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ABSTRACT

In spite of the huge advances in exoplanet research provided by the NASA Kepler Mission,
there remain only a small number of transit detections around evolved stars. Here, we present
areformulation of the noise properties of red-giant stars, where the intrinsic stellar granulation
and the stellar oscillations described by asteroseismology play a key role. The new noise model
is a significant improvement on the current Kepler results for evolved stars. Our noise model
may be used to help understand planet detection thresholds for the ongoing K2 and upcoming
TESS missions, and serve as a predictor of stellar noise for these missions. As an application
of our noise model, we explore the minimum detectable planet radii for red giant stars, and
find that Neptune-sized planets should be detectable around low-luminosity red giant branch

stars.

Key words: asteroseismology —techniques: photometric — planetary systems.

1 INTRODUCTION

Red giants, stars near the end of their life — which have exhausted
fuseable hydrogen in the stellar core, and bloated massively com-
pared to their main-sequence radii — are a relatively new focus for
photometric exoplanet research. The four years of near-continuous,
high-quality photometry from the NASA Kepler Mission has been a
key driver in studies of exoplanets, including close-in planets around
evolved stars (Huber et al. 2013; Steffen et al. 2013; Lillo-Box
et al. 2014; Barclay et al. 2015; Ciceri et al. 2015; Ortiz et al. 2015;
Quinn et al. 2015). Previous exoplanet searches around giant stars
have primarily been conducted using radial velocity measurements
(Johnson et al. 2008; Quirrenbach et al. 2015; Reffert et al. 2015).

One reason for the interest in red giants is that when the Sun
reaches this stage of evolution, the fate of the Earth is a contentious
matter, with the ultimate balance between mass-loss and the max-
imum extent of the Sun being the deciding factors (Schroder &
Connon Smith 2008), along with the influence of tidal decay on

* E-mail: txn016 @bham.ac.uk

the orbit. The time-scales for dynamic evolution of the system are
accelerated as the star evolves, with evidence of several planet hosts
on course to devour their planets (Adaméw et al. 2012); an example
is Kepler-56, a red giant with two detected transiting planets that
are predicted to be consumed by their star in around 150 million
years (Li et al. 2014).

Kepler has provided high-precision measurements of stellar vari-
ability, and a host of related phenomena, such as activity, stellar
rotation (McQuillan, Mazeh & Aigrain 2014) and the detection of
intrinsic, oscillations in stars. The analysis of the detected oscilla-
tions — the field of asteroseismology — in principle provides very
precise constraints on stellar properties, a key ingredient in the
characterization of exoplanets (Van Eylen et al. 2015). Kepler has
observed solar-like oscillations in over 15000 red giants (Hekker
etal. 2011; Mosser et al. 2012a,b; Stello et al. 2013), another reason
that a search for planets around giants is of interest. Asteroseismol-
ogy may be used to discriminate between stars either ascending the
red giant branch (RGB), or in the Helium core burning ‘red clump’
(RC) phase (Bedding et al. 2011). This is particularly important for
the possible detection, and existence, of close-in planets. Astero-
seismic results on the stellar angle of inclination of the host star can
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also reveal if it is a misaligned system, where the stellar spin axis
and plane of planetary orbits are not coplanar (Huber et al. 2013). Fi-
nally, asteroseismology also provides well-constrained stellar ages
(Silva Aguirre et al. 2015), allowing star and planet formation to be
probed across Galactic history (Campante et al. 2015).

The ability to detect a planetary transit is limited by multiple
factors, the primary factor being the depth of the transit, which is
directly related to the relative size of planet and host star. Another
more subtle issue is the noise properties of the host star, which
in cool main-sequence, sub-giant and red-giant stars can contain
contributions from various stellar signals indicative of granulation,
oscillations and activity. Additionally, there is a shot noise contri-
bution to be considered and instrumental artefacts. Detecting the
transit signal requires an understanding of the expected noise prop-
erties and the expected appearance of the transit in the light curve.

In this paper, we present a simple model of the noise properties
relevant to transit detection around red giants, which employs scal-
ing relations based on global asteroseismic parameters. The dom-
inant contributions are those due to granulation and solar-like os-
cillations. This model is then used to estimate minimum detectable
planet radii for different assumed orbital periods.

Readers unfamiliar with asteroseismology will find an introduc-
tion to the relevant parameters in Section 2.1. The relevant param-
eters for the noise model are introduced in Section 2.2, and the
current Kepler noise properties are discussed in Section 3. Finally,
Section 4 covers the construction of the noise model and discusses
the implications of the resulting predictions for detecting planets
around red giants in Kepler data.

2 FREQUENCY SPECTRUM OF RED GIANTS:
OSCILLATIONS AND GRANULATION

The noise model detailed below is based on observed stellar pa-
rameters. Given the close connection between stellar granulation
and oscillations, where possible the individual parameters of the
model for the oscillation and granulation components are described
in terms of the asteroseismic parameters, along with additional fun-
damental stellar parameters, where appropriate.

We begin here by introducing the relevant asteroseismic parame-
ters, and the intrinsic stellar properties they relate to. Those already
familiar with asteroseismic parameters can skip to Section 2.2.

2.1 Asteroseismic global parameters

Solar-like oscillations are driven and damped by turbulent convec-
tion in the outer envelope of the star, with the amplitudes of these
signals greatly enhanced in evolved stars (Baudin et al. 2011). Fig. 1
shows an example red-giant frequency power spectrum, made from
the Kepler data on the target KIC 4953262. The two main features
of the power spectrum are the stellar granulation background and
solar-like oscillations. The oscillations are clearly visible above the
background around 200 pHz. Additionally, model fits to the compo-
nents are overplotted, and will be returned to in Section 2.2. For the
noise model detailed in Section 4, the individual oscillation modes
do not need to be modelled, only the oscillation power envelope
that contains them.

Fig. 2 shows a zoom of the same power spectrum, around the
region where the detected stellar oscillations are most prominent.
The oscillations appear as fairly evenly spaced peaks in frequency.
Overtones of the same angular degree, /, are spaced by the large
frequency separation. The average large separation, Av, scales to
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Figure 1. The power density spectrum for KIC 4953262, with the raw
and smoothed power spectra in grey and black, respectively. Green (dotted)
indicates the shot noise level, showing it is a small factor for this star, whilst
the blue (dash—dotted) shows the two granulation components, red (dashed)
is total model power spectrum including an oscillation component, where
the individual modes are not modelled in this formulation.
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Figure 2. Smoothed power spectrum for KIC 4953262, a known oscillating

red giant. The vertical dotted line indicates vy for this star. Shown in red
is a model of the power envelope of the oscillation spectrum.

good approximation with the square root of mean stellar density
(Ulrich 1986), i.e.

Al) M 0.5 R —1.5
Av@:(@ (@) - M

The observed power of the mode peaks is modulated by an en-
velope that is usually taken as being a Gaussian, centred on the
frequency vy, i.e. the frequency at which the detected oscillations
show their strongest amplitudes. This characteristic frequency can
be predicted from fundamental parameters. Its physical meaning
is still debated (Belkacem et al. 2011), but it scales to very good
approximation with the (isothermal) acoustic cut-off frequency in
the stellar atmosphere, with numerous studies showing

c
Vac X Vmax X —. 2
a0 2

Here, the speed of sound ¢ o /T, T being the mean local atmo-
spheric temperature, and H o T/g is the pressure scaleheight of
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the atmosphere (Brown et al. 1991; Kjeldsen & Bedding 1995).
Equation (2) suggests the use of a relation scaled to solar values of
the form

Vmax ~ i ( Teff ) iz (3)
vmax,@ g@ Teff,@ ’
where, since oscillations are observed in the stellar photosphere, the
temperature is set to 7= T In this work, the solar values adopted
are: g =27400cm s72, Vinax.® = 3090 uHz and Ty o = 5777K
(Chaplin et al. 2014).

Since all the stars considered in this work either have detected
oscillations (real cohort) or would be predicted to show detected
oscillations (synthetic cohort), v,,,x Will typically be the parameter
we choose to plot against when considering the noise properties of
the stars.

First-order estimates of stellar mass and radius can be esti-
mated using the above scaling relations. Combining and rearranging
equations (1) and (3) gives (Chaplin & Miglio 2013)

I N E
M@ Vmax,@ AU@ chf,@ ’

and

i_( Vmax ) ( Av )2( Teff )0.5 (5)
Rp Vnax,® / \ AV Ter.0

With the basic global asteroseismic parameters defined, we now
go on to explore the noise properties of stars in terms of these pa-
rameters. All noise components will be described up to the Nyquist
frequency of the long-cadence Kepler data. The 29.4-min cadence
leads to a Nyquist frequency of vnyq & 283 uHz (Koch et al. 2010).

2.2 Modelling power due to the oscillations

For stars that have v S Vnyg, the power contained in the oscil-
lations must be considered a component of the background signal
for transit detection. It is sufficient to describe the contribution due
to the oscillations in terms of a Gaussian of excess power centred
around the frequency v, (equation 3). The width of the Gaussian
is denoted by o.,y, as described by equation 1 in Mosser et al.

(2012a), i.e.
o _ SCHV

env 2 /72 1n 2 £
with 8., describing the full width at half-maximum (FWHM) of the
oscillation envelope. The Gaussian also needs a height (maximum
power spectral density), H, to give the final form of the oscillation
envelope signature in the power spectrum:

_(‘) - Vmax)z
PSDys.(v) = H exp ez |
o

env

(6)

O]

The height and envelope width, H and §.,,, may be described in
terms of scaling relations expressed in the parameter vy, (Mosser
et al. 2012a), i.e.

Senv = 0~66(Umax)0488
H = 2.03 x 10" (Vmax) > [ppm’puHz '], (8)

As noted above, only the envelope describing the total oscillation
power is considered and modelled. The power contained within
individual modes is not required here. Returning to Figs 1 and 2,
this envelope is plotted in red. With the oscillation contribution
described, we move to describing the granulation parameters.
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2.3 Granulation

A consequence of visible surface convection is granulation. As hot
material rises on a plume, it cools at the surface and sinks back
down. The stellar material forms cells, with a plume in the centre
of each cell. Photometric granulation signatures for the Sun were
initially modelled by Harvey (1985) as an exponentially decaying
signal in the time domain. This is meant to represent the rapid
rise in a convective plume, then the decay as the material cools.
In photometric measurements, this can be considered as the hotter
material being intrinsically brighter, giving a brief spike in flux,
before the material cools at the top of the plume, and grows dimmer,
with the process occurring on some characteristic time-scale.

This exponential in time leads to a Lorentzian when described
in the power spectrum (in the frequency domain), and is known
as a Harvey profile. Given that the exact nature of granulation is
unclear, and that this simple formulation does not always appear to
fit the granulation background well, this has in recent years led to a
whole family of ‘Harvey-like’ profiles (e.g. see Mathur et al. 2011),
with varying formulations and exponents in the functions used. An
important consideration for our work here is how granulation prop-
erties vary with a stellar evolutionary state (once we have selected
a preferred formulation). Does granulation in red giants exhibit the
same behaviour as granulation observed in the Sun? In Kallinger
et al. (2014), multiple models of granulation were fitted to power
spectra over a range of stellar evolutionary states in cool stars to
investigate updated versions of the original Harvey relation, includ-
ing a change of exponent. Observed power spectra often require
the use of multiple granulation components, operating at different
time-scales, whereas the original Harvey model used only a sin-
gle component, with an exponent of 2. We adopt a two-component
granulation model (described in Kallinger et al. 2014 as Model F)
ie.

2

PSDgran(V) = Z

i=1

&al /b ©)
1+ (v/bi)*
Here, &, is a normalization constant equal to 2+/2/7t for the model,
while a; and b; are the granulation amplitude and characteristic
frequency, respectively, of each granulation component, which are
both dependent on the fundamental properties of the stars. Since
the granulation and stellar oscillations are both driven by convec-
tion, it is perhaps not surprising that the granulation amplitude and
frequency can be described by scaling relations based on astero-
seismic parameters. In this case, they are based on the frequency of
maximum poOwWer Vp,y, i.e. from Kallinger et al. (2014) we have

a; = ar = 3710(Wmna) " (M /M) "%,
by = 0.317(Vma)™?,
by = 0.948(Vnax) ", (10)

with an additional constraint from the stellar mass for the granu-
lation amplitude [which may be derived from equation (4), using
Vmaxs Av and Tei as input]. Whilst in Kallinger et al. (2014), both
amplitude components (a; and a,) were allowed to vary during the
fitting procedure, the final relation produced used a single amplitude
relation for both components. The mass-dependent formulation was
also found to be a better fit to the real data, and as such is the for-
mulation used here for the granulation amplitude. For the cohort
of real asteroseismic stars considered below (see Section 3), we
estimate stellar masses and radii using the scaling relations defined
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Figure 3. The reported CDPP for 13 000 evolved stars (Stello et al. 2013)
plotted against the reported asteroseismic vmax in black. The overall trend
with decreasing vmayx is expected due to the increasing granulation amplitude
(see equation 10), but the turnover and spread below 100uHz is evidence of
the PDC pipeline removing astrophysical signal. Blue points are the result
of work from KASOC (see text).

in equations (4) and (5), with the solar value taken to be 135.1puHz
in this work (Chaplin et al. 2014)

Returning to Fig. 1, the two granulation parameters plotted in
blue, along with the oscillation envelope detailed above, make up
the model power spectrum in red. Additionally, the shot noise com-
ponent is plotted in green, clearly a small contribution in this power
spectrum. It is from the model spectrum that we may compute a
suitable noise metric for the star.

3 KEPLER CDPP

The primary Kepler noise metric is the CDPP or combined dif-
ferential photometric precision, which is designed to describe the
noise properties of a star centred around a time-scale of 6.5 h
(Gilliland et al. 2011; Christiansen et al. 2012). This is half the
time-scale on which an Earth analogue would transit a Sun-like
star. Throughout the paper, references to Kepler CDPP will refer
to the 6.5 h time-scale. The CDPP will be composed of a shot
noise component due to counting signals, but a significant stellar
variability term should also be present. The nature of the stellar vari-
ability is dependent on the intrinsic stellar properties, with possible
contributions from granulation, oscillations and activity.

The Kepler light curves are produced in the Presearch Data Con-
ditioning module (PDC; Jenkins et al. 2010a; Smith et al. 2012;
Stumpe et al. 2012), and in general, the PDC pipeline is highly suc-
cessful at removing systematics and instrumental effects in the light
curves. However, the PDC also removes real astrophysical signal at
long periods (Murphy 2014). This is of interest for evolved stars,
having significant low-frequency signals typical of granulation and
intrinsic oscillations. This loss of real signal has the effect of arti-
ficially reducing the reported CDPP, since real variability has been
removed.

Fig. 3 shows the reported CDPP for 13 000 red giants observed
by Kepler. The reported CDPP appears to show increased scatter
and attenuation at vy, < 100 uHz, i.e. in the more evolved stars in
the cohort. The level of signal attenuation was explored by Gilliland
et al. (2015) and Thompson et al. (2013). Long-period signals were
injected into light curves, and attempts made to recover them after
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PDC processing. It was found that signals on time-scales longer
than a day showed attenuation. The scatter below 100 nHz in Fig. 3
suggests that variability on time-scales longer even than only 0.1 d
will suffer some signal loss. Gilliland et al. (2015) also note that
small-amplitude signals suffer more attenuation, in relative terms,
than large-amplitude signals at the same frequency (period).

Taken at the face value, Fig. 3 suggests that some of the low
vmax (larger, more evolved) stars would be ideal for planet searches,
since they appear to be photometrically quiet. However, the turnover
around 100pHz is unphysical, a consequence of the PDC light-curve
processing (Thompson et al. 2013; Stumpe et al. 2014). This is the
primary motivation to formulate an accurate model of the CDPP for
evolved stars.

The data plotted in blue are the CDPP values calculated from light
curves produced by an independent processing of the raw Kepler
pixel data by the Kepler Asteroseismic Science Operations Center
(KASOC) pipeline (Handberg & Lund 2014). This pipeline was
intentionally designed to preserve astrophysical signal on longer
time-scales, and does not show the same marked attenuation as the
PDC data. As we shall now go on to discuss, our simple noise model
— which is based on the scaling relations outlined above — is able to
reproduce the observed KASOC CDPP values.

4 NOISE MODEL

Of the 13 000 stars in Fig. 3, 6400 were identified as stars ascend-
ing the RGB (Elsworth, private communication). For each of these
stars, we constructed basic model power spectra up to the Nyquist
frequency of 283 uHz. The granulation and oscillation power enve-
lope contributions to the spectrum — which below we label as P, and
P, — were modelled as in Sections 2.2 and 2.3, using the measured
asteroseismic parameters (Stello et al. 2013) as input. The flat shot
noise contribution Py was modelled according to the upper envelope
model described in Jenkins et al. (2010b). The RMS noise per long
cadence in the time domain is

os=Vc+7x107/c, (11)

where
¢ = 3.46 x 1004x(12-Kp)+8 12)

is the number of detected electrons per long cadence. The flat power-
spectral density in the frequency domain then corresponds to

Ps =2 x 1070 At 13)

where At is the 29.4-min cadence. Components due to the near-
surface magnetic activity were not considered due to the evolved
state of these stars. As we shall see below, this assumption appears
to be validated by the good match of our model to the observations.
The model estimate of the CDPP may then be constructed as
follows:
0.5

VNyq
ocppp = (AT / F() x [Py+ P, + Ps]) ) (14)
Jo

where A7 is the resolution on which the artificial power spectra were
computed and F(v) represents the bandpass filter response for the
model CDPP, which is comprised of high- and low-pass responses.
As noted in Gilliland et al. (2011), the high-pass response may be
described by a 2-d Savitsky—Golay filter (Savitzky & Golay 1964),
whilst the low-pass response is a 6.5-h sinc-squared function. The
low-pass response ensures that the filter has zeros at harmonics of
the 6.5-h Earth—Sun half-transit duration, so that when constructing
the noise metric transit signal is not included as misidentified stellar

MNRAS 465, 1308-1315 (2017)
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Figure 4. Filter response, with the Savitsky—Golay high-pass in green,
6.5-h sinc-squared in blue, and the combined filter in red.
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Figure 5. Filter response overplotted on KIC 4953262 power spectrum.
Clearly, most of the signal involved in the construction of the noise metric
appears in the region 0 < v < 40pHz. The filter response is shown on a
log scale to emphasize regions of the power spectrum that contribute to the
noise metric.

variability. The high-pass filter suppresses the model power spectral
density around zero frequency. The filter has been tested against the
Kepler stars to ensure that the final values are similar to the PDC-
derived CDPP, for stars where no signal attenuation occurs.

The attenuation of the signal due to the finite sampling time of
Kepler is not considered here, due to the negligible influence of the
effect around the region of the bandpass filter.

Fig. 4 shows the main bandpass of the filter, whilst Fig. 5 shows
the filter imposed on a typical red giant power spectrum to indi-
cate regions of the spectrum captured by the filter. Since the filter
has higher frequency structure, i.e. ‘ringing’, the CDPP of even
low-luminosity red giants with v, values above 200 uHz will
have some contribution from the oscillations. However, it should
be clear that for low-luminosity red giants the primary contribu-
tion to the stellar noise will come from the stellar granulation,
with the oscillations being a relatively minor, but not insignificant,
contribution.

MNRAS 465, 1308-1315 (2017)

800

® Kepler CDPP
-+ KASOC CDPP ||

T00F
3§ > 6.5hr Filter

600

500 |

bpim)

o 400 i

CDP

300

200 220 240 260 280

200

100

150 200 250
vmax (1Hz)

Figure 6. The model CDPP shows a strong trend with vyax. Stars at lower
Vmax Tepresent larger stars, with larger granulation signal, since the am-
plitude scales with v (see equation 10). At low frequencies around
10 uHz, the contribution from the stellar oscillations is of the same or-
der as the granulation background. The KASOC results are also reproduced
and show good agreement with the model results. The inset focuses on the
high Viax (Vmax > 150 pHz) stars, and shows that the KASOC results show
significantly less noise than the PDC-derived CDPP.

Fig. 6 shows the model-estimated CDPP values in red, overlaid
on the observed CDPP values from Fig. 3, (PDC pipeline CDPP
values in black and the KASOC pipeline CDPP values in blue). We
see good agreement between the model and the observed KASOC
pipeline values. This is a clear indication that the model used is
sufficiently robust, and additionally that a stellar activity component
is not required for these stars. The turnover around 10 pHz is due to
the oscillation envelope passing through the frequency bandpass of
the filter. The additional scatter seen in the KASOC results around
50 pHz is due to the presence of RC stars, which do not obey
the scaling relations used in construction of power spectra in the
same way as stars on the RGB, we therefore removed these stars
in the work that follows. The clump stars were also removed due
to the assumption that upon ascent up the RGB, any existing low-
period planetary system will have been engulfed by the star. As
such, they are of little relevance when considering the potential
planet yield left in the Kepler data.

Fig. 7 also demonstrates that the intrinsic stellar oscillations are
a key component of the stellar noise for low v .y, high-luminosity
RGBs. In the region around the turnover (v ~ 10 wHz) in Fig. 6,
the signal from oscillations dominates by a factor of ~1.5; there
is also an enhancement in the oscillation contribution around the
first ringing of the filter at 60 uHz because this is where the oscil-
lation envelope passes through the filter (with v, aligning with
a local maximum in the filter bandpass). It is important to note
that even when granulation is the dominant noise source, the stellar
oscillations remain a significant factor.

Finally, it should be noted from Fig. 6 that low-luminosity giants
near the base of the RGB show lower noise in the KASOC pipeline
data than in the PDC data, as highlighted in the inset. This would
have consequences for the detection yield from these stars.

Having established earlier that our model does a good job of
describing the intrinsic stellar noise for evolved stars, we go on to
apply this CDPP to estimate the minimum detectable planet radii
around red giant stars in the Kepler data.
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4.1 Minimum radius detection

The canonical Kepler CDPP is designed to capture the noise prop-
erties around a 6.5-h time-scale, related to the transit time-scale
of an Earth analogue. But is this filter appropriate to the red-giant
case? The basic form of the transit duration equation (Seager &
Mallén-Ornelas 2003; Winn 2010) is

R.P
a

05
tar = —— (1=0%) 7, (15)
where P is the orbital period, a is the semimajor axis and b is the
impact parameter and there is the implicit assumption of circular
orbits. This may be rewritten in the form:

4Rfa 5 03
faur = {GM* (1-»b )} ) (16)

The maximum transit duration (for b = 0) is therefore propor-
tional to R,a’>. This can potentially vary anywhere from an
Earth-analogue duration (e.g. Kepler-56b, a short-period planet
around another low-luminosity red giant, with a transit duration of
13.3 h) up to durations exceeding one day (e.g. wide orbits around
low-luminosity RGB stars, or closer orbits around more evolved
giants).

Since the range of possible transit durations is so broad for stars
ascending the RGB, the noise properties being considered need to
capture the stellar variability over the relevant time-scales. A 6.5-h
filter turns out to be more appropriate than it might at first seem. To
explain why, we return to Fig. 4. The maximum of the bandpass of
the filter is at 12.5 nHz, a time-scale of around 22 h. The half power
points of the bandpass lie at 9.2 pHz and 16.6 pHz, corresponding to
30.2 and 16.7 h, respectively. There is also a significant contribution
to the bandpass at even shorter periods (i.e. note the secondary
peak at around 25 uHz, which corresponds to about 11 h). As we
shall see below, because the chances of detecting planets around
very evolved red giants — where transit durations would be much
longer than a day — are so low, our numbers above indicate that
the current filter already does a reasonable job of capturing the
necessary time-scales of interest for transits of lower luminosity red
giants.
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Figure 8. Minimum detection radius in Earth radii, for the 6400 Kepler
stars. Clearly, this is a strong function of vy, in this case a proxy for stellar
radius. The diagonal lines are fits to a power-law relation between vp,x
and Rpin for assumed periods of 10 d (dashed), 20 d (dotted) and 100 d
(dot—dashed). Radii of known planets (open stars) and the corresponding
estimated minimum radii (filled stars) for the same systems are also shown,
connected by vertical black lines. Points and crosses indicate the minimum
radii for illustrative distribution described in the text.

The CDPP values from our model are used as inputs to calculate
a minimum detectable planet radius for each of the Kepler RGB
stars, according to equation (1) in Howard et al. (2012):

6.5h\ '/
—) . 17

Ruin = R, (SNR x ocppp)'/? (
ntrtdur

The assumed detection signal-to-noise ratio was taken as SNR = 10,
this value is adopted as a ‘secure’ detection threshold. This is
stronger than the 7.1¢0 threshold used in the Kepler mission for tran-
sit detections (Jenkins et al. 2010a) to ensure these planets would be
detected (see Borucki et al. 2011; Howard et al. 2012; Christiansen
et al. 2013; Fressin et al. 2013).

The transit duration was calculated according to equation (15),
taking b = 0; the stellar radius was taken to be the asteroseismically
determined value from equation (5); and n, the number of observed
transits, was assumed to equal n = 4 yr/Period(yr), rounded down
to the nearest integer. The factor of 6.5 in equation (17) accounts
for the time-scale on which the CDPP is calculated compared to
the transit duration. It should also be noted that the 4-yr factor in
the number of transits assumes all stars were observed continuously
for the entire duration of the Kepler mission, any missing transits
would increase the minimum detectable radius.

The diagonal lines in Fig. 8 show power-law fits to vy, of the
calculated minimum detection radii R, of the 6400 Kepler stars,
assuming fixed orbital periods of 10 d (dashed line), 20 d (dotted
line) and 100 d (dot—dashed line), respectively. The vertical offset
seen between the diagonal lines is due to the reduced number of
transits seen for longer period planets. The minimum radii here
were calculated using the model CDPP predictions. But we could
also have used the KASOC CDPP data, which give very similar
results. The true, underlying period distribution for planets orbiting
evolved hosts is of course very poorly constrained. For illustrative
purposes only, we have also calculated minimum radii using an
underlying distribution that is consistent with results on confirmed
Kepler planets, with data taken from the NASA Exoplanet Archive

MNRAS 465, 1308-1315 (2017)



1314 T. S. H. North et al.

40.0

¢ Kepler seismic RG hosts

% Minimum radius, seismic hosts
»x Non-planetary object

@ 900k *  Neptune - Inflated Jupiter

+  Sub-Neptune

Rq)

=)

10.0 +

Minimum planet radius (Rp/
e

o
T

10 25 50 100
vmax (#Hz)

Figure 9. Minimum detection radius in Earth radii, if the PDC CDPP results
are used. Again, the 20 d distribution has been used here. Clearly, the PDC
results would suggest that planets would be detectable around low v,y stars,
but this is purely an effect of the PDC processing producing anomalously
low CDPP values.

(Akeson et al. 2013).! These data are well described by a log-normal
distribution, with the underlying normal distribution having a mean
and standard deviation of 2.47 and 1.23 in log,P. The results are
plotted on Fig. 8, blue dots are super-Earth to Jupiter-sized objects,
whilst red crosses are objects with minimum radii greater than that
which is feasible for a planet. Black crosses indicate a minimum
radii of less than the radius of Neptune.

Fig. 8 shows that even the most inflated hot-Jupiter planets will be
undetectable around high RGB stars (i.e. stars with low vy,y). This
is due to the large radii of these stars, and the resulting small transit
depths. Due to the inflated nature of the stars themselves, finding
Earth-like planets at high SNR will most likely prove unfeasible
across the entire population of evolved stars. For low-luminosity
red giants, there is the potential to reach super-Earth-sized planets.
However, it is apparent that the focus for planets around red-giant
hosts should be Neptune to Jupiter-sized giant planets.

Radii of known planets (open stars) and the estimated minimum
radii (filled stars) for the same systems are also shown on Fig. 8,
connected by vertical black lines. As can also be seen, the currently
known transiting planets around evolved hosts sit on the upper edge
of the distribution in planet radius and v,,,x. The lack of detections
around low-v .« stars suggests that any systematic search for planets
around evolved hosts should instead concentrate on low-luminosity
RGB stars. We note that we might expect radii for actual detections
to cover a range of radii at and above the minimum radii and this is
what we see in Fig. 8, albeit for a very small sample.

Fig. 9 shows the same minimum radius calculation using the
current Kepler PDC-derived CDPP values. These results would
(incorrectly) suggest that planets could be detected around low
Vmax Stars due to the aforementioned attenuation of intrinsic stellar
signals on long time-scales. For the high v, stars, the minimum
radii are also larger than the results for the for updated noise model
CDPP described here.

As stars ascend the RGB, planets on short periods are rapidly
engulfed by the expanding star. Additionally, the tidal decay time-
scale decreases for evolved stars (Schlaufman & Winn 2013), e.g.

! http://exoplanetarchive.ipac.caltech.edu/
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Figure 10. Injected transit into Kepler detrended light curve, folded on the
20 d period of injected planet (black). Also plotted is binned light curve,
folded on period (blue), along with model for the planet injection (red).

the Kepler-56 system, where the planets are likely to be engulfed
within ~100 Myr (Li et al. 2014). Even without consideration of
tidal decay, for the case of evolved RGB hosts, planets on short
periods, and many cases in the Kepler period distribution described
above, would have to exist inside the stellar envelope (these cases
have been removed from Fig. 8).

4.2 Transit injection test

To ensure the results for the minimum detection radius in Fig. 8
are reasonable, a sensible test was to inject transit signals into
real Kepler data and attempt to recover the transit signal. As an
example, ared giant with similar stellar and asteroseismic properties
(Vmax = 255 uHz) to Kepler-56, but with no known transits, was
selected and a transit signal injected into the detrended light curve.
A planet with the minimum detection radius (R, = 2.25 Rg, for
a planet on a 20 d orbit, at SNR = 10) was injected into the light
curve on a 20 d orbit, and was recovered using a box-least squares
algorithm? (Kovécs, Zucker & Mazeh 2002) at the required SNR
threshold. Fig. 10 shows the injected transit in the light curve, folded
on the period of the injected planet (grey points). Also shown is the
re-binned light curve after folding on the period of the planet (blue
points) and the model for the injected transit (red line).

This is of particular importance since the current sample of known
transiting planets around evolved hosts in the NASA Exoplanet
Archive all have a detection SNR > 15. Returning once more to
Kepler-56, the detection ratios in that system are 63 and 44, for
planets b and c, respectively. However, as the BLS injection test
shows, smaller planets are recoverable in the data. The transit injec-
tion performed here, along with the minimum planet radii calculated
above, suggest that Neptune-sized planets should be detectable in
the Kepler light curves of low-luminosity, red-giant stars, if they are
present.

2 pyTHON implementation of BLS created by Dan Foreman-Mackey and Ruth

Angus https://github.com/dfm/python-bls


http://exoplanetarchive.ipac.caltech.edu/
https://github.com/dfm/python-bls

5 CONCLUSIONS

In this work, we have presented a simple model to describe the
noise properties of evolved stars as relevant to transit searches for
exoplanets. Our model predictions of the commonly used Kepler
CDPP noise metric is dominated for evolved stars by granulation
and oscillations. It includes a significant contribution from stellar
oscillations, with the solar-like oscillations representing the domi-
nant noise source for any photometric survey of stars near the tip
of the RGB. Importantly, our model also recovers the appropriate
noise signatures for highly evolved stars, a feature not shared by
current Kepler results. This noise model may be applied to the pre-
dictions of the noise properties of evolved stars for the upcoming
TESS and PLATO missions.

As a simple application of this updated CDPP, we also estimated
minimum detectable planet radii for low-luminosity red giants, for
different assumed orbital periods. The results suggest that Neptune-
sized planets on short-period (P < 20 d) orbits should be detectable
in the Kepler data. We advocate a detailed search for planets around
red giants. Giant planets around evolved stars will also be detectable
in light curves from the upcoming TESS mission (Ricker et al. 2014;
Campante et al. 2016) as well as the ongoing K2 mission, which
has already targeted a dedicated sample of several thousand low-
luminosity red giants to detect giant planets (Huber 2015; Grunblatt
et al. 2016).
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