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a b s t r a c t

The effect of molecular structure on ensemble structure and dynamics of phospholipid bilayers has been
investigated. Bilayers of dimyristoyl phosphatidylserine (DMPS) supported on Au(111) surfaces were
prepared by Langmuir-Blodgett and Langmuir-Schaeffer deposition and studied with a combination of
electrochemical measurements and in situ Polarisation Modulation Infrared Reflection Absorption Spec-
troscopy (PM-IRRAS). DMPS bilayers have relatively large capacitance when compared with those formed
from similar molecules and this is attributed to a high solvent content within the bilayer, resulting from
the need for solvation of the negatively charged lipid headgroups. Infrared spectra show that the ensem-
ble of molecules is in a gel state, with extended and ordered hydrocarbon chains, similarly to bilayers of
iomimetic membrane
pectroelectrochemistry
nfrared spectroscopy

dimyristoyl phosphatidylethanolamine (DMPE) molecules, which are of similar shape. The infrared spec-
tra also show that, in contrast to DMPE, the headgroups of DMPS are very strongly hydrated and have
higher mobility. This higher mobility allows the re-orientation of the molecules under the influence of an
applied electric field: re-orientation both of headgroups and hydrocarbon tail groups is observed. Thus
the shape and charge of the molecules in an ensemble have a strong influence on both their structure

ence
and dynamics in the pres

. Introduction

Phospholipids are a major component of biological cell mem-
ranes, self-assembling to form a fluid, selective barrier between
he intracellular and extracellular fluids. Embedded within this
ipid matrix are proteins and other lipids, which serve a range of
unctions, such as to control selective transport in and out of the
ell and signalling between cells [1]. Consequently, there is a need
nd a strong interest to understand the properties of phospholipid
ilayers and how these may be affected by their structure at the
olecular level [2].
Studies of the electrical properties of lipid membranes have

raditionally been carried out using patch clamp capacitance mea-

urements [3,4], conductivity, capacitance and ac impedance of
ilayer phospholipid membranes [5–10]. The action of ion channel-
orming peptides can also be studied in this way [5,9,10]. A different

� This is an open-access article distributed under the terms of the Cre-
tive Commons Attribution License, which permits unrestricted use, distribution
nd reproduction in any medium, provided the original author and source are
redited.
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013-4686/$ – see front matter © 2014 The Authors. Published by Elsevier Ltd. All rights
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of an externally applied electric field.
© 2014 The Authors. Published by Elsevier Ltd. All rights reserved.

approach to the study of phospholipid films has involved sup-
porting a lipid monolayer on a mercury drop electrode, which is
pushed through a phospholipid monolayer on an aqueous sub-
phase [11–20]. The hydrophobic nature of Hg and the direction
of deposition tend to lead to a monolayer with the hydrocarbon
chains facing the metal surface and the hydrophilic headgroups
facing the aqueous phase, although it is possible to invert the mono-
layer by application of a strong electric field [11]. These studies
have involved investigating these potential-induced phase transi-
tions of lipid layers with differential capacitance, ac impedance
spectroscopy, coulometry and ion reduction [11–16], as well as
determining surface charge density and surface dipoles of neutral
and charged monolayers [17–20]. Interactions of the monolayers
with ion channel-forming peptides [16,21–23] and the redox mech-
anism of ubiquinone within monolayers, mimicking the natural
environment of ubiquinone [24,25], have been studied. Lipid films
have also been made on solid supports, allowing the application of
surface-sensitive probes such as vibrational spectroscopy [26–35],
atomic force microscopy [36–40], scanning tunnelling microscopy
[41,42] and reflectivity [38,43–45] to study the structure of model
membranes at the molecular level. Solid-supported lipid mem-
branes can be formed via the fusion of small unilamellar vesicles

[26–28,36,37,40,41,43,44,46] or via Langmuir-Blodgett methods
[29,31,47,48]. The use of vesicles is technically simpler and is some-
times better suited to the incorporation of peptides within films. On
the other hand, Langmuir-Blodgett techniques afford more control

reserved.
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ver the structure of the biomimetic membranes, since molecules
an be deposited at a fixed surface pressure (hence a better defined
rea per molecule), which results in fewer defects, and control over
he composition of each layer is assured, at least initially.

Recent studies have shown that it is possible to study the struc-
ure of phospholipid films under potential control by supporting
hem on solid electrodes. This approach enables the investiga-
ion of electrical barrier properties, as in the case of Hg-supported

onolayers, and allows the simultaneous acquisition of structural
nformation under potential control [2]. Electrochemical measure-

ents provide quantitative information on adsorption behaviour
nd the range of electric field strength within which the films are
table [2,28,29,43]. In situ infrared spectroscopic measurements
ave provided details of molecular orientation and packing as a

unction of applied field [26–29], scanning probe microscopies
ave provided information on molecular adsorption and arrange-
ent [39,41,42] and in situ neutron reflectivity measurements

ave been used to determine quantitatively the degree of sol-
ent ingress into the membranes as the applied field is varied
43,44]. Taken together, this information can be used to build up

detailed picture of how the structure of a lipid film affects its
roperties and the mechanism by which the film desorbs from the
urface. This type of study also has potential to shed light on the
echanism of electroporation, a process that has applications in

reatment of disease, for example, drug delivery and gene therapy
49,50].

Most work to date has been performed on the phosphatidyl-
holines and on mixtures of phosphatidylcholines with other
pecies, such as cholesterol, glycolipids and ion channel-forming
eptides. In natural cells, there is a wide range of lipid types, which
ay be present in different amounts in different types of mem-

rane [1]. For example, there is a higher proportion of anionic
hospholipids in bacterial cell membranes than in mammalian cell
embranes [1]. The purposes of the different types of lipids are

ot yet well understood, although some are implicated in bind-
ng of proteins to cell membranes [1,51] and anionic lipids bind
ations in the cytosol, which may be important in membrane
usion processes [52,53]. Consequently, it is essential to understand

odel systems composed of different lipids and their mixtures.
ot only would this increase the depth of our understanding of
iological systems, it would also facilitate the building of more com-
lex architectures and the rational design of biomimetic systems.
e have recently used a combination of electrochemical mea-

urements and in situ Polarisation Modulation Infrared Reflection
bsorption Spectroscopy (PM-IRRAS) to show that the shape of the
hospholipid molecule has a profound impact on the physicochem-

cal properties of the membrane formed [54]. Films formed from
imyristoylphosphatidylethanolamine (DMPE), depicted in Fig. 1,
how enhanced electrical barrier properties because the cylindrical
hape of the molecule enables molecules to pack closely together
n a highly ordered structure with limited mobility and low solvent
ontent. Films formed from DMPE were slightly thicker than films
ormed from the related dimyristoylphosphatidylcholine (DMPC),
hich is wedge-shaped, owing to the smaller tilt of the hydrocar-

on chains from the surface normal. The DMPE molecules were
lso able to knit closely together through intermolecular hydro-
en bonding between headgroups. In the present work, we show
hat the charge of the lipid has an important rôle to play in the
tructure and properties of the resulting film. Dimyristoylphos-
hatidylserine (DMPS), also shown in Fig. 1, has a similar size and
hape to DMPE but its headgroup bears a negative charge, unlike
MPE, which is zwitterionic. The presence of the charge on the

olecules leads to a difference in solvation, which has an impact

n the electrochemical properties of the film and on the degree
o which an applied electric field can cause changes in molecular
rganisation.
Fig. 1. Molecular structures of di-myristoyl phosphatidyl ethanolamine (DMPE) and
di-myristoyl phosphatidyl serine (DMPS).

2. Experimental

2.1. Materials

Solutions of dimyristoylphosphatidyl-L-serine (DMPS) were
prepared from DMPS (Avanti Polar Lipids, sodium salt, used as
received) and a 1:9 mixture of methanol and chloroform (both HPLC
grade, Sigma Aldrich).

All water used was purified with a tandem Elix-MilliQ Gradient
A10 system (resistivity 18 M� cm, TOC < 5 ppb). Electrolyte solu-
tions were made to a 0.1 M concentration with sodium fluoride
(Suprapur grade, VWR) and ultrapure water or, for some of the PM-
IRRAS measurements, deuterium oxide (99.99% D, Sigma Aldrich).

All glassware was cleaned by heating in a 1:1 mixture of concen-
trated sulphuric and nitric acids for at least 1 h, followed by rinsing
thoroughly with ultrapure water and soaking in ultrapure water.
Teflon, Kel-F parts and viton o-rings were cleaned with a 1:1 mix-
ture of hydrogen peroxide and ammonia for several hours, rinsed
with copious amounts of ultrapure water and soaked in ultrapure
water. Spectroelectrochemical cell parts were dried in an oven prior
to use.

2.2. Langmuir trough measurements

A teflon trough equipped with Delrin barrier and a dipper
(Nima) was employed to record isotherms of floating monolayers
and to deposit bilayers on Au surfaces. The trough and barrier
were cleaned with chloroform, filled with ultrapure water and an
isotherm was recorded to check for any contamination. 30 mL of a
1 mg mL−1 solution of DMPS was deposited onto the clean water/air
interface and allowed to equilibrate. Isotherms were recorded with
a barrier speed of 25 cm2 s−1. Fig. 2 shows the pressure-area
isotherm recorded for a DMPS monolayer at the air|water interface.
The isotherm shows a liquid condensed (Lc) phase and a solid (S)
phase; the solid phase portion of the isotherm can be extrapolated
back to give a limiting molecular area of ∼40 Å2; for comparison,
the molecular area of DMPS in multilayers in the absence of salt has
been reported to be 41 Å2 [55] and the limiting molecular area of
DMPS on a buffer sub-phase has also been reported at 41 Å2 [56].

When a deposition was required, the cleaned Au substrate was
placed below the surface of the water prior to deposition of the

lipid monolayer on the water surface. The substrate was raised
through the interface at a rate of 2 mm min−1 and at a target
pressure of 48 mN m−1 (which corresponds approximately to the
limiting molecular area of 40 Å2). The monolayer thus formed was
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Fig. 2. Pressure-area isotherm for DMPS at the air/water interface. T = 18◦C.

ried in argon for 30 min and a Langmuir-Schaeffer deposition was
erformed, also at 48 mN m−1. This type of deposition is a Y-type
eposition.

.3. Electrochemical measurements

A standard all-glass three electrode cell was employed for elec-
rochemical measurements. The working electrode was a Au(111)
ingle crystal oriented to better than 0.5◦ (Mateck, Germany)
nd was prepared as described previously [57] by annealing in a
unsen flame and rinsing with ultrapure water, before being trans-
erred to the electrochemical cell with a drop of ultrapure water.
fter the electrochemical response of the clean surface had been
hecked, this electrode was transferred to the Langmuir trough for
lm deposition. The film was placed into the electrochemical cell

mmediately after deposition. The counter electrode was a Au coil
99.999%, Alfa Aesar) and was prepared by annealing in a bunsen
ame and quenching with ultrapure water. The reference electrode
as a saturated calomel electrode (SCE, Hach Lange). (However,

ecause a Ag|AgCl|3 M KCl electrode was used for in situ PM-IRRAS
easurements, all potentials quoted in this work will be reported
ith respect to the Ag|AgCl reference electrode.) 0.1 M NaF was
sed as electrolyte and was purged of oxygen for at least 45 min
rior to measurements. An argon blanket was maintained above
he solution throughout all measurements.

Differential capacity measurements were carried out with a
eka PGSTAT590 (Heka, Germany), connected to a 7265 DSP lock-

n amplifier (Ametek) and to a PC via a data acquisition board
National Instruments). The software used to acquire the data was
indly provided by Dr. Alexei Pinheiro (Universidade Tecnologica
ederal do Parana, Londrina, Brazil). A 20 Hz, 5 mV (r.m.s) ac signal
as superimposed on a 5 mV s−1 potential ramp and the in-phase

nd quadrature components of the ac response were used to calcu-
ate the capacitance. Chronocoulometry measurements consisted
f a series of potential steps, controlled by the computer software.
he method used was similar to that described by Lipkowski et al.
29]. The potential was held at a base potential of–0.1 V for 60 s.
This potential was chosen by reference to the differential capacity
urve.) Next, the potential was stepped to the potential of interest
nd held for 3 min, the time required for equilibrium to be reached.
brief step (0.15 s) was made to a potential sufficiently negative
o desorb the molecules (again, determined from the differential
apacity data) and returned to the base potential. Current transients
ecorded during the desorption step were integrated to provide
elative charge densities. These were then converted to absolute
ica Acta 146 (2014) 850–860

charge densities using the potential of zero charge (pzc) of the elec-
trode determined in a separate differential capacitance experiment
in 5 mM NaF.

2.4. Infrared measurements

A Bruker Vertex80 v spectrometer was employed for infrared
measurements. Data were collected with a liquid N2-cooled MCT-
A detector and at a resolution of 2 cm−1. The spectrometer was
equipped with an external, modified PMA50 module comprising a
photoelastic modulator (PEM-100, Hinds Instruments, US) with a
50 kHz ZnSe optical head and a synchronous sampling demodulator
(GWC Technologies, US) for PM-IRRAS measurements. PM-IRRAS
measurements were carried out using a custom-built spectroelec-
trochemical cell with a BaF2 equilateral prism as the window. A
gold coil (99.999%, Alfa Aesar), concentric to the working electrode,
was used as a counter electrode and the reference electrode was a
Ag|AgCl|3 M KCl reference electrode (BASi, U.S.). A Au(111) crystal
(99.999% purity, orientation <0.5◦, Mateck, Germany) was used as
the working electrode and was prepared as described above for the
electrochemical measurements. The 0.1 M NaF electrolyte was pre-
pared in either ultrapure water (for the lower wavenumber region
when phosphate vibrations were investigated) or in deuterium
oxide (when C–H and C = O stretching vibrations were investi-
gated). The PEM was set for half-wave retardation at 2900 cm−1

for the C–H stretching region, at 1600 cm−1 for the C = O stretch-
ing region and at 1100 cm−1 for the phosphate stretching region.
The optimum angles of incidence calculated by Zamlynny [58] for
enhanced throughput were used. For the C–H stretching region, the
angle of incidence was 51◦, for the C = O stretching region, the angle
of incidence was 60◦ and for the phosphate stretching region, the
angle of incidence was 57◦. The thickness of electrolyte between
the window and the Au electrode was determined from reflectivity
measurements as described by Zamlynny and Lipkowski [59] using
software kindly provided by Prof. V. Zamlynny (Acadia University,
Canada) [60]. The thicknesses used were∼2 �m for the C–H stretch-
ing region, ∼2–3 �m for the C = O stretching region and ∼1–2 �m
for the phosphate stretching region.

The demodulation technique developed by Corn et al. [61,62]
was employed and, to correct the intensity difference and average
signals for the response of the PEM, a modification of the method
described by Buffeteau et al. [63] was used. Once corrected in this
way, the spectrum plots �S, which is related to the absorbance of
the molecules by Eq. (1):

�S =
2
(

Is − Ip
)

Is + Ip
≈ 2.3�ε = 2.3A (1)

where Is and Ip are the intensities of the s- and p-polarised light, A
is the absorbance, � is the surface concentration of the adsorbed
species and ε is the molar absorption coefficient [64]. The method
of background subtraction to correct for the PEM response has been
described in detail by Lipkowski et al., along with a spline interpo-
lation technique to background-correct the resulting spectra [64];
the methods reported were used for the processing of the spectra
reported in the present work.

Eq. (1) shows that the optical constants of the molecules under
investigation need to be acquired if the PM-IRRA spectra are to be
interpreted quantitatively. These can be obtained from separate
transmission IR experiments. Transmission experiments were car-
ried out in a liquid cell utilizing BaF2 windows separated with a
10 �m teflon spacer. Spectra were measured in solutions of 0.1 M

NaF in ultrapure water and 0.1 M NaF in deuterium oxide. The trans-
mission spectra were used to calculate isotropic optical constants
of DMPS in each solvent, employing software kindly provided by
Zamlynny [60]. The optical constants were then used to simulate
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Fig. 3. Differential capacity curves for a Au(111) surface in 0.1 M NaF. Dotted line:
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Fig. 4. Charge density curves for a Au(111) surface in 0.1 M NaF. Open points: in
absence of film. Filled squares: in presence of DMPS bilayer film formed with LB-
LS deposition. Filled circles: in presence of DMPS bilayer film formed from vesicle
n absence of lipids. Solid line: in presence of DMPS bilayer film. Potential scan
ate 5 mV s−1, r.m.s. amplitude 5 mV, ac frequency 20 Hz. The arrows indicate the
irection of the potential sweep.

M-IRRA spectra of randomly oriented molecules for each of the cell
onfigurations used in the spectroelectrochemical measurements.
ypical errors in transition dipole tilt angle arising from background
ubtraction and deconvolution of spectra are around 4-5◦.

. Results and Discussion

.1. Electrochemical results

The differential capacity recorded as a function of applied poten-
ial for the Au(111) surface coated with a bilayer of DMPS is
hown in Fig. 3. At potentials negative of–0.95 V, the curve matches
ith that of the bare gold electrode, indicating that the DMPS
olecules are desorbed in this potential range. Moving in the

ositive direction, a peak is observed, leading to a decrease in
he capacity as compared with the base electrolyte for potentials
ositive of ∼–0.6 V. A lower capacity for a bilayer-coated surface
an be interpreted as resulting from an increase in the distance
etween the metal surface and the outer Helmholtz plane (OHP)
nd/or a decrease in the average permittivity of the interfacial
egion between the metal surface and the OHP. DMPS exhibits min-
mum capacity at the most positive potentials of 9–10 �F cm−2.
his capacity is higher than that reported for the similar molecules
MPC (7–8 �F cm−2) [28] and DMPE (2–3 �F cm−2) [54] and for

hat of bilayers of 9:1 DMPE:DMPS [44]. DMPS has a smaller head-
roup than DMPC and might be expected to be oriented with its
ydrocarbon chains tilted at an angle closer to the surface normal,
hich should result in a slightly thicker bilayer with lower capaci-

ies than observed for DMPC. DMPE has similar geometry to DMPS
nd exhibits lower capacity than DMPC [54]. Therefore, it seems
hat a decrease in thickness is unlikely to account for the relatively
arge capacity of a DMPS-coated electrode. It is more likely that the
MPS films contain relatively larger quantities of solvent, raising

he average permittivity of the film. This could result from a large
umber of defects in the film or from a greater degree of hydration
f the molecules. DMPS is an anionic molecule and would therefore
e expected to be more hydrated than the zwitterionic molecules
MPC and DMPE.

Fig. 4 shows the chronocoulometric data for DMPS at a Au(111)
lectrode. Charge density-potential curves are compared for DMPS
lms formed by LB-LS deposition and vesicle fusion. The data are
onsistent with the differential capacity results, showing that an
dsorbed film is formed at applied potentials between–0.4 V and

0.4 V. The corresponding range of charge density is approx.–14 �C
m−2 to +18 �C cm−2, a little larger than that observed for electri-
ally neutral molecules. The absolute charges measured for films
ormed by vesicle fusion are more negative than for those measured
rupture. Error bars represent standard deviation between at least three independent
measurements. Inset: Surface pressure-potential curve derived from integration of
the charge density data.

for films formed by the LB-LS technique. This can be understood by
examining the area between the curve measured for a lipid-coated
surface and the lipid-free surface. This area corresponds to the sur-
face pressure of the bilayer, which is a measure of the lowering of
the specific surface energy by the bilayer. The surface pressure, �,
can be calculated with Eq. 2 [65]:

� = �0 − � =
E∫

E=−1.01V

	MdE −
E∫

E=−1.01V

	M0 dE (2)

The surface pressures for the LB-LS and vesicle bilayers are plot-
ted in the inset to Fig. 3. The surface pressure for the film produced
by vesicle fusion is lower than that for the film prepared by LB-LS
deposition. This suggests that the surface density of lipids is lower
for films prepared from vesicles, which might indicate a higher
density of defects and/or incomplete rupturing of vesicles. For this
reason, further analysis was carried out on bilayers prepared by the
LB-LS technique.

A small negative shift in the potential of zero charge is observed
when DMPS is adsorbed on the Au surface. The shift is a little larger
than that observed for bilayers formed from zwitterionic phospho-
lipids [29,54] but much smaller than that observed by Burgess et al.
for monolayers of the anionic surfactant sodium dodecyl sulphate
(SDS) on Au(111) (ca –0.125 V for hemimicellar aggregates and
extrapolated to give–7.8 V for a condensed film with headgroups
facing the surface) [66]. Burgess et al. discussed the likely shift for
different arrangements of the anionic surfactant, including a bilayer
with half of the molecules oriented with their heads towards the
surface and half of the molecules with their tails towards the sur-
face, which is similar to the arrangement of the DMPS layers in
the present study, although with more interdigitation of hydrocar-
bon chains [66]. For this arrangement, the potential drop between
the charged headgroups adjacent to the surface and the solvated
counter-ions in the OHP was likely to be largest and the shift in the
pzc for this arrangement of molecules was also expected to be sub-
stantial. The notably smaller shift observed for DMPS bilayers than
for SDS layers suggests that the molecules do not adsorb as anions
but rather as ion pairs (the sodium counter-ion may remain associ-
ated with the headgroups) or that a significant degree of shielding
takes place (from solvent or ions). The presence of a shift would

then indicate that there is an asymmetry in charge distribution
across the bilayer. The small shift is not surprising: studies of DOPS
monolayers supported at mercury surfaces exhibited similar sur-
face charge densities as DOPE and DOPC monolayers [18], although
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Fig. 5. (a) Selected PM-IRRA spectra in the C-H stretching region at the indicated
applied potentials. Dotted line: simulated spectrum of randomly oriented molecules
under the same experimental conditions (scaled for clarity). (b) Example of decon-
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olution of the spectrum acquired at–0.7 V. Dotted lines represent each peak, the
ashed line is the cumulative fit and the solid line traces the data. The angle of

ncidence was 51.1◦ and the electrolyte thickness 2.1 �m.

t should be noted that DOPS layers would be expected to have
ower charge density than DMPS layers, owing to the larger aver-
ge size of the constituent molecules [53]. A further difference to
ote between the behavior of SDS and DMPS is the fact that the
apacitance of DMPS layers is significantly higher than that of SDS
n the positive potential region. Given that the thickness of the
MPS bilayer is expected to be similar to that of a DMPE bilayer

the molecular geometries are similar), it is most likely that the
igh capacitance is indicative of a higher degree of solvent content.

.2. PM-IRRAS measurements

.2.1. C–H stretching region
Fig. 5a shows selected spectra acquired in the C–H stretch-

ng region at various applied electrode potentials. Also shown
as a thicker line) is a spectrum calculated for a film of ran-
omly adsorbed molecules. Pronounced changes in the spectra
ccur as the applied field is varied: most obvious is the change
n intensity of the methylene symmetric and antisymmetric vibra-
ions at ∼2852 cm−1 and ∼2919 cm−1, respectively. The vibrations
bserved at ∼2870 cm−1 and ∼2965 cm−1 correspond, respectively,
o symmetric and antisymmetric vibrational modes of methyl
roups in the hydrocarbon chains [31,52,53,67–78]. Two more
ands are observed in this region that correspond to Fermi reso-
ances between C–H stretching bands and overtones of C–H

ending modes [69,70,79]. For detailed analysis of the spectra,
ach spectrum must be deconvoluted into the six bands. An
xample of the deconvolution is provided in Fig. 5b. The posi-
ion of the CH2 stretching vibrations provides information on the
ica Acta 146 (2014) 850–860

average conformation of the hydrocarbon chains and the full width
half-maximum (FWHM) provides information on the mobility and
ordering of the molecules within the film. Fig. 6 shows the depend-
ence of these quantities on the applied potential. Data obtained
for DMPE are included for comparison. At negatively charged sur-
faces, the average band centres are 2850.6 cm−1 and 2918.4 cm−1,
indicative of hydrocarbon chains in the gel state [52,69–71,74,76].
As the charge density on the surface is reduced, the wavenumbers
of the bands increase to 2850.9 cm−1 and 2919.4 cm−1, indicating
that the average number of gauche conformers increases slightly
[52,53,69–71,74,76]. The band position and FWHM of the antisym-
metric stretch are both higher at the more positive potentials than
at the negative potentials, indicating that the film is more ordered
with less mobility at the negatively charged surface. Although the
changes are small (within the resolution employed), the trend is
clear. This behaviour is similar to that of LB-LS films of the related
molecule DMPC [29], although, as Fig. 6 shows, films of DMPE dis-
play a smaller change [54]. The band centres and FWHM of DMPS
films are lower than those of DMPE films and DMPC films, indicating
more ordering in DMPS films.

The integrated intensities of the bands are related to the tilt
angles of the transition dipoles from the normal to the surface:∫

Adv ˛ |�. E|2 = |
|2
〈

E
〉2

cos2 � (3)

where A is the absorbance, 
 is the dipole moment, E is the
electric field vector and � is the angle between the direction of the
transition dipole moment and the normal to the surface [64,80].
The area under the band is also related to the amount of mate-
rial present. The tilt angle � can be calculated by comparing the
integrated band intensity of the supported bilayer with the band
intensity in a simulated spectrum, calculated for a film of the same
thickness of randomly oriented molecules [64,81,82]:

cos2 � = 1
3

∫
E

Adv∫
random

Adv
(4)

Fig. 7 shows a plot of the tilt angle of the transition dipole
moments of the CH2 symmetric and antisymmetric stretches as
a function of the applied potential. The tilt angles obtained for
DMPE bilayers (taken from ref. 54) are included for comparison.
The tilt angles of both DMPS symmetric and antisymmetric stretch-
ing mode transition dipole moments decrease dramatically as the
applied potential is made more negative. The tilt angle of the back-
bone of the hydrocarbon chain can be calculated from these values
using equation 5:

cos2 �s + cos2 �as + cos2 �chain = 1 (5)

where �as is the tilt angle of the direction of the transition dipole
moment corresponding to the antisymmetric stretching vibration,
�s is the tilt angle of the direction of the transition dipole moment
corresponding to the symmetric stretching vibration and �chain is
the tilt angle of the hydrocarbon chain [83]. The dependence of
this tilt angle on applied potential is also plotted in Fig. 7. The
tilt angle of the chain increases from 17◦ to 30◦ as the potential
is made more negative. Unlike DMPC, the DMPS molecules are
oriented with their chains closer to the surface normal at posi-
tive potentials (low charge densities), whereas DMPC molecules
are more tilted [29]. For DMPC, the relatively high tilt angle has
been explained in terms of the orientation of the headgroups on the
surface: the fact that the headgroup is larger in area than the cross-
sectional area of the hydrocarbon chains means that the chains

must tilt to reduce inter-chain distance and hence maximise disper-
sion interactions [28,29,43]. The headgroup of DMPS is smaller than
that of DMPC, which means that the chains do not need to tilt as
much to maximise dispersion interactions. The orientation of DMPS
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Fig. 6. Plots of CH2 stretching mode peak positions and full-width half maxima (FWHM) as a function of applied potential. (a) C-H methylene symmetric stretch, (b) C-H
methylene antisymmetric stretch, (c) FWHM symmetric stretch, (d) FWHM antisymmetric stretch. In each case, the filled shapes represent data acquired for DMPS bilayers
a re rep
o et al.
2 2 cm−

h
e
D
s
t
A
m
i
a
s
a
n
a
t
i
m
t

F
t
t
s

nd the open shapes represent data acquired for DMPE bilayers [average values we
btained for DMPC bilayers prepared with the same method, taken from Zawisza
854 cm−1 and 2923 cm−1 at potentials negative of -0.5 V and 2852.5 cm−1 and 292

ydrocarbon chains in the potential range where molecules are
xpected to be directly adsorbed is similar to that observed for
MPE, which has a headgroup of similar size [54]. Therefore, it

eems likely that the similarities and differences in orientation of
he tailgroups of the three molecules, when directly adsorbed on
u, at small charge densities, can be explained by geometric argu-
ents. As the applied potential is made more negative, a smooth

ncrease in chain tilt angle is observed, rising to a value of 30◦

t potentials negative of ca –0.4 V, corresponding to charge den-
ities of ca –10 �C cm−2. DMPC displayed the opposite trend, with
smooth decrease in chain tilt angle as the surface was made

egatively charged: in that case, the headgroups were believed to
dopt a zig-zag arrangement on a water cushion, allowing chains

o adopt a more upright orientation [29]. In contrast, DMPE, which
s more similar in shape to DMPS, displayed only a very small,

onotonic rise across the potential range, from which we inferred
hat the tight packing of molecules was retained in both phases (at

ig. 7. Plot of tilt angles as a function of applied potential. The squares represent the tilt a
he tilt angles of the transition dipole of the CH2 antisymmetric vibration and the triangles
o the surface normal. The cartoon shows the relationship between the three directions
hapes represent tilt angles measured for DMPE bilayers (the latter data taken from refer
orted in 54]. For comparison, the dashed lines represent average values of FWHM
[29]. The average values of the band centres obtained for DMPC were reported as
1 at potentials positive of -0.45 V [29].

small and at large negative charge densities) as a result of strong
intermolecular interactions [54]. The greater fluidity of the DMPC
film and its lack of direct hydrogen bonding interactions enabled
re-organisation of the headgroups. The difference in behaviour
between DMPE and DMPS must result from the anionic nature of
the DMPS headgroup because the molecular shape is similar and
the headgroups of both molecules can take part in direct hydrogen
bonding. It is likely that the anionic headgroups need to be screened
by water when exposed to negative charge densities, which could
result in quite different structures for the DMPC, DMPE and DMPS
films in the negative potential region. Spectra corresponding to the
ester and headgroup vibrations were next examined to gain insight
into headgroup hydration and orientation.
3.2.2. C = O stretching region
Fig. 8 presents spectra corresponding to the ester C = O stretch,

acquired at selected applied potentials. In each spectrum, a broad

ngles of the transition dipole of the CH2 symmetric vibration, the circles represent
represent the tilt angles of the direction along the hydrocarbon chain, with respect

. The filled shapes represent tilt angles measured for DMPS bilayers and the open
ence 54).
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Fig. 8. Selected PM-IRRA spectra in the ester C = O stretching region at the indicated
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Fig. 10. Selected PM-IRRA spectra in the carboxylate C = O stretching region at the
indicated applied potentials. Dotted line: simulated spectrum of randomly oriented
pplied potentials. Dotted line: simulated spectrum of randomly oriented molecules
nder the same experimental conditions (scaled for clarity). The angle of incidence
as 61.5◦ and the electrolyte thickness 2 �m.

and is observed, comprising at least two, possibly three compo-
ents. The bands increase in intensity as the potential is varied in
he negative direction, with the lower wavenumber components
ncreasing most. Phospholipid aqueous dispersions have previously
een shown to exhibit two or three broad bands in this region of
he IR spectrum, although the origin of the different bands has been
he subject of discussion [74]. Originally the existence of two bands
as believed to arise from the conformational non-equivalence

f the sn-1 and sn-2 ester groups [52,78] but experiments with
olecules selectively labelled with 13C = O esters showed that the

ifference in wavenumber associated with conformational non-
quivalence is relatively small (∼4 cm−1). In these studies, the
rigin of two bands (at ca 1741 and 1721–1728 cm−1 for 12C = O)
as shown to be related to hydration, with ester groups in a dehy-
rated environment vibrating at the higher wavenumber and those

n a hydrated environment vibrating at the lower wavenumber
because hydrogen bonding to water lowers vibrational frequency)
77,84,85]. The peak centre or the relative intensities of the higher
nd lower wavenumber components is now used as an indication
f the degree of hydration of the ester region of the phospholipid
olecule [74,76,77]. Some studies have reported three bands in this

egion [53,76], with the lowest wavenumber assigned to a different
nvironment, interaction with two water molecules or with amine
roups of neighbouring molecules. Hence the bands observed in

ur spectra (at ∼1740 cm−1, ∼1723 cm−1 and ∼1712 cm−1) can be
ssigned to the presence of carbonyl centres in three environments:
wo with a large degree of hydration and one relatively dehy-
rated. Fig. 9 presents the relative contribution of the “dehydrated”

ig. 9. Plot of average C = O transition dipole tilt angles (squares) and proportional
rea of the higher wavenumber component of the band (circles) as a function of
pplied potential.
molecules under the same experimental conditions (scaled for clarity). The angle of
incidence was 61.5◦ and the electrolyte thickness 2 �m.

component of the C = O stretch as a function of applied potential.
At negative potentials, this relative contribution decreases; i.e., the
lower wavenumber components increase in intensity relative to
the higher wavenumber component, indicating that the hydration
of the ester regions is greater at negative charge densities. This is
consistent with the model proposed by Lipkowski et al. [28,29,43]
of water ingress during the electrochemical phase transition. It is
interesting to note that the extent of hydration of the ester groups
is higher than that of DMPE, over the whole potential range (the
“dehydrated” proportion for DMPS is 0.4–0.6, compared with ∼0.7
for DMPE [54]). This reflects the fact that the anionic DMPS is easier
to hydrate than DMPE, which has a strong intermolecular hydro-
gen bond network, and is consistent with the previous observation
that hydrogen bonded ester groups are predominant for PS bilay-
ers [76]. The observed increase in water content of our film could
explain why the hydrocarbon chains tilt so strongly at highly neg-
ative charge densities: if the headgroups and interfacial regions
were to occupy more area as a result of hydration, the hydrocarbon
chains would need to tilt to increase their intermolecular disper-
sion interactions. The overall intensity of the ester bands changes
as the potential is varied, indicating a change in the average ori-
entation of the ester groups. These trends are presented in Fig. 9,
which also shows the estimated average tilt angle of the ester
C = O transition dipoles. This tilt angle should be regarded as an
estimate because the band intensity can vary if the extent of hydro-
gen bonding varies. Nevertheless, it can be seen that the general
trend is consistent with that of the tilt angle of the hydrocarbon
chains: the transition dipole moment of the C = O band is expected
to be perpendicular to the direction of the hydrocarbon chains;
hence, if the C–H bands increase in intensity, so should the C = O
band. The difference between the behaviour of the carbonyl and
hydrocarbon groups is that the variation in the tilt angle of the car-
bonyl groups is more gradual across the potential range, whereas
the tilt angle of the hydrocarbon chains changes in a shallow
step.

The DMPS molecule also has a carboxylate moiety in its head-
group, which has a stretching vibration at∼1640 cm−1 (and another
expected in the lower wavenumber region, 1150–1300 cm−1).
Spectra in this region are presented in Fig. 10. Similarly to the
ester stretching vibration, the carboxylate vibration is sensitive
to the degree of hydrogen bonding [52,86]. The band contour in
Fig. 10 can be fitted to two mixed Gaussian-Lorenztian peaks,

−1 −1
one at ca 1640 cm and one at ca 1622 cm , the former
corresponding to relatively dehydrated carboxylate groups and the
latter to carboxylate groups participating in a significant amount
of hydrogen bonding [52,86]. The percentage contribution of the
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Fig. 11. Selected PM-IRRA spectra in the phosphate O-P-O symmetric stretching
region at the indicated applied potentials. Dotted line: simulated spectrum of ran-
E. Madrid, S.L. Horswell / Elect

ormer component is approximately 35%, indicating that the car-
oxylate groups are strongly hydrated.

.2.3. Phosphate region
Vibrations of the phosphate group of DMPS are complex and

number of bands are present in the lower wavenumber region
f the spectra. The bonds between free oxygen atoms and the
hosphorus atom tend to give rise to an O-P-O antisymmetric
tretching vibration between 1210-1260 cm−1 and a group of bands
t approximately 1100 cm−1, which is composed of O-P-O stretch-
ng vibrations and other stretching vibrations involving the oxygen
toms that are bound to the glycerol moiety and the serine group
P-O[C] vibrations). The wavenumbers of the O-P-O antisymmetric
nd symmetric modes give an indication of the degree of hydrogen
onding involving the free oxygen atoms, where lower wavenum-
ers are typical of strongly hydrated samples, and the FWHM gives

nformation on the mobility of the headgroups, where a narrow
andwidth indicates relatively immobilised groups. In the spec-
ral regions where the O-P-O antisymmetric stretching vibrations
re expected, a number of bands were observed that have simi-
ar wavenumber to CH2 wagging vibrations previously observed
n the literature for low temperature DMPC and DMPE samples
87]. DMPC bilayers have not been reported to show this wagging

ode progression under similar conditions to the present work,
robably because the progression is most obvious for ordered sam-
les where few gauche conformers are present and tend to fade as
he temperature approaches the main chain melting phase transi-
ion [71,87,88]. This phase transition is 24◦C for DMPC [67,89] and
9◦C for sodium salts of DMPS [52]. The DMPS molecules in the
resent study should be in a gel state, below the phase transition,
nd will have ordered chains with few gauche conformers, which
as indeed observed from the CH2 stretching vibration bands.
ence, it is not unexpected to observe the CH2 wagging mode
rogression for DMPS. We have also recently shown that DMPE
ilayers show a wagging mode progression under these experimen-
al conditions and concluded that the hydrocarbon chains in DMPE
ilayers contained fewer gauche conformers than DMPC bilayers
nder similar conditions (as the chain melting phase transition for
MPE is 49–50◦C, [68] resulting in a highly ordered solid phase at

oom temperature). In the case of DMPE, one of the bands had sig-
ificantly higher intensity than the others but this is not the case

or DMPS. Experiments with per-deuterated DMPE, for which the
agging vibrations are shifted to lower wavenumber, showed that

he band at 1252 cm−1 had a contribution from the antisymmet-
ic phosphate stretching vibration, which explained its relatively
igher intensity. Unfortunately, the cost of per-deuterated DMPS
recludes a similar experiment in this work. It is possible only
o speculate that the similar intensities of the bands we observe
uggest that the phosphate contribution to the spectra is small for
MPS, which indicates that the transition dipole of this vibration

ies close to parallel to the Au(111) surface.
Fig. 11 presents spectra in the region where the symmetric O-

-O and P-O[C] stretching vibrations are expected. The dotted line
hows a simulated spectrum of randomly oriented molecules, cal-
ulated from the optical constants acquired in water. A broad band
s observed, that can be fitted to four components at ∼1109 cm−1,
099 cm−1, 1072 cm−1 and 1045 cm−1. DMPC exhibits a similarly
road band that can be deconvoluted into its constituents [29] and
pectra of DMPE bilayers contain much narrower bands, indicat-
ng less mobility of DMPE headgroups within supported bilayers
54]. The broad bands in the DMPS spectra in Fig. 11 show that
he phosphate groups are more mobile than DMPE phosphate

roups, which suggests that the intermolecular hydrogen bond-
ng is weaker, perhaps as a result of greater hydration. The FWHM
f the bands do not change as the applied potential is varied. By
omparison with spectra acquired for DMPC, the 1099 cm−1 band
domly oriented molecules under the same experimental conditions (scaled for
clarity). The angle of incidence was 57◦ and the electrolyte thickness 1.3 �m.

is likely to correspond to the O-P-O symmetric stretching vibra-
tion [29,90] and the other three bands to P-O[C] vibrations. The
splitting pattern is complex and difficult to interpret: the relative
intensities could indicate particular orientation of the functional
groups or different conformations of the [C]O-P-O[C] backbone.
Studies that have been undertaken on the spectra of PS molecules,
focusing on the effect of metal ion binding, showed a change in
splitting on complexation of the metal ions to phosphate groups.
Ammonium and sodium salts of DMPS were reported to produce
a group of three bands at ∼1100 cm−1, with positions indicative
of strong hydration, whereas PS molecules complexed with metal
ions showed dehydration of the phosphate group (an increase in
wavenumber as the metal-phosphate interaction replaced some
of the water-phosphate interactions) but not of the carboxyl-
ate group. Complexation with a divalent metal ion resulted in
spectra composed of four bands [52,53,78] and the patterns of
lower wavenumber modes (inaccessible in our experiments) sug-
gested bidentate complexes. The splitting pattern of the bands at
∼1100 cm−1 was concluded also to be a marker for a bidentate
complex of the PS phosphate group with a metal ion, which was
rationalised by a change in the point group of the phosphate moi-
ety, in line with similar observations for other polyatomic inorganic
anions [78]. The only metal ion present in our study is Na+, yet the
spectra both for solution-based DMPS and DMPS bilayers are best fit
with four bands. However, the appearance of our spectra is more
akin to that of the spectra of hydrated DOPS [53] with a broader
band at 1100–1110 cm−1 than to spectra of DOPS-Ca2+ complexes,
whose bands are relatively starkly split [53]. In addition, the DMPS-
NH4

+ spectra reported in [52] consist of a broad peak containing
three bands (1100, 1085, 1068 cm−1) with another, smaller and
slightly separated band, just below 1050 cm−1, which are not dis-
similar to our own spectra. The similarity with spectra observed
previously for DMPC [29] suggests that the conformation of the
[C]O-P-O[C] is similar for DMPS. However, the relative intensity
of the lower wavenumber modes of DMPS compared with DMPC
indicates that there may be a difference in orientation of the phos-
phate [C]O-P-O[C] backbones of the two molecules. Assuming that
the 1099 cm−1 band corresponds to the O-P-O symmetric stretch-
ing vibration, its intensity can be used to estimate the tilt angle
of this transition dipole moment (which bisects the O-P-O angle)
from the surface normal. Fig. 12 plots this estimated tilt angle,
along with that of the COO− (antisymmetric) stretching mode (esti-

mated from the areas of the bands in Fig. 10), as a function of
applied potential. From these plots it is evident that the head-
group re-orients as the potential is made more negative but both
transition dipoles regain their original tilt angle at the end of the
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ig. 12. Plots of angle made between the surface normal and the transition dipole
oments of the phosphate symmetric stretching mode (squares) and carboxylate

ntisymmetric stretching mode (circles) as a function of applied potential/charge.

lectrochemical phase transition. This re-orientation is concomi-
ant with that of the hydrocarbon chains but the hydrocarbon
hains remain tilted at negative potentials. The carboxylate group
ppears to re-orient again at the most negative potentials, where
olecules are completely desorbed from the surface. These changes

re interesting but difficult to interpret in the absence of tilt angles
or the phosphate antisymmetric stretching vibration and carbox-
late symmetric stretching vibration, which were hidden by CH2
agging vibrations. In addition, spectra cannot be acquired for
H3

+ modes because of their overlap with water bending vibra-
ions. (Note that replacement of H2O with D2O would simply result
n exchange of H/D to give ND3

+, whose bands would overlap with
hose of D2O.) Acquisition of spectra of similar PS molecules (e.g.
nsaturated PS) combined with simulations could shed light on
his behaviour and will be the subject of future work. However,
ur spectra of the headgroup moieties have still demonstrated both
hat the headgroups re-orient as a result of the applied field and that
he headgroups are both hydrated and mobile. This high degree of
ydration provides an explanation for the relatively high capaci-
ance observed in the electrochemical experiments.

. Conclusions

Di-myristoyl phosphatidyl serine (DMPS) bilayers supported on
u electrodes have been studied with electrochemical and in situ
M-IRRAS measurements. The shape and charge of the molecule
ave a profound influence on the structure and properties of the
ilayer. The headgroup footprint is of similar size to that of the
ydrophobic tail groups, leading to ordered packing of molecules
t small applied fields: PM-IRRA spectra indicate a high degree
f ordering and a tail orientation similar to that observed for
witterionic molecules of similar shape (DMPE). However, the elec-
rochemical barrier properties of DMPS bilayers are significantly
ifferent from those of DMPE. This observation can be explained
y a greater degree of hydration of DMPS, arising from its charge.
M-IRRA spectra show that the ester linkages and headgroups
f DMPS are strongly solvated. The high solvent content would
aise the average dielectric constant of the bilayer, resulting in a
igher capacitance than for DMPE. In addition, our PM-IRRA spectra
emonstrate a clear re-orientation of the headgroups as the applied
otential is made more negative. The charge of the molecule evi-
ently has an effect on both the structure and the dynamics of the

nsemble, since DMPS undergoes re-orientation more readily than
MPE, which has similar size and shape. Our results thus show that

he structure of a molecule has a significant impact on the prop-
rties of bilayer films that it forms, as a result of its effect on the

[

[

ica Acta 146 (2014) 850–860

structure of the bilayer films. These results have implications for the
design of biomimetic films for use in the study of biologically active
molecules or for sensing devices. Although pure DMPS films appear
not to be suited to these applications, the understanding gained
from this study of the behaviour of this lipid is vitally important
because PS has been implicated in a range of biological functions in
cells [1,52,53,76] and this work is an important step toward studies
of biomimetic films containing a proportion of anionic lipids.
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