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ABSTRACT 

Background Attention­deficit hyperactivity disorder (ADHD) is characterized by problems in regulating 1 

attention and in suppressing disruptive motor­activity, i.e. hyperactivity and impulsivity. We recently 2 

found evidence that aberrant distribution of posterior alpha band oscillations (8­12 Hz) is associated 3 

with attentional problems in ADHD. The sensorimotor cortex also produces strong 8­12 Hz band 4 

oscillations, namely the mu rhythm, and is thought to have a similar inhibitory function. Here, we now 5 

investigate whether problems in distributing alpha band oscillations in ADHD generalize to the mu 6 

rhythm in the sensorimotor domain. 7 

Methods In a group of adult ADHD (n=17) and healthy control subjects (n=18; aged 21­40 years) 8 

oscillatory brain activity was recorded using magneticencephalography during a visuo­spatial attention 9 

task. Subjects had to anticipate a target with unpredictable timing and respond by pressing a button.  10 

Results Preparing a motor response, the ADHD group failed to increase hemispheric mu lateralization 11 

with relatively higher mu power in sensorimotor regions not engaged in the task, as the controls did 12 

(F1,33=8.70; p=.006). Moreover, the ADHD group pre­response mu lateralization not only correlated 13 

positively with accuracy (rs=.64; p=.0052) and negatively with intra­individual reaction time variability 14 

(rs=­.52; p=.033), but it also correlated negatively with the score on an ADHD­rating scale (rs=­.53; 15 

p=.028). 16 

Conclusions We suggest that ADHD is associated with an inability to sufficiently inhibit task­irrelevant 17 

sensorimotor areas by means of mu oscillatory activity. This could explain disruptive motor­activity in 18 

ADHD. These results provide further evidence that impaired modulation of alpha band oscillations is 19 

involved in the pathogenesis of ADHD.      20 
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TEXT 21 

 22 

Introduction 23 

Attention­deficit Hyperactivity Disorder (ADHD) is characterized by a pervasive pattern of 24 

developmentally inappropriate inattentive, impulsive and hyperactive behaviors that typically begin 25 

during the preschool years and often persist into adulthood (Polanczyk et al., 2007, Fayyad et al., 2007, 26 

Association, 2000, Simon et al., 2009). Attention­deficit symptoms cover problems in directing and 27 

sustaining attention, whereas hyperactivity and impulsivity symptoms cover a surplus of motor­activity 28 

in general and an inability to suppress motor­activity when unwanted or socially inappropriate. 29 

A longstanding hypothesis characterizes ADHD as a disorder of cognitive and behavioral inhibition [for 30 

reviews see (Nigg, 2005, Sergeant et al., 2003, Barkley, 1997, Adams et al., 2008, Boonstra et al., 2010)]. 31 

Top­down controlled oscillations in the alpha band (8­12 Hz) are thought to play a key role in functional 32 

inhibition of cortical areas [for a review see e.g. (Klimesch et al., 2007, Jensen and Mazaheri, 2010, Foxe 33 

and Snyder, 2011)]. In a prior study we reported evidence that failure to regulate cortical alpha activity 34 

is related to attentional problems in ADHD. Aberrant posterior hemispheric alpha lateralization was 35 

shown to be associated with visuo­spatial attention problems in adults with ADHD (ter Huurne et al., 36 

2013). We now investigate whether these problems in orchestrating alpha band oscillations extend to 37 

the sensorimotor domain, as problems in inhibiting motor actions is part of the pathology of ADHD .    38 

As in visual areas, oscillations in the alpha band are also observed in sensorimotor cortex known as the 39 

mu rhythm. The functional role of the mu rhythm seems to be similar to the visual alpha rhythm. When 40 

a motor act is prepared, observed, imagined or executed robust modulations of the mu rhythm are seen 41 

over sensorimotor cortex (Stancak and Pfurtscheller, 1996, Pfurtscheller et al., 2006, Babiloni et al., 42 
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2004, Salmelin and Hari, 1994, Muthukumaraswamy et al., 2004, Pfurtscheller and Neuper, 1994, 43 

Pfurtscheller et al., 1994). A decrease in mu is observed in sensorimotor areas that are involved in 44 

performing the motor action, while at the same time an increase is observed in sensorimotor areas 45 

ipsilateral to the engaged body part. With this, it is thought that sensorimotor mu has a similar function 46 

as alpha in sensory cortex, to functionally inhibit cortical areas (Neuper et al., 2006, Salmelin and Hari, 47 

1994).  48 

Although mu modulation has been related to failing suppression of motor responses in healthy subjects 49 

(Mazaheri et al., 2009), little research has been done on the mu rhythm in ADHD patients. Yordanova et 50 

al. measured mid­line electroencephalographic mu­band activity during motor­responses in an auditory 51 

attention task in children with ADHD. Although there were no differences in mu suppression during 52 

motor response generation, the ADHD group did show mu suppression after stimuli that did not require 53 

motor responses (Yordanova et al., 2013). This could support the idea that diminished mu modulation is 54 

involved in impulsive motor responding in ADHD. Another magnetoencephalography (MEG) study 55 

investigated somatosensory mu modulation after median nerve stimulation in adults with ADHD, 56 

showing diminished mu reactivity in ADHD, especially with unpredictable stimulation (Dockstader et al., 57 

2009).  58 

Notably, in both patient studies, deviant mu modulation was related to preparation and anticipation. 59 

When anticipating and preparing a goal directed motor action task relevant motor regions should be 60 

ready to engage on demand, while at the same time activity in task­irrelevant motor areas should be 61 

suppressed. In ADHD, mu modulation could be impaired resulting in insufficient inhibition of task­62 

irrelevant cortical areas causing unwanted and disruptive motor­output. To test this hypothesis we set 63 

out to investigate 1) whether preparatory sensorimotor mu modulation is impaired in patients with 64 

ADHD by evaluating hemispheric mu lateralization; and 2) whether the ability to modulate sensorimotor 65 
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mu relates to the ability to suppress disruptive motor actions, as expressed by ADHD symptom severity 66 

in daily life. To this end analyses were conducted on pre­existing MEG data recorded in a group of adults 67 

with and without ADHD when performing a visual spatial attention task that required (preparing for) 68 

motor responses.  69 

Materials and Methods 70 

The dataset that was used for the analysis was published before elsewhere, for more details see (ter 71 

Huurne et al., 2013). The study was approved by the local medical­ethical committee (committee for 72 

protection of human subjects of the Arnhem/Nijmegen region; CMO protocol number 2009/260) and 73 

was performed according to the declaration of Helsinki. Written informed consent was obtained from all 74 

participants prior to study entry.  75 

Subjects 76 

Forty­one adults (ages 21­40 years) were recruited from an existing database, the Dutch cohort of the 77 

International Multicenter persistent ADHD CollaboraTion (IMpACT) study (Hoogman et al., 2011). After 78 

excluding 6 participants for reasons described below, 17 ADHD patients and 18 IQ, age, handedness and 79 

gender matched healthy control subjects remained for final analysis. For demographic information see 80 

Table 1. Subjects in the patient group met the DSM­IV­TR criteria of ADHD, and none in the control 81 

group did. All participants were assessed using the Diagnostic Interview for Adult ADHD [(Kooij J, 2007), 82 

http:/www.divacenter.eu/DIVA.aspx]. In addition, a quantitative measure of clinical symptoms was 83 

obtained using the self­report of the ADHD DSM­IV Rating Scale (DuPaul G, 1998, Kooij et al., 2005). 84 

General exclusion criteria were any (co­morbid) psychiatric, as assessed using the Structured Clinical 85 

Interview for DSM­IV (SCID­I), or neurological disorder and prescription medication use (other than 86 

psychostimulant or anti­conceptive drugs). If subjects used psychostimulants they were requested to 87 

temporarily discontinue their medication (at least 18 hours) before and during the experiment. An 88 
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estimation of IQ was made using a subset of the Wechsler Adult Intelligence Scale (WAIS). Handedness 89 

was determined using the Edinburgh Handedness Inventory (Oldfield, 1971).  90 

Task 91 

We used a cued visuo­spatial covert attention task. For the current study the cuing is not of interest.  92 

The basic outline of each trial was as follows (also see Figure 1). After a baseline period of 0.6 s with no 93 

visual stimulation the trial would start. The start of the trial was marked by the central presentation of a 94 

visual cue (an arrow pointing to the left or right) or in 1/6 of the trials a question mark (neutral cue 95 

condition) flanked on both sides by a random­dot­kinematogram (RDK). The cue would disappear after 96 

0.2 s while the RDKs stayed on. After an interval of 0.6 to 1.1 s (jittered) the dots in the RDKs would start 97 

moving coherently for 0.3 s, on one side horizontally (left­ or rightwards) and on the other vertically (up­ 98 

or downwards). Subjects were instructed to detect the direction of the horizontal movement. In 80 % of 99 

the trials the horizontal movement would be in the RDK on the cued side (valid cue trials) and in 20 % of 100 

the trials in the RDK on the non­cued side (invalid cue trials). Subjects were instructed to respond as 101 

quickly as possible by pressing a left (for leftward movement) or right button (for leftward movement) 102 

using the index and middle finger of their dominant hand. After each trial, feedback was given on 103 

accuracy. A total of 864 trials were presented lasting 2­2.5 s. A session lasted about 45 minutes per 104 

subject. Prior to the recordings, subjects participated in a practice session with 120 trials lasting 5 105 

minutes. During the experiment subjects were seated in front of a projector screen, with a distance of 106 

72 cm between eyes and screen. Subjects were instructed not to move during the experimental trials. 107 

The visual stimuli were presented using an EIKI XL 100 projector with 60 Hz refresh rate. Behavioral 108 

responses were collected with a Current Designs HH­1x4­C fiber optic response device. We used the 109 

software Matlab Psychtoolbox for presenting the stimuli.   110 

MEG acquisition 111 
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A 275­sensor whole­head MEG system with axial gradiometers (CTF, Inc., Vancouver, Canada), located at 112 

the Donders Centre for Cognitive Neuroimaging, Nijmegen was used to record oscillatory brain activity. 113 

Signals were low­pass filtered at 300 Hz and sampled at 1200 Hz. Eye­movements were identified in 114 

records using the electrooculogram (EOG) from electrodes placed at the lateral canthus of each eye, 115 

eye­blinks from electrodes placed above and below the left eye. Using three head localization coils 116 

(positioned on the nasion and two ears) x­, y­ and z­coordinates were recorded to calculate head 117 

positions with respect to the MEG sensor array (Stolk et al., 2013).   118 

Data analysis 119 

For each subject behavioral performance in terms of percent correct responses (accuracy) was 120 

determined. One control subject was excluded from further analyses because performance was at 121 

chance level. Offline analysis of the MEG recordings was done using Matlab 7.5.0 and the Fieldtrip 122 

software package (http:/www.ru.nl/fcdonders/fieldtrip/). Data was down­sampled to 600 Hz and low­123 

pass filtered at 150 Hz. For each trial head­movement was calculated with respect to the head­position 124 

in the first trial and with respect to the preceding trial (inter­trial head movement). For one of the ADHD 125 

subjects data on head position was missing due to a technical error. For the rest of the subjects trials 126 

with head­movement that exceeded 1 cm with respect to the first trial and beyond 1 mm with respect 127 

to the prior trial were rejected. The MEG signals were transformed from axial gradiometers to planar 128 

gradients to facilitate the interpretation of the topographic mapping of the magnetic fields (Bastiaansen 129 

and Knosche, 2000). The planar gradient makes data interpretation easier since the strongest field is 130 

situated above the neural source. Trials were visually inspected for horizontal shifts of gaze and muscle 131 

artifacts, rejecting trials with extremely high variance, muscle artifacts and sustained horizontal EOG 132 

shifts of more than 50 µV from baseline. Three control and two ADHD subjects were excluded from 133 

further analyses because more than 2/3 of their trials had to be rejected due to horizontal eye­134 

movement. Subsequently, independent component analyses (ICA) was used to identify eye­blink and 135 
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heartbeat artifacts in the data (Jung et al., 2000). Artifactual components were semi­automatically 136 

identified by correlations between independent components (ICs) activation time courses and the 137 

vertical EOG and electrocardiography time courses. ICs with the strongest correlation were visually 138 

inspected and rejected.   139 

For each trial, time­frequency representations (TFRs) of power were calculated with respect to trial 140 

onset (cue­locked; ­0.6 to 1.4 s; ) and with respect to the button press (response­locked; ­1.4 to 0.6 s). A 141 

fast Fourier transformation (FFT) approach was used. For frequencies between 5 and 30 Hz with a 142 

resolution of 1 Hz an adaptive sliding window (shifting in 0.05 s steps) of five cycles length (Δt = 5/f) was 143 

used after multiplying a Hanning taper. To calculate event related synchronization (ERS) and event 144 

related desynchronization (ERD) TFRs of all trials were baseline corrected using a relative change 145 

baseline of ­0.25 to ­0.1 s with respect to trial onset. The data of all trials were averaged, using all 146 

condition types (neutral cue, valid cue and invalid cue) both correctly and incorrectly answered.  147 

To select two regions of interest (ROIs) the cue­locked data was used, averaging the TFR data of all trials 148 

and all subjects irrespective of group or handedness (n = 35). To minimize selection bias we avoided 149 

using the response locked data and contrasts that were later used to investigate the main hypotheses 150 

[see next paragraphs; (Kilner, 2013)]. Selection criteria for the RIOs were: 2 homologue groups, one 151 

group in each hemisphere, of 3 contingent sensors with the strongest ERS in the 10­12 Hz frequency 152 

band, in the 0.4 to 0.8 s time­interval after trial onset (cue­locked data). This topographic distribution 153 

and frequency band correspond to prior reports of sensorimotor mu ERS (Pfurtscheller et al., 2000, 154 

Pfurtscheller et al., 2006, Pfurtscheller and Neuper, 1997). The time interval was chosen such that 155 

subjects were preparing for an upcoming motor action, but at the same time avoiding spill of the actual 156 

motor activity of the button­press.    157 

 158 
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Next, for each subject time resolved hemispheric mu lateralization indices (MLI) were calculated using 159 

the left and right ROI; contra­ and ipsilateral refers to the ROI with respect to the hand used for 160 

responding: 161 

��� �
�	���������������� 	�	�	������������������
�	���������������� 	�	�	������������������

    Eq. 1 162 

This allows the use of the same measure of mu lateralization for all subjects, irrespective of which hand 163 

was used for button presses.  164 

Statistical analysis 165 

In order to statistically test differences in hemispheric mu lateralization two periods of interest were 166 

defined: (1) A baseline interval (­0.25 to ­0.1 s with respect to trial onset), to assess whether there were 167 

differences in MLI between the groups in rest (no motor preparation); and (2) a pre­response interval, to 168 

assess whether there were differences in MLI between the groups when preparing for a motor action. 169 

The pre­response interval was defined such that it was as long as possible without overlapping with the 170 

baseline interval or the actual motor action. To do so, the length of the frequency adaptive sliding 171 

window that was used for the FFT was taken into account (see Data analysis section). The length is 172 

greatest at the lowest frequency, 10 Hz. With a window length of 5 cycles for 10 Hz, the window length 173 

was 0.5 s (5/10 Hz), 0.25 s on each side of the time­point. With a minimal trial­length of 0.8 s plus 174 

reaction time, we (conservatively) defined the start of the pre­response interval with respect to the 175 

button­press as ­0.9 s plus the 0.25 s correction for window length (­0.65 s). The end was defined as the 176 

time of button­press (t = 0 s) minus the 0.25 s correction for window length (­0.25 s). For each subject 177 

mean MLI was calculated for these time intervals and differences were statistically tested. Repeated 178 

measures ANOVAs were used, with a between­subject factor group (control and ADHD) and a within­179 

subject factor time interval (baseline and pre­response interval). All statistical analyses we done using 180 

SPSS 19.0 for Windows (IBM SPSS Inc., Chicago, Illinois). 181 
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Results 182 

There were no significant differences in demographic variables between the groups (Table 1), nor in 183 

total number of trials after rejections (control: 677±144 [mean, SD]; ADHD: 701±129; p = .61), nor in 184 

mean intra­trial head movement (control: 0.052±0.023 mm; ADHD: 0.048±0.025 mm; p = .66), as shown 185 

using independent samples t­tests. As expected, groups did differ in score on the ADHD self­report 186 

(control: 2.28±2.76; ADHD: 11.1±3.09; p <.001; see Table 1).  187 

Behavioral data 188 

As reported in (ter Huurne et al., 2013) there were differences between the groups in task performance 189 

concerning effect of cuing. With respect to reaction times, the ADHD group did not benefit from cuing as 190 

the controls did. With respect to accuracy, the ADHD group showed a lack of cuing effect for right 191 

targets. For more details see (ter Huurne et al., 2013). For the current study the effect of cuing was not 192 

of interest, so the data of all conditions independent of cue­type were collapsed. There were no 193 

statistically significant differences between the groups in overall accuracy (control: 82.9±10.2%; ADHD: 194 

80.7±11.7%; p = .55), nor in overall mean reaction time (control: 642±93.1 ms; ADHD: 626±90.4 ms; p = 195 

.59). As an additional measure of performance we regarded intra­individual variance in reaction time, as 196 

increased variability has been associated with ADHD [for a review see (Kofler et al., 2013)]. Also in our 197 

sample reaction time coefficient of variability (SD/mean) was higher in the ADHD group, but this 198 

difference was not statistically significant, although trending (control: 0.21±0.036; ADHD: 0.24±0.067; p 199 

= .11, equal variances not assumed; independent samples t­tests). 200 

Sensorimotor Mu Lateralization 201 

First, the two ROIs were identified using the cue­locked TFR data as described in the method section (n = 202 

35; f = 10­12 Hz; t = 0.4 – 0.8 s). Figure 2 A shows the two homologue groups of 3 contingent sensors 203 

with the strongest ERS in the specified time interval and frequency band that were selected. The 204 
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topography is consistent with prior reports (Pfurtscheller et al., 2000, Pfurtscheller et al., 2006, 205 

Pfurtscheller and Neuper, 1997). Figure 2B shows the TFRs and topographic plots for both the cue­206 

locked and response­locked data of the two groups separately. The TFRs of both ROIs show an increase 207 

in the 10­12 Hz mu band in the preparation interval.  Although the overall mu power increase appeared 208 

to be weaker in the ADHD group (especially in the right hemisphere, see Figure 2B right panels) the 209 

topography, time course and frequency range of mu were similar between the groups. 210 

Using the selected ROIs, we then calculated the MLI (Eq. 1) for each subject. The MLI characterizes the 211 

hemispheric lateralization in the mu band with respect the hand used for the button press. Figure 3A 212 

shows the time course of mean MLI for both groups. A positive MLI corresponds to a relatively larger mu 213 

power in ipsilateral sensors as compared to contralateral sensors with respect to the response hand, i.e. 214 

a relatively increased mu activity in sensorimotor areas that are not engaged in the task. In the control 215 

group mu lateralization started to increase immediately after trial onset and kept increasing until the 216 

button press was made. The ADHD group showed a delayed and smaller MLI increase.  217 

After calculating MLI for the baseline and pre­response interval, a repeated measures ANOVA was done 218 

with a between subjects factor group (control and ADHD) and a within subject factor time interval 219 

(baseline and pre­response interval). The analysis revealed a significant 2­way group × time interval 220 

interaction (F1,33 = 8.70; p = .006), see Figure 3B. Post hoc analyses showed that in the control group 221 

there was a highly significant difference between the MLI in the baseline interval compared to the pre­222 

response interval (respectively [resp.]: 0.004±0.071; 0.216±0.067 [mean, SEM]; p < .0001). In contrast, 223 

there was no significant difference between the baseline and pre­response interval in the ADHD group 224 

(resp.: 0.042±0.054; 0.055±0.046; p = .81). Comparing the groups, pre­response MLI was borderline 225 

significantly weaker in the ADHD group (p = .059), which is likely to explain the overall effect. There was 226 

no significant difference in baseline MLI between the groups (p = .61).  227 
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We conclude that there were distinct differences between the groups in terms of mu lateralization 228 

(Figure 3). The controls strongly lateralized mu band oscillations when preparing for the button­press, 229 

with relatively higher mu power in sensors corresponding to the sensorimotor cortex ipsilateral to the 230 

responding hand. In the ADHD group, however, there was no such preparatory lateralization of mu.   231 

Correlations between Mu Lateralization and ADHD symptoms 232 

Next we investigated whether this diminished preparatory lateralization of mu oscillatory activity is 233 

associated with ADHD symptoms in daily life. The analysis revealed a statistically significant negative 234 

correlation between the individual pre­response MLI and the individual score on the ADHD self report in 235 

the ADHD group (Spearman correlation; rs = ­.53; p = .028; Figure 4A). This means that the less an ADHD 236 

subject was able to lateralize the mu activity in preparation of a motor action, the more ADHD 237 

symptoms were present in daily life. Additional analyses revealed that pre­response mu lateralization 238 

was also predictive of performance on the task. A strong positive correlation was found between pre­239 

response MLI and overall accuracy (rs = .64; p = .0052; Figure 4B) and a negative correlation between 240 

pre­response MLI and reaction time coefficient of variability (rs = ­.52; p = .033; Figure 4C). This shows 241 

that in the ADHD patient group relatively weaker preparatory mu lateralization was associated with 242 

relatively higher error rates and stronger intra­individual variability in reaction time. No significant 243 

correlation was found between pre­response MLI and mean reaction time (rs = .29; p = .25). 244 

In sum, the control group showed strong modulation of mu oscillatory activity in preparation of an 245 

upcoming goal directed motor­action, with relatively higher mu power in task irrelevant sensorimotor 246 

regions. However, the ADHD patient group failed to show this preparatory mu lateralization. Moreover, 247 

the lack of preparatory mu lateralization in the ADHD group was not only predictive of performance on 248 

the task, but also of ADHD symptoms in daily life.  249 

Discussion 250 
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In the present study we investigated whether ADHD is associated with impaired modulation of the 251 

sensorimotor mu rhythm. MEG signals were recorded in a group of ADHD patients and a group of 252 

healthy controls performing a visual attention task involving preparation of a motor response. 253 

As expected, robust mu rhythm modulation was measured in sensors corresponding to sensorimotor 254 

areas when subjects prepared for a motor response. In the healthy controls the increase in mu 255 

synchronization was strongly lateralized relative to the hand used for the button press, with relatively 256 

higher mu power in the ipsilateral compared to the contralateral hemisphere. The ADHD group however 257 

failed to show this increase in mu­laterality in preparation of the response. Moreover, the degree of 258 

preparatory mu­lateralization was shown to correlate negatively with the number of daily life symptoms 259 

of the ADHD patients. Additionally, we found that the individual degree of pre­response mu 260 

lateralization was predictive of accuracy on the task (positive correlation) and intra­individual variability 261 

in reaction time (negative correlation). Taken together, these results indicate problems in adequately 262 

modulating sensorimotor mu activity in preparation of motor actions in patients with ADHD. Not only is 263 

the individual extend of these problems predictive of behavioral task performance, it is also predictive of 264 

the amount of experienced problems in controlling disruptive motor activity and attentional processes 265 

in daily life. 266 

Like in anticipatory attention, motor preparation is characterized by selection (Brunia 1999). In order to 267 

achieve behavioral goals relevant motor regions are selected and recruited, while others are selectively 268 

suppressed. In the current study subjects had to anticipate a target with unpredictable timing, ready to 269 

respond with a predetermined motor action. Crucial for maintaining the selected motor program is 270 

functional inhibition of task irrelevant areas to guard it from disruption. Corroborating prior studies 271 

(Babiloni et al., 2004, Pfurtscheller et al., 1994) the control group showed a relative increase in mu 272 
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rhythm over task irrelevant sensorimotor areas in preparation of the response to prevent disruption or 273 

interruption by task irrelevant movement.  274 

Interestingly, in the ADHD group this demarcation between task relevant and task irrelevant areas as 275 

expressed by a difference in mu activity was diminished. Yordanova et al. found an abnormal drop in mu 276 

reactive to a non­target in ADHD (Yordanova et al., 2013), likely corresponding to failing reactive 277 

suppression of motor regions. We now show that ADHD is also characterized by failing proactive 278 

functional inhibition of motorcortical areas by tonically increasing mu to prevent unwanted movement 279 

(Aron, 2011).  280 

The individual ability to lateralize mu proved to be predictive of behavioral performance on the current 281 

task and ADHD severity as measured by the ADHD­selfreport. This underlines the importance of 282 

functional inhibition of the sensorimotor cortex by mu, not only in an experimental setting, but also in 283 

daily life function. Furthermore, modulation of sensorimotor mu could prove a useful biological marker 284 

of ADHD, mutually enforced by other disorder specific alterations in neuronal oscillatory activity 285 

(Mazaheri et al., 2014, Mazaheri et al., 2010). 286 

At this point, the exact neuro­anatomical origin of the reduced mu lateralization in ADHD is unknown. 287 

Likely candidates are disruptions in function of the prefrontal cortex and the basal ganglia (Rubia et al., 288 

1999, Chambers et al., 2009, Clark et al., 2007, Rubia et al., 2001, Cubillo et al., 2010, Teicher et al., 289 

2000, Majid et al., 2013) and also the thalamus (Saalmann et al., 2012, Hughes and Crunelli, 2005, Devos 290 

et al., 2006). 291 

A methodological limitation to the present study is that the data was used for analyses in a prior study 292 

(ter Huurne et al., 2013). Although it is encouraged to maximize benefits from patient datasets, it is hard 293 

to statistically correct for this. Furthermore, self report measures were used to assess daily life ADHD 294 
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symptoms. Clinically rated symptom scales could be preferable as a subset of ADHD patients is 295 

recognized to be unable to reliably rate their symptoms themselves.  296 

The present results are further evidence that impaired regulation of alpha band activity is part of the 297 

neural substrate of ADHD. After showing behavioral implications of aberrant modulation of alpha band 298 

activity in the sensory system in ADHD (ter Huurne et al., 2013) we now show aberrant modulation of 299 

same frequency band mu rhythm in the motor system, which is predictive of ADHD severity. Combined 300 

this presents evidence for a central role for aberrations in modulation and orchestration of alpha band 301 

oscillations in ADHD, affecting multiple functional domains. Future studies should focus on dynamics 302 

and interactions of alpha band oscillatory activity on a network level. In addition, the effect of 303 

pharmacological interventions on alpha modulation should be assessed.  304 
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Legends 

 

 

Figure 1. Schematic overview of the experimental paradigm.  After a baseline period an attentional cue 

flanked by random­dot­kinetograms (RDK’s) demarked trial onset. Cue validity was 80 %. After a jittered 

preparation interval, in one of the RDK’s the dots would start moving coherently in horizontal direction. 

Subjects had to report as quickly as possible in which direction the dots had moved by pressing one of 

two buttons using their dominant hand.  
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Figure 2. (A) Topographic representation of mean power of all subjects (n=35), frequency range 10 to 12 

Hz, time interval 0.4 to 0.8 s with respect to trial onset (cue­locked data). Black dots denote the sensors 

with the strongest ERS which were selected as the left and right ROIs that were later used to calculate 

the mu lateralization index. (B) Topographic plots and TFRs of left and right ROIs for both groups 

separately (wrt: with respect to). Left panels show the TFRs of the left ROI, the right panels the TFRs of 

the right ROI. Dotted lines denote trial onset, solid lines denote time of response. The squares denote 

the corresponding time and frequency of the topographic maps shown in the middle. Black and white 

circles denote the left and right ROI sensors. Although mu­band ERS seems less pronounced in the ADHD 

group (especially for the right hemisphere), the topography, time course and frequency range of mu are 

quite similar between the groups.   
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Figure 3. (A) Mean mu lateralization index (MLI) plotted against time, lighter color denotes standard 

error of the mean (wrt: with respect to). Left panel shows MLI with respect to trial onset, right panel 

shows MLI with respect to the button­press (response). A positive MLI means higher mu in sensors 

ipsilateral than cortralateral of the responding hand. Note that in the ADHD group (red solid line) mu 

lateralization starts later and is smaller than in the control group (blue dotted line). (B) Mean MLI in the 

baseline interval (t = ­0.25 to ­0.1 s with respect to trial onset) and the pre­response interval (t = ­0.65 to 

­0.25 s with respect to button­press) for both groups. In contrast to the control group, the ADHD group 

does not show a significant increase in MLI.  

 

 

Figure 4. (A) Individual pre­response mu lateralization index (MLI) of the ADHD group plotted as a 

function of number of ADHD symptoms as measured by the ADHD self report. There is a negative 

linear relationship between mu lateralization strength and ADHD severity in daily life. (B) Pre­response 
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MLI of the ADHD group plotted against accuracy on the task, showing a strong positive relationship 

between the degree of mu lateralization and accuracy. (C) Pre­response MLI of the ADHD group plotted 

against reaction time coefficient of variability. Stronger mu lateralization is associated with smaller intra­

individual variability in reaction time.   
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