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Abstract

Cell-cell adhesion is mediated by interaction of a number of protein complexes residing on the cell plasma 
membranes. Disruption of these complexes affects structural and functional integrity of tissues. It has been 
hypothesized that a membrane protein tetraspanin CD82, a known metastasis suppressor, may play a role in 
regulating cell adhesion. Two proteins of interest (PG and Dsg2) have been fluorescently tagged in cells expressing 
CD82 and in control cells, and imaged over the course of three hours. This paper describes a fully automatic method 
for quantitative analysis of PG and Dsg2 fluorescence. Cell boundaries are detected by the application of second-
order steerable Gaussian filters. Cells are then segmented by closing the detected boundaries. Fluorescence levels 
are computed from a region lying around ± 1.5 microns from the centre-line between adjacent cells. Mean 
fluorescence levels obtained for thirty three cell images show that both the levels and the dynamics are different 
between the control and the CD82-expressing cells, which suggests that CD82 may play a role in cell-cell adhesion.

© 2016 The Authors. Published by Elsevier B.V.
Peer-review under responsibility of the Organizing Committee of MIUA 2016.
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1. Introduction

Tissue integrity in multicellular organisms is maintained through intercellular cell junctions, including adherens
junctions and desmosomes. The junctions consist of adhesive protein complexes which not only facilitate cell-cell 
adhesion but also regulate such important processes as epithelial morphogenesis, differentiation and wound 
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healing1-2. Compromised function of desmosomes, either due to mutation or loss, leads to various human diseases, 
including cancer3. Two proteins of interest in this study are desmoglein 2 (Dsg2), a desmosomal transmembrane 
protein, and plakoglobin (PG), a protein which is a component of desmosome and in steady state conditions is 
mainly localised on the plasma membrane. Preliminary experiments carried out at the Institute of Cancer and 
Genomic Sciences, University of Birmingham, suggested that the desmosomal adhesion might be regulated by a
membrane protein, tetraspanin CD82, which is a known metastasis suppressor. The aim of the current study was to 
examine the nature of potential interactions between CD82 and desmosomal proteins PG and Dsg2. The effect of 
CD82 was studied in the cells which were genetically modified to overexpress CD82. The assembly/disassembly of 
desmosomal complexes was induced by changing Ca2+ concentration in growth media. This involved tagging PG 
and Dsg2 with different fluorescent markers and investigating their dynamic changes over the course of time. In 
images acquired using confocal fluorescence microscope pixel brightness is a measure of the abundance of a
marker, and hence a protein. The laboratory staff carried out analysis semi-manually by outlining several cell 
boundaries in a small number of randomly selected image areas and measuring their mean pixel intensity. Such 
methods are slow and laborious, and statistical results may not be reliable due to a small amount of data collected in 
this way. This paper describes a fully automatic method for collecting the required information and presents a 
preliminary observations regarding the role of CD82 in regulation of desmosomal function.

2. Materials and methods

2.1. Cell preparation and imaging

The cell imaging experiments used the breast cancer cell line MCF7 stably transfected with CD82 (MCF7-CD82) 
and control cells (MCF7-puro)4. Cells were plated on Lab-Tech chambered coverglass and allowed to spread and 
form a monlayer. After 48 hours the medium on cells was changed for Ca2+ -free. The cells were fixed with ice-cold 
methanol for 10 min at -20oC following 1, 2 and 3 hour incubation. Two wells were fixed before medium change 
and used as a control. Following fixation the cells were stained with primary antibodies against PG and Dsg2, and 
co-stained with the appropriate secondary antibodies conjugated to Alexa Fluor fluorophores (green - AF488, 
AF568 - red, respectively). Confocal images (RGB, 512x512 pixels) were acquired with a Zeiss LSM 510 confocal 
laser scanning system using Plan-Apochromat 63x/1.4 oil immersion objectives. Images used for quantification 
were taken using the same gain and offset settings. This study utilized 66 images (33 stained for PG and 33 stained 
for Dsg2), as detailed in Table 1. Eight were used in the algorithm development (3 for training and parameter 
optimisation and 5, unseen, for evaluation). All the images were used the analysis of dynamic changes in the levels 
of PG and Dsg2.

Table 1. Images used for computing the levels of PG and Dsg2 over the course of time. 

Cell line Time course Number of images

MCF7-puro before Ca2+ switch 5

1 hour after switch 5

2 hours after switch 3

3 hours after switch 5

MCF7-CD82 before Ca2+ switch 4

1 hour after switch 4

2 hours after switch 3

3 hours after switch 4
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2.2. Image analysis

The objective of image analysis is to extract quantitative information about levels of PG and Dsg2 at cell 
boundaries (cell-cell contacts). This required the detection of the boundaries followed by computation of mean
image intensities in green-tagged (PG) and red-tagged (CD82) fluorescence images. The development was carried 
out on the training set, evaluation used the test set, and quantitative results were computed for all the images.

Boundary detection. Boundary detection was carried out on the green channel (PG) images. PG is mainly localized 
at the plasma membrane and as such should clearly demarcate cell boundaries. However, the green fluorophore were 
also present at varying levels throughout the image, possibly due to disassembly of desmosomes following the Ca2+

removal and movement of disassembled parts of adhesion structures towards the cell interior. Simple methods such 
as thresholding or the application of edge detection operators were unsuitable as they provided many false positives
away from the cell boundaries. These methods did not work because their responses were too local and isotropic, not 
distinguishing between small speckles and elongated linear structures corresponding to true boundaries. The solution 
adopted was to use second-order steerable Gaussian filters5. These are narrow, orientation selective convolution 
filters, defined by their direction ( ) and two Gaussian spread parameters and (see Figure 1). Filter 
integrates responses along its major axis and its orthogonal neighbourhood as well as smoothing out any isolated 
speckles. A single application of a filter will preferentially detect features aligned in direction . Taking a pixel-
wise maximum over all the filtered images results in a single image  showing the detected boundary responses.= max

Through experimentation was set to 30°, resulting in six directional images, and were set to 7. 
Implementation was based on a Matlab filexchange function6.

Fig. 1. Steerable Gaussian Filters at different angles where denotes the angle

Quantification of fluorescence levels. In the investigation concerning cell adhesion the most relevant region lies 
around ± 1.5 microns from the centre-line between adjacent cells. The centre-lines were detected by, first, 
thresholding the boundary response image and then morphological thinning (Matlab function bwmorph) of the 
resulting binary image and removing non-boundary segments. The threshold value was derived by the analysis of 
histograms in the training set. As they all had similar distribution, the same threshold was used consistently for all 
the image data. In the final step the centre-lines were expanded by dilation (Matlab function imdilate) to create a 
binary mask covering the boundary region of interest for the fluorescence quantification. Mean pixel values for this 
region were computed for both PG (green) and CD82 (red) fluorescence images. Figure 2 (next page) shows a 
sequence of images representing results of the processing pipeline.

Cell count. The parameter of the primary interest to bioscientists is the mean fluorescence level as a function of 
time. However, the mean fluorescence response per cell may convey additional information, and for this reason the 
cell count was implemented as an additional quantitative feature. With the cell boundaries detected it would be 
trivial to count the number of objects that the boundaries enclose. However, some of the enclosed regions represent 
intercellular spaces and should not be included in the count. Typically the real cells are larger than intercellular 
spaces. To arrive at a size threshold value all the intercellular spaces in the training dataset were identified by hand 
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and their maximum taken as the threshold value. This threshold excluded also small incomplete cell fragments at the 
image borders which were not manually counted either. The mean fluorescence response per cell was computed as 
the total fluorescence divided by the number of valid cells in the image.

Fig. 2. (a) Original image; (b) Green plane extracted from (a) representing levels of green-tagged PG; (c) Ib - maximum over results of 
convolution of (b) with five steerable filters shown in Fig. 1; (d) Result of morphological thinning applied to (c); (e) Result of morphological 

dilation applied to (d); Levels of PG at cell boundaries represented as pixel brightness.

3. Evaluation

The parameters for the above processing pipeline were established using a training set of three images. 
Evaluation was performed on five unseen images. For the centre-line boundary detection, as the ground truth in the 
form of hand-outlined cells was not available, a simple scheme for computing sensitivity of detection was employed. 
True positive value was taken to be the combined length (in pixels) of the boundary lines detected by the method 
that coincided with the actual boundary. False negative value was taken to be the combined length of the boundary 
lines that were missed; these were inserted by hand. Figure 3 shows one of the images used for validation with the 
computer-detected boundaries shown in white and the missing boundaries shown in red. For the evaluation of cell 
count, the cell numbers returned by the computer method were compared to those manually counted. Table 2 
summarises the results of evaluation.

Fig. 3. Left: original image; Right: automatically detected boundaries (yellow) and missing boundaries (red).

Table 2. Evaluation of cell boundary detection and cell count. Results are shown for 5 unseen images in the test set.

Image Missed True Positive False Negative Sensitivity Manual cell Automatic Percentage 
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Edges TP/(TP+FN) count cell count correct

1 2 6873 37 0.99 42 39 93

2 4 9101 369 0.96 36 37 97

3 2 8663 61 0.99 31 32 98

4 3 8592 132 0.98 45 43 96

5 1 7206 88 0.98 42 44 95

4. Results

A biological question that stimulated the development of this method was whether, and in what way, tetraspanin 
CD82 affects the dynamics of desmosomal proteins PG and Dsg2 when the junctional adhesion is disrupted by 
removing Ca2+ from the environment. The levels of PG and Dsg2 were computed individually for each of the thirty 
three images acquired in the experiments described in 2.1. The mean level values were then computed for each of 
the eight image groups shown in Table 1. Plots in Figure 4 show the mean levels for MCF7-puro and MCF7-CD82 
over the course of time and those in Figure 5 show the mean levels per cell.

Fig. 4. Levels and time course of PG (left) and Dsg2 (right) in the breast cancer cell line MCF7. Blue dots: control cells (puro); red dots: cells 
stably transfected with CD82. X-axis: the time course [hours]; Y-axis: mean fluorescence level per image [A.U.].

Fig. 5. Levels and time course of PG (left) and Dsg2 (right) in the breast cancer cell line MCF7. Blue dots: control cells (puro); red dots: cells 
stably transfected with CD82. X-axis: the time course [hours]; Y-axis: mean fluorescence level per cell [A.U.].
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5. Discussion and conclusion

Biological studies clearly benefit from the ability to compute statistics over large image sets entirely without user 
intervention. In pilot experiments carried out manually by the laboratory staff it took 3 hours to derive similar 
statistics for four images. In contrast, using Matlab on a standard PC (Intel Core Quad CPU 2.33 GHz) the 
computations take approximately 3.8 sec per image (approximately 4 mins for the set of 66). Apart from removing 
subjectivity and tedium of the manual work, the ability to process large data sets improves reliability of such studies. 
Plots like those shown in Figures 4 and 5 aid the interpretation of biological phenomena. In this instance (Fig. 4) 
they suggest that PG dynamics over the course of three hours are not affected by the expression of CD82. On the 
other hand, CD82 expression seems to impact the dynamics of Dsg2. It can be seen that in the MCF7-puro (control)
cells, Dsg2 levels remain relatively constant for 3 hours after Ca2+ removal. However, in MCF7-CD82 cells, the
initial level of Dsg2 on the membrane is considerably higher, then drops in response to Ca2+ removal during the first 
two hours (even below the levels in control cells) after which it starts recovering. It can be seen that both the levels 
and the dynamics are different between the two cell lines which suggests that tetraspanin CD82 may play a role in 
cell-cell adhesion. This behaviour is consistent with the current understanding, however, to make firm conclusions 
from biological point of view the experiments will need to be repeated on more images for each condition and 
statistical analysis re-applied. The method described in this paper will make the process of analysis dependable and 
fast.
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