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ABSTRACT
The recent advanced LIGO detections of gravitational waves from merging binary black holes
enhance the prospect of exploring binary evolution via gravitational-wave observations of a
population of compact-object binaries. In the face of uncertainty about binary formation mod-
els, model-independent inference provides an appealing alternative to comparisons between
observed and modelled populations. We describe a procedure for clustering in the multidi-
mensional parameter space of observations that are subject to significant measurement errors.
We apply this procedure to a mock data set of population-synthesis predictions for the masses
of merging compact binaries convolved with realistic measurement uncertainties, and demon-
strate that we can accurately distinguish subpopulations of binary neutron stars, binary black
holes, and mixed neutron star–black hole binaries with tens of observations.

Key words: gravitational waves – binaries: close – stars: black holes – stars: neutron.

1 IN T RO D U C T I O N

The advanced LIGO detectors (Aasi et al. 2015) observed the
first gravitational waves from a merger of two black holes (BHs),
GW150914, on 14 September 2015 (Abbott et al. 2016b). This
discovery was followed in a few months by another BH–BH
merger detection, GW151226 (Abbott et al. 2016d), and a further
likely BH–BH candidate, LVT151012 (Abbott et al. 2016a). The
BH–BH merger rate inferred from these events implies that tens to
hundreds of detections are likely over the next few years (Abbott
et al. 2016a,b). Meanwhile, both massive binary evolution models
and observations of Galactic binary pulsars and short gamma-ray
bursts suggest that gravitational-wave detections of mergers of two
neutron stars (NSs) and mergers of mixed NS–BH binaries are also
likely in the coming years (see Abadie et al. 2010, for a review).

Multiple observations should make it possible to address the
inverse problem of gravitational-wave astrophysics: to study the
currently uncertain massive stellar binary evolution through its evo-
lution end products — the population of merging compact remnants.
One approach to this problem involves creating forward models of
binary evolution, e.g. via population synthesis Monte Carlo simula-
tions (see Postnov & Yungelson 2014, for a review), and comparing
them with the observed population to constrain the input assump-
tions, such as the common-envelope physics (Ivanova et al. 2013).
This approach has been advocated by Bulik & Belczyński
(2003), Mandel & O’Shaughnessy (2010), O’Shaughnessy (2013),
and Stevenson, Ohme & Fairhurst (2015), among others.

� E-mail: imandel@star.sr.bham.ac.uk

While this approach is very promising, existing binary evolu-
tion models may not correctly encapsulate the full range of phys-
ical uncertainties (e.g. Dominik et al. 2012; Mennekens & Van-
beveren 2014; Belczynski et al. 2016; Eldridge & Stanway 2016;
Lipunov et al. 2016). Moreover, some of the merging compact
binaries could form through channels other than isolated binary
evolution via the common-envelope phase, including chemically
homogeneous evolution in very close binaries (Mandel & de Mink
2016; Marchant et al. 2016; de Mink & Mandel 2016), dynamical
formation in globular clusters, young stellar clusters, or galactic nu-
clei (Rodriguez et al. 2016; Mapelli 2016; Bartos et al. 2016; Stone,
Metzger & Haiman 2016), mergers of Population III remnants
(Inayoshi et al. 2016) or even primordial BH mergers (Bird
et al. 2016). In the possible presence of both systematic model un-
certainty and confusion from different formation channels, a model-
independent approach to learning from the observed population is
desirable.

Mandel et al. (2015) proposed that clustering on the parame-
ters of observed merging compact-object binaries could provide
useful model-independent information about the population. This
clustering is greatly complicated by the limited accuracy with
which the masses and spins of merging binaries can be inferred
from gravitational-wave observations (e.g. Littenberg et al. 2015;
Veitch et al. 2015a; Abbott et al. 2016c). Nevertheless, Mandel
et al. (2015) suggested that for astrophysically plausible bi-
nary populations and realistic measurement uncertainties, a few
tens to a few hundred detections should be sufficient to clus-
ter merging binaries into NS–NS, BH–BH, and NS–BH sub-
populations, estimating their relative rates to within Poisson
uncertainty.

C© 2016 The Authors
Published by Oxford University Press on behalf of the Royal Astronomical Society
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Figure 1. Masses of merging compact-object binaries as simulated via pop-
ulation synthesis. The lower left-hand corner is occupied by NS–NS merging
binaries (yellow), the upper right-hand corner by the more massive BH–BH
systems (blue), while the NS–BH population (orange) is asymmetric.

This paper describes specific algorithms for clustering on the
observed merging compact-binary population in the presence of
significant measurement uncertainty. We show how the clustering
could proceed in practice when subpopulations with distinct mass
parameters are brought into contact once the underlying mass dis-
tributions are convolved with measurement errors. We demonstrate
the accuracy of the analytical predictions of Mandel et al. (2015)
with a quantitative study. Our approach can be trivially extended
to include other parameters such as spin magnitudes and spin tilt
angles.

2 BI NA RY PO P U L ATI O N

We analyse a realistic population of compact-object binaries
produced with a population synthesis code that evolves bina-
ries from zero-age main-sequence stars through stellar evolution,
mass transfer including a possible common-envelope phase, wind-
driven mass-loss, supernovae, and eventual gravitational-wave-
driven mergers. For the ease of comparison, we use the same sim-
ulated binary data set as in Mandel et al. (2015). This data set was
constructed with the STARTRACK code (Belczynski et al. 2008), using
the ‘Standard’ model B of Dominik et al. (2012), including the rapid
supernova engine (Belczynski et al. 2012; Fryer et al. 2012), downs-
elected to binaries potentially detectable by the advanced-detector
network, as estimated by Dominik et al. (2015). A number of pa-
rameters governing binary evolution are highly uncertain, including
wind-driven and luminous blue variable mass-loss rates (e.g. Vink,
de Koter & Lamers 2001; Mennekens & Vanbeveren 2014), mass
transfer efficiency (e.g. de Mink, Pols & Hilditch 2007), common-
envelope physics (e.g. Ivanova et al. 2013), and BH natal kicks (e.g.
Repetto & Nelemans 2015; Mandel 2016). Therefore, this model
should be viewed only as a realistic illustration for the model-
independent inference technique.

The modelled population is plotted in Fig. 1. This population
shows clear evidence of a mass gap between neutron stars, whose
masses go up to ∼2 solar masses, and black holes, whose masses
start at ∼5 solar masses. This mass gap is a feature of the rapid
supernova engine, and reproduces the observed mass gap in neutron
star and black hole masses (Özel et al. 2010; Farr et al. 2011) (but
see Kreidberg et al. 2012).

Figure 2. K-means clustering on the true masses of 400 simulated compact-
object binaries. The three clusters perfectly match the actual source subpop-
ulations, with the cluster means shown by magenta Xs.

In the absence of measurement errors, clustering on a subset of
observations should be straightforward, and we demonstrate the
feasibility of such clustering in Fig. 2. Here, we have chosen 400
merging compact binaries from the population of Fig. 1. The bi-
naries were randomly drawn with a draw probability of NS–NS,
NS–BH, and BH–BH binaries set to 25 per cent, 25 per cent, and
50 per cent, respectively1; the actual population of 400 selected
systems has 23 per cent, 26 per cent, and 52 per cent of binaries of
the three respective types. These should be interpreted as fractional
rates in the observed population, as we do not model selection ef-
fects here (cf. Mandel, Farr & Gair 2016). Our goal is to extract these
arbitrarily chosen relative contributions of the three subpopulations
through clustering.

We performed K-means clustering on the exact mass parameters
of the 400 binaries. For clustering, we used the mass ratio q ≡
m2/m1

2 and the chirp mass Mc ≡ (m1 + m2)η3/5, where η is the
symmetric mass ratio η ≡ q(1 + q)−2. The chirp mass is chosen
because it determines the gravitational-wave frequency evolution at
the lowest order and is therefore the best measured mass combi-
nation (see below). For clustering purposes, we use a logarithmic
coordinate on the chirp mass, ln (Mc/M� − 0.8). Simple K-means
clustering (MacQueen 1967), which assigns each observation to a
cluster with the closest mean, proves adequate for perfect classi-
fication on the true source parameters: Every binary in Fig. 2 is
correctly assigned to the right cluster.

3 M E A S U R E M E N T U N C E RTA I N T Y

In practice, inference on gravitational-wave signals permits only a
limited accuracy of parameter estimation. These limitations are due
to significant correlations in the occasionally multimodal parame-
ter space of 15 or more parameters, including component masses
and spins, as well as the binary’s sky location and orientation.

1 These fractions represented an ad hoc choice, not based on the population
synthesis model.
2 From here on, m2 is the smaller companion mass; in Fig. 1, it is the mass
of the remnant of the secondary star – the star which initially had a lower
mass, but could end up as a more massive compact remnant at the end of
binary evolution.

MNRAS 465, 3254–3260 (2017)
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Approximate techniques pioneered more than 20 years ago have
demonstrated that the chirp mass is a relatively well measured pa-
rameter for systems with a total mass of a few tens of solar masses
or less, but other mass combinations, such as the mass ratio, can
only be relatively poorly constrained (Cutler & Flanagan 1994;
Poisson & Will 1995). More recently, Bayesian techniques have
been used to directly measure the posterior probability density func-
tions (PDFs) of the signal parameters, given the observed noisy data
(Aasi et al. 2013; Abbott et al. 2016c). These techniques, encoded in
the LALINFERENCE parameter estimation pipeline (Veitch et al. 2015a),
have been used to constrain the accuracy of parameter estimation
on NS–NS, NS–BH, and BH–BH binaries in a variety of realistic
contexts (e.g. Vitale et al. 2014; Littenberg et al. 2015; Mandel
et al. 2015; Veitch, Pürrer & Mandel 2015b; Farr et al. 2016; Haster
et al. 2016).

Here, we use these earlier results to generate mock posterior
PDFs marginalized over all parameters other than m1 and m2. We
generate posterior samples in {chirp mass Mc, symmetric mass ratio
η} parameter space, given true values (MT

c , ηT), as follows:

Mc = MT
c

[
1 + α

12

ρ
(r0 + r)

]
,

η = ηT

[
1 + 0.03

12

ρ
(r ′

0 + r ′)
]

. (1)

Here, r0 and r ′
0 are random numbers drawn from the standard nor-

mal distribution, and the corresponding terms encapsulate the shift
in the mean of the posterior relative to the true value, while r and r ′

are independent and identically distributed arrays of such random
numbers and represent the spread of the posterior. The measurement
uncertainty scales inversely with the signal-to-noise ratio ρ, which
is drawn from the distribution p(ρ) ∝ ρ−4, which holds for isotropi-
cally distributed sources in a static universe, subject to the threshold
ρ ≥ 8 for detection. The scaling α is motivated by analyses of mock
data with the LALINFERENCE pipeline (e.g. Littenberg et al. 2015; Man-
del et al. 2015) and includes the impact of correlation with parame-
ters describing arbitrary remnant spins; α = 0.01, 0.03, and 0.1 when
ηT ≥ 0.1, 0.1 > ηT ≥ 0.05, and 0.05 > ηT, respectively. Only pos-
terior samples with 0.25 ≥ η ≥ 0.01 are kept; no a priori cuts on
individual masses are assumed, making this an intentionally some-
what conservative estimate of measurement uncertainty.

For each of the 400 mock binaries in our catalogue shown in
Fig. 2, we generate between 500 and 2000 posterior samples in
{m1, m2} space, consistent with the typical posterior PDFs pro-
duced by LALINFERENCE (e.g. Aasi et al. 2013). In Fig. 3, we overplot
500 posterior samples from each of the 400 measured events. Each
posterior distribution exhibits a typical ‘banana’-like shape, follow-
ing contours of roughly constant chirp mass but spanning a range
of values of the symmetric mass ratio. The actual size of the poste-
rior depends on the parameter values of the event and its simulated
signal-to-noise ratio, while the distribution is randomly shifted rela-
tive to the true value so that the true value has a uniform probability
of falling into every quantile of the posterior. The combined pos-
terior distributions appear to show an absence of a gap in between
NS–NS and NS–BH binaries, and some overlap between NS–BH
and BH–BH binaries; meanwhile, due to the lower merger density
of higher mass BH–BH binaries in our model, gaps appear at higher
masses in the {m1, m2} distribution.

As an indication of the difficulty of clustering on the observed
population suffering from measurement uncertainties, we can apply
the K-means clustering procedure described in the previous section
to the full bag of 400 × 500 posterior samples plotted in Fig. 3.

Figure 3. 500 posterior samples from each of 400 binaries in the catalogue
are placed on the same plot to demonstrate the impact of measurement
uncertainty; samples are coloured based on the binary type of the source
they are associated with, as in Fig. 1.

Figure 4. K-means clustering on a ‘bag’ of posterior samples (500 sam-
ples from each of 400 binaries). Some misclassification is evident, and the
cluster means, denoted with magenta Xs, no longer correspond to the true
subpopulation clusters (cf. Fig. 2).

The result of this attempt is shown in Fig. 4. The very large extent
of the posteriors in the q direction makes it difficult to estimate the
true locations of the clusters, as evidenced by the shifting of the
cluster means in mass ratio relative to their values in Fig. 2. It is still
possible to cluster on the chirp mass, however, since it is relatively
accurately measured.

However, despite the use of the logarithmic chirp mass coordinate
ln (Mc/M� − 0.8) to aid clustering, some of the BH–BH binaries
are misidentified by being associated with the NS–BH cluster. This
is most easily seen in Fig. 5, in which we plot each observation at its
true mass parameters, but colour it in based on the average cluster as-
sociation of all corresponding posterior samples. This figure shows
yellow (classified as NS–BH) samples in the top-right ‘BH–BH’
cluster (see also the rightmost yellow strip of Fig. 4). Consequently,
the fractions of systems in the clusters approximately associated
with NS–NS, NS–BH, and BH–BH populations are 23 per cent,
30 per cent, and 47 per cent, respectively. The misclassification er-
rors now exceed those expected from Poisson (trinomial) statistics

MNRAS 465, 3254–3260 (2017)
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Figure 5. K-means clustering on the same bag of posterior samples as in
Fig. 4. All 400 observations are displayed at their true parameter values,
but the colour reflects the mean cluster association of all posterior samples
corresponding to each observation.

for 400 objects, and the classification becomes increasingly poor as
the number of observations is reduced.

Of course, the approach described above is flawed because it fails
to take advantage of all available information. We lose key informa-
tion by putting all posterior samples into a single ‘bag’ and ignoring
which observation each sample corresponds to. For example, this
means that we do not make use of the insight that some posteri-
ors are very broad (and therefore not very useful for clustering),
while others correspond to very precise measurements. The right
approach must build a hierarchical model out of the full observed
population (e.g. Hogg, Myers & Bovy 2010; Mandel 2010; Bovy,
Hogg & Roweis 2011; Farr et al. 2015), accounting for the indi-
vidual measurement uncertainties, and search for subpopulations
in this reconstructed population. One possible implementation is
described in the following section.

4 D I S T R I BU T I O N IN F E R E N C E A N D
CLUSTERING

We separate the problem into two parts: hierarchical modelling of
the mass distribution based on a finite number of limited-accuracy
observations and clustering based on the inferred mass distribution.
There are many possible ways to parametrize the mass distribution
model. We follow Foreman-Mackey, Hogg & Morton (2014) and
Abbott et al. ( in preparation) in choosing a piecewise-constant
two-dimensional distribution, i.e. we divide the mass space into
rectangular bins and model the fraction of systems nk within each
bin k ∈ [1, Kbins]. In this case, we bin in ln m1 × ln m2 space, with
square bins in log space. We cover the range of component masses
from m = 1 to 181 M� with a total of Kbins = 15 × 15 = 225 bins.

When N independent observations are available, each represented
by a data set d(i), the posterior PDF on the distribution across the
bins n ≡ {nk} is given by (Mandel 2010)

p(n) ∝ π(n)
N∏

i=1

p(d (i)|n). (2)

Here

p(d (i)|n) =
∫

p(d (i)|m(i)
1 , m

(i)
2 )p(m(i)

1 , m
(i)
2 |n)dm

(i)
1 dm

(i)
2 , (3)

where p(d (i)|m(i)
1 , m

(i)
2 ) is the likelihood of observing the data

d(i), given the specified masses (Veitch et al. 2015a) and
p(m(i)

1 , m
(i)
2 |n) = n(m(i)

1 , m
(i)
2 ) is the number density nk for the ap-

propriate bin k into which these masses fall. In practice, we can
replace the preceding integral over the likelihood function by a
sum over the available posterior samples, appropriately reweighted
by the prior used for individual event analyses (see Mandel 2010;
Mandel et al. 2016, for details). Finally, π (n) is the prior proba-
bility distribution on the fractions within the Kbins bins. Our prior
is a stationary Gaussian process with a squared-exponential ker-
nel, described in detail in Abbott et al. (in preparation). This prior
provides a crucial regularization, favouring a smooth distribution
when the data are sparse,3 but allows the posterior to converge to
the expected frequentist multinomial distribution when N is large
and the measurements are precise.

We compute the inferred distribution according to this hierarchi-
cal model from our mock data. Fig. 6 shows the posterior mean
of the population density in each of the mass bins inferred from
the full set of 400 observations, as well as from smaller randomly
drawn subsets, to illustrate the gradual evolution of the accuracy of
the inferred posterior. Distinct NS–NS, NS–BH, and BH–BH clus-
ters clearly appear around 40–80 observations, consistently with the
estimated requirement of ∼60 observations made by Mandel et al.
(2015).

In order to identify specific clusters, we use a water-filling al-
gorithm on the mean estimates of the population density in each
bin (see e.g. Nielsen & Nock 2008; Van & Pham-Gia 2010;
Applegate et al. 2011, for other proposed approaches to distribu-
tional clustering). We gradually flood the posterior landscape until
only three clusters stand above the water level over the m1 ≥ m2

half of the plane. Clusters here are defined as sets of bins such that
all elements of a cluster are connected through shared edges, but
such connections do not exist between distinct clusters. Some of the
posterior ends up in the underwater bins; the clustering is deemed
successful only when underwater bins account for no more than a
few per cent of the posterior. This happens starting with N = 80
for the plots in Fig. 6. As an example, Fig. 7 shows the results
of applying the water-filling clustering strategy to the distribution
inferred from N = 400 observations (mirrored across m1 = m2

for plotting). In this case, the NS–NS, NS–BH, and BH–BH sub-
populations contain 23 per cent, 25 per cent, and 51 per cent of the
population, respectively, while less than 2 per cent of the posterior
is underwater.

In general, the appropriate number of clusters does not need to
be assumed in advance but should be chosen from the data dur-
ing the water filling stage. Specifically, the amount of water used
for flooding can be optimized against the flooded area. Flooding
should continue only while the flooded area grows rapidly with a
modest increase in the posterior volume (the amount of water used
for flooding), with the remaining above-water areas identified as
clusters.

We can obtain estimates of the statistical uncertainty on the in-
ferred posterior fraction in each cluster by taking advantage of the
full PDFs on the fractional mass distribution within each bin. We
use the cluster boundaries provided by the water-filling cluster-
ing algorithm and compute the posterior on the total mass density
within each cluster identified with the NS–NS, NS–BH, and BH–
BH subpopulations. To be precise, given the posterior over all n, we

3 If sharp edges are expected in the distribution, it would be preferable to
use an alternative prior choice that does not disfavour such features.

MNRAS 465, 3254–3260 (2017)
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Figure 6. Mean density inferred across mass space from mock observations using a binned distribution model with a Gaussian process prior for N = 10, 20, 40
(top row, left-hand to right-hand side) and 80, 160, 400 (bottom row, left-hand to right-hand side) observations.

Figure 7. Water-filling clustering on the mean estimates of the population
fraction in each bin, as inferred from 400 mock observations.

simply add the individual posteriors on the sums of those nk which
fall into a particular cluster; we do not account for the uncertainty
in the cluster boundaries when computing these cluster fraction
posteriors. The triangle plots for the cluster fraction posteriors are
shown in Fig. 8.4 For both 80 (left-hand panels) and 400 (right-hand

4 For this figure, we associated each underwater bin with a neighbouring
cluster; this does not impact the results other than ensuring that the three
fractions sum to 1.

panels) observations, the uncertainty in the inferred fraction of each
subpopulation is within the expected fluctuation in random-draw
statistics from a trinomial distribution, as predicted by Mandel et al.
(2015).

We have presented a practical technique for clustering obser-
vations suffering from a significant measurement uncertainty. We
demonstrated its functionality on the mass parameter space and
showed that a realistic population of merging compact binaries
could be accurately clustered into NS–NS, NS–BH, and BH–BH
subpopulations. The number of observations required for accurate
clustering will depend on how well separated the true subpopula-
tions are, on the actual fractions of events in each subpopulation,
and on the size of measurement uncertainties. Our example indi-
cates that ∼20 observations per subpopulation are more than suffi-
cient for accurate clustering on the modelled population. We have
confirmed that this number of observations per subpopulation is
sufficient for accurate clustering even when the ratio between the
numbers of events in different subpopulations is more extreme, e.g.
1: 5: 50 rather than 1: 1: 2. With sufficient observations, it should
be possible to use this technique to cluster on any population with
multiple modes separated by lower density regions in parameter
space (gaps), even if the measurement uncertainty on individual
observations is larger than the width of the gaps. It is straightfor-
ward, though computationally expensive, to extend this technique to
higher dimensional analyses, e.g. to include spin information along
with mass information, which could help to distinguish isolated
and dynamical formation channels for binary black holes (Abbott
et al. 2016a,e).

MNRAS 465, 3254–3260 (2017)
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Figure 8. Triangle plots for the posteriors on the inferred fraction of events in each of the NS–NS, NS–BH, and BH–BH subpopulations (ordering from
the left-hand to right-hand side, and top to bottom); blue lines denote the fractions used to randomly draw the events being clustered. Left-hand panels: the
posterior after 80 mock observations. Right-hand panels: the posterior after 400 mock observations.
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