q, assuming

An Isbell Duality Theorem for Type Refinement Systems 13

the existence of an F such that F a G:

P =⇒
ι

GF[P]
ι

P =⇒
d;G[c]

G[Q]

F[P] =⇒
F[d];FG[c]

FG[Q] F FG[Q] =⇒
o

Q
o

F[P] =⇒
F[d];FG[c];o

Q
;

F[P] =⇒
F[d];o;c

Q
∼1

F[P] =⇒
F[d];o

c∗Q Rc∗

GF[P] =⇒
GF[d];G[o]

G[c∗Q] G

P =⇒
ι;GF[d];G[o]

G[c∗Q]
;

P =⇒
d

G[c∗Q]
∼2

Here at ∼1 and ∼2 we invoke, respectively, naturality of the counit and a triangle law
for FT a GT . Finally, the fact that these typing rules satisfy the β and η equations can be
verified by a long but mechanical calculation. �

By duality, we also immediately obtain the following:

Proposition 2.3. If F : t→ b is a left adjoint, then F sends t-pushforwards to b-pushforwards,
i.e., for all c : A→ B and P @ A, whenever the t-pushforward c P exists, then the b-pushforward
F[c] F[P] exists, and moreover we have that F[c] F[P] ≡ F[c P].

In passing, we note that Propositions 2.2 and 2.3 also imply the classical result about
ordinary adjunctions of categories. To see this, begin by observing that for any category
C, one can consider the forgetful functor Cat � C → Cat as the refinement system of
diagrams in C. Here Cat � C is the category whose objects are pairs of an indexing
category I together with a functor φ : I → C (hence, “diagrams in C”), and whose
morphisms (I, φ) → (J , ψ) consist of a reindexing functor F : I → J together with a
natural transformation θ : φ ⇒ (F;ψ). The important point is that with respect to this
refinement system, a pushforward of a diagram (I, φ) along the unique functor !I : I → 1
corresponds precisely to a colimit of the diagram φ : I → C (and more generally, the
pushforward along a functor F : I → J corresponds to a left Kan extension of φ along
F). Since an adjunction

C

L
''

R

ee ⊥ D

between two categories C andD lifts to a vertical adjunction

Cat � C
Cat�L

,,

Cat�R
kk ⊥

��

Cat �D

��
Cat

P-A. Melliès and N. Zeilberger 14

between the respective refinement systems of diagrams, Prop. 2.3 then implies that the
left adjoint functor L sends colimits inC to colimits inD (and more generally, it preserves
left Kan extensions in Cat). By a similar argument, one can use Prop. 2.2 to derive that
the right adjoint functor R sends limits inD to limits in C.

Our main application of Propositions 2.2 and 2.3 in this paper will be the following
corollary, about the distributivity properties of pullbacks and pushforwards with respect
to tensors and residuals.

Proposition 2.4. If t : D → T is a closed monoidal refinement system, then whenever the
corresponding pullbacks and pushforwards exist we have vertical isomorphisms

(c • d) (P •Q) ≡ c P • d Q (a)

c P \ d∗ R ≡ (c \ d)∗ (P \ R) (b)

d∗ R / c Q ≡ (d / c)∗ (R /Q) (c)

Proof. The subtyping judgments in the left-to-right direction are easy to derive, e.g., (a)
can be derived in any monoidal refinement system:

P =⇒
c

c P Rc Q =⇒
d

d Q Rd

P •Q =⇒
c•d

c P • d Q
•

(c • d) (P •Q) =⇒ c P • d Q
L(c • d)

The assumption of monoidal closure implies that these are vertical isomorphisms, using
the fact that t comes equipped with a family of adjunctions

D

P•−
''

P\−

gg ⊥

t

��

D

t

��
T

A•−
''

A\−

gg ⊥ T

D

−•Q
''

−/Q

gg ⊥

t

��

D

t

��
T

−•B
''

−/B

gg ⊥ T

as well as a family of contravariant adjunctions

D

R/−
))

−\R

hh ⊥

t

��

D
op

top

��
T

C/−
))

−\C

hh ⊥ T
op

D

−\R
))

R/−

hh ⊥

t

��

D
op

top

��
T

−\C
))

C/−

hh ⊥ T
op

for all P @ A, Q @ B, R @ C. Explicitly, we have (a) by

(c • d) (P •Q) ≡ (id • d) (c • id) (P •Q) (Prop. 2.1)

≡ (id • d) (c P •Q) (− •Q a − /Q)

≡ c P • d Q (c P • − a c P \ −)

An Isbell Duality Theorem for Type Refinement Systems 15

and (b) (and similarly (c)) by

c P \ d∗ R ≡ (id \ d)∗ (c P \ R) (c P • − a c P \ −)

≡ (id \ d)∗ (c \ id)∗ (P \ R) (R / − a − \ R)

≡ (c \ d)∗ (P \ R) (Prop. 2.1)

where in the second-to-last step we use the fact that a top-pullback is the same thing as
a t-pushforward. �

3. Representing refinement systems

3.1. The refinement systems of presheaves and of pointed categories

The refinement system of presheaves u : Psh→ Cat is defined as follows:

— Cat is the category whose objects are categories and whose morphisms are functors.
— Objects of Psh are pairs (A, φ), where A is a category and φ : Aop

→ Set is a
contravariant presheaf over that category.

— Morphisms (A, φ)→ (B, ψ) of Psh are pairs (F, θ), where F : A→ B is a functor and
θ : φ⇒ (Fop;ψ) is a natural transformation.

— u : Psh→ Cat is the evident forgetful functor.

We typically write φ @ A to indicate that φ is a presheaf over A, rather than the more
verbose (A, φ) @ A. This convention is unproblematic so long as we understand that
there is an implicit coercion to view φ as an object of Psh.

Proposition 3.1. u is a bifibration, with pullbacks defined by precomposition

F : A→ B ψ @ B

F∗ ψ @ A F∗ ψ
def
= a 7→ ψ(Fa)

and pushforwards as coends:†

φ @ A F : A→ B
Fφ @ B Fφ

def
= b 7→ ∃a.B(b,Fa) × φ(a)

Proposition 3.2. u is a closed monoidal refinement system, with tensor products and residuals
in Cat defined using its usual cartesian closed structure (i.e., by building product categories and
functor categories), and lifted to Psh as follows (we show only the definitions of presheaves, not
the structural maps):

I @ 1
φ @ A ψ @ B

φ • ψ @ A×B φ • ψ
def
= (a, b) 7→ φ(a) × ψ(b) I

def
= ∗ 7→ { ∗ }

φ @ A ω @ C

φ \ ω @ [A,C] φ \ ω
def
= F 7→ ∀a.φ(a)→ ω(Fa)

† In the rest of the paper we adopt the logical notation ∀x.Φ(x, x) and ∃y.Ψ(y, y) to denote ends and coends,
respectively, rather than the more traditional

∫
x Φ(x, x) and

∫ y
Ψ(y, y) of category theory (Kelly 1982).

P-A. Melliès and N. Zeilberger 16

ω @ C ψ @ B

ω / ψ @ [B,C] ω / ψ
def
= F 7→ ∀a.ψ(a)→ ω(Fa)

all pullbacks and pushforwards.

(Note that these definitions may be naturally generalized to the refinement system of
V-valued presheaves over V-enriched categories, but for concreteness we only work
with ordinary categories here.)

We can also identify a subsystem of u that will play an important analytical role later
on. Let Cat• be the category whose objects consist of categoriesA together with a chosen
object a ∈ A, and whose morphisms (A, a)→ (B, b) are pairs (F, h) consisting of a functor
F : A → B together with a morphism h : F(a) → b of B. The refinement system of
pointed categories is defined as the evident forgetful functor s : Cat• → Cat. This is a
“subsystem” of u in the sense that there is a vertical morphism of refinement systems
y : s→ u, corresponding to the classical Yoneda embedding:

Cat•

s
��

y // Psh

u
��

Cat Cat

Read as a vertical morphism of refinement systems, the Yoneda embedding interprets
an object a ∈ A as the contravariant presheafA(−, a) over the same categoryA. Finally,
since any object a ∈ A can also be seen as a functor a : 1→A in Cat, let us observe that
y : s→ u may equivalently be defined in terms of pushforward of the unit presheaf:

Proposition 3.3. For all a ∈ A, we haveA(−, a) ≡ a I in u.

Proof. Immediate from the definition of pushforwards in u (see Prop. 3.1). �

3.2. The positive representation of a refinement system

In this section we show that any refinement system t : D→ T has a sound and complete
presheaf interpretation, in the sense of a fully faithful morphism of refinement systems
t→ u. We give a direct description of this representation here, as well as some examples,
and we will provide some further motivation of the definitions in Section 3.3.

Definition 3.4. For any t-type B, the category B+t is defined as follows:

— Objects are pairs (P @ A, c : A→ B)

— Morphisms (P1, c1)→ (P2, c2) are derivations
α

P1 =⇒
e

P2 such that c1 = e; c2.

Proposition 3.5. The assignment B 7→ B+t extends to a functor (−)+t : T → Cat.

Definition 3.6. For any t-refinement Q @ B, the presheaf Q+t @ B+t is defined on objects
by

(P, c) 7→ {α |
α

P =⇒
c

Q }

and with the contravariant functorial action transforming any morphism (P1, c1) →

An Isbell Duality Theorem for Type Refinement Systems 17

(P2, c2) given as a derivation
α

P1 =⇒
e

P2

such that c1 = e; c2 into a typing rule (parametric in Q)

P2 =⇒
c2

Q

P1 =⇒
c1

Q

derived as
α

P1 =⇒
e

P2 P2 =⇒
c2

Q

P1 =⇒
e;c2

Q
;

P1 =⇒
c1

Q
∼

Proposition 3.7. The assignment (Q @ B) 7→ (B+t,Q+t) extends to a functor (−)+t : D→ Psh.

Proposition 3.8. The pair of functors (−)+t : T → Cat and (−)+t : D→ Psh define a morphism
of refinement systems from t to u, i.e., a commuting square

D
(−)+t
//

t
��

Psh

u
��

T
(−)+t
// Cat

As we discussed in Section 2.2, any morphism of refinement systems induces a pair of
refinement rules and typing rules, and in this case in particular we have rules

P @ A
P+t @ A+t

P =⇒
c

Q

P+t =⇒
c+t

Q+t +t

which we call the positive representation of the refinement system t in the refinement
system of presheaves.

Proposition 3.9. The positive representation of t is sound and complete, in the sense that the
morphism of refinement systems (−)+t : t→ u is fully faithful.

Remember that we say a morphism of refinement systems is fully faithful when the
induced typing rule is invertible, in this case meaning that to any natural transformation

θ
P+t =⇒

c+t
Q+t

in u there exists a unique t-derivation

(+t)∗ θ
P =⇒

c
Q

P-A. Melliès and N. Zeilberger 18

such that

θ
P+t =⇒

c+t
Q+t =

(+t)∗ θ
P =⇒

c
Q

P+t =⇒
c+t

Q+t +t

To prove Prop. 3.9, we first observe that the presheaves P+t are representable (in the
classical sense (Mac Lane 1971, III.2)), so that the positive representation factors via the
refinement system of pointed categories.

Proposition 3.10. The morphism (−)+t : t → u factors as a morphism (−)+t : t → s followed
by the Yoneda embedding,

D

t
��

(−)+t
// Psh

u
��

T
(−)+t
// Cat

=

D

t
��

(−)+t
// Cat•

s
��

y // Psh

u
��

T
(−)+t
// Cat Cat

where (−)+t : D→ Cat• is defined by P+t def
= (P, idA) ∈ A+t for all P @ A.

Proof. Immediate from the definitions. (We overload the notation P+t to stand both for
the presheaf on A+t and for its representing object, but this is harmless since the aspect
of P+t we are referring to will always be deducible from context.) �

Proof of Prop. 3.9. By Prop. 3.10, it suffices to show separately that each factor (−)+t : t→ s
and y : s→ u is a fully faithful morphism of refinement systems:

((−)+t : t→ s is fully faithful.) Suppose given a derivation of P+t =⇒
c+t

Q+t in s. By defini-

tion of the refinement system s : Cat• → Cat and of the functor c+t : A+t
→ B+t, such

a derivation is the same thing as a morphism (P, c)→ (Q, idB) in B+t. In turn, it is easy
to check from the definition of the category B+t that such a morphism is nothing but
a t-derivation of P =⇒

c
Q.

(y : s→ u is fully faithful.) This may of course be reduced to the usual Yoneda lemma,
but we can also establish it directly by using the characterization (Prop. 3.3) of
representable presheaves as pushforwards of the unit presheafA(−, a) ≡ a I. Consider
a s-typing judgment a =⇒

F
b given by a pair of objects a ∈ A and b ∈ B together with

a functor F : A→ B. By the universal property of the pushforward, u-derivations of
a I =⇒

F
b I are in bijective correspondence with u-derivations of I =⇒

a;F
b I. The latter

correspond exactly to elements of B(F(a), b), which by definition are the same thing
as derivations of a =⇒

F
b in s.

�

Example 1. Recall from the Introduction that Hoare logic can be viewed as a refinement
system over a category with one object W. With respect to this refinement system, the
category W+ has pairs (P, c) of a state predicate P and a command c as objects, while a
morphism

(P1, c1)→ (P2, c2)

An Isbell Duality Theorem for Type Refinement Systems 19

corresponds to a derivation of a triple {P1}e{P2} for some e such that c1 = e; c2. Traditionally
Hoare logic is seen through a “proof irrelevant” lens, so that a Hoare triple is either valid
or invalid, and not much attention is paid to the derivation itself. If we adopt that
simplifying assumption, then the positive embedding is essentially just a set of guarded
commands:

Q+ = { (P, c) | ` {P}c{Q} }

In other words, (P, c) ∈ Q+ just in case it is possible to run c in a state satisfying the
precondition P to obtain a state satisfying Q.

Example 2. We will formulate the example of sequent calculus for linear logic in a bit
more abstract terms as follows. To any multicategoryF , there is associated a free monoidal
category M[F], whose objects (and morphisms) are lists of objects (and morphisms) of
F , and where the monoidal structure on M[F] is given by concatenation (see (Leinster
2004, §2)). Moreover this category is equipped with a forgetful functor |−| : M[F] → ∆

into the simplex category (whose objects are finite ordinals and monotone maps), which
interprets a list of objects by its length, and a list of morphisms as a monotone function.

Similarly, there is an analogous construction of the free symmetric monoidal category
SM[F] on a symmetric multicategory F , where one simply replaces lists by multisets,
and the forgetful functor

|−| : SM[F]→ Fin

maps into the category of finite sets and functions (which contains ∆ as a subcategory).
To model intuitionistic linear sequent calculus along the lines suggested in the Intro-

duction, we will assume given a symmetric multicategory F whose objects are linear
logic formulas, and whose multimorphisms are sequent calculus proofs (cf. (Lambek
1969)). Then, we take the category of contexts to be W = SM[F] and consider the
forgetful functor |−| : W → Fin as a refinement system. Since the one-point set 1 is a
terminal object in Fin, the category 1+ is equivalent toW, and the positive embedding
of a linear logic formula C (seen as a singleton context C @ 1) is the presheaf C+ onW de-
fined exactly as in the Introduction (here we write F (Γ; C) for the set of multimorphisms
from Γ to C):

C+ = Γ 7→ W(Γ,C) = F (Γ; C) = {π |
π

Γ ` C }

�

3.3. Factorization via the free opfibration

In Prop. 3.10 we explained that the positive representation (−)+t : t→ u can be factored
as a morphism (−)+t : t → s followed by the Yoneda embedding y : s → u of pointed
categories into presheaves. For the interested (and categorically-minded) reader, in this
section we provide some further discussion and motivation of the embedding into
pointed categories, explaining its relationship to the free opfibration over a functor, as
well as the role played by s : Cat• → Cat as a “universal” opfibration.

We begin by remarking that the category B+t can be seen as an analogue of the
slice category over B, and reduces to the ordinary slice of T over B in the case where

P-A. Melliès and N. Zeilberger 20

t = idT : T → T . As such, we will sometimes refer to B+t as the t-slice (or “relative
slice”) of B. Note that the relative slice construction also appears in (Maltsiniotis 2005,
§1.1.2), where the notationD/B is used instead of B+t.

Remark 3.11. In the case where t = !D : D → 1, the relative slice over the unique object ∗ of 1
is D itself, and the positive representation Q+t of an object Q ∈ D is just Q itself when viewed
as a refinement in s, or the ordinary Yoneda embedding of Q when viewed as a refinement in u.
More generally, for any t : D → T and t-refinement Q @ B, if B is a terminal object in T then
B+t
≡ D, and Q+t is represented by the object Q itself.

The fact that the relative slice functor (−)+t : T → Cat reduces to the ordinary slice
functor in the case where t is the identity can also be understood in terms of the following
decomposition:

T
(−)+t
// Cat = T

B7→T (t−,B) // [Dop,Set]
∫
// Cat

That is, the relative slice functor factors as the nerve of t followed by the category of
elements construction. Seen as a covariant indexed category encoding an opfibration,
this composite is just the free opfibration on t, in the sense that the (covariant) category
of elements of (−)+t : T → Cat is the comma category t ↓ T , which has the property that

1) The projection functor codt : t ↓ T → T is an opfibration.
2) There is a (vertical) morphism of refinement systems from t to codt,

D

t
��

(id,t) // t ↓ T

codt

��
T T

where (id, t) : D→ t ↓ T is the functor sending any Q @ B to the object (Q, idB,B).
3) Any morphism of refinement systems F : t → b from t into an opfibration b factors

uniquely as a morphism F̃ : codt → b composed with the morphism (id, t) : t→ codt.

Next, we can observe that any opfibration has a representation (what one might call the
covariant “Grothendieck representation”) in the refinement system of pointed categories,

E

b
��

∂+b // Cat•

s
��

B
∂+b

// Cat

where ∂+b : B → Cat sends any object X ∈ B to the fiber EX of b over X, while
∂+b : E → Cat• coerces any refinement R @ X (i.e., an object R ∈ E such that b(R) = X)
into the corresponding element R ∈ EX of the fiber category. Note that it is important
that b : E → B be an opfibration in order for these operations to define functors.

By combining these two separate observations, we get a simple factorization of the
positive embedding into pointed categories.

Proposition 3.12. The morphism (−)+t : t → s factors as the free opfibration on t followed by

An Isbell Duality Theorem for Type Refinement Systems 21

the covariant Grothendieck representation:

D

t
��

(−)+t
// Cat•

s
��

T
(−)+t
// Cat

=

D

t
��

(id,t) // t ↓ T

codt

��

∂+codt // Cat•

s
��

T T
∂+ codt

// Cat

3.4. The negative representation

Every functor t : D → T induces an opposite functor top : Dop
→ T

op, and one can
consider the positive representation of top

D
op (−)+top

//

top

��

Psh

u
��

T
op

(−)+top
// Cat

as another negative representation of t. Letting (−)−t def
= (−)+top

: top
→ u, this means we

have rules

P @ A
P−t @ A−t

P =⇒
c

Q

Q−t =⇒
c−t

P−t −t

giving a fully faithful, contravariant embedding of t into u.
Unravelling the definitions, we can verify that

— A−t is the opposite of the category whose objects consist of pairs (c,Q) such that
c : A → B and Q @ B, and whose morphisms (c1,Q1) → (c2,Q2) correspond to

derivations
α

Q1 =⇒
e

Q2 such that c1; e = c2. Dually to A+t, we can read (A−t)op as the
t-coslice (or “relative coslice”) category out of A.

— For any t-refinement P @ A, the presheaf P−t @ A−t is defined on objects by

(c,Q) 7→ {α |
α

P =⇒
c

Q }

and on morphisms by

α
Q1 =⇒

e
Q2 7→

P =⇒
c1

Q1
α

Q1 =⇒
e

Q2

P =⇒
c1;e

Q2
;

P =⇒
c2

Q2
∼

Note that P−t is a contravariant presheaf over A−t, and thus a covariant presheaf over
the t-coslice category.

By a similar line of reasoning as in Sections 3.2 and 3.3, we can decompose the negative
representation (−)−t : top

→ u into three separate components.

P-A. Melliès and N. Zeilberger 22

Proposition 3.13. The morphism (−)−t : top
→ u factors as a morphism (−)−t : top

→ s
followed by the Yoneda embedding,

D
op

top

��

(−)−t
// Psh

u
��

T
op

(−)−t
// Cat

=

D
op

top

��

(−)−t
// Cat•

s
��

y // Psh

u
��

T
op

(−)−t
// Cat Cat

where (−)−t : Dop
→ Cat• is defined by P−t def

= (idA,P) ∈ A−t for all P @ A.

Proposition 3.14. The morphism (−)−t : top
→ s factors as the free fibration on t followed by

the contravariant Grothendieck representation:

D
op

top

��

(−)−t
// Cat•

s
��

T
op

(−)−t
// Cat

=

D
op

top

��

(t,id) // (T ↓ t)op

domop
t

��

∂−domt // Cat•

s
��

T
op

T
op

∂− domt

// Cat

Example 3. If we again follow the classical tradition of treating a Hoare triple {P}c{Q} as
either valid or invalid (with no interesting content to the derivation), then the negative
representation of a state predicate

P− = { (c,Q) | ` {P}c{Q} }

is essentially just the set of all possible continuations of a state satisfying P.

Example 4. With respect to the refinement system |−| :W→ Fin defined in Example 2,
the relative coslice out of 1 has objects (i : 1 → n,Γ @ n) corresponding to pointed
contexts, in the sense that the map i : 1 → n serves to select a distinguished formula Ai

in Γ = A1, . . . ,An. A morphism of pointed contexts (j,∆) → (i,Γ) (by which we mean
a morphism (i,Γ) → (j,∆) in 1−) corresponds to a linear substitution σ : ∆ → Γ whose
underlying function maps j to i, implying that the chosen formula B j is used (possibly
together with other formulas of ∆) as part of the proof of Ai.

To better understand this category, it is helpful to adopt a more evocative notation for
pointed contexts. For example, we could draw the diagram

A1 A2 A3 A4

• • � •

to represent the pointed context (i,Γ) where Γ = A1, . . . ,A4 and i = 3. Any morphism of
pointed contexts

B1 B2 B3 B4

• � • •
−→

A1 A2 A3 A4

• • � •

An Isbell Duality Theorem for Type Refinement Systems 23

must have an underlying function mapping 2 to 3, for example like so:

1 • // • 1

2 �
((
• 2

3 • // � 3

4 •

==

• 4

In particular, a linear substitution constructed over this specific underlying function
consists of a collection of four proofs of the form

π1
B1 ` A1,

π2
B4 ` A2,

π3
B2,B3 ` A3, and

π4
· ` A4.

Now, suppose given a formula A @ 1. Its negative representation A− @ 1− corresponds
to the presheaf which sends any pointed context

B1 . . . B j . . . Bm

• . . . � . . . •

to the collection of morphisms of pointed contexts

A
�

−→
B1 . . . B j . . . Bm

• . . . � . . . •

By definition, such a morphism must contain a proof of A ` B j together with closed proofs
of each of the B1, . . . ,B j−1,B j+1, . . . ,Bm.

As a shorthand notation, we can write ∆[B] to stand for a pointed context with chosen
formula B and remaining formulas ∆. Then the presheaf A− @ 1− is computed on objects
by the following expression:

A− = ∆[B] 7→ F (A; B) ×W(·,∆)

3.5. Preservation of pullbacks

We have seen that any refinement system (i.e., any functor) t : D→ T may be embedded
both covariantly and contravariantly into the refinement system of pointed categories,

t
(−)+t
// s top(−)−t
oo

and that by composing these morphisms with the Yoneda embedding

t
(−)+t
//

(−)+t
��

s

y

��

top(−)−t
oo

(−)−t
~~

u

one obtains two fully faithful presheaf representations of t. But why not stop at s? As
we will see, the benefit of extending the voyage of t and top all the way into u is that
this refinement system has a much richer logical structure than s, which we can apply in

P-A. Melliès and N. Zeilberger 24

order to talk about the original refinement system t. By way of illustration, an important
property of the positive presheaf representation (−)+t : t → u is that it preserves any
pullbacks which may already exist in t.
Proposition 3.15. Whenever c∗Q exists in t, we have (c∗Q)+t

≡ (c+t)∗Q+t in u.

Proof. By expanding definitions, the elements of (c∗Q)+t correspond to t-derivations

P
α

=⇒
d

c∗Q

where P @ X and d : X→ A, while the elements of (c+t)∗Q+t correspond to t-derivations

P
β

=⇒
d;c

Q.

So, the proposition follows from the universal property of the t-pullback. �

As an immediate corollary, we have that the negative representation sends (t-)pushforwards
to (u-)pullbacks.
Proposition 3.16. Whenever c P exists in t, we have (c P)−t

≡ (c−t)∗ P−t in u.
On the other hand, the positive representation need not preserve pushforwards: al-
though it’s true that the u-subtyping judgment c+t P+t =⇒ (c P)+t is valid whenever the
pushforward c P exists in t (indeed, this is true whenever one has a morphism of re-
finement systems and the pushforward exists on both sides), in general the converse
subtyping judgment need not be valid. Fortunately, in Section 4.4 we will show that al-
though the positive representation need not preserve pushforwards, it at least preserves
them “up to double dualization” in u.

3.6. Preservation of logical connectives up to change-of-basis

Suppose that t : D→ T is a monoidal refinement system. By definition, this means that
D and T are monoidal and that we have a commuting square

D×D

•

��

t×t // T × T

•

��
D

t
// T

(as well as a commuting triangle associated to the tensor unit, but we will ignore the
unit in this section, since its treatment is completely analogous). Since u : Psh→ Cat is
also a monoidal refinement system, the positive representation of t thus induces a cube

Psh × Psh //

��

Cat × Cat

��

D×D

::

//

��

a

T × T

::

��

b

Psh // Cat

D //

::

T

::

An Isbell Duality Theorem for Type Refinement Systems 25

where all but the left and right faces marked a and b commute strictly.
These latter faces need only commute in the lax sense that there are natural transfor-

mations

D×D
(−)+t

×(−)+t
//

•

��
�� m

Psh × Psh

•

��
D

(−)+t
// Psh

T × T
(−)+t

×(−)+t
//

•

��
�� m

Cat × Cat

×

��
T

(−)+t
// Cat

and moreover the natural transformation on the right is the projection of the one on the
left along the cube, this meaning that we have a family of functors

mB1,B2 : B+t
1 × B+t

2 → (B1 • B2)+t (5)

and a family of u-derivations

Q+t
1 •Q+t

2

mQ1,Q2

=⇒
mB1 ,B2

(Q1 •Q2)+t (6)

natural in Q1 @ B1 and Q2 @ B2. Explicitly, the functors mB1,B2 are defined by the action
sending any pair of objects

(P1, c1) (P2, c2)

(where P1 @ A1, c1 : A1 → B1,P2 @ A2, c2 : A2 → B2) to the object

(P1 • P2, c1 • c2)

while the natural transformations mQ1,Q2 are defined by the action sending any pair of
t-derivations

α1
P1 =⇒

c1
Q1

α2
P2 =⇒

c2
Q2

to the t-derivation
α1

P1 =⇒
c1

Q1

α2
P2 =⇒

c2
Q2

P1 • P2 =⇒
c1•c2

Q1 •Q2
•

We can summarize all this by saying that the positive representation is a lax morphism
of monoidal refinement systems in the expected sense.

From this it follows for purely formal reasons that when t is a logical refinement system
(i.e., it is monoidal and strictly preserves residuals) we can likewise build functors

aA,C : (A \ C)+t
→ A+t

\ C+t (7)

whenever the corresponding residual A \ C exists in T , and u-derivations

(P \ R)+t
aP,R
=⇒
aA,C

P+t
\ R+t (8)

whenever the residual P \ R exists inD. For example, we can define aA,C by

aA,C
def
= λ[mA,A\C; leval+t]

P-A. Melliès and N. Zeilberger 26

and then construct the derivations as follows:

P+t
• (P \ R)+t =⇒

m
(P • (P \ R))+t m

P • (P \ R) =⇒
leval

R leval

(P • (P \ R))+t =⇒
leval+t

R+t +t

P+t
• (P \ R)+t =⇒

m;leval+t
R+t

;

(P \ R)+t =⇒
λ[m;leval+t]

P+t
\ R+t λ

Finally, we also have

(R /Q)+t
a′Q,R
=⇒
a′B,C

R+t /Q+t (9)

defined in the analogous way. Again, all this can be summarized as saying that the
positive representation is a lax morphism of logical refinement systems.

However, we can actually establish a much better property about the positive rep-
resentation, which says that in a certain precise sense it strongly preserves the logical
structure of t, but only “up to change-of-basis”.

Proposition 3.17. Let P @ A, Q @ B, R @ C be refinements in a logical refinement system t.
Then all of the following vertical isomorphisms hold in u, where (2) and (3) are conditioned on
the assumption that the corresponding residuals exist in t:

mA,B (P+t
•Q+t) ≡ (P •Q)+t (a)

(P \ R)+t
≡ aA,C

∗ (P+t
\ R+t) (b)

(R /Q)+t
≡ a′B,C

∗ (R+t /Q+t) (c)

Proof. We can give a purely formal calculation of (a):

mA,B (P+t
•Q+t) ≡ mA,B (P+t I •Q+t I) (Propositions 3.3 and 3.10)

≡ mA,B (P+t
•Q+t) (I • I) (Prop. 2.4)

≡ mA,B (P+t
•Q+t) I (I ≡ I • I)

≡ (P+t
•Q+t; mA,B) I (Prop. 2.1)

≡ ((P, idA) • (Q, idB); mA,B) I (defn. of P+t and Q+t)

≡ (P •Q, idA • idB) I (defn. of mA,B)

≡ (P •Q, idA•B) I (idA•B = idA • idB)

≡ (P •Q)+t I (defn. of (P •Q)+t)

≡ (P •Q)+t (Propositions 3.3 and 3.10)

For (b), through similar reasoning we can derive that

aA,C
∗ (P+t

\ R+t) ≡ (aA,C; (P+t
\ idC))∗ R+t

and by expanding definitions we can compute that the elements of the presheaf on the
right correspond to derivations

P •Q
α

=⇒
id•d

R

An Isbell Duality Theorem for Type Refinement Systems 27

where Q @ B and d : B → A \ C. But then the universal property of the left residual
in t says that these derivations are in one-to-one correspondence with the elements of
(P \ R)+t. The case of (c) is similar. �

In categorical language, an equivalent way of stating Prop. 3.17 is that the morphisms

mP,Q : P+
•Q+

→ (P •Q)+

aP,R : (P \ R)+
→ P+

\ R+

a′Q,R : (R /Q)+
→ R+ /Q+

which come from the lax monoidal structure of the functor (−)+t : D → Psh are in fact
opcartesian, cartesian, and cartesian, respectively, relative to the functor u : Psh→ Cat.
As a consequence, Prop. 3.17 is really an analogue of Day’s embedding theorem for
monoidal categories (Day 1970), generalized to the case of logical refinement systems.
Remark 3.18. Consider the case where D is a monoidal category and t = !D : D → 1
(cf. Remark 3.11). In this case there is a single functor m∗,∗ : D×D → D corresponding to the
tensor product onD, and we get a type-theoretic decomposition of the “Day construction” (Day
1970; Kelly 1982), which transports any monoidal category into a closed monoidal category.
In particular, the operation of taking an (“external”) tensor product of presheaves and pushing
forward along m defines an (“internal”) monoidal structure on the presheaf category [Dop,Set],
while the operations of taking an (“external”) residual and pulling back along the functors a or
a′ (which are the left/right curryings of m) places an (“internal”) closed structure on [Dop,Set].
Thus, Prop. 3.17 specializes to the fact that the Yoneda functor preserves the monoidal structure
ofD, as well as any closed structure which may exist.

Moreover, this remark can be extended to the general case of a monoidal refinement
system t : D → T . We have shown in (Melliès and Zeilberger 2015) that in any such
refinement system with enough pushforwards, the fiber DW of any monoid W in T
comes equipped with a monoidal structure defined by pushing forward along the mul-
tiplication map p : W •W →W:

P ⊗W Q def
= p (P •Q) (P,Q @W)

The positive representation induces (by restriction) a functor

(−)+ : DW → [(W+)op,Set] (10)

from the fiber of W into the presheaf category over W+. Moreover, the category W+

inherits a monoidal structure from the monoid W, defined as:

W+
×W+

mW,W // (W •W)+
p+

// W+

The associated presheaf category [(W+)op,Set] comes thus equipped with a (closed)
monoidal structure provided by the Day tensor product:

φ ⊗W+ ψ
def
= (mW,W ; p+) (φ • ψ) (11)

Now, the functor (10) is in general only lax monoidal, with the coercion morphism

P+
⊗W+ Q+ // (P ⊗W Q)+

P-A. Melliès and N. Zeilberger 28

constructed by applying the universal property of P+
⊗W+ Q+ (defined as the u-pushforward

of P+
•Q+ along (mW,W ; p+)) to the composite derivation

P+
•Q+

mP,Q
=⇒
mW,W

(P •Q)+
α+

=⇒
p+

(P ⊗W Q)+

where the right-hand derivation is built by applying the positive representation functor
to the derivation

P •Q
α

=⇒
p

P ⊗W Q

coming from the definition of P ⊗W Q as a t-pushforward of P •Q along p.

Proposition 3.19. Let W be a monoid in a monoidal refinement system t with enough push-
forwards. Then the functor (−)+ : DW → [(W+)op,Set] is lax monoidal. In particular, the
subtyping judgment P+

⊗W+ Q+ =⇒ (P⊗W Q)+ is valid (in u : Psh→ Set) for all t-refinements
P,Q @W.

Since the derivation mP,Q is cocartesian (Prop. 3.17), the coercion P+
⊗W+ Q+

→ (P⊗W Q)+

is an isomorphism just in case the positive representation transports the cocartesian
derivation α to a cocartesian derivation α+. This is precisely what happens in the special
case discussed in Remark 3.18, where p is equal to the identity.

In the case of a logical refinement system t : D → T with enough pullbacks, the
fiber DW is not just monoidal, but also closed (Melliès and Zeilberger 2015), with the
residuals defined by pulling back along the left and right curryings of the monoid
multiplication map:

P(W R def
= λ[p]∗ (P \ R) (P,R @W)

R W (Q def
= ρ[p]∗ (R /Q) (Q,R @W)

There are two canonical coercion morphisms

(P(W R)+ // P+(W+ R+ and (R W (Q)+ // R+
W+ (Q+

induced by the lax monoidal structure of (10), which can be constructed as the composite
derivations

(P(W R)+
α+

1
=⇒

(λ[p])+
(P \ R)+

aP,R
=⇒
aW,W

P+
\ R+

and

(R W (Q)+
α+

2
=⇒

(ρ[p])+
(R /Q)+

a′Q,R
=⇒
a′W,W

R+ /Q+

where α1 and α2 are the cartesian derivations coming from the definition of P(W R and
R W (Q as pullbacks. One key difference with the previous situation is that the positive
representation preserves all cartesian morphisms (Prop. 3.15), which implies that the
two coercion morphisms are in fact isomorphisms.

Proposition 3.20. Let W be a monoid in a logical refinement system t with enough residuals
and pullbacks. Then the functor (−)+ : DW → [(W+)op,Set] preserves residuals. In particular,

An Isbell Duality Theorem for Type Refinement Systems 29

we have vertical isomorphisms (P(W R)+
≡ P+(W+ R+ and (R W (Q)+

≡ R+
W+ (Q+ for all

t-refinements P,Q,R @W.

4. Duality and negative translation

4.1. Overview

The definition of the linear implications P(W R and R W (Q relative to a monoid W
are in fact instances of a more general pattern, which can be implemented in any logical
refinement system b : E → B with enough residuals and pullbacks. Suppose given an
arbitrary binary operation

p : X • Y→ Z

in the basis B. Then every refinement R @ Z defines a pair of dualization operators

P⊥ def
= λ[p]∗ (P \ R) (P @ X)

⊥Q def
= ρ[p]∗ (R /Q) (Q @ Y)

inducing a contravariant adjunction

EX

(−)⊥

&&
⊥ E

op
Y

⊥(−)

ff

between the refinements of X and the refinements of Y, as witnessed by the following
equivalences of typing and subtyping judgments:

P •Q =⇒
p

R

P =⇒
λ[p]

R /Q

P =⇒ ⊥Q

P •Q =⇒
p

R

Q =⇒
ρ[p]

P \ R

Q =⇒ P⊥

Observe that we don’t require that p be the multiplication of a monoid W in order to
implement this pattern, although of course we can apply it in that situation.

For example, consider this construction in the refinement system u : Psh → Cat,
applied to a monoidal category C seen as an object of Cat having a tensor product
operation p : C × C → C. In that case, the fiber associated to C is the presheaf category
[Cop,Set], and given a fixed presheaf R ∈ [Cop,Set] one recovers a familiar pattern
from the theory of linear continuations (Thielecke 1997; Melliès 2012): a contravariant
adjunction

[Cop,Set]

−(R
**

⊥ [Cop,Set]op

R (−

jj

induced by negation into R, where the definition of the two dualization operators coin-
cides with the biclosed monoidal structure on [Cop,Set] equipped with the Day tensor
product (cf. Remark 3.18).

P-A. Melliès and N. Zeilberger 30

But besides the connection with linear continuations, the situation is also strongly
reminiscent of Isbell duality (Isbell 1966) between the categories of covariant and con-
travariant presheaves over a given category C. In that case, however, while still working
in the refinement system u : Psh→ Cat, one takes

X = C Y = Cop Z = C × Cop p = id : C × Cop
→ C× C

op

together with R = C(−,−) the hom-bimodule of C. Then one recovers the contravariant
adjunction

[Cop,Set]

(−)⊥

))
⊥ [C,Set]op

⊥(−)

ii

called Isbell conjugation (Lawvere 2005, §7), which transforms any contravariant presheaf
into a covariant one, and vice versa. Expanding the definitions of the refinement type
constructors in u : Psh → Cat (Propositions 3.1 and 3.2), these conjugation operations
can be computed explicitly by the following end formulas:

φ⊥ = y 7→ ∀x.φ(x)→ C(x, y)
⊥ψ = x 7→ ∀y.ψ(y)→ C(x, y)

One fascinating observation by Isbell is that every pair of representable presheaves

a+ = C(−, a) : Cop
→ Set

a− = C(a,−) : C → Set

generated by the same object a ∈ C form a dual pair, in the sense that

a+
≡
⊥(a−) and a− ≡ (a+)⊥ (12)

as can be verified by direct application of the Yoneda lemma:

C(x, a) � ∀y.C(a, y)→ C(x, y)

C(a, y) � ∀x.C(x, a)→ C(x, y)

Although the equations (12) may appear counterintuitive if one thinks about the tradi-
tional way of working with continuations, the philosophy of Isbell duality says that one
can find objects which are invariant with respect to double dualization, provided that
the answer type R is sufficiently large and discriminating.

In the specific case of classical Isbell duality, the operation p is trivial, and the role
of R is provided by the hom-bimodule. Our main theorem in this section states that an
even more general Isbell-style duality arises for refinement systems, in the sense that
any refinement P @ A in an arbitrary refinement system t gives rise to a dual pair

P+t @ A+t P−t @ A−t

in the refinement system of presheaves. We then develop one application of this theorem,
showing how it can be used to explicitly calculate the positive representation of a push-
forward, through a sort of negative encoding analogous to the classical double-negation

An Isbell Duality Theorem for Type Refinement Systems 31

translations of first-order logic into intuitionistic first-order logic. As a consequence,
we also obtain a negative encoding of the positive representation of a fiberwise tensor
product, as the double dualization of a Day tensor product.

4.2. The category of judgments and the presheaf of derivations

Again, we suppose given an arbitrary refinement system t : D→ T .

Definition 4.1. The category of judgments T]t is defined as follows:

— objects are t-typing judgments: triples (P, c,Q) where P @ A, c : A→ B, and Q @ B.
— morphisms (P1, c1,Q1)→ (P2, c2,Q2) are pairs of t-derivations

β
P1 =⇒

e
P2

γ
Q2 =⇒

e′
Q1

such that c1 = e; c2; e′.

Definition 4.2. The presheaf of derivations is the refinementD]t @ T]t in u : Psh→ Cat
defined by

D
]t = (P, c,Q) 7→ {α |

α
P =⇒

c
Q }

on objects, and with the functorial action transforming any morphism (P1, c1,Q1) →
(P2, c2,Q2) in T]t given as a pair of t-derivations

β
P1 =⇒

e
P2

γ
Q2 =⇒

e′
Q1

such that c1 = e; c2; e′ into a typing rule

P2 =⇒
c2

Q2

P1 =⇒
c1

Q1

derived as
β

P1 =⇒
e

P2 P2 =⇒
c2

Q2

γ
Q2 =⇒

e′
Q1

P1 =⇒
e;c2;e′

Q1
;−;

P1 =⇒
c1

Q1
∼

Remark 4.3. The category of judgments T]t can be seen as an analogue of the “twisted arrow
category” ofT (Mac Lane 1971) (see also (Lawvere 1970, p.11) and (Maltsiniotis 2005, §1.1.18)),
reducing to the opposite of the usual twisted arrow category of T in the case t = idT .

Remark 4.4. In the case where t = !D : D → 1, the presheaf of derivations of t reduces to the
hom-bimoduleD]t = D(−,−) (noting that in that case T]t

≡ D ×D
op).

Example 5. For the Hoare logic refinement system, the category of judgments has objects
corresponding to Hoare triples, and has a morphism

{P1}c1{Q1} → {P2}c2{Q2}

P-A. Melliès and N. Zeilberger 32

whenever c1 can be factored as c1 = e; c2; e′ for some e and e′ such that the triples

{P1}e{P2} and {Q2}e′{Q1}

are valid. In particular (in the case where e and e′ are equal to the identity), this means
that T]t includes morphisms between Hoare triples generated by inverting the “Rules
of Consequence” (Hoare 1969), i.e., that there is a morphism

{P1}c{Q1} → {P2}c{Q2}

whenever ` P1 ⊃ P2 and ` Q2 ⊃ Q1.

4.3. The duality theorem

We begin by defining a family of bracket operations, which will play the role of “p” in
the template described in Section 4.1.

Definition 4.5. Let B be a t-type. The B-bracket is the functor ~B : B+t
× B−t

→ T
]t

defined by ~B((P, c), (d,R)) = (P, (c; d),R).

One way to understand the family of bracket operations is as an extranatural transforma-
tion (Kelly 1982, §1.7) from the external product of the relative slice and coslice functors

T × T
op (−)+t

×(−)−t
// Cat × Cat × // Cat

into the category of judgments, in the sense of

Proposition 4.6. For any t-term c : A→ B we have (c+t
× idB−t);~B = (idA+t × c−t);~A.

Moreover, although we will not need this fact, the extranatural transformation is univer-
sal in the sense that it exhibits the category of judgments as a coend T]t

≡ ∃A.A+t
× A−t

(Mac Lane 1971, see exercise 3 on p. 227 for an analogous remark).
Following the general pattern described in Section 4.1, we can use the B-bracket in

combination with the presheaf of derivations to build a contravariant adjunction

[(B+t)op,Set]

(−)⊥

++
⊥ [(B−t)op,Set]op

⊥(−)

kk

between presheaves over B+t and presheaves over B−t, where the dualization operators
are defined by

φ⊥
def
= λ[~B]∗ (φ \ D]t) (φ @ B+t)

⊥ψ
def
= ρ[~B]∗ (D]t / ψ) (ψ @ B−t)

Moreover, we can establish an Isbell-like duality between the positive and negative
representations, relying on the fact that both can be expressed as pullbacks of the presheaf
of derivations. Recall from Sections 3.2 and 3.4 that every t-refinement Q @ B induces a
pair of objects Q+t

∈ B+t and Q−t
∈ B−t, which represent the corresponding presheaves

An Isbell Duality Theorem for Type Refinement Systems 33

Q+t @ B+t and Q−t @ B−t in u : Psh→ Cat. Given such a t-refinement Q @ B, define two
functors kQ : B+t

→ T
]t and vQ : B−t

→ T
]t by

kQ
def
= (idB+t ×Q−t);~B and vQ

def
= (Q+t

× idB−t);~B.

Lemma 4.7. For any t-refinement Q @ B, we have Q+t
≡ kQ

∗
D
]t and Q−t

≡ vQ
∗
D
]t.

Proof. Expanding definitions, kQ and vQ reduce to the following actions on objects:

kQ = (P, c) 7→ (P, c,Q)

vQ = (d,R) 7→ (Q, d,R)

The identities Q+t
≡ kQ

∗
D
]t and Q−t

≡ vQ
∗
D
]t are immediate by definition ofD]t. �

Theorem 4.8. For any t-refinement Q @ B, we have Q−t
≡ (Q+t)⊥ and Q+t

≡
⊥(Q−t).

Proof. The proof is similar to the proof of Prop. 3.17. We show one case (the other is
symmetric):

(Q+t)⊥ def
= λ[~B]∗ (Q+t

\ D
]t)

≡ λ[~B]∗ (Q+t I \ D]t) (Propositions 3.3 and 3.10)

≡ λ[~B]∗ (Q+t
\ id)∗ (I \ D]t) (Prop. 2.4)

≡ λ[~B]∗ (Q+t
\ id)∗D]t (D]t

≡ I \ D]t)

≡ (λ[~B]; (Q+t
\ id))∗D]t (Prop. 2.1)

≡ ((Q+t
× id);~B)∗D]t (β conversion)

≡ Q−t (Lemma 4.7)

�

Remark 4.9. When t = !D : D → 1, the operations φ 7→ φ⊥ and ψ 7→ ⊥ψ reduce to
Isbell conjugation between the category [Dop,Set] of contravariant presheaves and the category
[D,Set]op of op’d covariant presheaves, and Thm. 4.8 reduces to the fact that Isbell conjugation
restricts to an equivalence on representable presheaves.

4.4. Negative encodings

We begin by proving a useful lemma.

Lemma 4.10. For any t-term c : A→ B and presheaf φ @ A+t we have (c−t)∗ φ⊥ ≡ (c+t φ)⊥.

Proof. The reasoning is similar to the proofs of Prop. 3.17 and Thm. 4.8, except for the

P-A. Melliès and N. Zeilberger 34

appeal in the middle to extranaturality of the bracket operations:

(c+t φ)⊥ ≡ (λ[~B]; (c+t
\ id))∗ (φ \ D]t)

≡ (c+t
• id;~B)∗ (φ \ D]t)

≡ (id • c−t;~A)∗ (φ \ D]t) (Prop. 4.6)

≡ (c−t;λ[~A])∗ (φ \ D]t)

≡ (c−t)∗ φ⊥

�

A more conceptual way of understanding the lemma is as follows. Given any term
c : A→ B in T , pulling back and pushing forward along the functors c+ and c− induces
a pair of adjunctions

[(A+)op,Set]

c+

**
⊥ [(B+)op,Set]

(c+)∗
jj [(B−)op,Set]

c−
**

⊥ [(A−)op,Set]

(c−)∗
jj

which may be combined with the adjunctions induced by the dualization operators to
build a “thickened square”:

[(B+)op,Set]

(c+)∗

��

(−)⊥

**
⊥ [(B−)op,Set]op

c− op

��

⊥(−)

jj

a a

[(A+)op,Set]

c+

HH

(−)⊥

**
⊥ [(A−)op,Set]op

(c−)∗ op

HH

⊥(−)

jj

Beware: not all paths along this diagram commute! However, Lemma 4.10 says that
travelling from the lower left corner to the upper right corner along the outer face is
equivalent to travelling with the same origin and destination along the inner face. More-
over, from the existence of the adjunctions we can automatically derive the following
statements, which summarize what happens when one takes different paths along the
square.

Corollary 4.11. For any t-term c : A→ B and presheaves ψ @ B−t, ρ @ B+t, and σ @ A−t:

(c+t)∗ ⊥ψ ≡ ⊥(c−t ψ) (a)

(c−t)ρ⊥ =⇒ ((c+t)∗ ρ)
⊥

(b)

(c+t) ⊥σ =⇒ ⊥((c−t)∗ σ) (c)

Proof. (a) follows immediately from Lemma 4.10, since the two composite functors (c+t)∗ ◦

An Isbell Duality Theorem for Type Refinement Systems 35

⊥(−) and ⊥(−) ◦ c−t are right adjoints to the two composite functors (−)⊥ ◦ c+t and
(c−t)∗ ◦ (−)⊥. Likewise, (b) and (c) follow automatically as mates (Kelly 1982, §1.11) of
the subtyping relations

(c−t)∗ φ⊥ =⇒ (c+t φ)⊥ and (c+t)∗ ⊥ψ =⇒ ⊥(c−t ψ).

Let us nonetheless observe, though, that (b) and (c) are equivalent to the fact that the
following typing rules are valid in u : Psh→ Cat:

ρ • ψ =⇒
~B
D
]t

(c+t)∗ ρ • (c−t ψ) =⇒
~A
D
]t

φ • σ =⇒
~A
D
]t

(c+t φ) • (c−t)∗ σ =⇒
~B
D
]t

The rule on the left, for example, can be derived as follows:

(c+)∗ φ =⇒
c+
φ

L(c+)∗
ψ =⇒

idB−
ψ id

(c+)∗ φ • ψ =⇒
c+×idB−

φ • ψ
•

φ • ψ =⇒
~B
D
]t

(c+)∗ φ • ψ =⇒
(c+×idB−);~B

D
]t

;

(c+)∗ φ • ψ =⇒
(idA+×c−);~A

D
]t

Prop. 4.6

(idA+ × c−)((c+)∗ φ • ψ) =⇒
~A
D
]t

L(id × c−)

(c+)∗ φ • (c− ψ) =⇒
~A
D
]t

Prop. 2.4

�

As we mentioned at the end of Section 3.5, the positive representation does not in
general preserve pushforwards, although there is always a coercion c+ P+ =⇒ (c P)+

whenever the pushforward c P exists in t : D → T . Similarly, as we discussed at the
end of Section 3.6, given a monoid W in T , the induced fiberwise tensor product ⊗W on
DW is not strictly mapped by the functor (−)+ : DW → [(W+)op,Set] to the Day tensor
product ⊗W+ , although we have a coercion P+

⊗W+ Q+ =⇒ (P⊗W Q)+ for all t-refinements
P,Q @W (Prop. 3.19). One could say that the situation with pullbacks c∗Q and fiberwise
residuals P(W R and R W (Q is nicer, since they are both preserved by the positive
representation (Propositions 3.15 and 3.20). However, things are not as bad as they seem
for pushforward and fiberwise tensor product, because as we alluded to earlier, this
discrepancy may be resolved “up to double dualization”, by appeal to the Isbell duality
theorem for type refinement systems.

Theorem 4.12. Whenever the pushforward c P exists in t, we have

(c P)+t
≡
⊥((c−t)∗ P−t) (a)

(c P)+t
≡
⊥((c+t P+t)⊥) (b)

P-A. Melliès and N. Zeilberger 36

Proof. We can derive equation (a) in two steps:

(c P)+t
(Thm. 4.8)

≡
⊥(c P)−t

(Prop. 3.16)
≡

⊥((c−t)∗ P−t)

Then equation (b) follows in two more steps from (a):

⊥((c−t)∗ P−t)
(Thm. 4.8)

≡
⊥((c−t)∗ (P+t)⊥)

(Lemma 4.10)
≡

⊥((c+t P+t)⊥)

�

Theorem 4.13. Let W be a monoid in a monoidal refinement system with enough pushforwards.
Then for any t-refinements P,Q @W, we have (P ⊗W Q)+t

≡
⊥((P+t

⊗W+t Q+t)⊥).

Proof. Given W with multiplication operation p : W •W →W, we have that

P+t
⊗W+ Q+t def

= (mW,W ; p+) (P+
•Q+) (11)

≡ p+ mW,W (P+
•Q+) (Prop. 2.1)

≡ p+ (P •Q)+ (Prop. 3.17)

and moreover P⊗W Q def
= p (P•Q), so that the result follows as a corollary of Thm. 4.12. �

Example 6. In Hoare logic, a pushforward c P is called a strongest postcondition (Gordon
and Collavizza 2010, see §2). Although in general strongest postconditions need not
exist, it is easy to check that in the case when c P does exist, its positive representation

(c P)+ = { (P′, c′) | ` {P′}c′{c P} }

(as computed in Example 1) contains exactly the same guarded commands as

⊥((c−)∗ P−) = { (P′, c′) | ∀(d,R). {P}c; d{R} ` {P′}c′; d{R} }.

Conversely, this latter formula provides a way of reasoning using strongest postcondi-
tions, even when they do not exist. �

Example 7. Let A,B ∈ F be two formulas of linear logic, considered as singleton contexts
A @ 1 and B @ 1 in the refinement system |−| : W → Fin of Example 2. The object 1
is a monoid in Fin, with multiplication µ : 2 → 1 defined as the unique map from the
two-point set onto the one-point set. In linear logic, the left introduction rule

A,B,Γ ` C
A ⊗ B,Γ ` C ⊗L

for multiplicative conjunction is invertible, in the sense that it induces a bijection between
the proofs of A,B,Γ ` C and the proofs of A ⊗ B,Γ ` C (considered up to the appropriate
equational theory). Taking Γ to be empty, this ensures that the pushforward µ (A,B)
exists in |−| :W→ Fin, and is given by the formula A ⊗ B @ 1. Since this pushforward
exists for every pair of formulas, by Prop. 3.19 there is a lax monoidal functor

(−)+ :W1 → [Wop,Set]

An Isbell Duality Theorem for Type Refinement Systems 37

(recall thatW is equivalent to 1+), with a coercion

A+
⊗1 B+ =⇒ (A ⊗ B)+

for every A @ 1 and B @ 1. Here we write ⊗1 for the Day tensor product on [Wop,Set],
which can be computed as

φ ⊗1 ψ
def
= (m1,1;µ+) (φ • ψ) ≡ µ+ m1,1 (φ • ψ)

for any pair of presheaves φ,ψ @W, where m1,1 :W×W → 2+ is the functor defined
by the lax monoidal structure of (−)+ : Fin → Cat (see (5) in Section 3.6). In particular,
we have that A+

⊗1 B+
≡ µ+ m1,1 (A+

• B+).
Now, an object of 2+ (namely, a context Γ @ n together with a function f : n → 2) is

nothing but a partition of a context Γ into two disjoint pieces Γ1 and Γ2, which may be
notated conveniently as a shuffle Γ = Γ1 � Γ2. So, the functor m1,1 : W ×W → 2+ is
the operation which takes a pair of contexts Γ1 and Γ2 into the corresponding partition
Γ = (Γ1,Γ2) of a single context into two contiguous pieces. By Prop. 3.17, we know that
m1,1 (A+

• B+) ≡ (A,B)+, and the latter simplifies to

(A,B)+ = Γ1 � Γ2 7→ W(Γ1,A) ×W(Γ2,B).

Next, consider the pushforward of (A,B)+ along µ+ : 2+
→ 1+. By the coend formula

for pushforwards of presheaves (see Prop. 3.1), the presheaf µ+ (A,B)+ @ W may be
calculated as follows:

µ+ (A,B)+ = Γ 7→ ∃Γ1,Γ2.W(Γ, (Γ1,Γ2)) ×W(Γ1,A) ×W(Γ2,B)

There is no reason why this presheaf should be isomorphic to

(A ⊗ B)+ = Γ 7→ W(Γ,A ⊗ B).

In particular, a counterexample is provided by evaluating both presheaves at the single-
ton context Γ = A ⊗ B, since one can certainly prove A ⊗ B ` A ⊗ B, but in general there
is no way to split Γ into a context proving A and a context proving B.

On the other hand, Thm. 4.12(b) tells us that this mismatch is accounted for by taking
a double dual:

(A ⊗ B)+
≡
⊥((µ+ (A,B)+)⊥) (13)

By Lemma 4.10 and Thm. 4.8, Equation (13) is equivalent to

(A ⊗ B)+
≡
⊥((µ−)∗ (A,B)−) (14)

which can be derived from the simple equation

(A ⊗ B)− ≡ (µ−)∗ (A,B)− (15)

by one application of Thm. 4.8. Equation (15) itself follows from the definition of A ⊗ B
as a pushforward and Prop. 3.16. In order to understand this equation, recall from
Example 4 that 1− is the category of pointed contexts, and that the negative representation
(A ⊗ B)− @ 1− is defined by the action

∆[C] 7→ F (A ⊗ B; C) ×W(·,∆).

P-A. Melliès and N. Zeilberger 38

In other words, (A⊗B)− transports a pointed context ∆[C] into the set of tuples consisting
of a proof of A ⊗ B ` C together with a closed proof of each formula in ∆. A careful
computation shows that (µ−)∗ (A,B)− is defined by the action

∆[C] 7→ F (A,B; C) ×W(·,∆).

So Equation (15) reduces to the fact that the left introduction rule ⊗L is invertible.
In particular, observe that whereas we could distinguish (A ⊗ B)+ from µ+ (A,B)+ by
considering the context Γ = A ⊗ B, their duals (A ⊗ B)− and (µ−)∗ (A,B)− cannot be
distinguished by pointed contexts.

Acknowledgment

This work has received funding from the European Research Council (ERC) under the
European Union’s Horizon 2020 research and innovation programme (grant agreement
No 670624), as well as from the ERC Advanced Grant ProofCert. We thank the anony-
mous reviewers for their comments improving the presentation of the article.

References

Jean-Marc Andreoli. Logic programming with focussing proofs in Linear Logic. Journal of Logic
and Computation 2:3 (1992).

Robert Atkey, Patricia Johann, and Neil Ghani. Refining Inductive Types. LMCS, 8:2, 2012.
Jean Bénabou. Distributors at work. Notes from a course at TU Darmstadt in June 2000, taken by

Thomas Streicher.
Francis Borceux. Handbook of Categorical Algebra 2: Categories and Structures. Cambridge University

Press, 1994.
Djordje Čubrić, Peter Dybjer, Philip Scott. Normalization and the Yoneda Embedding. Mathematical

Structures in Computer Science 8 (1998), 153–192.
B.J. Day. On closed categories of functors, Lecture Notes in Mathematics 137 (1970), 1–38.
Marcelo Fiore. Semantic Analysis of Normalisation by Evaluation for Typed Lambda Calculus

(Extended Abstract). In Proceedings of the 4th International Conference on Principles and Practice of
Declarative Programming, Pittsburgh, 2002.

Gerhard Gentzen. Untersuchungen über das logische Schliessen (Investigations into Logical Inference),
Ph.D. thesis, Universität Göttingen. English translation in The Collected Papers of Gerhard Gentzen,
M. Szabo (ed.), Amsterdam: North Holland (1969).

Neil Ghani, Patricia Johann, Clément Fumex. Indexed Induction and Coinduction, Fibrationally.
Logical Methods in Computer Science 9(3:6) (2013), 1–31.

Jean-Yves Girard. Linear logic. Theoretical Computer Science 50 (1987), 1–102.
Mike Gordon and Hélène Collavizza. Forward with Hoare. In Reflections on the Work of C.A.R.

Hoare, Cliff Jones, A. W. Roscoe, Kenneth R. Wood (eds.). Springer, 2010.
Masahito Hasegawa. Categorical glueing and logical predicates for models of linear logic. Tech-

nical Report RIMS-1223, Research Institute for Mathematical Sciences, Kyoto University, 1999.
Claudio Hermida. Fibrations, Logical predicates and indeterminates, Ph.D. thesis, University of Edin-

burgh, November 1993.
Claudio Hermida and Bart Jacobs. Structural Induction and Coinduction in a Fibrational Setting.

Information and Computation 145:2 (1998), 107–152.

An Isbell Duality Theorem for Type Refinement Systems 39

C.A.R. Hoare. An Axiomatic Basis for Computer Programming, Communications of the ACM 12:10
(1969).

John Isbell. Structure of categories, Bulletin of the American Mathematical Society 72 (1966), 619–655.
Bart Jacobs. Categorical Logic and Type Theory. Studies in Logic and the Foundations of Mathematics

141. North Holland, 1999.
Shin-ya Katsumata. A Semantic Formulation of >>-lifting and Logical Predicates for Computa-

tional Metalanguage. CSL 2005.
Max Kelly. Basic concepts in enriched category theory. Cambridge University Press, 1982.
Joachim Lambek. Deductive systems and categories II. Lecture Notes in Mathematics 87, Springer-

Verlag 1969.
F. William Lawvere. Adjointness in Foundations, Dialectica 23 (1969), 281–296.
F. William Lawvere. Equality in hyperdoctrines and comprehension schema as an adjoint functor,

In Proceedings of the AMS Symposium on Pure Mathematics XVII (1970), 1–14.
F. William Lawvere. Taking Categories Seriously. Reprints in Theory and Applications of Categories 8

(2005), 1–24.
Tom Leinster. Higher Operads, Higher Categories. London Mathematical Society Lecture Note Series

298, Cambridge University Press, 2004.
Saunders Mac Lane. Categories for the Working Mathematician. Springer, 1971.
Georges Maltsiniotis. La théorie de l’homotopie de Grothendieck. Astérisque, 2005.
Paul-André Melliès. Game Semantics in String Diagrams. In Proceedings of the 27th Annual IEEE

Conference on Logic in Computer Science, Dubrovnik, 2012.
Paul-André Melliès and Noam Zeilberger. Type refinement and monoidal closed bifibrations.

Unpublished manuscript (arXiv:1310.0263), October 2013.
Paul-André Melliès and Noam Zeilberger. Functors are Type Refinement Systems. In Proceedings

of the 42nd ACM SIGPLAN-SIGACT Symposium on Principles of Programming, Mumbai, 2015.
Paul-André Melliès and Noam Zeilberger. A bifibrational reconstruction of Lawvere’s presheaf

hyperdoctrine. In Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in Computer
Science, New York, 2016.

Aleksandar Nanevski, Greg Morrisett, and Lars Birkedal. Hoare Type Theory, Polymorphism and
Separation. Journal of Functional Programming 18(5-6):865–911, September 2008.

Frank Pfenning. Church and Curry: Combining Intrinsic and Extrinsic Typing. Studies in Logic
17, 2008, 303–338.

Hayo Thielecke. Categorical Structure of Continuation Passing Style, Ph.D. thesis, University of
Edinburgh, 1997.

	Introduction
	Related work

	Preliminaries
	Basic conventions and definitions
	Morphisms of refinement systems
	Right adjoints preserve pullbacks

	Representing refinement systems
	The refinement systems of presheaves and of pointed categories
	The positive representation of a refinement system
	Factorization via the free opfibration
	The negative representation
	Preservation of pullbacks
	Preservation of logical connectives up to change-of-basis

	Duality and negative translation
	Overview
	The category of judgments and the presheaf of derivations
	The duality theorem
	Negative encodings

	References

