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Abstract

Synchronization of population dynamics in different habitats is a frequently observed phe-
nomenon. A common mathematical tool to reveal synchronization is the (cross)correlation coeffi-
cient between time courses of values of the population size of a given species where the population
size is evaluated from spatial sampling data. The corresponding sampling net or grid is often
coarse, i.e. it does not resolve all details of the spatial configuration, and the evaluation error –
i.e. the difference between the true value of the population size and its estimated value – can be
considerable. We show that this estimation error can make the value of the correlation coefficient
very inaccurate or even irrelevant. We consider several population models to show that the value
of the correlation coefficient calculated on a coarse sampling grid rarely exceeds 0.5, even if the
true value is close to 1, so that the synchronization is effectively lost. We also observe ‘ghost syn-
chronization’ when the correlation coefficient calculated on a coarse sampling grid is close to 1 but
in reality the dynamics are not correlated. Finally, we suggest a simple test to check the sampling
grid coarseness and hence to distinguish between the true and artifactual values of the correlation
coefficient.

Keywords: sparse data; sampling; coarse grid; data analysis; correlation coefficient; ghost syn-
chronization

1Corresponding author.

1



1 Introduction

Evaluation of properties of a spatially extended system from sparse spatial data is an inherent
problem in many applications across science and engineering [9, 13, 54]. The term “sparse data”
usually refers to a situation where the information about a spatial distribution of a certain quantity
(e.g. the concentration of a chemical substance in the environment) is available only at nodes of
a certain discrete grid or net, and the number of grid nodes is not large enough to resolve the
details of the heterogeneous distribution of the substance and/or the spatial configuration of the
system. Often sparse spatial data are used to evaluate an integral property of the system – say, a
‘total mass’, the exact meaning of which depends on particular application. Here we mention just a
few examples: in water quality engineering, it is the total amount of a harmful chemical substance
occasionally released into the environment [9]; in geology, it is the total stock of a valuable mineral
[13, 62]; in medicine, it is the total mass of a tumor [21]; in ecology, it is the population size of
a dangerous pest [45, 54, 56]. A generic problem for the above examples, as well as for other
similar situations where researchers or engineers have to deal with sparse data, is that, due to the
apparent loss of information, the evaluation of the total mass can produce a result of unacceptably
low accuracy. In its turn, that can lead to wrong decisions and dramatic consequences, e.g. a large
reserve of a valuable mineral is overlooked, a dangerous tumor is not treated timely, etc.

In this paper, we consider the problem of sparse data in the context of ecological applications.
Information about population abundance is routinely used in ecology for many different purposes
such as to assess the ecosystem state and biodiversity [4, 35], to identify and monitor endangered
species [20, 55], to monitor pests [10], to account for some important properties of population
dynamics (e.g. spatial patterning [1, 11] or synchronization [7, 24, 37, 57, 61]), etc. While theo-
retical studies usually assume that this information – e.g. as quantified by the population size or
the population density – is readily available with any required precision, estimation of population
abundance in empirical studies is rarely straightforward. For instance, evaluation of the popula-
tion size by direct counting is only possible for some species and only in relatively small habitats.
Much more often, collection of relevant field data involve a certain sampling procedure [54]. Sam-
ples are taken across space with the intention to provide an estimate of the population density of a
given species at some particular locations inside a given area or habitat [36, 56]; see Fig. 1. The
accuracy of the population abundance evaluation depends on the accuracy of the local population
density estimate at the location of a given sample and on the sample size (i.e. the total number of
samples in a given census). It can also depend on the way how the local data are pulled together or
‘integrated’ to produce an estimate of the population size [41, 43].

We mention here that the accuracy of the local data depends on the nature of the samples which,
in its turn, depends on the species traits. For instance, for soil-dwelling insects, sampling is often
done by taking soil cores [10, 31, 56]. The insect count in a given soil core gives an almost per-
fect estimate of the local population density. For flying insects or insects walking/crawling on the
surface, their census is usually done by installing traps and subsequently analyzing trap counts, a
procedure that inevitably introduces a certain error [45, 46]. The precision of the local population
density estimation and the number of samples collected in a population census, albeit not being
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Figure 1: (left) A sketch of sampling on a coarse grid along a 1D transect. The dashed curve shows a
hypothetical population distribution which is only known at the location r1, . . . , rN of samples. (right)
Population density u(x, y) of a carabid beetle species in a farm field obtained from data collected on a fine
grid of 16× 16 traps (data from [1]). The large black dots show the location of the nodes of a hypothetical
coarse sampling grid of 3 × 3 nodes. Apparently, in both cases shown in the left and right panels, the
sampling data obtained on a coarse grid would miss some important details of the population distributions.

entirely independent2, are affected by largely different factors. Since in this paper our main goal
is to understand how the reliability of conclusions about population dynamics (in particular, syn-
chronization) can be affected by the samples size, we assume that local data are precise. The only
source of the evaluation error is then the coarseness of the sampling grid.

In sampling procedures, both the location of the samples and their total number (to which alto-
gether we refer as a sampling grid) used in any one given census or population survey are chosen
based on a variety of reasons. A closer look at the corresponding arguments reveals that, while in
some cases they are theory-based (e.g. based on the analysis of variances [47, 59]) in many other
cases the properties of the sampling grid are decided based on a rule of thumb [12]. The question
hence arises as to when – i.e. under what conditions – the population size estimated from data
collected over a given sampling grid is accurate enough to provide a reliable information for any
conclusions about the system properties and/or dynamics. In our previous work [39, 41, 43, 45], we
showed that the above question “when” has a relative rather than absolute meaning as the evalua-
tion accuracy depends on the spatial pattern of the population distribution. The same sampling grid
may provide a very accurate estimate of the population size for one spatial population distribution
but can lead to a completely wrong result for another distribution.

The main goal of this study is to consider how the quality of sampling data affects the conclu-
sions on the presence or absence of synchronization between population fluctuations in different
habitats. Synchronization is frequently reported in the literature [7, 24, 28, 37, 57, 61]; however,

2e.g. budget constraints can make it difficult to combine high-quality (and hence more expensive) local sampling
with large number of samples.
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technical details of the data collection, such as the properties of the sampling grid are often omit-
ted. Also, the effect of the spatial pattern in the distribution of the corresponding populations
usually remains obscure. Therefore, at least in some cases, the question may arise as to whether
the observed synchronization is really as strong as it is reported. We will focus on the rather com-
mon case where the sampling grid is coarse, i.e. where the total number of samples taken in a
given area is not large. We will show that sampling over a coarse sampling grid can lead to wrong
conclusions, because synchronization remains undetected. We will also show that sampling over a
coarse grid can result in a ‘ghost synchronization’ where synchronization is seen in the data whilst
in reality the monitored populations are not synchronized.

2 Mathematical framework

Consider a generic case where a certain population described by its population density u(r, t)

is sampled in a given domain A. The domain may be the species habitat or it may be defined
by some external factors or tasks3. Although the results of our analysis are going to be rather
general and not restricted to any particular species or taxa, for the convenience of interpretation
we will mostly talk about invertebrates, e.g. insects, worms or slugs. In case of an invertebrate
population, its sampling is usually done by installing traps and then analyzing the trap counts
[8, 15, 45] or by taking soil cores and counting the number of individuals in each core [10, 56]. For
simplicity, we assume that all samples in the given census are taken over a sufficiently small period
of time, so that the population density would not undergo any significant change during the census
duration. In mathematical terms, this standard sampling procedure provides the information about
the population density as a set of values u(r1, t), u(r2, t), . . . , u(rN , t) where ri is the location
of the ith sample, N is the number of samples in the given census and t is the timing of the
census. This information is then processed to produce a certain index that quantifies the population
abundance in the given area. Quite often, the sampling data are used to obtain an estimate of the
population size ωA or the average population density ū = ωA/ZA where ZA is the area of the
domain. There are several ways to calculate the average density [43]; in this study, we consider
the method commonly used in empirical ecology [54, 56] to estimate the average by calculating
the arithmetic mean of the sampled values:

ū ≈ 1

N

N∑
i=1

u(ri, t). (1)

In case the census is done regularly, say at times t1, t2, . . . , tk, application of (1) to the samples
collected in each census results in a time series of the average population densities, i.e. S =

{ū(1), ū(2), . . . , ū(k)}. This time series can then be further analyzed depending on the purpose of
the study. When the study focuses on synchronization, sampling procedure is applied to a number
of domains/habitats to produce the corresponding number of different time series. For example,
sampling in domains A and B would produce two time series, SA = {ū(1)

A , ū
(2)
A , . . . , ū

(k)
A } and

3For instance, in the context of integrated pest management such a domain can be a farm field.
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SB = {ū(1)
B , ū

(2)
B , . . . , ū

(k)
B }, respectively. The standard statistical tool to reveal synchronization is

the (cross)correlation coefficient [28, 48, 49, 57]:

ρAB(k,N) =

∑k
i=1

(
ū

(i)
A − µA

)(
ū

(i)
B − µB

)
√(∑k

i=1

(
ū

(i)
A − µA

)2
)(∑k

i=1

(
ū

(i)
B − µB

)2
) , (2)

where µA and µB are the sample means of the time series SA and SB:

µA =
1

k

k∑
i=1

ū
(i)
A , µB =

1

k

k∑
i=1

ū
(i)
B . (3)

It follows from (2) that −1 ≤ ρ ≤ 1 where 0 < ρ ≤ 1 corresponds to correlation and −1 ≤ ρ < 0

to anti-correlation.
Depending on the calculated value of ρ, i.e. on the correlation strength, a conclusion can be

made about the existence or absence of synchronization if ρ is close to one or close to zero, re-
spectively. We mention here that the notion of ‘correlation strength’ used in ecological studies is
somewhat conventional [22]: the correlation is regarded as very strong for 0.8 ≤ ρ ≤ 1, strong
for 0.6 ≤ ρ < 0.8, moderate for 0.4 ≤ ρ < 0.6, weak for 0.2 ≤ ρ < 0.4 and very weak for
0 ≤ ρ < 0.2. We will use this verbal description of the correlation strength in our analysis below.
Apparently, there is considerable difference in the population dynamics, and hence different impli-
cations, depending on whether the population fluctuations in different domains over a given area
are synchronized (strongly correlated) or not synchronized (very weakly correlated). For instance,
the existence of synchronization may result in population outbreaks or population falling to low
numbers not in a single habitat but over vast areas of space, and hence may pose considerable
problems for pest control or nature conservation.

We emphasize that, although the right-hand side of Eq. (2) does not contain the number of
samples N explicitly, the correlation coefficient does depend on N because the values of average
population density ū

(i)
A and ū

(i)
B depend on N . It is an inherent problem with expression (1) (as

well as, in fact, with any other way to calculate ū) that its accuracy depends on N . A small number
of samples can make the accuracy very low. Importantly, the number of samples required for a
sufficiently accurate estimate is known to strongly depend on the properties of the population dis-
tribution [41, 43, 45]. For an approximately uniformly distributed population, a few samples can
provide a very good estimate of the average density (ultimately, just one sample is enough if the
distribution is exactly uniform). However, for a strongly heterogeneous or even ‘patchy’ distribu-
tion where the density exhibits large-amplitude fluctuations over space, a reasonable accuracy can
only be achieved with a much larger number of nodes in the sampling grid, i.e. when all the peaks
in the population distribution are somehow ‘resolved’ [40, 41]. On a coarse grid, i.e. where the
number of nodes is not sufficiently large to resolve the details of patchy distribution, the evaluation
accuracy can become poor. In particular, in the examples shown in Fig. 1, it is readily seen that the
arithmetic average of the locally sampled population density would significantly underestimate the
true value as the population peaks remain unresolved. The large numerical error of evaluating the
average density on a coarse grid, i.e. the difference between the right-hand side in (1) and the true
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value ū, is then carried on to the corresponding time series and therefore can significantly affect
the calculated value of the correlation coefficient and hence the conclusions about the presence or
absence of synchronization. In Sections 3 and 4, this heuristic inference will be confirmed by a
detailed quantitative analysis of several case studies.

3 Synchronization ‘lost and found’: instructive example

Since synchronization in a system of multiple domains is usually considered pairwise, cf. Eq. (2),
it is sufficient for our purposes to consider a system consisting of just two domains, A and B. In
this section, we restrict our analysis to the one-dimensional case so that the domains are quantified
by their lengths (rather than area) which we assume to be the same, LA = LB = L.

The idea of our analysis is to consider a system with some known, prescribed properties and
to show how these properties may become obscure or distorted when the sampling grid is coarse.
Specifically, we simulate two sequences of spatial population distributions, different in A and
B, the corresponding total population sizes (or the average population densities) being certain
known functions of time. These functions, ωA(t) and ωB(t) respectively, describe the ‘population
dynamics’, i.e. how the population sizes in domains A and B are evolving with time. For the
purposes of this section, we consider a strong test where these functions are identical, ωA(t) =

ωB(t) ≡ ω(t). Thus, the population dynamics in A and B is perfectly synchronized and the
theoretical value of the correlation coefficient (2) is exactly one. The question that we are going to
consider is what can be the empirical value of the correlation coefficient for different value N of
nodes in the spatial sampling grid.

The ways to generate ‘realistic’ heterogeneous population densities uA(x, t) and uB(x, t) are
numerous; for instance, they can be obtained from a population dynamics model [30]. Here we
use a simpler approach: we consider the population density being a superposition of normal distri-
butions:

uj(x, t) =
ω(t)

p

p∑
m=1

f
(m)
j,t (x), j = A,B, (4)

where t = 1, 2, . . . , k are the moments when the census is taken (e.g. weekly, monthly or annually),

f
(m)
j,t (x) =

1

σ
√

2π
exp


−

(
x− x̂

(m)
j,t

)2

2σ2


 , (5)

where parameter σ is the standard deviation and the peak location x̂
(m)
j,t are independent identically

distributed random variables drawn from a certain probability distribution for every peak and every
year. Parameter p has the meaning of the number of peaks in the distribution, although some of
the peaks can merge or nearly merge when their location is close. The single-peak distribution
(p = 1) can be regarded as a case of high population aggregation while the multi-peak case p À
1 corresponds to a case where the population is somehow distributed over the whole domain.
Examples of function (4) are shown in Fig. 2.
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Figure 2: An example of the superposition u(x) of normal distributions for p = 4 (left) and p = 8 (right).

Integration of the population density (4) gives the population size. In the unbounded domain
−∞ < x < ∞, the Gaussian distribution (5) is scaled to one, so that

M̄(t) =

∫ ∞

−∞
uj(x, t)dx =

ω(t)

p
· p = ω(t), (6)

therefore ω is indeed the population size. In case the population (4) is considered in the bounded
domain 0 < x < L,

M(t) =

∫ L

0

uj(x, t)dx < ω(t), (7)

because the tail of the distribution lies outside of the domain. Moreover, considering the location
of each peak to be a random variable uniformly distributed over the domain, the deviation |M −ω|
can be considerable (in the single-peak case it can be as large as ω/2, i.e. 50% of the total). In order
to reduce the effect of this random fluctuation in the population size, we consider the model where
the location of each peak is drawn from a uniform probability distribution defined over a truncated
domain ε < x < L − ε where the auxiliary parameter ε is chosen sufficiently large compared to
the standard deviation σ to provide M ≈ M̄ = ω.

With regard to the population dynamics, we begin with the simple hypothetical case where the
population size grows linearly with time, i.e. ω(t) = Ct where C is a certain constant parameter.
For this system, we consider the series of k = 500 censuses and, correspondingly, generate 500
population distributions for each domains A and B.

We then consider the sequence of sampling grids with the number of nodes N increasing from
N = 1 to N = Nmax. For every given N , the sampling grid is centered around the domain
midpoint and the grid nodes (i.e. the location of the sampling points across space) are distributed
uniformly over the domain with constant spacing ∆x between the neighboring nodes:

xi = i∆x, i = 1, . . . , N, (8)

where ∆x = L/(N + 1). For every given N , each of the generated population distributions
is sampled on the corresponding grid and the average population density (1) is calculated. The
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time course of values of the average population density obtained for a given N is then fed into
Eqs. (2–3) to calculate the corresponding value of the correlation coefficient. Correspondingly, the
correlation coefficient becomes a function of the number of grid nodes, ρ = ρ(N), where for the
sake of simplicity we now omit A, B and k from the notation for the correlation coefficient but
emphasize its dependence on N .

Figure 3 shows the results obtained for a highly aggregated single-peak population distribution,
i.e. Eq. (5) with p = 1 and σ = 8.0. The domain length is L = 300, truncation is done with ε = 40.
We observe that the truncation of the domain at the ends to generate the distribution (4) is indeed
necessary to correctly describe the highly correlated dynamics between the two domains, with
ρ ≈ 1. In case the domain is not truncated, ρ does not approach one even for a very large N . In
the rest of this section, we therefore stick to the case where the location each peak is a random
variable uniformly distributed over the truncated domain [ε, L− ε].

It is readily seen that correlation coefficient (2) depends on N quite strongly. In order to obtain
its correct value ρ ≈ 1, the sampling grid must contain a sufficiently large number of nodes,
i.e. N ≥ 15; see Fig. 3. For N ≥ 10, the domains are strongly correlated (ρ ≥ 0.8), which may
be regarded as a good approximation to the actual situation of the almost perfect synchronization.
However, for a number of nodes N ≤ 6, the domains are only correlated weakly or very weakly
(ρ < 0.4), which has little to do with reality: the synchronization is lost. We therefore conclude
that, in case of an aggregated population distribution, synchronization cannot be seen unless the
sampling grid contains a sufficiently large number of nodes.

Similar results are obtained in case the population spatial distribution is not highly aggregated
but consists of several peaks or patches. Figure 4 shows the correlation coefficient ρ(N) calculated
in case of such a multi-peak distribution (4) with various number of peaks p. Although in this
case the drop in the calculated value of ρ observed for small N is less dramatic, it still differs
significantly from the true value. In particular, on a grid of N = 3 nodes we have ρ = 0.42 and
ρ = 0.6 (instead of ρ = 1) for the number of peaks p = 4 and p = 8, respectively.

10 20 30 40

0.2

0.4

0.6

0.8

1

full domain

truncated domain

N

(N)ρ

Figure 3: The correlation coefficient for the single peak case, see distribution (5), obtained in the full
domain [0, 300] (solid curve) and truncated domain [40, 260] (dashed curve). The distribution parameter is
σ = 8.0.
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Figure 4: The correlation coefficient ρ(N) for different number of peaks p in the distribution (4) in the case
where the population dynamics is described by a linear function ω(t). Other parameters are the same as in
Fig. 3.

The higher is the population aggregation, the more prominent becomes the dependence of the
correlation coefficient on the number of nodes in the sampling grids. Figure 5 shows ρ(N) in case
of two different values of the standard deviation in the single-patch distribution, cf. Eq. (4) with
p = 1, i.e. σ = 8 (dashed curve) and σ = 3 (solid curve). It is readily seen that in the latter case
the true value ρ ≈ 1 is not obtained until N = 40 or larger, and the domains do not appear to be
strongly correlated unless N ≥ 28. For N ≤ 20, synchronization is lost as the domains appear to
be correlated only weakly or very weakly.

A question arises here as to how the resolution of the sampling grid (i.e. the distance between
the neighboring grid nodes) can be related to the spatial scale of the pattern in order to provide a
reliable estimate of the correlation coefficient. A quantity known as the Nyquist frequency is often
used in spatial ecology (cf. [19, 47]) to quantify spatial variability of the population density with
the goal to determine the resolution of the sampling grid required to avoid any significant loss of
information. Omitting mathematical details, the sampling strategy based on the Nyquist frequency

10 20 30 40
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0.6

0.8

1

sigma=3

sigma=8

N

(N)ρ

Figure 5: The case of a single peak distribution as given by Eq. (4) with p = 1: dashed curve for σ = 8,
solid curve for σ = 3.
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recommends to have at least two samples per population peak. At the first sight, it agrees well
with our results shown above. Indeed, in the high aggregation case shown in Fig. 5, the correlation
coefficient approaches one for N ≥ 15 and N ≥ 42 in case of σ = 8 and σ = 3, respectively.
However, for a more complicated, multi-peak pattern the agreement is worse: inspection of Fig. 4
immediately reveals that the required sampling grid is almost twice coarser than the one based on
the Nyquist frequency. The more complicated the spatial pattern is, the worse this disagreement
becomes. In the next section (see also the last part of Section 6), we will show that in a more
realistic case accounting for some details of the population dynamics the approach based on the
Nyquist frequency can hardly be applied at all.

In conclusion to this section, we mention that the results shown in Figs. 3–5 as well as Fig. 6
below are obtained based on a single realization of a stochastic process (i.e. the random position
of the population peak inside the domain). Another realization of the same process may lead to a
somewhat different result. Generally speaking, for any given N , one should consider a distribution
of values for ρ(N) coming from different realizations, which could be quantified, for instance,
by its median and the confidence interval. However, in the case of the above results, the lack
of the ensemble of realizations is compensated by the length of the time series4: recall that k =

500. Results of complementary simulations (not shown here for sake of brevity) reveal that the
confidence intervals for ρ(N) shown in Figs. 3–6 are very small. For a smaller number of censuses,
the effects of stochasticity may become more explicit. This issue will be further discussed at the
end of Section 4.

3.1 Case of more complex dynamics

We have demonstrated that the information about synchronization can be lost if sampling data are
collected over a coarse grid. However, the type of the population dynamics that we used – i.e. the
population size being a linear function of time – is arguably a simple and rather special case. The
question therefore arises as to whether our results on the synchronization loss on a coarse grid may
also be a special case, or the situation remains qualitatively the same if the population dynamics is
more complicated or more realistic.

In order to address this issue, we now consider a model where the population size ω(t) is given
by the Ricker map:

ωt+1 = rωte
−αωt , (9)

where r and α are parameters. Note that Eq. (9) is a more realistic model than the simple linear
increase used in the previous section; in particular, the Ricker map is widely used in fisheries
[50, 60].

It is well-known that, depending on parameter values, model (9) can exhibit rich dynamics
including multiperiodic oscillations and chaos [2]. We therefore use (9) in order to generate a
sequence of values ω1, . . . , ωk to simulate a ‘realistic’ dynamics (Fig. 6, left). This values are then

4The property known in the theory of complex systems as ergodicity states that, under certain conditions, the length
of the observation time is equivalent to the number of realizations, e.g. see [5]
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used in the same approach as in the previous section, i.e. first to generate a sequence of spatial
distributions (4) and then to calculate the correlation coefficient for different number of the grid
nodes N .

The results are shown in Fig. 6 (right). It is readily seen that the dependence of the correla-
tion coefficient ρ on N possesses essentially the same features as for the simple linear population
growth, i.e. the true value ρ ≈ 1 is obtained only if N is sufficiently large. Similarly, the depen-
dence on N is more prominent for a single peak distribution than for a multi-peak distribution,
cf. cases p = 1, p = 4 and p = 8 in Fig. 6. We therefore conclude that the loss of information
about synchronization (i.e. considerable decrease in the correlation strength) observed when the
sampling data are collected on a coarse sampling grid is not case specific but takes place for the
population dynamics with various properties ranging from very simple to very complicated.

4 Synchronization in different population models

As was discussed in the introduction, in ecological studies the information about population abun-
dance such as the population size or the spatially average population density is usually deduced
from data collected by spatially discrete sampling, i.e. by taking samples in the nodes of a certain
spatial grid. In the previous section, we have demonstrated that sampling over a coarse grid can
result in wrong conclusions about the population dynamics. When the sampling data are used to
reveal the degree of correlation between population dynamics in different habitats, e.g. to reveal
the presence or absence of synchronization, the correlation coefficient becomes a function of the
number N of samples in a census, i.e. the number of nodes in the sampling grid. We have shown
that, if N is small, the calculated correlation coefficient is likely to be small too (e.g. ρ ≈ 0.4 or
smaller) regardless of its actual value, even in case of the perfectly synchronized dynamics where
the true value is ρ ≈ 1. Therefore, when sampling is done over a coarse grid, the synchronization
is likely to be lost.
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Figure 6: (left) The time course of population size ω(t) simulated with model (9) for α = 2 and r =
19; (right) the corresponding correlation coefficient ρ(N) obtained for spatial distributions with different
number of peaks p; see Eq. (4).
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single-peaked (cf. Eq. (4) with p = 1) as described by the probability density function (10–11). (right) Fre-
quency Q of sample values in case of a multi-peaked distribution (Eq. (4) with p = 4) obtained numerically.

The above results were, however, obtained in a rather idealized system. One limitation of
the model used in Section 3 is that, in any given census, the statistical distribution of the values
of the population density over the collection of samples is, in fact, predefined by the choice of
the density profile as (4). To demonstrate this, let us consider the high aggregation case where
the population density forms a single peak described by the Gaussian distribution (5). Consider
the ultimate case where the sampling grid consists of a single node located in the center of the
domain, x1 = L/2. Using standard probability calculus, it is then straightforward to calculate the
probability distribution function (pdf) φ(u) of the event that u(x1) takes the prescribed value u:

φ(u) = 0 for u >
ω(t1)

σ
√

2π
, (10)

φ(u) =
σ

L
√

2

(
log

[
ω(t1)

uσ
√

2π

])−1/2
1

u
for 0 < u ≤ ω(t)

σ
√

2π
, (11)

where t1 is the time when the census is taken,
Probability distribution (10–11) is shown in Fig. 7 (left). For a more general case of a multi-

peak distribution, i.e. Eq. (4) with p > 1, the analytical expression for the pdf is not available but it
can be readily obtained by numerical simulations; an example is shown in Fig. 7 (right). Therefore,
in both cases the pdf has a bimodal shape, this shape being more pronounced on the single peak
case.

We mention here that the frequency distribution shown in Fig. 7 is not unrealistic: the distri-
bution of sample data observed in the population census of some plant species has a similar shape
[17]. Yet it gives only one possible case from a great multiplicity of various probability distribution
functions that are used to describe sampling data collected for different species and under different
ecological conditions [14, 63]. Questions therefore arise as to (i) how common is the situation
where synchronization remains undetected on a coarse sampling grid and (ii) how the minimum
number of samples sufficient to reveal synchronization may depend on the properties of the popu-
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lation dynamics as reflected by the pdf of the sampling data. Indeed, as was discussed in Section
2, the accuracy of the estimate of the average population density (1) depends on the sample size
N . However, the accuracy of the estimate depends also on the way how the sample values are
distributed, because the rate of convergence of the arithmetic average to the true mean density is
somewhat different for different probability distributions. Therefore, the same sample size N may
be sufficient to reveal synchronization in one case, e.g. for one probability distribution of sample
values, but insufficient in case of another probability distribution.

In order to address these issues, in this section we simulate sampling data using a variety of
probability density functions; see Table 1. We assume that the distance between any two neigh-
boring nodes of the sampling grid is large enough to exclude possible interference between them.
Correspondingly, the population densities obtained at any two grid nodes in both domains A and B
are independent identically distributed random variables drawn from a given pdf φ. This produces
a certain spatial pattern of the population distribution which is somewhat different for different
pdfs of the sampling data (e.g. having different variance); see Fig. 8. For a given φ, the proce-
dure is repeated to generate the two time courses of the spatial patterns, i.e. in domains A and B.
The correlation coefficient is then calculated basing on the time series of mean population density
where the mean density is calculated as the arithmetic average over N samples taken in the cor-
responding census; see Eqs. (1–3). For the same sequence of the generated spatial patterns, this
procedure is repeated on sampling grids with different number of nodes to obtain ρφ(N).

In order to place our analysis into the context of a real field study, we relate the problem of spa-
tial sampling to the recent study on synchronization of Tipula paludosa in agricultural landscape
[7]. The metapopulation of T. paludosa was monitored for fifteen years in thirty eight agricul-
tural fields across South-West Scotland. In each of those fields, the T. paludosa population was
subjected to annual census in winter, i.e. at the time when it is at the larvae stage and is mostly
dwelling in the soil. In each field, twenty five soil cores were taken at randomly chosen locations,
cf. [10]. The number of larvae in each soil core was counted. Given the known radius r of the core,

Name Probability P{u = n} Distribution Mean, ū

or probability density φ(u) parameter(s)
Poisson P{u = n} = λn

n!
e−λ λ λ

Exponential φ(u) = λe−λu λ 1
λ

Gamma φ(u) = 1
λmΓ(m)

um−1 exp
(−u

λ

)
λ, m mλ

Log-normal φ(u) = 1
uσ
√

2π
exp

[
− (log u−µ)2

2σ2

]
σ, µ exp

(
µ + σ2

2

)

Power law φ(u) = C
(δ+u)m , C = (m− 1)δ(m−1) δ, m (m > 1) δ

m−2
, m > 2

Table 1: Population models to describe frequency of sample values u in a census.
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Figure 8: (colour online) Spatial population distribution obtained on a hypothetical rectangular sampling
grid of 10 × 10 = 100 nodes with the grid step ∆x = ∆y = 10 for (left) Poisson distribution of the
population density, (right) exponential distribution of the population density. In both cases, the average
density is ū = 10. Note that different distributions of sampling data correspond to somewhat different
spatial patterns, in particular the variance of the spatial distribution is 10 and 100 for the left and right
panels, respectively.

the count n provides a reliable index of the local population abundance; in particular, it can be used
to calculate the local population density u as u = n/(πr2). The arithmetic average of the counts
was then calculated for each field and each census. The fifteen year courses of the population
density obtained for each field were then fed pairwise into Eqs. (2–3) to calculate the correlation
coefficient (3). It was observed that some of the fields are strongly synchronized, with ρ ≈ 0.8 or
larger; for details see [7].

For the purposes of our analysis, we choose two pairs of fields so that Pair 1 consists of fields
A1 and B1 and Pair 2 consists of fields A2 and B2; see Table 2. Figure 9 shows the corresponding
time courses of the spatially average population counts. It is readily seen that the population
fluctuations are not independent; indeed, the calculated correlation coefficient (Table 2) shows that
they are strongly correlated. The question that we are asking here is: how the conclusions about
T. paludosa synchronization might have changed if the number of the samples (soil cores) would
be much less than N = 25, could the synchronization still be seen? Similarly, if the number
of samples would have been much larger than N = 25, would the results possibly reveal even
stronger correlation between the fields?

Unfortunately, the raw data, i.e. the insect counts for each soil core, are not available. In each
census, only the arithmetic average of the samples is available for each field. It is therefore not
possible to work with the original data, in particular, it not possible to tell what was the probability
distribution for the sampling data (i.e. larvae counts). It was shown in [7] that the average density5

is well described by a log-normal distribution but this does not necessarily mean that the individual

5more precisely, the residuals of the average density obtained after removing density dependence from the original
data, see [7] for details.
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Name (as used Position Max/min Course average, Correlation
in the text) (grid reference) population count µ (count) coefficient, ρ(A,B)

A1 NS 111703 32/1 8.2 0.884
B1 NY 049748 22/0 4.73
A2 NN 943236 8/0 2.33 0.808
B2 NS 412331 27/0 6.6

Table 2: Two pairs of fields from [7] used in our correlation modelling.

counts are distributed log-normally. In order to fill in for the missing information, we are going to
replace the original sampling data with simulated data using different population models, i.e. dif-
ferent pdfs of the frequency of the sample values given in Table 1. For each year of the survey, we
simulate Nmax samples to reproduce the actual (observed) average:

ū =
1

Nmax

Nmax∑
i=1

s
(φ)
i , (12)

where the superscript (φ) refers to one of the models in Table 1, s1, . . . , sNmax are the samples
generated according to a given pdf φ, and ū is the known average (see Fig. 9). Nmax is chosen to
be sufficiently large to ensure that the arithmetic mean approaches closely its theoretical limiting
value. (In simulations shown below, we used Nmax = 100.) We then use only a subset N of these
simulated samples, N ≤ Nmax, to calculate the corresponding subset average:

ū
(φ)
N =

1

N

N∑
i=1

s
(φ)
i . (13)

Obviously, in a general case ū
(φ)
N 6= ū, because the estimation on a coarser sampling grid is less
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Figure 9: The average population counts over time in the selected pairs of correlated fields (see Table 2),
left: Pair 1, crosses for A1, diamonds for B1; right: Pair 2, crosses for A2, diamonds for B2.

15



accurate. The average (13) is then used to calculate the correlation coefficient (2). By varying N ,
we reveal the dependence of ρ on the sample size N for any given pdf φ.

The results obtained for different population models as given by different pdfs in Table 1 are
shown in Figs. 10–11 where the left and right columns correspond to Pair 1 and Pair 2, respectively.
Note that, for any given pdf φ, for each year in the time course the parameter(s) of the pdf are
chosen somewhat differently in order to agree with the current value of ū; see the last column
in Table 1. Given the random nature of the simulated samples and the relatively short length of
the time courses (fifteen annual surveys, i.e. fifteen points), it is not surprising that the correlation
coefficient ρ exhibits stochastic fluctuations. In order to decrease the effect of stochasticity and
hence to make the general tendency clearer, for any given N the procedure was repeated ten times;
the thick curve shows ρ(N) averaged over those ten realizations. To show the range of possible
values due to the inherent randomness of the system, the confidence interval is calculated: the
dotted curves show the averaged value of ρ plus-minus the standard deviation calculated over the
ten realizations.

It is readily seen from Figs. 10–11 that there is a clear difference between the case where the
probability distribution has a maximum at some positive value u > 0 (as for the Poisson, gamma
and log-normal distributions) and the case where the probability distribution has a maximum at
u = 0 (as for the exponential and power law distributions). In the former case, see Fig. 10, a
good estimate of the correlation coefficient (e.g. within ten percent of its true value shown by the
dashed-and-dotted horizontal line) is typically obtained for a relatively small number of samples; in
particular, just 3-4 samples per census can be sufficient for the Poisson and log-normal distributions
and 9-10 in case of the Gamma distribution. The situation is different in the latter case; see Fig. 11.
In the cases of the exponential distribution and the power law with m = 3, a reliable estimate of
the true value of ρ is not obtained until the number of samples in a census is 18-20; see the top and
middle rows in Fig. 11. The convergence of ρ(N) to its true value is somewhat slower when the
distribution of sample values is described by a power law with m = 2 where a reliable estimate
is not obtained until the sample size N ≈ 25; see the bottom-left panel in Fig. 11. Interestingly,
some apparently minor details of the dynamics can affect the results too: the required sample size
appears to be smaller in Pair 2 than in Pair 1 for all three cases shown in Fig. 11.

5 Ghost synchronization on a coarse sampling grid

We therefore have shown that, when the population density exhibits considerable variation over
space and the data are collected on a coarse sampling grid, synchronization is often lost as the
correlation coefficient is usually much smaller than its actual value. In this section, we are going
to demonstrate that the opposite is also possible. Namely, we will show that sampling on a coarse
grid may result in a ‘ghost synchronization’, i.e. in the situation where the correlation coefficient
calculated from the coarse sampling data has a value close to one whilst the dynamics is actually
anti-correlated.

We consider a simple system consisting of two 1D domains A and B where the population of
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Figure 10: Correlation coefficient ρ(N) (thick curve) calculated for different population models and pa-
rameters (as in Table 1): (top) Poisson distribution with λ = ū, (middle) gamma distribution with m = 2
and λ = 1

2 ū, (bottom) log-normal distribution with σ = 0.45 and µ = log(ū) − 0.5 ∗ σ2. Left column for
Pair 1, right column for Pair 2. Dotted curves show the calculated value of ρ plus-minus standard devia-
tion, the vertical distance between the curves thus being the confidence interval; the dashed-and-dotted line
shows the true value of ρ.
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Figure 11: Correlation coefficient ρ(N) (thick curve) calculated for different population models and pa-
rameters (as in Table 1): (top) exponential distribution with λ = 1/ū, (middle) power law with m = 3 and
δ = ū, (bottom) power law with m = 2, in this case δ is chosen for ū to coincide with the median of the
distribution. Left column for Pair 1, right column for Pair 2. Dotted curves show the calculated value of ρ

plus-minus standard deviation, the vertical distance between the curves thus being the confidence interval;
the dashed-and-dotted line shows the true value of ρ.
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a certain species has a unimodal spatial distribution with the maximum at the domain boundary:

uj(x, t) =
ωj(t)

σ
√

2π
exp

[
− x2

2σj(t)2

]
, 0 ≤ x ≤ Lj, j = A,B. (14)

Note that, although the functional form (14) of the population distribution is specific, the case
where the population density decays monotonously with the distance from the domain border
is relatively common in ecosystems and agroecosystems; in particular, it may correspond to the
invasion of a pest insect to a farm field from adjoining uncultivated areas [6].

We assume that the populations are affected by factors that are different in the two domains, so
that the population size in domain A and domain B evolves differently with time (but preserving
the shape of the spatial distribution). We consider the following hypothetical situation:

ωA(t) = ω0(t + 1)a, σA(t) = σ0, ωB(t) = ω0 − γt, σB(t) = σ0(t + 1)b, (15)

where t ≥ 0 and a, b, γ, ω0 and σ0 are parameters. Since ωA(0) = ωB(0) = ω0 and σA(0) =

σB(0) = σ0, the initial population distribution is the same in both domains. However, the dynamics
is different: the maximum population density grows in domain A but decays in domain B while
the width of the patch does not change in domain A but increases in domain B.

Let us consider the case where in both domains the initial distribution is aggregated in the
vicinity of the habitat boundary, σ0 ¿ min{LA, LB}. If, for the sake of simplicity, we restrict
our analysis to the time when the tail of the distribution at the right-hand side of the domains is
still thin, i.e. σA(t) ¿ LA and σB(t) ¿ LB, then the population size in domains A and B is,
respectively, 1

2
ωA(t) and 1

2
ωB(t). We then observe that the population size grows in domain A

but decreases in domain B. Hence the dynamics is anti-correlated; the corresponding correlation
coefficient must be negative, having a value close to −1. However, the population density at a
given location does not necessarily behave in the same way. In fact, it is readily seen from the
properties of function (14) that there is a sub-domain where the population density actually tends
to increase simultaneously in both domains. An example is shown in Fig. 12. One can expect that,
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Figure 12: Population density at the location x1 = 10 (as given by Eqs. (14–15) with parameters a = 0.5,
b = 0.25, γ = 0.0001, ω0 = 2 and σ0 = 3) in domain A (curve 1) and in domain B (curve 2).
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Figure 13: Dependence of the correlation coefficient on the number of nodes in the sampling grid for two
different ways to refine the grid: (left) extra nodes are added towards the tail of the population spatial
distribution, (right) extra nodes are added towards the maximum of the population spatial distribution; see
the main text for more details.

if the samples on the population density are taken in that sub-domain only, then the corresponding
value of the correlation coefficient is going to be positive, possibly being close to one.

Having that said, it remains unclear how the correlation coefficient may depend on the number
of samples and on their locations. In order to make a more quantitative insight into the properties
of the system (14–15), we now use simulations, i.e. we generate a sequence of sampling grids
with different number of nodes N and calculate the correlation coefficient ρ(N) accordingly. To
perform simulations, we use the following parameters: LA = LB = 300, a = 0.5, b = 0.25,
γ = 0.0001, ω0 = 2 and σ0 = 3.

The results are shown in Fig. 13 where the sampling grid is chosen differently in the left and
right panels. In the case of Fig. 13 (left), in both domains A and B the additional nodes are
added at the right, i.e. towards the tail of the spatial distribution, their location being defined as
xi = x1 + (i − 1)∆x where 2 ≤ i ≤ N . The results shown in Fig. 13 (left) are obtained in
case ∆x = x1 = 10. We therefore observe that ρ is not very sensitive to the sample size N ;
the correlation coefficient changes just slightly from ρ(N = 1) ≈ 0.89 to ρ(N = 27) ≈ 1.
Remarkably, these values has nothing to do with reality as the population dynamics described by
Eqs. (14–15) is anti-correlated with ρ ≈ −1.

In the case of Fig. 13 (right), in both domains A and B the additional nodes are added at the left,
i.e. towards the center of the spatial distribution (14). The location of additional nodes is defined
as xi = x1 − (i − 1)∆x, 2 ≤ i ≤ N (the results shown in Fig. 13-right are obtained for x1 = 10

and ∆x = 1). In this case, ρ strongly depends on N by exhibiting a monotonous decay from the
false value ρ(N = 1) ≈ 0.89 to the actual value ρ(N = 10) ≈ −1.

We therefore conclude that, in order to obtain the correct value of the correlation coefficient,
not only the number of nodes in the sampling grid is important but their location too, the latter
being determined by the properties of the spatial pattern. In particular, in the case of system
(14–15), samples collected in the area close to the maximum of the distribution are apparently
more important as they bring more information than samples collected in the area at its tail. This
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conclusion is further confirmed by the dependence ρ(N) calculated on a grid with mixed properties
(see Fig. 14) where the second node is placed in the ‘important’ range 0 < x < x1, namely at the
location x2 = 0.5x1, but other additional nodes are added at the right of x1 with the spatial step
∆x = 0.5x1. It is readily seen that, while the second node brings some essential information
sufficient to change the value of the correlation coefficient from a completely false value ρ ≈ 0.89

to a much more realistic ρ ≈ −0.85, all other nodes added in the area towards the distribution tail
do not improve the accuracy any further.
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Figure 14: Correlation coefficient ρ(N) in the case where the sampling grid is refined in a mixed way; see
the main text for details.

6 Discussion and conclusions

In ecological and environmental studies as well as in other natural sciences and environmental
engineering, it is often needed to estimate the population size of a given species or the total mass of
a given substance based on local, spatially discrete data collected at the nodes of a certain sampling
grid [9, 13, 54, 56, 62]. When the spatial distribution of a given population (or substance) exhibit
a considerable variability in space, which is rather typical in ecology [18, 23, 27], the number of
collected samples may not always be sufficient to resolve the details of the spatial configuration.
Moreover, information about the spatial pattern of the population density distribution, e.g. the exact
location of peaks or patches, usually is not known a priori (but see [1]); it is eventually obtained as
a result of the analysis of the sampling data [26].

It therefore often happens that the number of samples in a census as well as the location of
samples are chosen based on a guess or a certain rule of thumb. It can also be negatively affected
by some external constraints, e.g. a limited budget. As a result, the sampling grid may appear to be
coarse, i.e. not resolving the spatial population distribution in sufficient details. Estimation of the
population size6 on a coarse grid would normally have low accuracy [11, 12, 41, 43, 45, 54]. When

6or the spatially average population density, which differs from the population size only by a factor of the area of
the habitat which we assume can always be determined with sufficient precision.
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the estimated population size is used as the input information for some further analysis, e.g. to
assess the correlation strength between two habitats, this inaccuracy is likely to affect the results
too. In this paper, we showed that the correlation coefficient ρ calculated based on sampling data
collected over a coarse grid often has little to do with its true value. Even a very strong correlation
(i.e. 0.8 ≤ ρ ≤ 1), usually referred to as synchronization, can be “lost”, i.e. remain unseen, as the
value obtained on a coarse grid is typically ρ ∼ 0.5 or less, e.g. see Figs. 4–6 and 11. Moreover,
we also showed that, when the location of nodes in the sampling grid is chosen inadequately, the
opposite case is possible, i.e. the correlation coefficient calculated based on the sampling data is
close to one whilst in reality there is no synchronization (see Section 5). Remarkably, this “ghost
synchronization” can happen even if the sampling grid contains an apparently large number of
nodes, e.g. see the left panel in Fig. 13.

Here we mention that synchronization has a variety of implications for ecology, agroecology
and nature conservation, in particular because synchronization is one of the main dynamical mech-
anisms behind large scale population crashes [31, 57] as well as large scale outbreaks [28, 58].
Hence, the capability to detect the presence or absence of synchronization is crucial for planning,
forecasting and decision making. Reliability of the calculated value of the correlation coefficient
is therefore an issue of high practical importance.

Test of grid coarseness

An important question arises as to whether it may be possible, based on the available sampling
data, to separate the cases where the calculated ρ is likely to be close to its true value from the
cases where the calculated ρ is likely to be wrong. Based on the results of our analysis in Section
4, the following test of grid coarseness can be suggested. We do not normally know the spatial
pattern but we can estimate, based on the collected data, what is the probability density function
(pdf) of the sampling data. Once the pdf is revealed, additional data distributed accordingly to this
pdf can easily be simulated to create a virtual sequence of sampling grids with different number of
nodes N , and then ρ(N) can be calculated following the procedure described in Section 4. Once
ρ(N) is available, its convergence to the large-N limit can be readily established and then it is
straightforward to estimate from the shape of the graph how many nodes are needed. For instance,
in case of the Poisson distribution (see the top row in Fig. 10), a sparse grid consisting of 4-5 nodes
should be sufficient to obtain the true value of the correlation coefficient; however, in case of the
exponential distribution the grid will only become sufficiently refined when the number of nodes
is 30 or more, cf. the top-left panel in Fig. 11.

With this new understanding thus achieved, we are now going to briefly revisit some cases of
synchronization reported in the literature with the purpose to assess whether the corresponding
sampling grids were adequate or perhaps too coarse:

• Region-wide synchronization of Tipula paludosa in South-West Scotland was reported in
[7]. The average population density in each farm field used in the study was estimated based
on 25 samples (soil cores). Moreover, there was some evidence presented that the distribu-
tion of frequencies was well described by a log-normal distribution [7]. An inspection of
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the bottom row of Fig. 10 reveals that ρ(N) approaches the vicinity of its true value (with
the 10% tolerance) when N ≥ 4. We therefore conclude that the results reported in [7] are
reliable.

• Synchronization of several Lepidoptera species was observed in central Appalachian decid-
uous forests [48]. The study included twelve plots, each of them having the same area of
200 ha. In each plot, the data were collected by a single light trap. Raimondo et al. [48] do
not provide any information about the frequency distribution of their sampling data. How-
ever, in another study on Lepidoptera [16], it was shown that sampling data for at least some
Lepidoptera species are well described by either negative binomial distribution or Poisson
distribution [16]. If we assume that this result is transferrable between the two studies (which
is a rather strong assumption, because the study [16] was done in another geographical re-
gion), then we can make use of the results shown in the top row of Fig. 10. It is then readily
seen that a single sample (i.e. single trap) is very unlikely to provide an exact value of ρ

as the true value does not even fall into the range of possible values (shown by the dotted
curves). The estimate of the correlation coefficient obtained based on a single sample is
likely to considerably underestimate its true value, with the deviation from the true value
being about 20-25%. We therefore conclude that Lepidoptera species in Appalachian forests
are likely to be correlated much stronger than it was observed in [48].

• Synchronization of carabid beetles due to the weather fluctuations (the phenomenon know
as the Moran effect [32, 33, 53]) was observed in a study performed in a nature reserve
in the Netherlands [3]. The study area covering a few square kilometers was split into a
few zones and in each zone three pitfall traps were installed to sample the carabid beetles
population. Baars and Van Dijk [3] did not provide any analysis of the frequency distribution
of their sampling data (i.e. trap counts). Some relevant information is available from another
study on carabid beetles performed in the same geographic region [25, 52]. Although Rossi
et al. [52] did not do a formal fitting of the trap count data with a statistical model, the
shape of the frequency histogram (e.g. see Figs. 3 and 6 in [52]) suggests that it is likely
to be better described by a probability density function with the maximum at the origin and
a relatively slow rate of decay at the tail. We therefore hypothesize that, from the cases
analyzed in Section 4, either the exponential distribution or a power law distribution are
best candidates. We should also mention here the apparent visual similarity between the
qualitative properties of the field data on carabid beetles distribution shown in Fig. 1b and
the simulated spatial pattern shown in Fig. 8, right. Making use of the results shown in
Fig. 11, we readily observe that the sampling grid consisting of three nodes is coarse and
is likely to considerably underestimate the actual strength of the correlation. This may be a
reason why the correlation between different sites and/or different subpopulations reported
by Baars & Van Dijk [3] was not as strong and widespread as it perhaps might intuitively be
expected.
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Concluding remarks

We therefore conclude that the properties of the sampling grid such as the total number of samples
in a survey and their location must be decided based upon a rigorous argument rather than a guess
or rule of thumb. Although this may sound as a trivial statement, in field studies focusing on
revealing synchronization surprisingly little attention is paid to checking whether the number of
samples (e.g. traps) is sufficient to provide a robust estimate of the population abundance. As just
one example, here we cite Baars and Van Dijk [3]: “summed catches were assumed to represent
the adult density around a series of pitfall trap”7. As we discussed it above, one rigorous argument
could be based on the analysis of the sampling data frequencies which makes it possible to estimate
the minimum required number of nodes in the grid. Where possible, this should also be combined
with some a priori knowledge of typical properties of the spatial population distribution of the
given species. For instance, this information can be obtained from relevant previous studies (e.g. as
available from literature) or from a specially designed pilot study. Although it undoubtedly requires
an extra effort, it seems to be a necessary step in order to make any conclusion on the presence or
absence of synchronization reliable. In particular, in order to avoid the ‘ghost synchronization’,
one should have some a priori knowledge of the population dynamics of the species. This should
include not only the pattern of the population spatial distribution but also some information about
the temporal scales of the dynamics. For instance, if the correlation coefficient in the model (14–
15) is calculated using time courses obtained over much longer time, then the correct value ρ(N) ≈
−1 can be obtained even for a relatively small N (for the sake of brevity, we do not show the results
here).

One important message following from our study is that the spatial resolution of the sampling
grid cannot be decided upon based on just one universal rule. The appropriate frequency of spatial
sampling appears to be context-specific and hence depends of the focus of the study. For instance,
if the focus is on revealing the details of population distribution across all scales of spatial vari-
ability, then the approach based on the Nyquist frequency is known to work well: in order to avoid
information loss, it recommends to have at least two sampling nodes per peak in the smallest spa-
tial scale involved [19, 47]. (We mention here that in the problem of ecological patterning relevant
spatial scales range from the microscale of the size of an individual to the macroscale of the ge-
ographical and climatic variation [44], and hence the decision about the ‘minimum’ spatial scale
may often be arguable.) However, if the focus is on the evaluation of the total population size, the
requirements to the sampling grid can be much less restrictive as the resolution depends on the
required accuracy [38, 39, 40]. Furthermore, in case sampling is needed not only across space but
also over time, e.g. to reveal the presence or absence of synchronization, the sampling grid res-
olution strongly depends on the population dynamics of the sampled species so that the required
number of nodes in a given spatial domain can differ by an order of magnitude, c.f. the top-left
panel in Figs. 10 and 11.

Our study leaves a few open questions. Perhaps the most challenging one is about the ghost
synchronization. In this paper we have identified only one case where this curious artefact can hap-
pen if samples are collected on a coarse grid, i.e. where the population density in the corresponding

7The italic is ours. NB & SP.

24



domains decreases monotonously away from a domain boundary, provided the properties of this
density profile changes with time in a certain way. It remains unclear whether the ‘ghost synchro-
nization’ is an exotic situation only happening under some specific conditions or it happens more
commonly. This should become a focus of a separate study. Another highly practical issue is the
effect of the environmental heterogeneity. Throughout this paper, we have assumed that all sam-
pling locations over the given domain are equivalent, in particular assuming that the probability
density function of the sampling data is the same at any location. In real ecosystems, this is not al-
ways the case. Further development of our approach to include the effects of spatial heterogeneity
will be a focus of the future research.
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